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C1QC:	Complement	C1q	subcomponent	C	

CCR3:	C-C	Motif	Chemokine	Receptor	3	

CD4:	T-Cell	Surface	Glycoprotein	CD4	

CD14:	Monocyte	Differentiation	Antigen	CD14	

CD36:	Leukocyte	Differentiation	Antigen	CD36	

CD52:	Human	Epididymis-Specific	Protein	5	

CD207:	C-Type	Lectin	Domain	Family	4	Member	K	

CD247:	T-Cell	Surface	Glycoprotein	CD3	Zeta	Chain	

CEACAM3:	 Carcinoembryonic	 Antigen-related	 Cell	 Adhesion	

Molecule	3	

CELA2A:	Chymotrypsin-like	elastase	family	member	2A	

CLEC12A:	C-type	lectin	domain	family	12,	member	A	

COTL1:	Coactosin-like	protein	

CSF1R:	Colony	Stimulating	Factor	1	Receptor	
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CSF3R:	Colony	Stimulating	Factor	3	Receptor	

CSK:	C-Src	kinase	

CXCL4:	C-X-C	motif	chemokine	4	

CXCR5:	C-X-C	chemokine	receptor	type	5	

DDX6:	DEAD-box	helicase	6	

DNASE1L3:	Deoxyribonuclease	1-like	3	

FCER1A:	Fc	fragment	of	IgE	receptor	Ia	

FCGR3A:	Fc	fragment	of	IgG	receptor	IIIa	

FCN-1:	Ficolin-1	

GBP1:	Guanylate-binding	protein	1	

GBP2:	Guanylate-binding	protein	2	

GBP3:	Guanylate-binding	protein	3	

GBP4:	Guanylate-binding	protein	4	

GBP5:	Guanylate-binding	protein	5	

GRB2:	Growth	factor	receptor-bound	protein	2	

GSDMA:	Gasdermin	A	

GSDMB:	Gasdermin	B	

HLA-A:	Human	Leukocyte	Antigen-A	

HLA-B08:01:	Human	Leukocyte	Antigen-B08:01	
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HLA-DQA1:	Human	Leukocyte	Antigen-DQA1	

HLA-DQB103:01:	Human	Leukocyte	Antigen-DQB1*03:01	

HLA-DRA:	Human	Leukocyte	Antigen-DRA	

HLA-DRB1:	Human	Leukocyte	Antigen-DRB1	

HLA-DRB5:	Human	Leukocyte	Antigen-DRB5	

IFI6:	Interferon	alpha-inducible	protein	6	

IFITM2:	Interferon-induced	transmembrane	protein	2	

IFITM3:	Interferon-induced	transmembrane	protein	3	

IFNGR2:	Interferon	gamma	receptor	2	

IL-12:	Interleukin-12	

IL-17:	Interleukin-17	

IL-6:	Interleukin-6	

IL12A:	Interleukin-12	subunit	alpha	

IL12RB1:	Interleukin-12	receptor	subunit	beta	1	

IL12RB2:	Interleukin-12	receptor	subunit	beta	2	

IL1B:	Interleukin-1	beta	

IRF1:	Interferon	regulatory	factor	1	

IRF5:	Interferon	regulatory	factor	5	

IRF7:	Interferon	regulatory	factor	7	
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IRF8:	Interferon	regulatory	factor	8	

ISG15:	Interferon-stimulated	gene	15	

JUN:	Jun	proto-oncogene	

KLF6:	Kruppel-like	factor	6	

LGALS2:	L-Galectin-2	

LGR5:	Leucine-rich	repeat-containing	G-protein	coupled	receptor	5	

LRT:	Lateral	Rootless1	

LST1:	Leukocyte	specific	transcript	1	

LYZ:	Lysozyme	

MTHFR:	Methylenetetrahydrofolate	reductase	

MTRNR2L8:	Mitochondrially	encoded	16S	ribosomal	RNA	

MX1:	Myxovirus	resistance	protein	1	

MX2:	Myxovirus	resistance	protein	2	

NLRP3:	NOD-like	receptor	family	pyrin	domain	containing	3	

PDE4:	Phosphodiesterase	4	

PGE2:	Prostaglandin	E2	

PPARG:	Peroxisome	proliferator-activated	receptor	gamma	

PTGES:	Prostaglandin	E	synthase	

PTPN22:	Protein	tyrosine	phosphatase	non-receptor	type	22	
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RAB2A:	Ras-related	protein	Rab-2A	

RHOC:	Ras	homolog	family	member	C	

RUNX3:	Runt-related	transcription	factor	3	

S100A4:	S100	calcium-binding	protein	A4	

S100A6:	S100	calcium-binding	protein	A6	

S100A8:	S100	calcium-binding	protein	A8	

S100A9:	S100	calcium-binding	protein	A9	

S100A10:	S100	calcium-binding	protein	A10	

SELL:	Selectin	L	

SFRP2hi/DPP4:	 Secreted	 frizzled-related	 protein	 2hi/Dipeptidyl	

peptidase	4	

SPP1:	Secreted	phosphoprotein	1	

STAT1:	Signal	Transducer	and	Activator	of	Transcription	1	

STAT4:	Signal	Transducer	and	Activator	of	Transcription	4	

TGF-β:	Transforming	Growth	Factor-beta	

TGFB2:	Transforming	Growth	Factor-beta	2	

TMEM176A:	Transmembrane	protein	176A	

TMEM176B:	Transmembrane	protein	176B	

TMSB10:	Thymosin	beta-10	

TNFɑ:	Tumor	Necrosis	Factor-alpha	
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TNIP1:	TNFAIP3-interacting	protein	1	

TPT1:	Tumor	protein,	translationally-controlled	1	

TSPAN32:	Tetraspanin	32	

TYK2:	Tyrosine	kinase	2	

VCAN:	Versican	

αSMA:	Alpha	Smooth	Muscle	Actin	
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Summary	
Systemic	 sclerosis,	 or	 scleroderma	 (SSc),	 is	 a	 complex	 immune-

mediated	 inflammatory	 disorder.	 SSc	 pathogenesis	 involves	 a	 triad	 of	

factors:	 immunological	 imbalance	 characterized	 by	 the	 presence	 of	

autoantibodies.	pronounced	vascular	damage	and	extensive	fibrosis	of	the	

skin	and	 the	 internal	organs.	Clinically,	SSc	can	be	classified	based	on	 the	

extension	 of	 fibrosis.	 When	 it	 primarily	 affects	 the	 face	 and	 limbs,	 it	 is	

referred	to	as	limited	cutaneous	SSc	(lcSSc),	while	when	it	involves	internal	

organs,	it	is	defined	as	diffuse	cutaneous	SSc	(dcSSc).	Additionally,	SSc	can	

be	 classified	 by	 the	 autoantibodies	 generated	 by	 the	 patient,	 the	

predominant	types	being	anti-topoisomerase	(ATA+)	and	anti-centromere	

(ACA+),	that	correlate	with	dcSSc	and	lcSSC,	respectively.	

SSc	has	a	clear	genetic	component	and	the	role	of	common	genetic	

variants	 in	 the	 susceptibility	 to	 SSc	 has	 been	 explored	 by	 using	 high	

throughput	genotyping	techniques	such	as	genome-wide	association	studies	

(GWAS)	arrays.	The	latest	GWAS	in	the	disease,	published	in	2019,	identified	

27	 loci	 associated	with	 SSc,	 discovering	 13	 new	 ones	 and	 providing	 new	

insights	into	the	molecular	pathways	and	specific	cell	types	implicated	in	the	

pathogenesis	of	the	disease.	In	addition,	the	mentioned	large	genomic	study	

established	 solid	 grounds	 for	 comprehensive	 follow-up	 studies	 and	 data	

mining	 strategies.	 Consequently,	 the	 main	 aim	 of	 this	 doctoral	 thesis	

research	was	to	further	understand	the	biological	mechanisms	involved	in	

SSc	by	applying	novel	analysis	strategies	on	GWAS	datasets	and	to	generate	

and	 analyze	 the	 gene	 expression	 profiles	 of	 relevant	 cell	 subtypes	 at	 the	

single	cell	level.	

A	 straightforward	 application	 of	 the	 identification	 of	 genetic	 risk	

factors	and	the	estimation	of	their	effects	in	large	GWASs	is	the	generation	



Deciphering	the	genetic	basis	of	systemic	sclerosis	

XXVIII	

of	polygenic	or	genomic	risk	scores	(PRS	or	GRS,	respectively).	This	method	

enabled	us	to	identify	individuals	at	risk	of	developing	the	disease	based	on	

the	 presence	 of	 specific	 alleles	 in	 known	 disease-associated	 loci.	 In	 this	

doctoral	 thesis,	we	developed	a	33	single	nucleotide	polymorphism	(SNP)	

GRS	that	was	proven	to	be	able	to	differentiate	between	healthy	individuals	

and	SSc	patients.	Moreover,	 the	generated	GRS	showed	a	 relevant	clinical	

management	potential,	as	it	could	distinguish	between	individuals	with	SSc	

and	those	with	two	related	immune-mediated	disorders	such	as	rheumatoid	

arthritis	and	Sjögren's	syndrome,	especially	when	genetic	information	was	

combined	with	immune	cell	count	data.	

On	the	other	hand,	two-sample	Mendelian	randomization	methods	

allowed	the	scientific	community	to	combine	GWAS	results	for	diseases	and	

environmental	risk	factors	to	address	the	causality	of	risk	factors	on	disease	

onset.	High	levels	of	body	fat	or	obesity	are	known	risk	factors	for	numerous	

diseases,	including	immune-mediated	diseases.	Obesity	is	associated	with	a	

state	 of	 chronic	 low-level	 inflammation,	 in	which	 adipocytes	 release	 pro-

inflammatory	 cytokines.	 Therefore,	 this	 thesis	 included	 the	 study	 of	 the	

causal	contribution	of	body	fat	distribution	to	the	SSc.	We	utilized	GWAS	data	

from	 public	 repositories	 for	 anthropometric	 measures	 of	 body	 fat	

distribution,	including	body	mass	index	(BMI),	waist-to-hip	ratio,	and	BMI	

adjusted	for	waist-to-hip	ratio.	However,	our	analyses	did	not	reveal	a	causal	

relationship	between	SSc	and	any	of	these	obesity-related	anthropometric	

measures.	

Finally,	based	on	previous	knowledge,	monocytes	were	selected	as	

targets	 cells	 to	 study	 in	order	 to	better	understand	 the	 SSc	pathogenesis.	

Monocytes	 are	 myeloid	 cells	 that	 circulate	 in	 the	 blood	 with	 various	

functions	in	innate	immunity,	ranging	from	direct	action	against	threats	to	

the	 activation	 of	 other	 cell	 types	 and	 chemotaxis.	 Therefore,	 we	 isolated	
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monocytes	from	peripheral	blood	in	patients	and	controls	and	using	single-

cell	 transcriptome	 analysis	 (scRNA-seq),	 we	 identified	 aberrant	 gene	

expression	profiles	in	SSc	patients.	Briefly,	non-classical	monocytes	(ncMos)	

were	 found	 in	 higher	 proportions	 in	 SSc	 patients,	 and	 SSc	 ncMos	 also	

expressed	 increased	 levels	 of	 PTGES	 and	 interferon-mediated	 activation.	

PTGES	encodes	a	prostaglandin	E2	synthase,	which	was	previously	proposed	

as	 a	 therapeutic	 target	 in	 inflammation	 and	may	 also	 be	 relevant	 for	 SSc	

patients.	 A	 SSc-related	 cluster	 of	 IRF7+	 STAT1+	 intermediate	 monocyte	

subset	 with	 an	 aberrant	 interferon	 response	 was	 also	 described.		

Additionally,	we	identified	a	M2-polarized	population	of	classical	monocytes	

that	 was	 depleted	 in	 patients.	 Considering	 that	 M2	 macrophages	 are	

profibrotic,	we	hypothesized	that	these	monocyte	subset	is	being	activated	

and	migrating	to	tissues	in	SSc	patients.		

The	results	presented	in	this	doctoral	thesis	signify	a	step	forward	in	

the	genetic	exploration	of	SSc	from	various	perspectives.	First,	we	employed	

previously	 published	 GWAS	 data	 to	 predict	 SSc	 onset	 based	 on	 genetic	

variants.	 Second,	 we	 utilized	 the	 same	 GWAS	 data	 to	 establish	 body	 fat	

distribution	as	a	predisposing	risk	factor	for	the	disease.	Third,	we	employed	

cutting-edge	 techniques	 like	 scRNA-seq	 to	 describe	 circulating	 blood	

monocytes	and	their	potential	role	in	the	disease.	
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Resumen		
La	 esclerosis	 sistémica,	 o	 esclerodermia	 (SSc),	 es	 un	 trastorno	

inflamatorio	mediado	por	el	sistema	inmunológico	de	etiología	compleja.	La	

patogénesis	de	la	enfermedad	involucra	una	tríada	de	factores:	desequilibrio	

inmunológico	 caracterizado	 por	 la	 presencia	 de	 autoanticuerpos	 daño	

vascular	pronunciado	y	 fibrosis	 extensa	de	 la	piel	 y	 los	 órganos	 internos.	

Clínicamente,	 la	 SSc	 se	 puede	 clasificar	 según	 la	 extensión	 de	 la	 fibrosis.	

Cuando	 afecta	 principalmente	 la	 cara	 y	 las	 extremidades,	 se	 denomina	

esclerósis	sistémica	cutánea	limitada	(lcSSc),	mientras	que	cuando	involucra	

órganos	internos,	se	define	como	esclerosis	sistémica	cutánea	difusa	(dcSSc).	

Además,	la	SSc	se	puede	clasificar	según	los	autoanticuerpos	generados	por	

el	paciente,	siendo	los	tipos	predominantes	la	anti-topoisomerasa	(ATA+)	y	

los	 anticentrómero	 (ACA+),	 que	 se	 correlacionan	 con	 dcSSc	 y	 lcSSC,	

respectivamente.	

La	 SSc	 es	 una	 enfermedad	 con	 un	 fuerte	 componente	 genético,	

estudiado	 en	 los	 últimos	 años	 gracias	 a	 técnicas	 de	 genotipado	 como	 los	

estudios	de	asociación	de	genoma	completo	(GWAS).	El	último	GWAS	en	la	

enfermedad,	 publicado	 en	 2019,	 identificó	 27	 loci	 asociados	 con	 la	 ES,	

descubriendo	13	nuevos	y	proporcionando	nuevas	perspectivas	 sobre	 las	

rutas	 moleculares	 y	 los	 efectos	 celulares	 específicos	 implicados	 en	 la	

patogénesis	de	la	enfermedad.	Adicionalmente,	este	gran	estudio	genómico	

estableció	 bases	 sólidas	 para	 estudios	 de	 seguimiento	 y	 estrategias	 de	

minería	de	datos.	En	consecuencia,	el	principal	objetivo	de	esta	tesis	doctoral	

fue	 comprender	mejor	 los	mecanismos	 biológicos	 involucrados	 en	 la	 SSc	

mediante	 la	 aplicación	 de	 nuevas	 estrategias	 de	 análisis	 en	 conjuntos	 de	

datos	 de	 GWAS	 y	 generar	 y	 analizar	 los	 perfiles	 de	 expresión	 génica	 de	

subtipos	celulares	relevantes	a	nivel	de	células	única.	
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Una	 aplicación	 directa	 de	 la	 identificación	 de	 factores	 de	 riesgo	

genéticos	y	la	estimación	de	sus	efectos	en	GWAS	de	grandes	cohortes	son	

los	índices	de	riesgo	poligénico	o	genómico	(PRS	o	GRS,	respectivamente).	

Esta	 técnica	permite	 identificar	 a	 las	personas	en	 riesgo	de	desarrollar	 la	

enfermedad	según	la	presencia	de	alelos	específicos	en	los	loci	asociados	a	la	

enfermedad.	En	esta	 tesis	doctoral,	 desarrollamos	un	GRS	de	33	SNP	que	

demostró	ser	capaz	de	diferenciar	entre	 individuos	sanos	y	pacientes	con	

SSc.	Además,	el	GRS	generado	mostró	un	potencial	relevante	en	la	gestión	

clínica,	ya	que	podía	distinguir	entre	individuos	con	SSc	y	aquellos	con	dos	

enfermedades	autoinmunes	relacionadas,	 como	 la	artritis	 reumatoide	y	el	

síndrome	 de	 Sjögren,	 especialmente	 cuando	 se	 combinó	 información	

genética	con	datos	de	recuento	de	células	inmunitarias.	

Por	 otro	 lado,	 los	 métodos	 de	 aleatorización	 mendeliana	 de	 dos	

muestras	permitieron	a	la	comunidad	científica	combinar	los	resultados	de	

GWAS	para	enfermedades	y	factores	de	riesgo	ambientales	para	abordar	la	

relación	causal	entre	ellos.	Los	altos	niveles	de	grasa	corporal	u	obesidad	son	

factores	de	 riesgo	 conocidos	para	numerosas	 enfermedades,	 incluidas	 los	

transtornos	 mediados	 por	 el	 sistema	 inmunológico.	 La	 obesidad	 está	

asociada	con	un	estado	de	inflamación	crónica	de	bajo	nivel,	en	el	cual	los	

adipocitos	 liberan	 citoquinas	 proinflamatorias.	 Por	 lo	 tanto,	 esta	 tesis	

incluye	 el	 estudio	 de	 la	 contribución	 causal	 de	 la	 distribución	 de	 grasa	

corporal	a	la	SSc.	Utilizamos	datos	de	GWAS	de	repositorios	públicos	para	

medidas	antropométricas	de	distribución	de	grasa	corporal,	 incluyendo	el	

índice	de	masa	corporal	(IMC),	el	ratio	cintura-cadera	y	el	IMC	ajustado	por	

el	 ratio	 cintura-cadera.	 Sin	 embargo,	 nuestros	 análisis	 no	 revelaron	 una	

relación	 causal	 entre	 la	 SSc	 y	 ninguna	 de	 estas	medidas	 antropométricas	

relacionadas	con	la	obesidad.	
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Finalmente,	 en	 base	 al	 conocimiento	 previo,	 los	 monocitos	 se	

seleccionaron	 como	 células	 objetivo	 para	 nuestro	 estudio,	 con	 el	 fin	 de	

comprender	 mejor	 la	 patogénesis	 de	 la	 SSc.	 Los	 monocitos	 son	 células	

mieloides	que	circulan	en	la	sangre	con	diversas	funciones	en	la	inmunidad	

innata,	que	van	desde	la	acción	directa	contra	amenazas	hasta	la	activación	

de	otros	tipos	celulares	y	la	quimiotaxis.	Por	lo	tanto,	aislamos	monocitos	de	

sangre	 periférica	 en	 pacientes	 y	 controles	 y,	 utilizando	 análisis	 de	

transcriptoma	 de	 células	 únicas	 (scRNA-seq),	 se	 identificaron	 perfiles	 de	

expresión	génica	aberrantes	en	pacientes	con	SSc.	Se	encontró	una	mayor	

proporción	de	monocitos	no	clásicos	(ncMos)	en	pacientes	con	SSc,	y	estos	

también	expresaron	niveles	aumentados	de	PTGES	y	activación	mediada	por	

interferón.	PTGES	codifica	una	prostaglandina	E2	sintasa,	que	previamente	

se	 ha	 propuesto	 como	 un	 objetivo	 terapéutico	 en	 la	 inflamación	 y	 que	

también	 puede	 ser	 relevante	 para	 los	 pacientes	 con	 SSc.	 También	 se	

describió	 un	 grupo	 celular	 relacionado	 con	 la	 SSc	 de	 un	 subconjunto	 de	

monocitos	intermedios	que	expresan	IRF7+	STAT1+	con	una	respuesta	de	

interferón	 aberrante.	 Además,	 identificamos	 una	 población	 de	monocitos	

clásicos	 polarizados	 a	 macrofagos	 M2	 que	 estaba	 deplecionado	 en	 los	

pacientes.	 Dado	 que	 los	 macrófagos	 M2	 son	 células	 profibróticas,	

planteamos	 la	hipótesis	de	que	este	subconjunto	de	monocitos	se	activa	y	

migra	a	los	tejidos	en	pacientes	con	SSc.	

Los	 resultados	 presentados	 en	 esta	 tesis	 doctoral	 representan	 un	

avance	en	la	exploración	genética	de	la	SSc	desde	diversas	perspectivas.	En	

primer	 lugar,	 al	 utilizar	 datos	 de	 GWAS	 previamente	 publicados	 para	

predecir	la	aparición	o	distinguir	la	enfermedad	de	otras	basado	en	variantes	

genéticas.	 En	 segundo	 lugar,	 al	 utilizar	 los	 mismos	 datos	 de	 GWAS	 para	

intentar	dilucidar	si	la	distribución	de	grasa	corporal	es	un	factor	de	riesgo	

para	la	enfermedad.	En	tercer	lugar,	al	utilizar	técnicas	de	vanguardia	como	
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scRNA-seq	para	describir	 los	monocitos	de	la	sangre	circulante	y	su	papel	

potencial	en	la	SSc.	
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Introduction	

1. Systemic	 sclerosis	 is	 a	 chronic	 life-threatening	

disorder	

The	 immune	 system	 comprises	 a	 highly	 complex	 network	 of	 cells,	

tissues	and	organs	distributed	throughout	the	body.	It	plays	a	critical	role	in	

protecting	against	diseases	and	pathogens	and,	it	must	be	strictly	regulated	to	

function	effectively.	The	ability	of	this	system	to	respond	appropriately	to	a	

threat	is	crucial	for	an	individual's	health	and	an	excessive	response	can	be	as	

harmful	as	a	deficiency	(1,2).	

Immune-mediated	inflammatory	diseases	(IMIDs)	constitute	a	group	

of	heterogeneous	disorders	resulting	from	an	overactive	immune	system	and	

the	 loss	 of	 self-tolerance.	 IMIDs	 manifest	 across	 a	 spectrum	 of	 conditions	

affecting	various	organs,	individuals	of	all	ages	and	exhibiting	a	wide	array	of	

symptoms.	 The	 severity	 of	 each	 IMID	 can	 vary	 significantly,	 ranging	 from	

minor	biochemical	abnormalities	to	life-threatening	situations,	and	they	often	

have	 a	 chronic	 course	 (2).	 Consequently,	 IMIDs	 pose	 both	 clinical	 and	

economic	challenges	to	society.	For	clinicians,	distinguishing	between	IMIDs	

can	 be	 intricate,	 given	 the	 frequent	 overlap	 of	 clinical	 presentations	 and	

symptoms	among	these	conditions.	Therefore,	an	accurate	diagnosis	is	crucial,	

particularly	 in	 the	 early	 stages,	 to	 initiate	 appropriate	 treatment.	 From	 a	

societal	 perspective,	 particularly	within	 the	 healthcare	 system,	 the	 chronic	

nature	of	 IMIDs	 requires	 the	development	of	optimized	 strategies	 for	 cost-

effective	management	of	affected	 individuals.	This	 is	particularly	 important	

because	patients	with	IMIDs	often	rely	on	the	healthcare	system	for	lifelong	

care	and	support	(1).	
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The	combined	prevalence	of	IMIDs	is	high,	affecting	approximately	7-

9%	 of	 the	 population,	 although	 this	 prevalence	 is	 not	 evenly	 distributed.	

IMIDs	 are	 more	 commonly	 observed	 in	 women	 than	 in	 men	 and	 exhibit	

variations	 among	 different	 ethnic	 groups	 (3,4).	 From	 an	 epidemiological	

perspective,	 there	 is	 significant	variability	 in	 the	 incidence	 rates	of	various	

IMIDs.	Some	IMIDs,	such	as	type	1	diabetes	(T1D)	or	rheumatoid	arthritis	(RA)	

or	 occur	more	 frequently,	while	 others,	 like	 systemic	 lupus	 erythematosus	

(SLE)	or	systemic	sclerosis	(SSc)	are	considered	rare	diseases	(5).		

IMIDs	can	be	classified	into	two	main	categories	based	on	the	extent	

of	affected	tissues:	organ-specific	diseases,	such	as	T1D	or	multiple	sclerosis	

(MS),	 and	 systemic	 diseases,	 including	 RA,	 SLE	 or	 SSc.	 Regardless	 of	 the	

affected	 tissue,	 IMIDs	are	 typically	 characterized	as	 complex	and	polygenic	

diseases.	 The	 complexity	 of	 these	 disorders	 arises	 from	 both	 genetic	 and	

environmental	components,	as	the	final	phenotype	is	strongly	influenced	by	

external	factors.	Multiple	genetic	factors	contribute	to	the	onset	of	the	disease;	

however,	their	individual	contribution	is	modest,	and	it	is	the	combination	of	

these	 factors	 that	 leads	 to	 the	dysregulation	of	 the	system	and	 the	disease.	

Nonetheless,	 it	 is	 worth	 noting	 that	 some	 IMIDs	 are	 monogenic	 or	 have	

monogenic	forms	as	it	happens	in	SLE,	resulting	from	alterations	in	key	genes	

(1,6).	

SSc,	also	called	scleroderma,	is	a	complex	chronic	IMID.	The	hallmark	

characteristics	 of	 this	 disease	 include	 immune	 imbalance,	 vascular	damage	

and	alterations,	and	tissue	fibrosis	driven	by	excessive	collagen	deposition	(7)	

(Figure	1).	However,	one	challenging	feature	of	SSc	is	the	high	heterogeneity	

between	 patients	 in	 their	 clinical	 manifestations,	 laboratory	 values	 and	

response	to	treatment.		
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Figure	1.	Hallmarks	of	the	pathology	of	SSc.	

Like	 many	 IMIDs,	 early	 stages	 of	 SSc	 often	 present	 with	 general	

symptoms	 such	 as	 fatigue,	 but	 many	 SSc	 patients	 debut	 with	 Raynaud's	

phenomenon.	 Raynaud's	 phenomenon	 is	 one	 of	 the	 primary	 vascular	

manifestations	of	the	disease,	characterized	by	fibrotic	proliferation	in	small	

vessels,	 resulting	 in	 the	 fingers'	 tip	 turning	white	 or	 blue	 due	 to	 impaired	

blood	 circulation	 and	 cyanosis	 (8).	 Not	 all	 individuals	 with	 Raynaud’s	

phenomenon	 develop	 SSc,	 and	 the	 vascular	 patterns	 can	 be	 assessed	 by	

capillaroscopy	 and	 are	 used	 as	 a	 diagnostic	 tool	 in	 the	 early	 stages	 of	 the	

disease	(9).	Raynaud's	phenomenon	is	not	the	sole	vascular	event	associated	

with	 the	 disease;	 others	 include	 renal	 crisis	 and	 pulmonary	 arterial	

hypertension	(PAH).	Renal	crisis	is	a	severe	complication	that	may	necessitate	

renal	transplantation,	and	alongside	PAH	are	the	leading	causes	of	death	in	

SSc	(7).		

The	immune	imbalance	involvement	in	SSc	mainly	encompasses	the	

overactivation	of	the	innate	and	acquired	immune	responses.	In	this	regard,	

this	 imbalance	 translates	 into	 the	 tissues	 through	 characteristic	 cellular	

infiltrates	in	patients,	involving	activated	T	cells	and	myeloid	cells	exhibiting	
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aberrant	 behavior	 (10–12).	 Furthermore,	 it	 has	 been	 described	 that	 some	

immune	cell	populations	are	elevated	in	the	blood	of	SSc	patients	(12).	All	the	

above	lead	to	the	production	of	different	autoantibodies	and	proinflammatory	

cytokines	 and	 chemokines,	 but	 also	 an	 interferon	 (IFN)	 signature	 that	 is	

characteristic	of	the	disease	(7).		

Different	organs	and	systems	are	affected	 in	SSc,	as	 is	 illustrated	 in	

Figure	 2.	 Alongside	 vascular	 complications,	 the	 disease	 frequently	 affects	

organs	 like	 the	 lungs,	 gastroesophageal	 tract,	 and	 the	 heart	 (13).	 While	

gastroesophageal	issues	are	the	most	prevalent	among	SSc	patients,	the	most	

life-threatening	 complications	 involve	 the	 lungs,	 encompassing	 pulmonary	

hypertension,	pulmonary	fibrosis	(PF),	and	interstitial	lung	disease	(ILD)	(13).	

ILD	stands	as	the	primary	cause	of	mortality	among	patients,	followed	by	SSc	

renal	crisis.	Digital	ulcers	and	musculoskeletal	problems	are	also	frequently	

observed	in	these	patients	(13).	

	

Figure	2.	Different	organs	implicated	in	the	pathology	of	systemic	sclerosis	

(Extracted	from	Allanore	et	al.,	Nat	Rev	Dis	Primers,	2015).	



Introduction	

	 39	

Fibrosis	 in	 SSc	 typically	 commences	 in	 the	 skin,	 specifically	 in	 the	

distal	 fingers	 and	 toes	 before	 advancing	 proximally.	 Over	 time,	 an	 excess	

deposition	 of	 collagen	 leads	 to	 skin	 thickening	 and	 limited	 joint	 mobility,	

resulting	in	contractures	affecting	both	large	and	small	joints	in	some	patients.	

After	several	years	of	disease	progression,	the	skin	can	become	tight,	sclerotic,	

and	 occasionally	 atrophic.	 This	 fibrosis	 will	 extend	 to	 internal	 organs,	

affecting	life	function	(7).	

In	terms	of	epidemiology,	the	incidence	of	SSc	significantly	varies	by	

country.	 Globally,	 the	 estimation	 is	 1	 in	 10,000	 people	 (14).	 The	 peak	 of	

incidence	appears	around	middle	age,	50-60	years	old.	Gender-wise,	there	is	

a	strong	bias,	with	a	higher	 incidence	 in	women,	with	a	8:2	 female	 to	male	

ratio	(15).	However,	 the	disease	tends	to	be	more	severe	 in	men,	and	their	

prognosis	is	generally	poor	(13).	

Classifying	 SSc	 patients	 is	 a	 complex	 task	 due	 to	 the	 highly	

heterogeneous	nature	of	the	disease.	As	mentioned	before,	one	of	the	defining	

characteristics	of	SSc	is	the	extent	of	fibrosis,	which	serves	as	a	key	criterion	

for	classification.	Patients	typically	fall	into	one	of	two	distinct	groups:	those	

with	 diffuse	 cutaneous	 systemic	 sclerosis	 (dcSSc),	 characterized	 by	

widespread	 fibrosis,	 and	 those	 with	 limited	 cutaneous	 systemic	 sclerosis	

(lcSSc),	where	 fibrosis	predominantly	 affects	 the	hands,	 knees,	 and	may	or	

may	not	involve	the	face	and	neck.	However,	it	is	important	to	note	that	some	

patients	may	 not	 fit	 neatly	 into	 either	 of	 these	 subtypes	 or	may	 transition	

between	them	over	time	(14).	

In	addition	to	evaluating	the	progression	of	skin	fibrosis,	classification	

criteria	also	consider	serological	profiles.	Approximately	95%	of	SSc	patients	

test	positive	for	antinuclear	antibodies	(ANA),	which	are	normally	mutually	

exclusive.	There	are	three	primary	autoantibodies	observed	in	SSc	patients:	
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anticentromere	 antibodies	 (ACA),	 often	 associated	 with	 lcSSc;	 anti-

topoisomerase	 I	 antibodies	 (ATA),	 and	 anti-RNA	 polymerase	 III	 antibodies	

(ARA),	which	 are	more	 commonly	 found	 in	 dcSSc	 patients.	 The	 serological	

profile	 is	 typically	 determined	using	 indirect	 immunofluorescence,	 proving	

highly	valuable	for	both	diagnosis	and	classification	(7,13,14).	

2. Environmental	risk	factors	

SSc	 is	a	complex	disorder	 in	which	both	genetic	and	environmental	

factors	 play	 an	 important	 role	 in	 the	 disease	 onset	 and	 development.	 Risk	

factors	encompass	a	broad	category	of	external	agents,	 lifestyle	and	dietary	

factors	influenced	by	sex,	culture	and	social	status,	and	can	be	classified	into	

three	primary	categories:	chemical,	biological,	and	physical	agents	(16).	Each	

category	will	be	elaborated	through	in	the	following	section.	

Chemical	agents	constitute	one	of	the	most	significant	risk	factors	in	

SSc,	with	the	first	documented	case	dating	back	to	1914	(17).	This	category	

includes	fractured	silica	crystal	dust,	organic	solvents,	asbestos,	and	various	

industrial	 agents	 (17–20).	 Typically,	 these	 aggressive	 agents	 come	 into	

contact	with	the	skin	or	the	lungs,	two	of	the	main	organs/tissues	affected	in	

the	 disease.	 This	 relationship	 has	 been	 explored,	 identifying	 silica	 as	 a	

potential	 risk	 factor	without	 a	 clear	pathogenic	mechanism	 (21).	However,	

silica	 is	 known	 to	 affect	 T	 cells	 as	 an	 adjuvant,	 potentially	 leading	 to	 their	

overactivation	 and	 triggering	 autoimmune	 responses	 in	 predisposed	

individuals	 (21).	 Asbestos	 exposure	 may	 exert	 a	 similar	 effect	 and	 is	 also	

considered	 a	 risk	 factor.	 This	 exposure	 has	 been	 associated	 with	 various	

IMIDs	 (21),	 with	 animal	 models	 demonstrating	 the	 generation	 of	 ANAs	

following	 intratracheal	 injections	of	amphibole	asbestos	(22).	Furthermore,	

asbestos	 exposure	 has	 been	 linked	 to	 alterations	 in	 cytokine	 levels	 in	 the	

blood,	including	increased	levels	of	IL-17	and	TGF-β	(23–25).	Organic	solvents	
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are	 carbon-based	 substances	 capable	 of	 dissolving	 or	 dispersing	 other	

substances,	which	represent	another	significant	risk	factor	 in	SSc.	Research	

dating	back	to	the	mid-20th	century	has	investigated	the	influence	of	organic	

solvents	on	SSc,	revealing	that	 individual	exposure	to	 these	solvents	nearly	

doubles	the	likelihood	of	developing	the	disease,	with	a	higher	risk	observed	

in	men	(25).	This	risk	factor	has	also	been	linked	to	the	dcSSc	subtype	(19).	A	

significant	intoxication	case	to	consider	is	the	canola	oil	intoxication	in	Spain	

during	the	years	1980-1981	(26–28).	The	consumption	of	adulterated	oil	led	

to	what	was	termed	the	Toxic	Oil	Syndrome,	affecting	thousands	of	people	and	

resulting	 in	 the	death	of	 hundreds	 (26).	Among	 the	numerous	 and	diverse	

symptoms	exhibited	by	the	affected	individuals,	some	included	skin	thinning	

and	other	symptoms	associated	with	SSc	(28),	primarily	in	women	(29).	

Biological	agents	constitute	relevant	risk	factors	for	numerous	IMIDs,	

being	infectious	agents	one	of	the	most	important	factors	in	this	regard,	due	

most	 IMIDs	 have	 been	 associated	 with	 them	 (30).	 The	 main	 hypothesis	

establishes	 that	 the	 association	 arises	 from	 the	 molecular	 resemblance	

between	 infectious	 agents	 and	 human	 proteins,	 potentially	 leading	 to	 the	

misidentification	of	self-epitopes	as	foreign	invaders.	When	infections	occur	

in	individuals	with	a	genetic	predisposition,	 it	can	result	 in	a	breakdown	of	

self-tolerance	 (30).	 For	 instance,	 antibodies	 against	 the	 Epstein-Barr	 virus	

(EBV)	have	been	suggested	to	correlate	with	skin	and	joint	manifestations	in	

SLE	(30),	while	both	EBV	and	cytomegalovirus	(CMV)	have	been	linked	to	the	

onset	of	SSc	(31,32).	These	associations	seem	to	be	due	to	the	fact	that	both	

EBV	 and	 CMV	 can	 infect	 endothelial	 cells	 (ECs).	 Interestingly,	 in	 SSc,	

antibodies	 recognize	 a	 specific	 epitope	 from	 CMV,	 UL94,	 that	 induces	

apoptosis	when	it	binds	to	the	integrin-NAG-2	protein	complex	in	ECs	(31).	

There	is	further	evidence	of	other	infectious	agents	and	their	involvement	in	

SSc,	 such	 as	 the	 increased	 presence	 of	 Helicobacter	 pylori	 in	 SSc	 patients	

(33,34).	
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Some	 physical	 agents,	 such	 as	 ultraviolet	 and	 ionizing	 radiation	 or	

electronic	and	magnetic	fields,	are	capable	of	changing	DNA	structure,	which	

causes	cellular	death	and	damage	that	could	be	a	possible	explanation	for	the	

onset	 of	 different	 IMIDs.	 Factors	 with	 a	 direct	 effect	 on	 the	 skin,	 such	 as	

ultraviolet	light,	have	been	linked	to	the	development	of	MS	and	SLE	(35,36).	

Nevertheless,	no	physical	agents	have	been	associated	with	SSc	to	date.	

Lifestyle	factors	can	greatly	influence	the	susceptibility	to	IMIDs,	and	

some	 of	 the	 most	 well-known	 include	 smoking,	 obesity,	 physical	 activity,	

educational	level,	and	socioeconomic	status	(37–39).	For	instance,	smoking	is	

a	 common	 and	 widely	 recognized	 risk	 factor,	 established	 for	 other	

autoimmune	diseases	(37).	However,	it	has	been	relatively	underexplored	in	

the	context	of	SSc.	Nevertheless,	evidence	suggests	that	smoking	may	increase	

the	risk	of	fibrosis,	vascular	damage,	and	respiratory	issues	in	SSc,	and	it	 is	

recommended	that	patients	discontinue	this	habit	(40).		

Among	lifestyle	factors,	obesity	has	emerged	as	a	major	public	health	

issue	in	Western	countries,	with	increasing	prevalence	across	most	nations.	

Co-occuring	with	 the	 increase	 in	 obesity	 levels,	 the	 incidence	 of	 IMIDs	has	

grown,	raising	suspicions	about	a	correlation	between	the	two	phenomena.	In	

fact,	 obesity	 has	 been	 characterized	 by	 a	 state	 of	 low-grade	 inflammation,	

marked	 by	 elevated	 levels	 of	 inflammatory	 markers	 such	 as	 IL-6	 and	 C-

reactive	protein	(CRP)	in	obese	individuals	(41).	Adipose	tissue	is	classified	

into	two	types:	white	(WAT)	and	brown	adipose	tissue,	with	WAT	comprising	

the	majority	of	adipose	tissue	in	the	body	(42).	WAT	is	primarily	composed	of	

adipocytes,	along	with	a	smaller	fraction	of	other	cells	such	as	macrophages,	

which	are	more	prevalent	in	females	than	males.	Additionally,	pre-adipocyte	

cells	 can	 differentiate	 into	 macrophages	 under	 the	 right	 stimuli,	

distinguishing	them	from	macrophages	derived	from	circulating	monocytes	

(43).	 Adipocytes	 exhibit	 stimulatory	 actions,	 as	 demonstrated	 in	 culture	
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experiments	that	show	an	increased	expression	of	adhesion	molecules	in	ECs.	

Furthermore,	 adipocytes	 have	 the	 capability	 to	 activate	 adhesion	 and	

transmigration	in	circulating	monocytes	through	the	secretion	of	molecules,	

including	chemokines	like	monocyte	chemoattractant	protein	1	(MCP-1)	(44).	

All	 these	 factors	 contribute	 to	 the	proinflammatory	potential	 of	 adipocytes	

and	 adipose	 tissue.	 Diseases	 such	 as	 T1D	 and	 cardiovascular	 disease	 have	

been	previously	linked	to	obesity	(41),	however,	this	causal	relationship	with	

IMIDs	is	being	recently	explored	(42,45,46).		

3. The	genetic	architecture	of	SSc	

In	addition	to	exposure	to	environmental	triggers,	the	development	

of	 a	 complex	 disease	 relies	 on	 the	 genetic	 predisposition	 of	 different	

individuals.	 In	 the	 case	of	 SSc,	 the	most	 relevant	 risk	 factor	 is	 still	 family	

history.	Individuals	with	a	relative	who	was	previously	diagnosed	with	SSc	

face	a	notably	higher	risk,	reaching	a	1.6%,	compared	to	a	0.026%	risk	in	the	

general	 population	 (47,48).	 Furthermore,	 shared	 genetic	 bases	 between	

IMIDs	make	it	common	for	other	IMIDs	to	present	as	comorbidities	of	SSc	

(49).		

As	 a	 complex	 disease,	 SSc	 does	 not	 have	 a	Mendelian	 inheritance	

pattern.	Therefore,	the	polygenic	component	and	environmental	influences	

make	 it	 challenging	 to	 establish	 heritable	 patterns	 of	 the	 disease.	 Single	

nucleotide	 polymorphisms	 (SNPs)	 entail	 the	 alteration	 of	 a	 single	 pair	 of	

nucleotide	 bases	 within	 DNA.	 On	 average,	 these	 mutations	 occur	

approximately	once	every	1000	nucleotides,	resulting	in	4	to	5	million	SNPs	

in	a	single	individual.	To	date,	research	has	identified	over	80	million	SNPs	

across	 various	 populations	 (50).	 A	 SNP	 must	 affect	 at	 least	 1%	 of	 the	

population	to	be	classified	as	such;	otherwise,	it	falls	under	the	category	of	

rare	 variants	 or	 punctual	mutations.	 The	 genetic	 component	 of	 polygenic	
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diseases	 consists	 in	 the	 accumulative	 effect	 of	 these	 SNPs,	 which	 are	

frequent	in	the	population	but	have	a	low	penetrance,	differently	from	the	

rare	mutations	that	impact	Mendelian	disease.	

The	 role	 of	 SNPs	 in	 disease	 susceptibility	 can	 be	 addressed	 by	

performing	 genetic	 association	 studies.	 These	 studies	 compare	 the	

frequency	 of	 the	 different	 alleles	 between	 two	 groups	 of	 individuals,	 i.e.	

those	 affected	 by	 a	 particular	 condition	 (cases)	 and	 those	 who	 are	 not	

(controls).	If	an	allele	is	significantly	more	frequent	in	cases	than	in	controls,	

then	 the	 allele	 would	 have	 a	 risk	 effect.	 On	 the	 contrary,	 if	 an	 allele	 is	

significantly	 less	 frequent	 in	 cases	 than	 in	 controls,	 it	 would	 have	 a	

protective	effect.		

Genetic	association	studies	are	usually	based	on	prior	knowledge	of	

the	 disease,	 meaning	 that	 they	 rely	 on	 a	 hypothesis.	 The	 selection	 of	

candidate	genes	and	SNPs	would	be	under	the	assumption	of	their	impact	in	

the	disease	due	a	known	path	or	a	previous	association	in	a	similar	effect.	

Genome-wide	association	studies	(GWAS)	opened	doors	for	comprehensive	

genome	 examination	 without	 the	 need	 to	 genotype	 all	 the	 known	

polymorphic	positions	of	the	genome,	thanks	to	the	phenomenon	of	linkage	

disequilibrium	 (LD).	 LD	 is	 the	 non-random	 association	 between	 genetic	

variants	located	close	to	each	other	on	a	chromosome,	meaning	they	tend	to	

be	 inherited	 together	more	 often	 than	 expected	 by	 chance.	 In	 the	 GWAS	

techniques,	 the	SNP	genotyping	panel	 is	narrowed	down	by	genotyping	a	

limited	 number	 of	 SNPs	 and	 inferring	 those	 that	 are	 frequently	 inherited	

together	due	to	the	LD	patterns	observed	in	complete	reference	panels	(51).	

These	 mean	 that	 GWAS	 are	 hypothesis	 free	 studies	 and	 make	 them	 the	

ground	floor	for	further	research	based	on	their	results.		
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To	date,	GWAS	identified	thousands	of	loci	associated	with	complex	

diseases	(52,53).	The	high	number	of	tested	SNPs	generates	a	necessity	of	a	

more	 restrictive	 statistical	 significance	 threshold.	 The	 threshold	 is	

established	at	p	<	5x10-8	which	corresponds	to	Bonferroni	correction	of	one	

million	 independent	 tests,	 in	 this	 case	 SNPs	 (54).	 Furthermore,	 the	

possibility	of	false	positives	also	increases,	making	it	necessary	to	perform	a	

replication	step.	Moreover,	due	to	the	number	of	SNPs	that	are	inherited	in	

the	 same	 haplotype	 blocks	 and	 are	 statistically	 indistinguishable,	 it	 is	

challenging	 to	determine	the	causal	variants	within	 the	associated	region,	

often	necessitating	further	fine	mapping	or	functional	studies.	

Regarding	 the	 genetic	 component	 of	 SSc,	 the	 human	 leukocyte	

antigen	(HLA)	region,	also	known	as	the	major	histocompatibility	complex	

(MHC)	region,	 stands	out	as	 the	 first	genetic	association	with	 the	disease,	

exerting	 the	 most	 significant	 genetic	 influence	 on	 it.	 The	 HLA	 is	 highly	

polymorphic,	in	fact	it	is	the	most	variable	region	in	the	human	genome	due	

to	its	function	in	antigen	presentation.	HLA	class	I	has	a	role	in	the	antigen	

presentation	in	every	cell	 in	the	body,	while	HLA	class	II	molecules	play	a	

crucial	 role	 in	 antigen	 presentation,	 involving	 various	 antigen-presenting	

cells	such	as	mononuclear	phagocytes,	dendritic	cells,	endothelial	cells	and	

B	 cells.	 Consequently,	 this	 locus	 has	 a	 strong	 influence	 in	 IMIDs,	 and	 its	

association	with	human	disease	has	been	one	of	the	main	research	issues	in	

the	past	years	(55).	

HLA	 region	 have	 consistently	 shown	 the	 most	 significant	

associations	 with	 SSc	 susceptibility	 across	 various	 studies	 in	 different	

populations,	 including	 those	 involving	 candidate	 genes	 and	 large-scale	

genetic	studies,	as	GWAS	or,	the	Immunochip	and	GWASs	(58,	60,61).	
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Within	the	HLA	region,	several	classical	alleles	have	been	associated	

with	SSc,	being	the	most	important	HLA-DRB1*11:04/HLA-DQA1*0501/HLA-

DQB1*0301	 haplotype	 (56–62).	Our	 recent	 study,	 the	most	extensive	HLA	

analysis	in	SSc	using	recent	GWAS	data,	has	confirmed	the	association	of	nine	

classical	 alleles	 with	 SSc,	 and	 unveiled	 that	 HLA	 class	 I	 also	 plays	 a	

substantial	role	 in	the	disease's	pathogenesis	with	the	association	of	HLA-

B*08:01	(63).	Importantly,	the	HLA	region	in	SSc	exhibits	associations	with	

specific	 patient	 subsets	 and	 distinct	 clinical	 features.	 For	 instance,	 HLA-

DQA1*02:01	 is	 specifically	 linked	 to	 lcSSc,	 while	 HLA-DQA1*05:01	 is	

exclusively	associated	with	dcSSc	 (63).	Beyond	 the	HLA	region,	 there	 is	 a	

multitude	of	loci	that	have	been	linked	to	SSc	in	candidate	gene	studies	or	in	

GWAS	(64).	Over	the	past	two	decades,	the	number	of	loci	associated	with	

SSc	has	steadily	 increased,	culminating	 in	 the	 identification	of	27	disease-

associated	loci	in	the	2019	GWAS	(65).	

In	 this	 context,	 genes	 associated	 with	 the	 immune	 system	 have	

exhibited	 the	 strongest	 correlations.	 IRF5,	 which	 encodes	 the	 interferon	

regulatory	 factor	5,	was	 the	 first	non-HLA	gene	 linked	 to	SSc.	Subsequent	

studies,	 including	 GWAS,	 reinforced	 this	 association.	 For	 instance,	 IRF5	

rs2004660	is	a	well-established	SSc	risk	factor,	and	macrophages	harboring	

this	SNP	have	been	shown	to	display	heightened	proinflammatory	activity	

and	polarization	toward	M1	macrophages.	Several	other	IRF5	variants	have	

been	linked	to	SSc	(65,66),	but	the	most	intriguing	one,	rs4728142,	appears	

to	 hold	 promise	 in	 prognosticating	 longer	 survival	 and	 preserved	 lung	

function,	thanks	to	its	role	in	decreasing	IRF5	expression	(67).	In	addition	to	

IRF5,	other	interferon	regulatory	factors	(IRFs),	including	IRF4,	IRF5,	IRF7,	

and	 IRF8	 (Table	 1),	 are	 associated	 with	 SSc.	 IRFs	 play	 a	 crucial	 role	 in	

regulating	 interferon	 transcription,	 orchestrating	 the	 activation	 of	

interferon	 genes	 following	 infection	 stimuli.	Moreover,	 in	 SSc	 skin	 tissue,	
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IRF7	 has	 been	 observed	 to	 be	 upregulated	 and	 active,	 with	 its	 deletion	

resulting	in	reduced	profibrotic	factors	in	SSc	fibroblasts	(68).	

Similarly,	 genes	 associated	 with	 adaptive	 immune	 responses	 also	

play	a	role	in	SSc.	CD247,	among	the	first	genes	identified,	is	a	prime	example.	

This	 gene	 encodes	 the	 T-cell	 receptor	 T3	 zeta	 chain,	 a	 key	modulator	 of	

antigen-dependent	 T-cell	 activation	 following	 antigen	 recognition.	 The	

CD247	rs2056626	variant	has	been	associated	with	SSc	from	the	early	stages	

of	genetic	studies	on	the	disease	(66,69,70).	Additionally,	STAT4	has	been	

identified	 as	 an	 SSc	 risk	 factor,	 with	 two	 different	 SNPs,	 rs3821236	 and	

rs4853458,	being	associated	with	the	disease	in	the	most	recent	GWAS	(65).	

STAT4,	 is	a	 transcription	 factor	belonging	 to	 the	STAT	 family,	and	plays	a	

pivotal	role	in	mediating	the	response	to	IL-12	signaling	in	lymphocytes	and	

regulating	T	helper	cell	differentiation.	Notably,	 several	genes	 involved	 in	

the	 IL-12	 signaling	 pathway,	 such	 as	 TYK2	 (rs2304256,	 rs34536443,	

rs12720356,	 rs35018800),	 IL12A	 (rs7758790,	 rs589446),	 IL12RB1	

(rs436857,	rs2305743,	rs8109496,	rs11668601)	and	IL12RB2	(rs3790566,	

rs924080,	rs3790567),	have	been	linked	to	SSc,	encompassing	components	

from	the	cytokine	itself	to	its	receptors	(Table	1.).	The	IL-12A	gene	encodes	

the	 alpha	 subunit	 of	 the	 IL-12	 cytokine,	 which	 forms	 a	 heterodimer	 and	

binds	to	the	cell	receptor.	This	receptor	is	encoded	by	two	genes,	IL12RB1	

and	IL12RB2.	Upon	activation,	the	IL12RB2	protein	provides	a	binding	site	

for	kinases	like	TYK2,	which	has	also	been	associated	with	SSc	(65,70–73).	

Autophagy	 and	 apoptosis	 represent	 critical	 cellular	 processes	

involved	in	remodeling.	These	processes	entail	the	degradation	of	organelles	

by	lysosomes,	posing	a	risk	of	exposing	an	individual	to	their	own	epitopes.	

Regarding	genetic	variations	 in	SSc,	 some	are	associated	with	 the	disease	

and	 are	 implicated	 in	 these	 cellular	 processes.	 For	 instance,	ATG5,	which	

encodes	a	protein	 involved	in	autophagosome	elongation,	 is	 linked	to	SSc,	
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specifically	with	 rs9373839	 (74).	 Several	 genes	 related	 to	apoptosis	have	

been	associated	with	SSc,	including	DNASE1L3,	which	encodes	a	protein	in	

the	deoxyribonuclease	1	family	responsible	for	DNA	fragmentation	during	

apoptosis.	DNASE1L3	rs35677470	has	been	associated	with	ACA+	patients	

in	 SSc	 (74,75).	 Lastly,	 GSDMA	 and	 GSDMB	 genes	 play	 crucial	 roles	 in	

pyroptosis,	a	 form	of	cell	death	 triggered	by	proinflammatory	signals	and	

associated	with	inflammation.	Both	genes	have	been	linked	to	SSc	(65,76).	

One	step	forward	in	the	study	of	genetic	susceptibility	in	IMIDs	has	

been	the	meta-analysis	of	GWAS	(meta-GWAS).	This	kind	of	analysis	allows	

combining	data	from	different	sources	and	investigating	the	shared	genetic	

association,	 even	 including	 cohorts	 with	 relatively	 small	 size.	 With	 this	

strategy	it	was	possible	to	increase	the	statistical	power	of	SSc	GWAS	and	to	

improve	our	capability	to	identify	significant	associations,	with	new	genes	

associated	 with	 the	 disease,	 such	 as	 IRF5-TNPO3	 loci	 or	DDX6	 (65).	 The	

shared	genetic	background	and	susceptibility	between	IMIDs	also	benefited	

from	this	 type	of	approach,	 showing	 that	 IMIDs	shared	up	 to	half	of	 their	

genome-wide	 significant	 associated-variants	 (77–80).	 Considering	 the	

shared	genetic	component	of	SSc	with	other	IMIDs,	SLE	and	RA	stand	out.	

Also,	the	most	recent	cross-disease	meta-analysis	between	IMDs,	including	

SSc,	 SLE,	 RA	 and	 idiopathic	 inflammatory	myopathies,	 performed	 by	 our	

group,	revealed	five	new	loci	between	these	diseases,	NAB1,	KPNA4-ARL14,	

DGQK,	LIMK1	 and	PRR12,	 some	of	 them	 implicated	 in	autoimmunity	 (81).	

Finally,	 it's	 noteworthy	 that	 meta-analyses	 can	 unveil	 shared	 genetic	

components	among	seemingly	different	diseases,	as	evidenced	in	the	case	of	

SSc	 and	 Crohn's	 disease	 (CD)	 (79).	 In	 a	 study	 conducted	 by	 our	 group,	

encompassing	over	10,000	individuals	with	both	diseases,	4	shared	genetic	

loci	were	identified:	IL12RB2,	IRF1/SLC22A5,	STAT3,	and	an	intergenic	locus	

at	 6p21.31.	 These	 loci	 featured	 pleiotropic	 variants	 with	 opposite	 allelic	

effects	in	the	diseases.	Furthermore,	an	enrichment	of	the	IL-12	family	and	



Introduction	

	 49	

type	I	IFN	signaling	pathways	was	observed	among	the	shared	genetic	risk	

loci	for	SSc	and	CD	(79,82).		
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Table	1.	Non-HLA	genetic	susceptibility	loci	associated	with	SSc.	(Adapted	from	Ota,	

Inflamm	Regener,	2021)	

CHR	 Gene	 BP	 SNP	 Gene	name	 Study	
type	

Referen
ces	

Innate	immune	response	

4	 NFKB1	 102527984	 rs230534	 Nuclear	Factor	Kappa	B	
Subunit	1	

meta-
GWAS	 (65)	

5	 TNIP1	
151060536
-
151076171	

rs4958881,	
rs2233287,	
rs3792783	

TNFAIP3	Interacting	
Protein	

GWAS,	
meta-
GWAS,	

(65,69,8
3,84)	

6	 IRF4	 434464	 rs9328192	 Interferon	Regulatory	
Factor	4	 GWAS	 (77)	

6	 TNFAIP3	
137869500
-
137921300	

rs5029929,	
rs2230926,	
rs6932056	

Tumor	necrosis	factor	
Alpha	Induced	Protein	

3	
GWAS	 (70,83,8

5,86)	

7	 IRF5	
128933813
-
129077852	

rs4728142,	
rs10488631,	
rs10488631,	
rs3757385,	
rs109542313,	
rs2004640,	
rs12537284,	
rs2280714	

Interferon	Regulatory	
Factor	5	 GWAS	

(66,69,7
0,74,77,8
3,87)	

7	 IRF5-
TNPO3	

129011368
-
129018785	

rs36073657,	
rs12155080	

Interferon	Regulatory	
Factor	5,	Transportin	3	

meta-
GWAS	 (65)	

7	 TAP2	 28808807-
32743301	

rs12538892,	
rs17500468	

Transporter	2,	ATP	
Binding	Cassette	

Subfamily	B	Member	

ImmunoC
hip	 (74)	

11	 IRF7	 589564-
613208	

rs1131665,	
rs4963128,	
rs702966	

Interferon	Regulatory	
Factor	7	

CGA,	
meta-
GWAS	

(65,88)	

16	 IRF8	 85938316-
85985665	

rs11642873,	
rs2280381,	
rs11117432,	
rs11644034,	
rs12711490,	
rs7202472,	
rs11117420	

Interferon	Regulatory	
Factor	8	

GWAS,	
meta-
GWAS,	

(65,70,8
3,85,88–
90)	

Adaptive	immune	response	

1	 TNFSF4	
173243134
-
173364690	

rs4916334,	
rs10798269,	
rs12039904	

Tumor	necrosis	factor	
Superfamily	Member	4	

GWAS,	
meta-
GWAS	

(70,83,9
1)	
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1	 CD247	 167451088	 rs2056626	 T-Cell	Receptor	T3	Zeta	
Chain	

GWAS,	
meta-
GWAS	

(65,66,8
9,92)	

1	 PTPN22	 113834846	 rs2476601	
Protein	Tyrosine	
Phosphatase	Non-
Receptor	Type	22	

GWAS	 (77)	

2	 STAT4	
191038032
-
191099907	

rs7574865,	
rs3821236,	
rs4853458,	
rs10168266,	
rs3821236	

Signal	Transducer	and	
Activator	Of	

Transcription	4	

GWAS,	
ImmunoC
hip,	meta-
GWAS	

(65,69,7
0,87,89,9

0)	

8	 BLK	 11486464-
11491677	

rs13277113,	
rs2736340	

BLK	Proto-Oncogene,	
Src	Family	Tyrosine	

Kinase	
GWAS	 (83)	

15	 CSK	 74784926	 rs1378942	 C-Terminal	Src	Kinase	
GWAS,	
GWAS	

follow-up	

(65,83,9
1)	

IL-12	Signaling	Pathway	and	cytokines	

1	 IL-12RB2	 67294457-67356694	

rs3790566,	
rs924080,	
rs3790567	

Interleukin	12	
Receptor	Subunit	Beta	

2	

GWAS,	
meta-
GWAS	

(65,72)	

3	 IL-12A	 160015740	 rs589446	 Interleukin	12A	
GWAS,	

ImmunoC
hip	

(65)	

19	 TYK2	 10352442-
10364976	

rs2304256,	
rs34536443,	
rs12720356,	
rs35018800	

Tyrosine	Kinase	2	
ImmunoC

hip	
follow-up	

(71)	

19	 IL-12RB1	 18079534-18103711	

rs436857,	
rs2305743,	
rs8109496,	
rs11668601	

Interleukin	12	
Receptor	Subunit	Beta	

1	

meta-
GWAS	 (65,73)	

Apoptosis,	Autophagy	Pathway	

3	 DNASEIL3	 58197809	 rs35677470	 Deoxyribonuclease	1	
Like	3	

ImmunoC
hip,	meta-
GWAS	

(74)	

6	 ATG5	
106207742
-
106286165	

rs9373839,	
rs633724	 Autophagy	Related	5	

GWAS,	
ImmunoC
hip,	meta-
GWAS	

(65,74,7
7,83)	

6	 NOTCH4	 32222529	 rs443198	 Notch	Receptor	4	 GWAS	 (88)	

6	 PRDM1	 106129393	 rs4134466	 PR/SET	Domain	1	 GWAS	 (90)	
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17	 GSDMB	 39907028	 rs883770	 Gasdermin	B	 meta-
GWAS	 (65)	

17	 GSDMA	 39965640	 rs3894194	 Gasdermin	A	 GWAS	 (76)	

Vascular	homeostasis	and	fibrosis	

3	 PPARG	 12218016	 rs310746	
Peroxisome	

Proliferator	Activated	
Receptor	Gamma	

GWAS	
follow-up	 (93)	

Other	

3	 NAB1	 19066954	 rs16832798	 NGFI-A	Binding	Protein	
1	

meta-
GWAS	 (65)	

3	

POGLUT1-
TIMMDC1
-CD80-
ARHGAP3

1	

119397203	 rs9884090	

Protein	O-
Glucosyltransferase	1	
Translocase	of	Inner	

Mitochondrial	
Membrane	Domain	

Containing	1	
Cluster	of	

Differentiation	80	
Rho	GTPase	Activating	

Protein	31	

meta-
GWAS	 (65)	

4	 DGKQ	 971891	 rs11724804	 Diacylglycerol	Kinase	
Theta	

meta-
GWAS	 (65)	

11	 DDX6	 118768544	 rs11217020	 DEAD-Box	Helicase	6	 meta-
GWAS	 (65)	

11	 RAB2A-
CHD7	 618072	 rs6598008	

Member	RAS	Oncogene	
Family	

Chromodomain	
Helicase	DNA	Binding	

Protein	7	

meta-
GWAS	 (65)	

11	 TSPAN32,	
CD81-AS1	 2327289	 rs2651804	

Tetraspanin	32	
Cluster	of	

Differentiation	81	
Antisense	RNA	1	

meta-
GWAS	 (65)	

17	 NUP85-
GRB2	 75228444	 rs1005714	

Nucleoporin	85	
Growth	Factor	
Receptor	Bound	

Protein	2	

meta-
GWAS	 (65)	
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5. Genomic	strategies	to	deepen	into	the	genetic	and	

environmental	risk	factors	of	SSc.	

One	of	the	strengths	of	the	GWAS	is	that	they	establish	a	firm	basis	

for	follow-up	studies.	Whether	fine	mapping	specific	loci	or	using	the	bulk	of	

the	metadata	provided	by	the	GWAS,	the	possibilities	expand,	especially	due	

the	public	use	of	the	data,	with	initiatives	such	as	GWAS	catalog	(94).	The	

information	pertaining	to	a	disease	or	a	phenotypic	trait,	contained	within	

the	 summary	 statistics	 of	 GWAS	 can	 be	 used	 for	 various	 techniques	 and	

approached	 in	 different	 ways.	 Using	 this	 data,	 we	 can	 delve	 into	 the	

underlying	biology	of	the	phenotype,	estimate	heritability,	explore	genetic	

correlations	with	other	phenotypes,	calculate	the	genetic	risk	of	developing	

the	disease,	investigate	therapeutic	targets	by	identifying	genes	involved	in	

disease	 susceptibility	 pathways,	 and	 explore	 the	 causal	 relationship	

between	a	risk	factor	and	a	final	phenotype	(95–97).	

One	of	 the	most	relevant	applications	 for	 the	discoveries	 in	GWAS	

would	be	the	capability	to	predict	whether	an	individual	is	at	risk	of	suffering	

from	or	developing	a	particular	disease	or	condition,	as	well	as	the	likelihood	

of	this	happening	based	on	their	genetic	information,	is	a	clinically	crucial	

tool.	 Polygenic	 risk	 scores	 (PRS)	 or	 genomic	 risk	 scores	 (GRS)	 based	 on	

GWAS	datasets	have	emerged	to	address	this	need.	These	are	tools	that,	from	

their	 inception,	 aim	 to	 assess	 an	 individual's	 susceptibility	 to	 a	 specific	

disease	based	on	the	presence	or	absence	of	risk/protective	alleles	(Figure	

3).	The	application	of	these	methods	would	be	a	game	changing	situation	in	

the	 clinic,	 especially	 in	 the	 early	 disease	 detection,	making	 it	 possible	 to	

perform	 differential	 diagnosis	 and	 to	 initiate	 prevention	 therapies	 and	

interventions.		
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Figure	3.	Polygenic	risk	score	study	design.		

Furthermore,	 PRS	 has	 the	 potential	 to	 improve	 precision	 and	

personal	 medicine	 by	 predicting	 the	 evolution	 of	 the	 disease	 into	 the	

different	 subtypes	 in	 the	 early	 stages	 or	 predicting	 the	 possible	

comorbidities.	However,	it	is	necessary	to	distinguish	between	heritability	

explained	 and	 individual	 risk.	 The	 explained	heritability	 is	 defined	 as	 the	

proportion	of	phenotypic	variation	in	a	population	that	can	be	explained	by	

genetic	variation	(98).		

A	PRS	is	typically	calculated	as	a	weighted	sum	of	the	number	of	risk	

alleles	 carried	 by	 an	 individual.	 These	 risk	 alleles	 and	 their	 associated	

weights	are	determined	based	on	the	identified	susceptibility	loci	and	their	

measured	effects	 identified	 through	GWAS.	 It's	worth	noting	 that	 in	some	

scenarios,	 a	 less	 stringent	 statistical	 significance	 threshold	 than	 that	

employed	 for	 genome-wide	 significance	 may	 be	 utilized	 to	 improve	 or	

estimate	 the	overall	predictability	of	 the	PRS.	Nevertheless,	 this	approach	

may	come	at	the	cost	of	reduced	generalizability	in	certain	contexts	(99).	PRS	

models	can	be	combined	with	different	parameters	such	as	cell	counts,	sex,	

age,	and	multiple	linked	variants	specific	to	the	disease.	
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Although	they	are	not	usually	integrated	in	daily	clinical	practice	yet,	

PRS	 have	 been	 developed	 successfully	 in	 different	 IMIDs.	 For	 example,	 a	

recent	study	conducted	by	Khera	et	al.	(100)	has	ignited	a	debate	about	the	

use	of	PRS	in	clinical	practice.	The	authors	developed	a	brilliant	model	for	

five	common	diseases:	coronary	artery	disease	(CAD),	type	2	diabetes	(T2D),	

inflammatory	bowel	disease	(IBD),	and	atrial	 fibrillation.	They	 found	that,	

for	 many	 individuals,	 PRS	 risk	 variants	 were	 as	 significant	 as	 those	

associated	with	single	variants	influencing	rare	monogenic	forms	of	diseases	

that	are	already	routinely	considered	in	clinical	settings	(100).		

Additionally,	 a	 PRS	 model	 could	 enable	 the	 screening	 for	 several	

diseases	by	leveraging	the	shared	genetic	components,	as	observed	among	

IMIDs	or	 IMIDs.	Recently,	Knevel	et	 al.	 (101)	developed	G-PROB	 (Genetic	

Probability	tool)	to	calculate	the	probability	of	a	patient	developing	various	

inflammatory	 arthritis-causing	 diseases,	 including	 RA,	 SLE,	

spondyloarthropathy,	psoriatic	arthritis,	 and	gout.	This	 tool	was	 tested	 in	

clinical	settings	and	exhibited	good	performance,	increasing	the	accuracy	of	

clinician	 diagnosis	 in	 51%	 of	 cases	 after	 incorporating	 prediction	

information	(101).	

It's	 important	 to	 note	 that	 PRS	 models	 are	 not	 meant	 to	 replace	

physician	diagnosis	and	intervention	but	rather	to	enhance	their	judgment	

and	 improve	 patient	 prognosis.	 These	 promising	 results	 suggest	 that	

personalized	 medicine	 could	 become	 more	 accessible.	 However,	 the	

challenge	lies	in	the	feasibility	of	genotyping	every	individual	to	incorporate	

this	 tool	 into	 clinical	 practice.	 Issues	 such	 as	 patient	 privacy	 and	 data	

interpretation	also	pose	significant	hurdles.	Moreover,	the	primary	concern	

arises	from	the	population	used	to	generate	these	models.	Currently,	85%	of	

GWAS	have	been	conducted	in	the	European	population,	which	means	that	

all	 subsequent	 studies,	 including	 PRS,	 will	 have	 a	much	 lower	 predictive	
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ability	in	other	genetic	ancestries	and	will	require	further	validation	(102).	

Despite	 these	advances,	no	PRS	model	had	been	developed	 for	SSc	before	

this	doctoral	thesis.	

When	it	comes	to	leveraging	GWAS	data,	Mendelian	Randomization	

(MR)	 methods	 have	 gained	 popularity	 within	 the	 field	 of	 genetics.	

Randomized	 controlled	 trials	 are	 considered	 the	 gold	 standard	 for	

establishing	scientific	evidence	regarding	the	causality	of	specific	exposures	

on	 different	 outcomes	 or	 diseases.	 However,	 there	 are	 instances	 where	

conducting	 such	 trials	 may	 not	 be	 feasible	 or	 ethical.	 In	 such	 cases,	 MR	

studies	have	emerged	as	a	powerful	tool.	This	approach	assesses	the	impact	

of	a	risk	factor	or	exposure	on	a	disease	or	outcome	by	employing	genetic	

variants	as	instrumental	variables	(IVs)	(103).	The	strength	of	MR	methods	

stems	from	the	inherent	randomness	and	heritability	of	genes.	They	not	only	

control	for	quantitative	traits	like	urate	levels	or	phospholipids	in	the	blood,	

but	also	behavioral	 tendencies	such	as	 food	intake	or	smoking.	Therefore,	

MR	allows	us	to	infer	causality	between	different	events.	These	studies	also	

address	 confounding	 factors	 more	 effectively	 than	 other	 approaches	 by	

utilizing	 genetic	 data	 as	 IVs,	 and	 they	 are	 less	 susceptible	 to	 issues	 like	

reverse	causation	compared	to	randomized	controlled	trials	(104,105).	

To	conduct	an	MR	study,	genetic	information	for	both	the	exposure	

and	the	outcome	is	required	(Figure	4).	Traditionally,	this	information	was	

sourced	 from	 a	 single	 large	 cohort,	 making	 it	 challenging	 to	 find	 a	 well-

matched	 population.	 However,	 with	 the	 advent	 of	 GWAS	 data	 and	

standardized	methodologies,	it	has	become	possible	to	combine	data	from	

different	cohorts	in	an	approach	known	as	two-sample	MR	(2SMR)	(104).		
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Figure	 4.	 Principles	 of	 employing	 genetic	 variants	 as	 instrumental	

variables	 for	 estimating	 the	 causal	 impact	 of	 exposure	 factors	 on	 disease	

through	Mendelian	randomization.	

For	IVs	to	be	considered	valid	in	2SMR	studies,	they	must	meet	three	

fundamental	 assumptions.	 First,	 the	 variants	must	be	 associated	with	 the	

risk	 factor	 in	 a	 GWAS.	 Second,	 the	 IVs	 should	 not	 be	 influenced	 by	

unmeasured	 confounders,	 as	 this	 would	 result	 in	 a	 direct	 association	

between	the	IV	and	the	disease.	Finally,	the	IVs	should	only	affect	the	disease	

through	the	risk	 factor	(104).	To	assess	the	validity	of	 these	assumptions,	

MR	studies	incorporate	sensitivity	analyses.	One	of	the	primary	sources	of	

invalid	 IVs	 is	 horizontal	 pleiotropy,	 where	 a	 genetic	 variant	 influences	

multiple	related	risk	factors,	introducing	bias	into	the	study.	Detecting	this	

type	 of	 pleiotropy	 can	 be	 challenging,	 but	 several	 methods	 have	 been	

developed	to	address	it.	One	notable	method	is	MR	Egger	regression,	which	

allows	for	the	presence	of	pleiotropic	effects	in	all	variants,	as	long	as	they	

are	not	directly	proportional	to	the	effects	of	the	variants	on	the	risk	factor	

of	interest	(106).	

MR	 studies	 have	made	 a	 significant	 impact	 on	 clinical	 research	 in	

recent	 years.	 This	 approach	has	 been	widely	 applied	 to	 IMIDs,	which	 are	
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influenced	by	both	environmental	factors	and	genetic	susceptibility.	In	the	

case	 of	 RA,	 for	 example,	MR	 studies	 have	 demonstrated	 the	 likelihood	 of	

obesity	as	a	 risk	 factor	 (45),	 as	well	 as	 the	 risk	of	 several	on-site	 cancers	

(107)	and	variations	in	the	gut	microbiome	(108).	Similar	research	has	been	

conducted	 for	SLE,	where	shorter	 telomere	 length	 in	 leukocytes	has	been	

shown	 to	 be	 protective	 against	 the	 disease	 in	 both	 Western	 and	 Asian	

populations	 (109).	 Previous	 to	 this	 dissertation,	 there	 was	 only	 one	 MR	

study	 performed	 in	 SSc,	 which	 evaluated	 the	 effect	 of	 C-reactive	 protein	

levels	on	several	diseases,	including	SSc,	finding	no	causal	relationship	with	

it	(110).	

6. Cellular	involvement	in	the	SSc	pathogenesis	

SSc	 is	 a	 systemic	 disease	 in	 which	 multiple	 systems	 and	 cellular	

lineages	 show	 clear	 signs	 of	 deregulation	 and	 aberrant	 behavior	 (111).	

Therefore,	 considering	 the	 specific	 cellular	 context	 has	 proven	 vital	 to	

dissect	the	etiopathogenesis	of	the	disease.	

In	this	line,	vascular	damage	is	an	early	and	prevalent	issue	in	SSc,	

often	marked	by	the	Raynaud	Phenomenon.	Consequently,	endothelial	cells	

(ECs),	which	form	the	inner	lining	of	blood	vessels,	play	a	crucial	role	in	SSc	

pathophysiology	 as	 they	 influence	 cell	 survival,	 tissue	 modification	

processes	 (like	 angiogenesis	 and	 vasculogenesis)	 and	 interactions	 with	

surrounding	 cells,	 all	 contributing	 to	 SSc	 vasculopathy	 (112,113).	 The	

dysfunction	of	ECs,	 characterized	by	compromised	 junctions	and	elevated	

apoptotic	 markers	 in	 SSc	 patients,	 can	 activate	 myeloid	 cells	 such	 as	

dendritic	 cells	 and	 macrophages,	 subsequently	 triggering	 lymphoid	 cell	

activation	(113).	This	immune	response	recruits	tissue	remodeling	cells	like	

fibroblasts	 and	 myofibroblasts,	 ultimately	 leading	 to	 organ	 dysfunction	

(114).	The	fibrotic	process	in	SSc	involves	the	accumulation	of	extracellular	
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matrix	 (ECM),	 comprising	 collagen,	 elastin,	 fibronectin,	 and	 glucosamine.	

This	 excess	 of	 ECM	 in	 affected	 tissues	 results	 also	 in	 organ	 dysfunction	

(115,116).	 Fibroblasts,	 initially	 quiescent	 cells,	 become	 activated	 due	 to	

various	stimuli	like	cytokines,	chemokines,	TGF-β,	reactive	oxygen	species,	

and	 mechanical	 stress.	 These	 activated	 fibroblasts	 exhibit	 distinct	

transcriptomic	profiles	and	functions,	contributing	to	SSc	pathogenesis,	with	

TGF-β	 playing	 a	 central	 role	 (117–119).	 In	 response	 to	 tissue	 injury	 or	

inflammation,	fibroblasts	can	transform	into	myofibroblasts,	characterized	

by	 the	 expression	 of	 α-smooth	 muscle	 actin	 (αSMA)	 and	 resistance	 to	

apoptosis	(115,116).	Interestingly,	myofibroblasts	may	not	always	originate	

from	fibroblasts	but	can	also	derive	from	adipocytes,	perivascular	pericytes,	

and	 the	 trans-differentiation	 of	 epithelial	 and	 vascular	 endothelial	 cells	

(116,120).	

In	 SSc,	 an	 altered	 innate	 immune	 response	 is	 observed	 (121).	 For	

example,	monocytes	that	are	key	players	of	the	innate	immune	response	are	

known	to	be	deregulated	in	SSc.	Monocytes	can	be	classified	into	distinct	3	

subgroups	as	they	circulate	in	the	bloodstream:	classical	monocytes	(cMo)	

are	 those	 which	 transmigrate	 into	 the	 tissues	 across	 endothelium,	

responding	to	different	signals;	intermediate	monocytes	(iMo)	have	a	longer	

halflife	in	blood	than	cMo	and	expressed	APC	phenotype;	and	non-classical	

monocytes	(ncMo),	also	known	as	patrolling	monocytes,	they	displaying	pro-

inflammatory	and	profibrotic	properties	(122).	Higher	proportions	of	ncMo	

are	 observed	 in	 SSc	 patients,	 particularly	 in	 severe	 cases	 with	 lung	

complications	 and	 IFN	 signaling	 sensitivity	 (123–125).	 These	 ncMo	 also	

display	 abnormal	 biophysical	 and	 pro-inflammatory	 properties	 in	 SSc	

patients	(126).	

Macrophages,	 derived	 from	 monocytes,	 play	 a	 major	 role	 in	 the	

affected	 tissue	 of	 patients	 with	 SSc.	 Initially,	 increased	 proportions	 of	
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profibrotic	 M2	 macrophages	 were	 observed,	 but	 later	 studies	 revealed	

profiles	with	intermediate	characteristics	between	proinflammatory	M1	and	

profibrotic	 M2	 macrophages.	 Notably,	 early-stage	 SSc	 presents	 a	

proinflammatory	M1	profile,	which	transitions	into	an	M1/M2	equilibrium	

in	 later	 stages	 (127,128).	 Additionally,	 a	 new	 subset	 of	 CXCL4-induced	

macrophages	 (M4)	has	 been	 identified,	 although	 their	 specific	 role	 in	 the	

disease	 is	 unclear	 (129).	 Furthermore,	 a	monocyte-derived	 dendritic	 cell	

population	exclusive	to	affected	SSc	patient	skin	has	been	associated	with	a	

more	severe	skin	disease	(130).	

The	adaptive	immune	response	in	SSc	includes	altered	behavior	and	

activation	of	different	T	and	B	lymphocyte	subsets.	This	involves	a	Th1/Th2	

imbalance	 skewed	 towards	 Th2,	 while	 SSc	 is	 linked	 to	 proinflammatory	

Th17	cell	activation	and	variations	in	their	populations,	including	IFNγ+IL-

17+Th17	in	peripheral	blood	(131–133).	Regulatory	T	cells	(Tregs),	which	

are	essential	to	limit	the	immune	response,	are	also	a	subject	of	extensive	

study	 in	 SSc,	 with	 investigations	 into	 compromised	 immunosuppressive	

activity	(133).	

T	 cell	 involvement	 extends	 to	 the	 skin,	 where	 Th22	 subsets	 are	

elevated	in	affected	tissues	(131).	Moreover,	a	specialized	subset	of	T	cells,	

T	helper	 follicular	cells	expressing	CXCL13+,	actively	contributes	 to	B	cell	

activation	 within	 SSc-affected	 tissue	 (134).	 B	 cells	 also	 participate	 in	

profibrotic	crosstalk	by	secreting	antibodies	and	cytokines	and	are	detected	

in	 lesion	 sites	 in	 lungs	 and	 endothelial	 tissue,	 with	 differences	 in	 B	 cell	

subtype	populations	observed	(135,136).	

In	summary,	as	is	shown	in	Figure	5,	the	cellular	involvement	in	SSc	

in	a	complex	interplay	between	a	large	number	of	cells	and	several	systems	

within	the	body	that	need	to	be	accounted	for.		
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Figure	 5.	 Cells	 and	 molecules	 implicated	 in	 the	 systemic	 sclerosis	

pathogenesis.	(Adapted	from	Campochiaro	and	Allanore,	Arthritis	Res	Ther,	2021)	

7. Transcriptomic	 strategies	 to	 address	 the	 cell	

specific	context	in	SSc	

Gene	expression	is	different	in	each	cell	or	cluster	of	cells,	and	it	is	

affected	by	numerous	factors,	within	and	outside	the	cells.	Gene	expression	

studies	 range	 from	 the	 analysis	 of	 the	 transcriptome	 of	 the	 tissues	 or	

selected	 cell	 subtypes,	 RNA	 sequencing	 (RNA-seq),	 to	 the	 analysis	 of	

individual	cells,	single	cell	RNA-seq	(scRNA-seq).	

The	 study	 of	 expression	 patterns	 in	 different	 tissues	 has	 been	 an	

essential	line	of	research	in	SSc.	Skin	tissue	is	one	of	the	most	studied	tissues	

in	SSc	due	its	importance	in	the	disease.	In	this	regard,	studies	in	skin	tissue	

in	SSc	revealed	distinct	gene	expression	patterns	in	the	affected	zones	(137),	

associating	 a	 group	 of	 TGFβ-responsive	 genes	 to	 disease	 severity.	 Even	

more,	 the	 skin	 and	 peripheral	 blood	mononuclear	 cells	 (PBMCs)	 of	 lcSSc	

patients	with	PAH	showed	gene	markers	associated	with	vascular	damage	
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and	 inflammation	 (138).	Non-affected	skin	 tissue	 in	patients	 is	 also	a	key	

point	in	the	pathology	and	it	 is	variable	between	patients	(139).	The	gene	

expression	 profile	 of	 unaffected	 skin	 from	 lcSSc	 patients	 was	

indistinguishable	 from	 healthy	 skin	 and	 showed	 signs	 of	 immunity,	

inflammation,	 fibrosis	 and	 extracellular	 matrix	 turnover,	 among	 others	

(139).	

Peripheral	blood	serves	as	a	highly	valuable	source	of	information	in	

disease,	 as	 numerous	 immune	 cells	 circulate	 it	 for	 migration	 and	

communication,	and	it	contains	several	molecules	that	can	be	implemented	

as	biomarkers.	In	terms	of	gene	expression,	a	distinct	inflammatory	profile	

has	been	observed	in	lcSSc	with	PAH	(140),	along	with	an	upregulation	of	

endoplasmic	reticulum	stress	and	the	unfolded	protein	response	(141).	Most	

recently,	 a	 large-scale	 RNA-seq	 study,	 in	 which	 our	 group	 participated,	

involved	162	SSc	patients	divided	into	a	discovery	and	a	replication	cohort	

(142).	 Pathway	 analysis	 unveiled	 dysregulation	 in	 type	 I	 IFN,	 Toll-like	

receptor	 cascades,	 p53	 suppressor	 activity,	 degranulation,	 and	 platelet	

activation.	 Remarkably,	 neutrophils	 were	 identified	 as	 the	 primary	

contributors	 to	 the	 expression	 of	 these	 genes	 (142).	 Another	 peripheral	

blood	RNA-seq	study,	led	by	our	team,	integrated	transcriptomic	data	with	

GWAS	genotypes	to	analyze	expression	quantitative	trait	loci	(eQTL)	(143).	

The	study	 revealed	49,123	validated	cis-eQTLs	 from	4,539	SSc-associated	

SNPs	from	the	GWAS,	at	p	value	<	10-5.	Among	the	1,436	genes	located	within	

1	Mb	of	these	SNPs,	565	were	found	to	have	one	or	more	eQTLs	associated	

with	 SSc-related	SNPs.	Then,	 these	 SNPs	were	prioritized	 resulting	 in	 the	

identification	of	233	candidates,	of	which	134	associated	with	key	features	

of	SSc	and	105	exhibited	differential	expression	in	the	blood	cells,	skin,	or	

lung	tissue	of	SSc	patients.	Transcription	factor	analysis	identified	enriched	

motifs	 for	 24	 transcription	 factors	 among	 SSc	 eQTLs,	 with	 five	 showing	

differential	 regulation	 in	 various	 tissues	 of	 SSc	 patients.	 Moreover,	 we	
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identified	ten	candidate	genes	that	are	amenable	to	targeting	by	approved	

medications	for	immune-mediated	diseases.	However,	it's	important	to	note	

that	only	three	of	these	genes	have	undergone	clinical	trials	in	SSc	patients	

(143).	Another	study,	led	by	our	team,	integrated	RNA-seq	expression	data	

with	 Capture	 Hi-C	 (high-throughput	 chromosome	 conformation	 capture)	

data	 for	8	SSc	patients	and	8	controls,	 focusing	on	CD14+	monocytes	and	

CD4+	T	lymphocytes	(144).	Seven	known	SSc	signals	in	these	cell	types	were	

confirmed	(NFKB1,	CD247,	STAT4,	 IRF8,	DDX6,	CSK,	 IKZF3),	along	with	the	

proposal	of	new	candidate	genes	such	as	CXCR5,	a	gene	involved	in	T	helper	

cell	differentiation	into	follicular	Th	cells	(144).	Interestingly,	no	differences	

in	chromatin	interactions	were	observed	between	patients	and	controls	in	

any	cell	type.	Another	noteworthy	finding	was	that	at	the	CD247	and	STAT4	

loci,	genes	highly	associated	with	the	disease,	chromatin	interactions	were	

exclusively	observed	in	CD4+	cells	(144).	

In	recent	years,	there	has	been	a	deeper	exploration	of	the	individual	

roles	 of	 cells	 within	 tissues	 in	 SSc.	 Within	 the	 skin,	 a	 gene	 expression	

microarray	study	described	the	role	of	M2	Macrophages	and	their	distinctive	

pathways,	 involving	 differentiation,	 IFN	 activation,	 and	 tissue	 remodeling	

through	extracellular	matrix	deposition	in	SSc	patients	(145).		

Gene	expression	studies	have	witnessed	an	unprecedented	advance	

in	recent	years	with	the	advent	of	scRNA-seq,	enabling	the	comprehensive	

analysis	of	transcriptomes	at	the	single-cell	level	(146,147).	In	brief,	scRNA-

seq	involves	isolating	and	lysing	individual	cells	 from	a	dissociated	tissue,	

followed	 by	 reverse	 transcription	 of	 the	 individual	 cell	 transcriptome	 to	

generate	a	cDNA	library	that	is	subsequently	sequenced	(146,148)	(Figure	

6).	 This	 technique	 continually	 evolves,	 encompassing	 molecular	

advancements	and	data	analysis	techniques,	bridging	emerging	technologies	

with	existing	ones,	 such	as	 integrating	with	data	 from	GWAS	or	Assay	 for	
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Transposase-Accessible	 Chromatin	 using	 sequencing	 (ATAC-seq)	 (149–

151).	

	

Figure	6.	Single	cell	RNA-seq	study	design.	(Adapted	from	Sandberg	et	al.	

Nat	Methods.	2014)	

The	exploration	of	 immune	cells	through	scRNA-seq	has	expanded	

extensively	in	IMIDs	(152–157),	including	SSc	(134,158–162).	As	in	previous	

gene	expression	studies,	the	skin	remains	a	focal	point	of	investigation.	The	

application	 of	 scRNA-seq	 technologies	 lead	 to	 the	 identification	 of	 a	

distinctive	 SSc	myofibroblast	 population,	 originating	 from	 SFRP2hi/DPP4-

expressing	progenitor	fibroblasts	and	regulated	by	a	group	of	transcription	

factors,	including	IRF7	(159).	On	the	other	hand,	a	large-scale	scRNA-seq	and	

scATAC-seq	 study	 (160),	 comprising	 145	 SSc	 patients	 and	 approximately	

65,000	 cells	 from	 PBMCs	 and	 skin	 biopsies,	 unveiled	 another	 fibroblast	

subset	 characterized	 by	 the	 expression	 of	 LGR5	 (160).	 A	 recent	 study	

focusing	 on	 skin	 and	 the	 serological	 subtypes	 suggested	 varying	 cell-

autonomous	 interactions	 with	 autoantibodies	 in	 early	 and	 late-stage	 SSc	

(162).	 Intriguingly,	 it	also	observed	distinct	TGFβ	responses	 in	fibroblasts	

and	smooth	muscle	cells	 in	early	ATA+	dcSSc	skin	samples,	while	 in	early	

ARA+	dcSSc,	these	responses	occurred	in	the	endothelial	layer.	
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The	role	of	myofibroblasts	in	the	lungs	of	SSc	patients	with	ILD	has	

also	 been	 explored	 using	 scRNA-seq	 (158).	 The	 study	 found	 that	 SSc-ILD	

myofibroblasts	in	the	lung	exhibit	significant	phenotypic	changes	compared	

to	 controls,	 marked	 by	 increased	 expression	 of	 collagen	 and	 profibrotic	

factors	 (158).	 Moreover,	 in	 the	 lungs	 of	 SSc-ILD	 patients,	 scRNA-seq	

identified	 a	 distinct	 profibrotic	macrophage	 population	 (161).	 This	 study	

also	 conducted	 a	ATAC-seq,	 revealing	 that	 these	 profibrotic	macrophages	

are	 characterized	 by	 altered	 chromatin	 accessibility	 of	 Secreted	

Phosphoprotein	1	(SPP1),	and	the	 involvement	of	numerous	 transcription	

factors	such	as	KLF6	(161).		

Finally,	scRNA-seq	has	been	employed	to	investigate	immune	cells	in	

SSc	in	three	different	studies	until	now	(130,134,160).	In	skin	tissue,	Xue	et	

al.	(130)	described	a	cluster	of	macrophages	expressing	FCGR3A	associated	

with	SSc.	They	also	identified	two	subsets	of	myeloid	cells:	one	consisting	of	

monocyte-derived	 dendritic	 cells	 (DC)	 expressing	 FCN-1	 and	 S100A8	 and	

S100A9,	 and	 the	 other,	 a	 cluster	 of	 plasmacytoid	 DCs	 that	 was	 almost	

exclusive	 for	 dcSSc	 patients	 (130).	 Another	 scRNA-seq	 study	 in	 PBMCs	

revealed	 changes	 in	 immune	 cell	 composition	 associated	 with	 specific	

disease	subtypes,	disease	duration,	severity,	and	autoantibody	status	(160).	

Specifically,	there	was	an	increase	in	the	ncMo	population	in	SSc	and	DCs,	the	

latter	only	in	dcSSc,	along	with	a	decrease	in	naïve	T	cells	(160).	The	most	

recent	scRNA-seq	study	in	SSc,	which	is	part	of	this	dissertation,	was	focused	

on	the	deep	characterization	of	a	specific	cell	subtype	in	peripheral	blood	i.e.	

CD14+	monocytes,	and	it	will	be	discussed	in	detail	in	Chapter	3.	
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Objectives	and	justification	
Recent	studies	have	expanded	our	understanding	of	SSc;	however,	

many	 aspects	 of	 the	 etiology	 and	 pathogenesis	 of	 the	 disease	 remain	

unknown.	 Therefore,	 our	 hypothesis	 is	 that	 identifying	 molecular	 and	

genetic	 traits	 at	 different	 levels	 in	 SSc	 patients	 will	 lead	 to	 improved	

treatment	and,	 consequently,	better	prognosis	 for	 them.	To	 identify	 these	

molecular	traits,	studies	must	be	conducted	at	various	levels:	at	the	genomic	

level	through	the	generation	of	a	polygenic	risk	score	to	provide	a	genomic	

profile	of	the	patients	and	Mendelian	randomization	studies	to	identify	new	

environmental	risk	factors	for	the	disease.	At	the	transcriptomic	level,	this	

involves	 analyzing	 key	 cells	 in	 inflammation,	 thus	 understanding	 the	

mechanisms	underlying	its	pathogenesis.	

In	this	regard,	we	will	contribute	to	the	overall	knowledge	of	SSc.	The	

aim	is	to	enhance	clinical	management,	making	it	easier	to	treat	and	monitor	

these	patients.	Additionally,	we	seek	to	discover	new	therapeutic	targets	by	

identifying	 clinically	 relevant	 points	 within	 the	 genetic	 and	 metabolic	

framework	 of	 the	 cellular	 processes	 in	 this	 disease	 that	may	 be	 prone	 to	

treatment	with	existing	drugs.	 	
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Objectives	

1. Generation	of	a	genomic	risk	score	(GRS)	for	SSc.	

a. Stratify	and	compare	the	subtypes	of	SSc,	limited	(lcSSc),	and	

diffuse	(dcSSc).	

b. Compare	the	predictive	value	of	this	score	between	SSc	with	

other	immune-mediated	diseases.	

2. Identify	new	environmental	risk	factors	for	SSc	through	a	2SMR	study.	

a. Analyze	 the	 causal	 role	 of	 anthropometric	 traits	 associated	

with	obesity	in	the	development	of	SSc.	

3. Identify	specific	cellular	populations	for	SSc	within	the	relevant	cells	

for	the	disease	using	single-cell	RNA	sequencing	(scRNA-seq).	

a. Identify	specific	cellular	subpopulations	for	SSc	in	peripheral	

blood	CD14+	monocytes.	

b. Characterize	 disease-specific	 gene	 expression	 profiles	 in	

different	subtypes	of	CD14+	monocytes.	

c. Define	differences	in	the	transcriptome	of	CD14+	monocytes	

in	patients	with	lcSSc	and	dcSSc.	
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ABSTRACT	

Objectives	

Genomic	Risk	Scores	 (GRS)	 successfully	demonstrated	 the	ability	of	

genetics	to	identify	those	individuals	at	high	risk	for	complex	traits	including	

immune-mediated	 inflammatory	 diseases	 (IMIDs).	 We	 aimed	 to	 test	 the	

performance	of	GRS	in	the	prediction	of	risk	for	systemic	sclerosis	(SSc)	for	

the	first	time.	

Methods	

Allelic	effects	were	obtained	from	the	largest	SSc	GWAS	to	date	(9,095	

SSc	and	17,584	healthy	controls	with	European	ancestry).	The	best-fitting	GRS	

was	 identified	 under	 the	 additive	 model	 in	 an	 independent	 cohort	 that	

comprised	 400	 patients	 with	 SSc	 and	 571	 controls.	 Additionally,	 GRS	 for	

clinical	 subtypes	 (limited	 cutaneous	 SSc,	 and	 diffuse	 cutaneous	 SSc)	 and	

serological	subtypes	(anti-topoisomerase	positive	ATA+,	and	anti-centromere	

positive	 ACA+)	 were	 generated.	 We	 combined	 the	 estimated	 GRS	 with	

demographic	 and	 immunological	 parameters	 in	 a	 multivariate	 generalized	

linear	model.	

Results	

The	best-fitting	SSc	GRS	included	33	SNPs	and	discriminated	between	

patients	 with	 SSc	 and	 controls	 (AUC	 =	 0.673).	 Moreover,	 the	 GRS	

differentiated	between	SSc	and	other	IMIDs,	such	as	rheumatoid	arthritis	and	

Sjögren	syndrome.	Finally,	the	combination	of	GRS	with	age	and	immune	cell	

counts	significantly	increased	the	performance	of	the	model	(AUC	=	0.787).	

While	 the	 SSc	 GRS	was	 not	 able	 to	 discriminate	 between	 ATA+	 and	 ACA+	

patients	 (AUC	<	0.5),	 the	 serological	 subtype	GRS,	which	was	based	on	 the	
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allelic	effects	observed	for	the	comparison	between	ACA+	and	ATA+	patients,	

reached	a	AUC	=	0.693.		

Conclusions	

GRS	was	 successfully	 implemented	 in	SSc.	The	model	discriminated	

between	 patients	 with	 SSc	 and	 controls	 or	 other	 IMIDs,	 confirming	 the	

potential	of	GRS	to	support	early	and	differential	diagnosis	for	SSc.	

Keywords	

Systemic	 sclerosis,	 genomic	 risk	 score,	 genome-wide	 association	

study,	immune	mediated-inflammatory	diseases.	 	
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Introduction	
Complex	diseases	are	a	devastating	consequence	of	usually	unknown	

environmental	 factors	 and	 the	 combined	 effects	 of	 tens	 to	 thousands	 of	

genetic	variants	that	are	spread	throughout	the	genome	[1].	The	advanced	use	

of	 bioinformatic	 tools	 will	 provide	 a	 better	 understanding	 of	 the	 intricate	

network	of	multiple	genetic	effects	 that	shapes	 the	architecture	of	complex	

diseases	[2].	

Immune-mediated	inflammatory	diseases	(IMIDs)	comprise	a	variety	

of	 complex	 diseases	 characterized	 by	 the	 loss	 of	 self-tolerance,	 the	

maintenance	of	chronic	inflammation	and	an	aberrant	immune	response	[3].	

Genome-wide	 association	 studies	 (GWAS)	 have	 largely	 increased	 our	

understanding	of	the	aetiology	of	complex	diseases,	providing	new	data	about	

the	genome	and	lighting	the	way	to	the	identification	of	genes	and	pathways	

that	 contribute	 to	disease	 susceptibility	 and	prognosis.	Many	 susceptibility	

loci	have	been	discovered	for	IMIDs,	and	several	are	shared	between	diseases,	

adding	 a	 common	 genetic	 background	 to	 their	 overlapping	 clinical	 and	

immunological	 characteristics	 [4].	 Additionally,	 GWAS	 findings	 have	 also	

confirmed	 that	 the	 contribution	 of	 each	 associated	 locus	 to	 disease	 risk	 is	

often	small	and	has	low	predictive	value	[1].	

To	 address	 complex	 disease	 susceptibility,	 three	main	 components	

must	be	considered:	genetics,	environmental	exposures,	and	lifestyle	factors	

[1,4].	As	for	genetics,	large	cohorts	have	been	genotyped	in	GWAS	efforts,	and	

hundreds	of	genetic	risk	factors	have	been	identified	[5].	However,	GWAS	data	

can	be	examined	in	various	ways,	moving	forward	to	a	more	precise	genetic	

profiling,	 its	 use	 for	 personalized	 medicine,	 and	 the	 identification	 of	

individuals	with	higher	risk	of	displaying	a	specific	phenotype	[6].	Genomic	

risk	scores	(GRS)	take	into	account	disease	heritability	and	the	additive	effect	
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of	genetic	polymorphisms,	and	they	provide	a	disease	risk	score	per	individual	

to	evaluate	their	relative	risk	to	suffer	a	disease	[7–9].	

GRS	are	calculated	essentially	by	combining	the	weighted	effects	of	the	

risk	alleles	for	each	individual;	these	weighted	effects	are	assigned	depending	

on	the	strength	of	the	association	to	the	risk	of	disease	—	the	effect	size	[7,10].	

The	identification	of	individuals	with	high	risk	or	those	prone	to	developing	

more	aggressive	phenotypes	 is	a	useful	 tool	 for	personalized	medicine	and	

clinical	management	of	patients.	GRS	have	been	successful	in	several	diseases	

such	as	schizophrenia	[11]	and	obesity	[12].	This	strategy	had	a	great	impact	

on	cardiovascular	diseases	 like	coronary	artery	disease	 (CAD)	 [12–14],	but	

also	 in	IMIDs	such	as	sarcoidosis	[15],	systemic	 lupus	erythematosus	(SLE)	

[16,17],	and	vitiligo	[18]	recently.	

Systemic	 sclerosis	 (SSc)	 or	 scleroderma	 is	 a	 complex	 chronic	

autoimmune	disease.	 It	belongs	to	the	group	of	 IMIDs	and	it	has	one	of	the	

highest	mortality	rates	among	them	[19].	SSc	affects	the	connective	tissue	and	

shows	 complex	 and	 varied	 clinical	manifestations.	 Raynaud’s	 phenomenon	

and	gastro-oesophageal	reflux	are	two	common	onset	symptoms,	but	they	are	

not	exclusive	to	SSc.	Conversely,	the	disease	can	manifest	in	different	ways,	

such	 as	 affectation	 of	 the	 skin	 —inflammatory	 skin	 disease,	 extensive	

fibrosis—,	 musculoskeletal	 inflammation,	 and	 vascular	 damage	 [20–22].	

Furthermore,	 SSc	 also	 shows	 organ-specific	 manifestations,	 such	 as	 lung	

fibrosis,	pulmonary	arterial	hypertension,	 renal	 failure	and	gastrointestinal	

complications.	 Notably,	 the	 involvement	 of	 the	 lungs,	 with	 pulmonary	

hypertension	and/or	pulmonary	fibrosis,	is	the	leading	cause	of	death	in	SSc	

[19].	

Patients	with	SSc	can	be	classified	into	different	subgroups	according	

to	 clinical	 outcome:	 limited	 cutaneous	 scleroderma	 (lcSSc)	 or	 diffuse	
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cutaneous	 scleroderma	 (dcSSc),	 depending	 on	 how	 widespread	 fibrosis	 is	

[23].	On	other	hand,	they	can	also	be	classified	depending	on	their	serological	

status,	considering	the	presence	of	the	mutually	exclusive	anti-centromere	or	

anti-topoisomerase	auto-antibodies	(i.e.	ACA+	or	ATA+)	[22,23].	

	

	

	

	

	

	

	

	

	

	

Figure	1	Overview	of	the	study	design.	AUC,	area	under	the	receiver	operating	

characteristic	 (ROC)	 curve;	 GRS,	 Genomic	 Risk	 Scores;	 GWAS,	 	 genome-wide	

association	studies;SNPs,	single	nucleotide	polymorphisms.	

Since	the	first	SSc	GWAS	in	European	populations	was	carried	out	ten	

years	 ago	 [24],	 our	 recently	 published	meta-GWAS	 is	 the	 largest	 effort	 to	

decipher	 the	 genetic	 component	 of	 SSc	 [25].	 In	 addition	 to	 the	 extensively	

known	 association	 of	 the	 human	 leukocyte	 antigen	 (HLA)	 region	with	 the	

disease,	twenty-seven	non-HLA	GWAS	level	associations	and	three	suggestive	

loci	were	identified	[25].	
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Considering	the	heterogeneity	and	variable	prognosis	of	patients	with	

SSc,	GRS	could	be	a	powerful	tool	in	clinical	diagnosis	to	identify	patients	in	

the	early	stages	of	 the	disease	and	to	differentiate	them	from	patients	with	

confounding	diseases.	By	taking	advantage	of	the	summary	statistics	of	this	

large	meta-GWAS,	we	generated	an	accurate	SSc	GRS	through	the	use	of	an	

independent	and	unique	dataset	comprising	patients	with	SSc	and	with	other	

IMIDs	[3]	(Figure	1).	We	generated	subtype-specific	GRS	for	the	clinical	and	

serological	SSc	subgroups	of	patients,	and	we	tested	the	clinical	implications	

of	 GRS	 in	 SSc.	 Finally,	 the	 GRS	 was	 complemented	 with	 additional	

demographic	and	immunological	information.	
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Methods	

GRS	calculation	

GRS	was	developed	as	implemented	in	PRSice-2	[26],	using	summary	

statistics	 and	 assuming	 an	 additive	 effect	 for	 the	 effective	 allele.	 Briefly,	

PRSice-2	calculated	the	product	of	the	number	of	effect	alleles	per	individual	

and	 the	respective	SNP	weights.	The	score	was	averaged	by	 the	number	of	

alleles	 included	 in	 the	GRS	per	 individual	 (--score	avg).	We	used	the	minor	

allele	frequency	in	the	PRECISESADS	cohort	as	the	genotype	for	the	samples	

with	 missing	 genotype.	 We	 applied	 a	 10,000	 permutation	 procedure	 to	

calculate	the	empirical	P-value	(--perm	10000).	
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Figure	2	Systemic	sclerosis	Genomic	Risk	Scores	(SSc	GRS).	(A)	Identification	

of	the	best-fitting	GRS	in	the	score	development	cohort.	Tested	p	value	thresholds	for	

the	SNPs	included	in	the	GWAS	summary	statistics	are	presented	in	the	x-axis.	The	

number	of	SNPs	included	in	the	models	corresponding	to	each	p	value	threshold	is	

shown	 on	 the	 left	 y-axis.	 Model	 fit	 (R2)	 is	 represented	 in	 the	 right	 y-axis.	 (B)	

Distribution	 of	 GRS	 for	 patients	 	 with	 SSc	 and	 healthy	 controls	 in	 the	 score	

development	cohort.	(C)	Relative	risk	for	individuals	in	different	quantiles	of	the	GRS	

distribution.	(D)	receiver	operating	characteristic	(ROC)	curve	for	the	33	SNP	SSc	GRS.	

AUC,	area	under	the	ROC	curve;	GWAS,	genome-wideassociation	studies;	SNPs,	single	

nucleotide	polymorphisms.	

PRSice-2	allowed	us	to	fit	different	GRS	models	by	selecting	only	the	

variants	 that	passed	a	number	of	different	p-value	 thresholds	 in	 the	GWAS	

summary	statistics	(--bar-levels	5e-11,	5e-10,	5e-09,	5e-08,	5e-07,	5e-06,	5e-

05,	 0.0001,	 0.001,	 0.05,	 0.1,	 0.2,	 0.3,	 0.4,	 0.5,	 1,	 but	 GRS	 calculated	 at	 all	

intermediate	 p-value	 thresholds,	 high	 resolution	 parameters,	 were	

calculated)	using	sex	(female/male)	as	covariate.	Therefore,	the	model	fit	is	

defined	as:	R2	of	the	full	model	(SSc	case	or	control	~	GRS	+	Sex)	-	R2	of	the	

null	model	(SSc	case	or	control	~	Sex).		

Multivariate	model	

In	order	to	test	if	a	combination	of	GRS	with	demographic	factors	and	

the	counts	of	immune	cell	subpopulations	in	peripheral	blood	would	improve	

the	predictive	value	of	our	model,	we	divided	our	score	development	cohort	

into	an	initial	set,	comprising	the	non-Spanish	individuals	in	the	PRECISESADS	

study	(n	=	518),	in	which	we	developed	a	multivariate	model	and	a	testing	set	

that	comprised	all	the	Spanish	individuals	in	this	study	(n	=	339).		

First,	we	built	several	generalized	linear	models	that	included	GRS	and	

each	 demographic	 and	 immune	 parameter	 in	 Supplementary	 Table	 1	
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individually,	then	we	compared	them	to	the	null	model	that	included	only	GRS	

and	sex	as	covariates.	Improvement	over	the	null	model	was	defined	by	a	LRT	

(p-value	<	0.05).		

Secondly,	 we	 generated	 a	 multivariate	 model	 that	 included	 the	 13	

phenotypic	variables	that	had	been	identified	as	informative	in	the	previous	

step.	Using	leave-one-out	prediction	(i.e.		including	all	variables	but	one	in	the	

model)	and	comparing	to	the	full	model,	we	calculated	the	contribution	of	all	

variables	to	the	multivariate	model.	This	model	was	applied	to	the	testing	set	

of	individuals.	

Details	about	the	cohorts,	LD	clumping,	GRS	additive	model,	the	model	

fitting	analyses	and	the	effects	of	including	country	of	origin	as	covariates	are	

shown	in	the	Supplementary	Methods	section.	
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Results	
● A	 33-variant	 GRS	 discriminates	 between	 patients	 with	 SSc	 and	

controls	

We	 calculated	 GRS	 in	 an	 independent	 score	 development	 cohort	

comprising	400	patients	with	SSc	and	571	healthy	controls	[27].	We	observed	

that	the	best-fitting	GRS	(GRS	R2	=	0.13;	p-value	=	1.27x10-17;	permutation	p-

value	 =	 9.99x10-5)	 included	 33	 independent	 SNPs	 that	 had	 a	 p-value	 <	

2.215x10-7	(Figure	2A).	Sex,	which	was	included	as	a	covariate,	contributed	

very	modestly	to	the	explained	variance	(R2	=	0.01).		

As	expected,	the	SSc	cases	and	controls	showed	significantly	different	

GRS	distributions	(Figure	2B,	control	group	mean	=	-8.35x10-3	and	SSc	group	

mean	=	-1.91x10-3,	t-test	p-value	<	2.2x10-16).	Reassuringly,	individuals	with	

GRS	 in	 the	95th	percentile	showed	a	5-fold	higher	relative	risk	(OR	=	7.89,	

95%;	CI	=	3.44	-	18.08)	than	the	reference	quantile	(40th-60th	percentiles)	

(Figure	2C).	

Reassuringly,	 the	 33	 variant	 GRS	 had	 a	 67%	 chance	 of	 accurately	

predicting	 if	 an	 individual	was	 a	 patient	with	 SSc	 or	 an	 unaffected	 control	

(AUC	 =	 0.673,	 95%	 CI	 :	 0.64-0.71,	 p-value	 =	 3.90x10-23,	 Figure	 2D).	 We	

determined	 a	 best-fitting	 GRS	 threshold	 (GRS	 controls	 <	 -1.86x10-3	 <	 GRS	

cases,	 details	 in	 Supplementary	 Methods)	 and	 reached	 a	 moderate	

discrimination	between	 cases	 and	 controls	 (specificity	=	0.76;	 sensitivity	=	

0.51;	accuracy	=	0.66,	Figure	2D).		

We	 observed	 that	 if	 the	 ROC	 curves	were	 calculated	 separately	 for	

each	country	of	origin,	the	AUC	determined	by	the	33	variant	GRS	ranged	from	

0.60	to	0.75	(Supplementary	Figure	2A).	However,	variability	of	the	AUC	did	

not	 correlate	 with	 either	 country	 longitude,	 latitude	 or	 distance	 to	 1000	

Genomes	GBR	and	CEU	populations	(see	Methods,	Supplementary	Figure	2B-
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D).		

● Subtype	stratified	SSc	GWAS	summary	stats	discriminate	between	

clinical	and	serological	subtypes	

The	 33	 variant	 GRS	 previously	 described	 distinguished	 between	

patients	 with	 SSc	 and	 healthy	 controls.	 However,	 SSc	 is	 a	 heterogeneous	

disease	 with	 both	 clinical	 and	 serological	 subtypes	 that	 influence	 the	

prognosis	 of	 the	 disease,	 and	 the	 prediction	 of	 these	 subtypes	 is	 a	 major	

clinical	demand.	The	33	SNP	SSc	GRS	showed	no	predictive	value	for	clinical	

subtypes	 (dcSSc	 vs.	 lcSSc	 AUC	 =	 0.496,	 95%	 CI:	 0.40-0.59,	 p-value	 =	 0.93,	

Supplementary	Figure	3)	and	serological	subtypes	(ATA+	vs.	ACA+	AUC	=	

0.464,	 95%	 CI:	 0.37-0.56,	 p-value	 =	 0.45,	 Supplementary	 Figure	 3).	

Furthermore,	 this	 SSc	 GRS	 was	 not	 able	 to	 predict	 the	 development	 of	

pulmonary	fibrosis	in	patients	with	SSc	(SSc	with	pulmonary	fibrosis	vs.	SSc	

without	pulmonary	fibrosis	AUC	=	0.479,	95%	CI:	0.38-0.57,	p-value	=	0.66,	

Supplementary	Figure	3).		

Therefore,	 we	 used	 the	 allelic	 effects	 obtained	 in	 the	 GWAS	

comparison	between	dcSSc	and	lcSSc	and	between	ATA+	and	ACA+	patients	

to	build	subtype	specific	GRS.	The	best-fitting	GRS	p-value	threshold	for	the	

variants	 in	 the	 dcSSc	 versus	 lcSSc	 comparison,	 clinical	 subtype	 GRS,	

comprised	up	to	9,780	SNPs	(SNP	p-value	threshold	for	the	best-	fitting	dcSSc	

vs	 lcSSc	 GRS	 <	 9.99x10-2,	 Figure	 3A).	 This	 clinical	 subtype	 GRS	 was	 not	

limited	 to	 highly	 significant	 variants	 but	 it	 also	 included	 thousands	 of	

additional	SNPs	with	very	 low	significance.	The	GRS	 for	 the	variants	 in	 the	

ATA+	 versus	 ACA+	 comparison,	 serological	 subtype	 GRS,	 required	 up	 to	

35,058	SNPs	(SNP	p-value	threshold	for	the	best-	fitting	ATA+	vs	ACA+	GRS	<	

3.48x10-1,	Figure	3A).	The	clinical	subtype	GRS	did	not	explain	much	of	the	

phenotypic	 variance	 between	 dcSSc	 and	 lcSSc	 (R2	 =	 0.053),	 while	 the	
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explained	 variance	 between	 them	 using	 the	 serological	 subtype	 GRS	 was	

comparable	to	the	SSc	GRS	(R2	=	0.115).	

	

Figure	 3	 Characteristics	 of	 clinical	 subtype-specific	 Genomic	 Risk	 Scores	

(GRS)	(left)	and	serological	subtype-specific	GRS	(right).	(A)	Identification		of	the	best-

fitting	GRS	in	the	score	development	cohort.	Tested	p	value	thresholds	for	the	SNPs	
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included	in	the	GWAS	summary	statistics	are	presented	in	the	x-axis.	The	number	of	

SNPs	included	in	the	models	corresponding	to	each	p	value	threshold	is	shown	on	the	

left	y-axis.	Model	fit	(R2)	is	represented	in	the	right	y-axis.	(B)	Distribution	of	GRS	for	

patients	with	systemic	sclerosis	(SSc)	in	each	subtype	group.	(C)	Receiver	operating	

characteristic	(ROC)	curves	for	the	9	780	SNP	clinical	subtype-specific	GRS	and	35058	

SNP	serological	subtype-specific	GRS.	AUC,	area	under	the	ROC		curve;	SNPs,	single	

nucleotide	polymorphisms.	

In	 this	 context,	 the	 subtype-specific	 GRS	 distributions	 (mean	 dcSSc	

GRS	=	2.46x10-3;	mean	lcSSc	GRS	=	2.16x10-3;	t-test	p-value	=	1.21x10-2,	Figure	

3B),	and	AUC	based	on	the	clinical	subtype	GRS	led	to	a	modest	classification	

of	the	patients	into	the	dcSSc	or	lcSSc	groups	(AUC	=	0.604,	95%	CI:	0.51-0.70,	

p-value	 =	 2.59x10-2,	 Figure	 3C).	 However,	 the	 serological	 subtype	 GRS	

(comprising	 35,058	 SNPs)	 showed	 more	 distinctive	 GRS	 distributions	

between	ATA+	 and	ACA+	patients	 (mean	ATA+	GRS	=	 1.39x10-3	 and	mean	

ACA+	 GRS	 =	 1.11x10-3,	 t-test	 p-value	 =	 1.12x10-4,	 Figure	 3B),	 and	 best	

classification	 results	 for	 the	 ATA+	 or	 ACA+	 subgroups	 of	 patients	 (AUC	 =	

0.693,	95%	CI:	0.61-0.78,	p-value	=	7.58x10-6,		Figure	3C).	

Considering	 the	 clinical	 relevance	 of	 pulmonary	 fibrosis	 for	 the	

prognosis	 of	 patients	 with	 SSc,	 we	 tested	 the	 predictive	 value	 of	 both	 the	

clinical	 and	 the	 serological	 GRS	 on	 the	 development	 of	 lung	 fibrosis.	

Interestingly,	we	observed	 that	 the	 serological	GRS	was	marginally	 able	 to	

discriminate	between	patients	with	and	without	lung	fibrosis	but	the	model	

did	not	reach	statistical	significance	(AUC	=	0.575,	95%	CI:	0.48-0.67,	p-value	

=	0.11,	Supplementary	Figure	3).	

● GRS	separates	SSc	from	other	IMIDs		

Considering	 the	 shared	 genetic	 component	 of	 IMIDs,	 the	

implementation	 of	 the	 proposed	 GRS	 might	 help	 to	 identify	 high	 risk	
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individuals	 not	 only	 for	 SSc	 but	 also	 for	 other	 immune-related	 traits.	

Regarding	the	accuracy	of	the	33	variant	SSc	GRS	in	other	IMIDs,	we	observed	

that	the	SSc	GRS	was	able	to	separate	patients	with	rheumatoid	arthritis	(RA)	

(RA	group	mean	=	-4.46x10-3;	t-test	p-value	<	2.8x10-9),	Sjögren’s	syndrome		

SJS	(SJS)	group	mean	=	-1.78x10-3;	 t-test	p-value	<	3.54x10-6)	and	SLE	(SLE	

group	mean	=	-3.67x10-3;	 t-test	p-value	<	8.51x10-13)	 from	the	non-affected	

individuals.	However,	as	expected,	the	GRS	differences	between	patients	with	

RA,	SJS	and	SLE	and	controls	were	less	significant	than	between	SSc	cases	and	

controls	 (Figure	 4A).	 Furthermore,	 using	 the	 SSc	 GRS	 in	 these	 three	

additional	 IMIDs,	 the	 AUCs	 showed	 a	 modest	 predictive	 value	 (AUC	 RA	 =	

0.608,	95%	CI:	0.57-0.64,	p-value	=	6.58x10-9;	SJS	=	0.590,	95%	CI:	0.55-0.63,	

p-value	=	1.58x10-6;	AUC	SLE	=0.623,	95%	CI:	0.59-0.66,	p-value	=	3.94x10-12,	

Figure	4B).	

A	key	point	towards	GRS	being	implemented	from	bench-to-bedside	is	

not	only	the	ability	to	identify	individuals	at	high	risk	of	developing	SSc	in	the	

general	population,	but	also	to	help	in	the	differential	diagnosis	between	SSc	

and	other	IMIDs.	In	the	pursuit	of	this	objective,	we	tested	the	effectiveness	of	

our	SSc	GRS	to	correctly	classify	between	patients	with	SSc	and	those	affected	

by	 other	 IMIDs.	 We	 report	 statistical	 differences	 between	 the	 GRS	

distributions	for	SSc	and	RA	(t-test	p-value	<	3.78x10-4)	or	SJS	(t-test	p-value	

<	3.70x10-6),	but	only	nominally	significant	differences	in	the	case	of	SLE	(t-

test	p-value	<	1.37x10-2)	 (Figure	4A).	These	 results	were	aligned	with	 the	

predictive	capacity	of	the	GRS	in	the	separation	between	patients	with	SSc	and	

other	IMIDs.	The	greatest	AUC	was	observed	for	the	classification	of	patients	

with	SSc	versus	patients	with	SJS	(SJS	AUC	=	0.585,	95%	CI:	0.55-0.62,	p-value	

=	2.22x10-5),	and	decreased	in	more	closely	related	IMIDs,	such	as	RA	(AUC	

RA	=	0.568,	95%	CI:	0.53-0.61,	p-value	=	8.84x10-4)	and,	especially,	SLE	(SLE	

AUC	=	0.553,	95%	CI:	0.51-0.59,	p-value	=	1.19x10-2)	(Figure	4C).	
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Figure	4	Impact	of	the	33	SNP	systemic	sclerosis	(SSc)	Genomic	Risk	Scores	

(GRS)	 on	 the	 differential	 classification	with	 other	 immune-mediated	 inflammatory	

diseases	IMIDs).	(A)	Distribution	of	GRS	for	healthy	controls	and	patients	with	SSc,	

systemic	 lupus	 erythematosus	 (SLE),	 rheumatoid	 arthritis	 (RA)	 and	 Sjögren	

syndrome	(SJS).	(B)	Receiver	operating	characteristic	(ROC)	curves	for	the	predictive	

value	of	 the	 SSc	GRS	 to	distinguish	between	patients	with	 SSc,	 SLE,	RA	or	 SJS	 and	

healthy	controls.	(C)	ROC	curves	for	the	predictive	value	of	the	SSc	GRS	to	distinguish	

between	patients		with	SLE,	RA	or	SJS	and	patients	with	SSc.	AUC,	area	under	the	ROC	

curves.	
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● Age	and	immune	cell	counts	improve	the	prediction	accuracy	

The	 score	development	 cohort	 recruited	 in	 the	PRECISESADS	study	

was	 comprehensively	 phenotyped	 and	 allowed	 us	 to	 complement	 our	 GRS	

with	 additional	 demographic	 (age,	 sex)	 and	 immunological	 (immune	 cell	

counts	 in	 peripheral	 blood	 estimated	 using	 a	 large	 flow	 cytometry	 panel)	

parameters	 (163)	 (Supplementary	 Table	 1).	 We	 divided	 our	 score	

development	cohort	into	an	initial	set	(n	=	518),	and	a	testing	subgroup	(n	=	

339).	 The	 initial	 set	 allowed	 us	 to	 test	 the	 relevance	 of	 the	 different	

parameters	in	a	combined	GRS	and	phenotypic	model.	On	the	other	hand,	the	

testing	set	confirmed	these	findings.		

First,	we	identified	the	demographic	and	immunological	parameters	

which	improved	the	GRS	model	(LRT	p-value	<	0.05)	(Supplementary	Table	

2).	 Twelve	 immune	 cell	 subtypes	 in	 peripheral	 blood	 showed	 a	 significant	

contribution	 to	 the	model,	but	 the	most	 significant	contribution	among	 the	

phenotypic	 variables	 corresponded	 to	 age	 (LRT	 p-value	 =	 3.47x10-20,	

Supplementary	Table	2).	

When	 we	 combined	 only	 the	 informative	 variables	 into	 the	 same	

model,	multivariate	 GLM,	 in	 addition	 to	 GRS	 and	 age,	 only	 4	 out	 of	 the	 12	

immune	cell	types	remained	as	independently	associated	in	the	multivariate	

model:	 resting	 NK	 cells,	 M0	 macrophages,	 activated	 dendritic	 cells	 and	

memory	 B	 cells	 (Supplementary	Table	 3).	 The	 contribution	 of	 sex	 to	 the	

model	 did	 not	 remain	 significant	 when	 considering	 all	 the	 independent	

variables	 together	 and	 GRS	 score	 distributions	 between	 male	 and	 female	

patients	 did	 not	 show	 significant	 information	 (t-test	 p-value	 =	 0.24,	

Supplementary	Table	3).	Using	leave-one-out	prediction,	we	identified	age	

as	the	most	informative	variable,	followed	by	GRS	(Supplementary	Table	4).	

We	observed	that	the	contribution	of	GRS	to	the	model	was	comparable	to	the	
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contribution	of	all	significant	parameters	of	immune	cell	count	together	(GRS	

LRT	 p-value	 =	 2.59x10-12;	 GRS	 LRT	 p-value	 =	 1.26x10-12,	 Supplementary	

Table	4).	

The	 multivariate	 GLM	 described	 above	 (SSc	 status	 ~	

GRS+Age+Memory	 B	 cells+Resting	 NK	 cells+M0	 Macrophagues+Activated	

dendritic	cells)	greatly	outperformed	the	GRS	and	sex	only	model	both	in	the	

initial	(AUC	discovery	=	0.847,	95%	CI:	0.81-0.88,	p-value	=	1.10x10-90)	and	in	

the	 testing	 set	 (AUC	 =	 0.787,	 95%	 CI:	 0.73-0.84,	 p-value	 =	 1.31x10-24),	 as	

illustrated	 in	Figure	 5.	 Moreover,	 the	multivariate	 GLM	 outperformed	 the	

models	that	did	not	include	age,	GRS	or	both	(Figure	5).	

	

Figure	5	Receiver	 operating	 characteristic	 (ROC)	 curves	 for	 the	predictive	

value	 of	 the	 multivariate	 generalised	 linear	 model	 (GLM),	 (SSc	 status		

~GRS+Age+Memory	B	cells+Resting	NK	cells+M0	Macrophages+Activated	dendritic	

cells)	to	distinguish	between	patients	with	SSc	and	healthy		controls	in	the	initial	and	

replication	cohorts	depending	on	the	variables	included	in	the	models.	GRS,	Genomic	

Risk	Scores;	NK	cells,	natural	killer		cells;	SSc,	systemic	sclerosis.	
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Discussion	
We	generated	a	GRS	based	on	the	allelic	effects	identified	in	the	largest	

GWAS	in	SSc	to	date	(65).	We	obtained	a	predictive	GRS	model	comprising	33	

genetic	polymorphisms,	which	allowed	us	 to	differentiate	between	SSc	and	

controls	 in	an	independent	SSc	patient	cohort	(164).	A	serological	subtype-

specific	GRS	(based	on	the	GWAS	comparison	between	ATA+	and	ACA+	SSc	

patients)	showed	the	best	predictive	value	to	classify	patients	based	on	the	

presence	 of	 different	 autoantibodies.	 Furthermore,	 we	 demonstrated	 the	

accuracy	of	the	model	in	the	differentiation	between	SSc	and	other	IMIDs,	such	

as	RA	and	SJS.	Finally,	we	complemented	the	SSc	GRS	with	demographic	data	

and	 peripheral	 blood	 immune	 cell	 counts	 in	 a	 multivariate	 model	 which	

reached	a	very	significant	recall	rate.	

The	reported	SSc	GRS	showed	good	predictive	value	(AUC	=	0.673),	in	

line	with	the	GRS	developed	for	other	IMIDs.	For	example,	a	similar	AUC	was	

reported	 for	 inflammatory	 bowel	 disease	 with	 a	 GRS	 based	 on	 the	 allelic	

effects	observed	for	12,882	cases	and	132,532	healthy	controls	(AUC=0.72)	

(165)	and	in	SLE	(AUCs	ranging	0.62	-	0.78	(166,167).	Moreover,	Stahl	et	al.	

(168)	 implemented	 a	Bayesian	 inference	model	 in	 a	GWAS	 that	 comprised	

5,485	cases	of	RA	and	22,609	healthy	controls,	and	the	model	explained	18%	

of	 the	total	variance,	which	 is	comparable	to	the	variance	explained	by	our	

model	(R2	=	0.13).	We	would	like	to	note	that	the	previously	conducted	GWAS	

comprised	 9,095	 SSc	 cases	 and	 17,584	 controls,	 and	 the	 SSc	 GRS	 was	

developed	in	an	independent	cohort	of	400	patients	with	SSc	and	571	non-

affected	controls	recruited	for	the	PRECISESADS	project	(164).	Since	sample	

size	is	key	in	the	identification	of	reliable	genetic	association	signals	and	in	the	

accurate	estimation	of	allelic	effects	in	GWAS	(99,100,169),	the	presented	SSc	

GRS	 represents	 a	 robust	model	 supported	 by	 substantial	 statistical	 power.	

Nevertheless,	 despite	 the	 promising	 results	 of	 the	 described	 SSc	 GRS,	 the	
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sensitivity	and	specificity	of	the	model	are	still	far	from	clinical	use	and	it	will	

require	 the	 addition	 of	 extra	 information	 and/or	 the	 development	 of	well-

powered	phenotype-specific	GWAS	to	identify	cases	with	specific	phenotypes	

with	higher	statistical	power.	

Furthermore,	we	consider	that	the	SSc	GRS	is	not	heavily	influenced	

by	LD	clumping,	since	we	included	only	the	top	HLA	SNP	association	in	the	

GRS	in	order	to	avoid	an	overrepresentation	of	HLA	polymorphisms	without	

discarding	 completely	 the	 potential	 of	 this	 region	 in	 GRS.	 Nevertheless,	 it	

should	be	noted	that	all	the	samples	included	in	the	GWAS	summary	stats	and	

in	 the	 score	 development	 cohorts	 for	 the	 SSc	 GRS	 had	 European	 ancestry	

(65,164)	 (Supplementary	 Figure	 1).	 One	 of	 the	major	 limitations	 of	 GRS	

implementation	is	the	bias	towards	populations	with	a	similar	ethnic	origin	to	

the	discovery	sample,	 i.e.,	 the	GRS	shows	better	accuracy	 in	closely	 related	

populations	 (100,170).	 As	 we	 illustrated	 in	 Supplementary	 Figure	 2,	 we	

found	 differences	 in	 the	 AUCs	 reached	 by	 the	 SSc	 GRS	 in	 the	 score	

development	cohort	depending	on	the	origin	of	the	individuals.	Consequently,	

the	performance	of	the	SSc	GRS	in	non-European	or	mixed	populations	should	

be	taken	with	caution	(100,171).	

A	possible	confounding	factor	for	GRS	in	IMIDs	is	the	shared	genetic	

and	 immunological	 component	 that	 makes	 diagnosis	 complex	 and	 a	 slow	

clinical	process	especially	in	the	early	stages	of	these	diseases	(78,172,173).	

As	 a	 clinical	 tool,	 a	 robust	 GRS	 improves	 early	 diagnosis	 and	 helps	 in	

differential	 diagnosis	 (169).	 Although,	 the	 accuracy	 of	 the	 SSc	 GRS	 in	

differentiating	between	SSc	and	other	IMIDs	is	still	far	from	clinical	standards,	

the	model	was	able	to	discriminate	between	SSc	and	RA	in	56.8%	of	the	cases,	

and	between	SSc	and	SJS	in	58.5%	of	the	cases	(Figure	4).	However,	for	SLE	

and	SSc,	which	have	a	well-documented	shared	genetic	component	(172,174),	

it	was	not	possible	to	reach	an	accuracy	that	allowed	for	case	differentiation.	
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Taking	 into	 account	 the	 above,	 we	 consider	 that	 the	 reported	 GRS	 could	

enhance	 SSc	 diagnosis	 in	 the	 future	 and	 may	 contribute	 to	 personalized	

medicine,	as	a	tool	to	assist	physicians	in	the	diagnosis	of	SSc.	

In	addition	to	comorbidities	with	other	IMIDs,	there	is	great	variability	

in	the	disease	course	followed	by	patients	with	SSc,	since	their	treatment	and	

prognosis	 in	 the	 long	 term	 is	 very	 heterogeneous	 (175).	 Chen	 et	 al.	 (167),	

developed	 a	 GRS	 based	 on	 a	 GWAS	 analyzing	 patients	 with	 SLE	 with	 and	

without	 renal	 involvement,	 but	 this	 lupus	 nephritis-specific	 GRS	 did	 not	

outperform	the	SLE	severity	predictions	achieved	with	a	SLE	GRS.	Following	

a	 similar	 strategy,	 we	 generated	 two	 additional	 GRS	 based	 on	 the	 GWAS	

comparisons	between	clinical	and	serological	subtypes	in	patients	with	SSc.	

Remarkably,	we	showed	that	the	serological	subtype-specific	GRS	was	able	to	

differentiate	SSc	cases	within	the	serological	subtypes	(ACA+	or	ATA+),	which	

is	 a	 promising	 result	 in	 the	 use	 of	 GRS	 to	 predict	 prognosis	 in	 SSc	 (60).	

Regarding	specific	clinical	outcomes,	we	focused	on	the	use	of	GRS	to	predict	

lung	fibrosis	due	to	the	disastrous	effect	of	lung	involvement	on	the	survival	

of	patients	with	SSc.	We	could	not	use	SSc	lung	involvement	GWAS	data,	but	

we	observed	that	the	serological	subtype-specific	GRS	allowed	us	to	correctly	

infer	 the	 existence	 of	 lung	 fibrosis	 on	 patients	with	 SSc	 in	 57.5%	 of	 cases	

(Supplementary	Figure	3).	

Finally,	 we	 explored	 the	 possibilities	 of	 combining	 GRS	 with	

demographic	 and	 immunological	 covariates.	 We	 found	 that,	 out	 of	 all	 the	

covariates	 tested,	 age	 and	 the	 relative	 abundance	 of	 different	 immune	 cell	

types	 proved	 to	 be	 informative	 and	 resulted	 in	 a	 higher	 sensitivity	 in	 the	

case/control	classification.	As	expected,	age	was	confirmed	as	a	very	relevant	

factor	in	our	model.	Age	is	known	to	influence	SSc,	since	patients	with	SSc	are	

often	diagnosed	in	their	midlife	ages	(176,177).	On	the	other	hand,	sex	was	

included	as	a	covariate	to	calculate	the	best	p-value	threshold	for	the	GRS	and	
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in	the	multivariate	model,	but,	in	both	cases,	it	was	not	very	informative.	This	

lack	 of	 significant	 contribution	 of	 sex	 to	 the	 GRS	model	was	 also	 reported	

previously	in	SLE	(167).	Therefore,	these	counterintuitive	results	for	a	known	

SSc	risk	factor	(176),	were	likely	due	to	the	selection	of	a	sex	matched	control	

population	(Supplementary	Table	1),	which	would	rule	out	the	relevance	of	

this	parameter.	The	immune	cell	types	included	in	the	multivariate	GRS	were	

also	 concordant	 with	 the	 known	 etiopathogenesis	 of	 the	 disease	 (14).	

Functional	defects	or	genetic	susceptibility	variants	located	in	relevant	genes	

for	dendritic	cells,	macrophages	and	B	cells	have	been	described	in	patients	

with	 SSc	 (64,74,178–180).	 T	 cell	 subtypes	were	 relevant	 covariates	 in	 the	

model	initially,	but	no	T	cell	subset	was	selected	for	the	multivariate	model	

(Supplementary	Tables	2-4).	Considering	the	central	role	of	T	cells	in	SSc,	

we	hypothesize	that	since	we	could	not	include	the	Th1,	Th2	or	Th17	fractions	

in	the	model,	this	effect	might	have	been	overlooked(64).	

We	 have	 generated	 a	 GRS	 using	 a	 GWAS	 data	 set	 and	 a	 score	

development	cohort	in	which	training	was	carried	out	and	empirical	p-values	

for	the	GRS	were	obtained	via	permutation.	Therefore,	although	both	cohorts	

were	independent,	out-of-sample	prediction	has	not	been	performed	and	it	is	

a	limitation	of	the	present	study.	Consequently,	our	model	and	results	should	

be	considered	as	seminal	work	for	future	validation	in	additional	cohorts	of	

SSc	patients.	

In	summary,	we	developed	a	GRS	based	on	the	largest	GWAS	in	SSc,	

resulting	 in	 a	 sensitive	model	 to	 differentiate	 between	 SSc	 cases	 and	 non-

affected	controls,	but	also	to	differentiate	within	the	different	SSc	serological	

subtypes	 (ATA+	 and	 ACA+).	 Additionally,	 the	 GRS	 was	 also	 useful	 to	

differentiate	patients	with	SSc	 from	 those	affected	by	RA	and	SJS.	We	have	

shown	that	 the	GRS	strategy	 in	SSc	has	great	potential	 to	contribute	 to	 the	

field.	 However,	 several	 limitations	 and	 challenges,	 such	 as	 non-European	
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ancestry	 or	 sample	 size	 must	 be	 overcome	 to	 implement	 this	 strategy	 in	

clinical	management.	
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Key	messages	

What	is	already	known	about	this	subject?	

-Systemic	 sclerosis	 (SSc)	 is	 a	 complex	 immune	 mediated	 disease	

(IMID)	for	which	a	genomic	risk	score	has	never	been	implemented.	

What	does	this	study	add?	

-A	 SSc	 GRS	 discriminates	 between	 patients	 with	 SSc	 and	 healthy	

controls	with	a	remarkable	predictive	value.	

-Clinical	 information,	 such	 as	 serologic	 subtype	 and	 immune	 cells	

counts,	adds	accuracy	to	the	GRS	model.	

-The	 SSc	 GRS	 is	 capable	 of	 discriminating	 between	 SSc	 and	 other	

IMIDs.	

How	might	this	impact	clinical	practice	or	future	developments?	

-	 This	 SSc	 GRS	 is	 a	 promising	 tool	 to	 improve	 the	 diagnosis	 and	

prognosis	of	patients	with	SSc.			 		 		 	
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Abstract:	Obesity	contributes	to	a	chronic	proinflammatory	state,	

which	 is	 a	 known	 risk	 factor	 to	 develop	 immune-mediated	 diseases.	

However,	 its	 role	 in	 systemic	 sclerosis	 (SSc)	 remains	 to	 be	 elucidated.	

Therefore,	we	conducted	a	two	sample	mendelian	randomization	(2SMR)	

study	to	analyze	the	effect	of	three	body	fat	distribution	parameters	in	SSc.	

As	 instrumental	variables,	we	used	the	allele	effects	described	for	single	

nucleotide	 polymorphisms	 (SNPs)	 in	 different	 genome-wide	 association	

studies	(GWAS)	for	SSc,	body	mass	index	(BMI),	waist-to-hip	ratio	(WHR)	

and	WHR	adjusted	for	BMI	(WHRadjBMI).	We	performed	local	(pHESS)	and	

genome-wide	 (LDSC)	 genetic	 correlation	 analyses	 between	 each	 of	 the	

traits	 and	 SSc	 and	we	 applied	 several	 MR	methods	 (i.e.	 random-effects	

inverse	 variance-weight,	 MR-Egger	 regression,	 MR	 pleiotropy	 residual	

sum	and	outlier	method	and	a	multivariable	model).	Our	results	showed	

no	genetic	correlation	or	causal	relationship	between	any	of	 these	traits	

and	SSc.	Nevertheless,	we	observed	a	negative	causal	association	between	

WHRadjBMI	and	SSc,	which	might	be	due	to	the	effect	of	gastrointestinal	

complications	 suffered	 by	 the	 majority	 of	 SSc	 patients.	 In	 conclusion,	

reverse	causality	might	be	a	specially	difficult	confounding	factor	to	define	

the	effect	of	obesity	in	the	onset	of	SSc.	

Keywords:	systemic	sclerosis;	mendelian-Randomization;	obesity	
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Introduction	

Systemic	 sclerosis	 (SSc)	 is	 an	 immune	 mediated	 disease	 (IMD),	

characterized	by	abnormal	immunological	activation,	vascular	damage	and	

fibrosis	of	the	skin	[1,2].	SSc	represents	a	major	challenge	for	clinicians	as	

it	has	a	deep	impact	on	the	life	quality	and	life	expectancy	of	the	affected	

patients	 [1].	 Recent	 efforts	 in	 the	 study	 of	 the	 genetic	 factors	 that	

contribute	to	the	onset	and	progression	of	SSc,	such	as	several	large	scale	

genetic	association	studies	and	genome	wide	association	studies	(GWAS)	

[3],	have	contributed	to	identifying	genetic	susceptibility	markers	both	in	

the	 Human	 Leukocyte	 Antigen	 (HLA)	 locus	 and	 outside	 this	 highly	

polymorphic	region	[4].	The	 largest	GWAS	to	date	comprised	more	than	

9.000	patients	with	SSc,	and	allowed	the	identification	of	19	non-HLA	loci	

associated	with	the	disease	[3].	Moreover,	recent	studies	have	 identified	

specific	 HLA-DQA1	 alleles	 exclusively	 associated	 with	 different	 clinical	

subtypes	of	SSc	[4].	Therefore,	the	number	of	relevant	loci	that	have	been	

firmly	associated	with	 this	 condition	has	 remarkably	 increased	over	 the	

last	decade.	Although	the	use	of	genetic	risk	factors	to	predict	the	risk	of	

developing	SSc	was	explored	in	a	recent	genomic	risk	score	(GRS)	[5],	the	

involvement	of	these	genetic	risk	factors	in	the	disease	pathogenesis	and	

the	affected	biological	pathways	have	not	been	fully	established	yet	[6].	

Despite	 the	 advances	 in	 the	 identification	 of	 the	 genetic	 factors	

contributing	to	the	heritability	of	SSc,	the	complex	nature	of	this	disorder	

is	an	intrinsic	obstacle	to	study	the	pathological	mechanisms	that	lead	to	

the	 disruption	 of	 the	 immune	 homeostasis	 and	 to	 the	 onset	 of	 fibrotic	

processes	in	affected	individuals.	Well-established	environmental	triggers	

for	SSc	are	silica	and	solvents,	which	in	extreme	or	 long-term	exposures	

are	related	to	the	disease	development	[7,8].	Moreover,	demographic	and	

clinical	characteristics	such	as	sex,	age,	ethnical	origin,	hormone	levels,	etc.	
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have	been	pointed	out	as	risk	factors	for	SSc	[7,9].	But	the	roles	of	life-style	

and	environmental	triggers	in	the	manifestation	and	prognosis	of	SSc	are	

still	elusive.		

Mendelian	 Randomization	 (MR)	 uses	 SNPs	 as	 instrumental	

variants	 (IVs)	 in	 order	 to	 determine	 if	 they	 are	 acting	 on	 a	 disease	 or	

outcome	 through	 a	 risk	 factor	 or	 exposure	 [10,11].	 The	principle	 of	 the	

methods	is	that	alleles	are	randomly	distributed	during	gametogenesis,	as	

well	as	their	presence	pre-exists	the	disease.	These	genetic	facts	mimic	the	

random	distribution	 of	 clinical	 trials	 and	 take	 away	 the	 causality	 of	 the	

disease	on	the	variable,	reducing	confounding	factors	[12].	For	a	genetic	

variant	to	be	considered	as	a	IV,	it	is	assumed	that	it	is	associated	with	the	

exposure.	 However,	 an	 IV	 cannot	 be	 associated	 with	 any	 confounding	

factor	 related	 to	 the	 risk	 factor	 or	 the	 outcome	 neither	 directly	 nor	

indirectly.	Additionally,	the	effects	of	the	IV	on	the	outcome	should	only	be	

mediated	 by	 the	 exposure	 [10].	 Therefore,	 only	 when	 genetic	

polymorphisms	 which	 are	 relevant,	 independent	 and	 have	 a	 restricted	

effect	on	the	outcome	can	be	considered	as	IVs.	In	a	classical	MR	study,	the	

allele	 effects	 on	 the	 outcome	 and	 exposure	 are	 obtained	 from	 the	 same	

individuals	 [10,11].	 However,	 detailed	 information	 for	multiple	 traits	 is	

difficult	to	obtain	in	a	large	population.	Two-sample	MR	(2SMR)	methods	

allow	us	to	combine	the	estimations	of	the	IV	allele	effects	relying	only	on	

GWAS	 summary	 statistics	 for	 the	 outcome	 and	 for	 the	 exposure	 from	

independent	studies.	The	implementation	of	these	methods	has	improved	

the	statistical	power	to	detect	causal	associations	between	risk	factors	and	

disease,	which	has	shown	promising	results	in	several	conditions	[13].	

Obesity-related	 diseases	 are	 becoming	 a	 public	 health	 issue	 in	

Western	countries	[14],	since	obesity	rates	are	increasing	due	to	unhealthy	

lifestyles.	Obesity	 is	defined	by	an	excess	of	 fat	 in	the	body	and	body	fat	
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distribution	can	be	measured	by	a	variety	of	methods,	 for	 instance	body	

mass	index	(BMI)	and	waist	to	hip	ratio	(WHR).	BMI	is	the	most	common	

body	fat	proxy	and	it	is	the	gold-standard	for	obesity.	BMI	is	measured	as	

the	body	weight	normalized	by	height	square	(kg/m2)	[15],	and	it	is	known	

that	BMI	>	25 kg/m2	 is	associated	with	an	 increased	risk	 to	suffer	 from	

chronic	diseases	such	as	cardiovascular	disease,	type	II	diabetes	or	specific	

cancers	[16].	Nevertheless,	BMI	has	certain	limitations	and	anthropometric	

measures	of	abdominal	obesity,	such	as	WHR,	seem	to	be	better	indicators	

of	excessive	fat	mass	[17].	Since	WHR	measures	both	visceral	and	gluteal	

fat,	 it	 stands	 out	 among	 other	 anthropometric	 traits	 [18].	 If	 WHR	 is	

adjusted	for	BMI	(WHRadjBMI),	it	is	possible	to	obtain	an	anthropometric	

measure	which	is	independent	from	the	overall	adiposity,	and	to	combine	

the	 most	 standardized	 measure	 of	 obesity	 and	 the	 anthropometric	

measure	 that	 best	 captures	 the	 distribution	 of	 body	 fat	 [18,19].	 Taking	

advantage	 of	 the	 publicly	 available	 GWAS	 results,	 MR	 approaches	 have	

been	successful	in	identifying	risk	factors	for	IMDs,	such	as	obesity-related	

traits	 [20,21].	 The	 excess	 of	 fat	 has	 been	 associated	 with	 a	 low	 but	

persistent	proinflammatory	state	that	is	believed	to	promote	IMDs	[14,22].	

However,	in	the	case	of	SSc,	the	relationship	between	body	fat	distribution	

and	SSc	remains	to	be	explored.	

Consequently,	in	order	to	analyze	the	effect	of	nutritional-status	on	

SSc	risk,	we	applied	the	novel	2SMR	methods	on	the	largest	GWAS	of	SSc	

patients	[3]	with	European	ancestry	and	the	biggest	GWAS	meta-analysis	

for	fat	distribution	anthropometric	measures	to	date	[23].	
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Material	and	Methods	

Instrumental	variables	

The	study	design	of	the	2SMR	study	for	SSc	and	3	obesity-related	

traits	is	summarized	in	Figure	1.	The	outcome	instrumental	variables	(IV-

outcome),	 i.e.	 the	 selected	 genetic	 variants	 and	 their	 effect	 sizes	 in	 SSc,	

were	obtained	from	the	largest	SSc	GWAS	meta-analysis,	which	included	

9,846	SSc	patients	and	18,333	healthy	controls	from	14	different	cohorts	

with	 European	 ancestry	 [3].	 Additionally,	 SNP	 effect	 sizes	 after	

stratification	by	sex,	serological	and	clinical	subtype	as	reported	elsewhere	

[4]	 were	 also	 analyzed.	 Finally,	 we	 performed	 sex-specific	 analyses	

including	only	either	the	female	or	the	male	individuals	from	the	different	

cohorts	and	following	the	previously	described	analysis	framework	[3].	

Figure	 1.	 Schematic	 representation	 of	 the	 study	 design.	 	 The	 study	 is	

divided	 into	 several	 phases,	 i.e.,	 selection	 of	 the	 instrumental	 variables	 for	 the	
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outcome	 and	 the	 exposures,	 data	 harmonization	 and	 generation	 of	 different	

Mendelian	randomization	models	

In	 the	 case	 of	 the	 exposures,	we	 obtained	 the	 IVs	 (IV-exposure)	

from	a	 recent	GWAS	meta-analysis	 between	 the	 cohorts	 included	 in	 the	

Genetic	 Investigation	 of	 Anthropometric	 Traits	 consortium	 (GIANT)	

project	 and	 those	 recruited	 for	 the	 UK	 Biobank	 (UKBB)	 repository	 for	

different	anthropometric	measures	[24].	We	only	the	summary	statistics	

comprising	 individuals	 with	 the	 European	 ancestry,	 which	 included	

806,810	 individuals	 and	 27,381,302	 SNPs	 for	 BMI,	 a	 classical	 obesity	

parameter,	and	for	two	parameters	that	assess	body	fat	distribution,	WHR	

comprising	 697,734	 individuals	 and	 27,376,273	 SNPs	 and	 WHRadjBMI	

covering	 694,649	 individuals	 and	 27,375,636	 SNPs	 [24].	 None	 of	 the	

participants	 recruited	 in	 the	 SSc	 studies	 overlapped	 with	 the	 exposure	

GWASs	to	the	best	of	our	knowledge.	

Genomic	association	analysis	

Genetic	 correlation.	To	determine	 causality	between	obesity	 risk	

factors	and	SSc,	we	calculated	the	total	genomic	correlation	between	them.	

First,	 we	 performed	 an	 approximation	 implemented	 in	 the	 linkage	

disequilibrium	regression	score	(LDSC)	software	[25].	Then,	to	study	the	

contribution	 of	 specific	 regions	 (pairwise	 local	 genetic	 correlation),	 we	

used	 the	methods	supported	 in	 the	ρ-HESS	software	 [26].	Briefly,	 the	ρ-

HESS	 software	 splits	 the	 genome	 into	 1,703	 small	 regions	 through	 the	

chromosomes	and	uses	LD	matrices	to	create	eigenvectors	and	to	project	

the	GWAS	effect	sizes.	Then,	 local	SNP-heritability	per	 trait	 is	calculated	

and,	 finally,	genetic	covariance	between	 traits	 is	estimated.	We	adjusted	

our	significance	thresholds	for	multiple	testing,	 i.e.	1.1	x	10−3	(0.05/45)	

for	LDSC	and	2.9	x	10−5	(0.05/1,703)	for	ρ-HESS.	



Chapter	2.	The	effect	of	body	Fat	Distribution	on	Systemic	Sclerosis	

	 111	

Mendelian	randomization	analysis.	In	order	to	assess	if	there	was	a	

causal	 relationship	 between	body	 fat	 distribution	 and	 SSc	 or	 any	 of	 the	

stratified	sets	of	patients,	we	performed	a	2SMR	study	as	implemented	the	

R	 package	 “TwoSampleMR”	 [11].	 Considering	 the	 complex	 linkage	

disequilibrium	(LD)	patterns	and	the	strong	genetic	associations	described	

in	 the	HLA	 locus	SSc	 [3,4,27],	 the	extended	HLA	region	(chromosome	6:	

20,000,000	-	40,000,000	bp)	was	excluded	from	the	MR	analyses	in	order	

to	prevent	biases.		

The	 selected	 IVs	were	 based	 on	 the	 original	 independent	 signal	

analysis	reported	by	Pulit	et	al.	[24].	Briefly,	the	independent	signals	from	

results	 from	 the	 inverse	 variance	 meta-analysis	 (P	 <	 5	 x	 10-9)	 were	

identified	by	LD-based	clumping	(r2	>	0.05	and	±	5Mb).	Secondary	signals	

were	 also	 defined	 by	 conditional	 analyses	 (P	 <	 5	 x	 10-9)	 and	 locus	 LD-

clumping.	We	extracted	the	association	estimates	for	these	SNPs	or	the	best	

available	 proxy	 (according	 to	 the	 LD	 patterns	 observed	 in	 the	 UKBB	

cohort),	which	was	present	in	the	SSc	dataset.	The	number	of	shared	SNPs	

between	SSc	and	the	exposures	reached	533,	247	and	262	for	BMI,	WHR,	

WHRadjBMI,	respectively	(Table	A7).		

Three	 gold-standard	 2SMR	 methods	 were	 selected.	 A	 random-

effects	inverse	variance-weight	(IVW)	approach,	which	pools	the	effects	of	

each	IV	and	balances	to	zero	the	global	pleiotropy	by	assuming	the	validity	

or	 invalidity	 of	 all	 the	 SNPs	 [11].	 A	 MR-Egger	 regression	 method	 [28],	

which	is	able	to	estimate	causality	even	when	all	IVs	are	weak	or	invalid	

and	to	calculate	horizontal	pleiotropy.	Although	the	previous	methods	are	

very	 robust	 for	MR	analysis,	 both	 of	 them	have	 limitations	 to	 deal	with	

outlier	IVs.	For	that	reason,	we	also	applied	the	MR	pleiotropy	residual	sum	

and	outlier	(MR-PRESSO)	method	[29].	The	MR-PRESSO	algorithm	detects	

outlier	 IVs	 that	 exert	 horizontal	 pleiotropy	 in	 a	 multi-instrument	
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mendelian	 randomization	 analysis.	 Moreover,	 MR-PRESSO	 provides	

outlier-free	causality	estimates.	

Additionally,	to	estimate	the	effect	of	the	IVs	controlling	for	their	

effect	 on	 other	 exposures,	 we	 performed	 a	 multivariable	 mendelian	

randomization	 analysis	 (MVMR)	 as	 implemented	 in	 the	 TwoSampleMR	

package	 [30].	 This	 analysis	 included	 a	 set	 of	 unique	 LD-clumped	 IV-

exposures	 for	 both	 BMI	 and	 WHR,	 which	 were	 regressed	 against	 SSc	

together,	weighting	for	the	inverse	variance	of	SSc	for	these	IVs.		

False	Discovery	Rate	(FDR)	Benjamini	&	Hochberg	correction	was	

applied,	and	we	considered	P	<	0.05	as	significant	[31].	

Sensitivity	analysis	

The	 statistical	 power	 of	 our	 analyses	 was	 calculated	 using	 the	

algorithm	described	by	Brion	et	al	for	MR	studies	[32].	Aiming	to	control	

for	the	effect	of	potential	confounding	factors,	we	removed	from	the	MR	

analysis	 any	 the	 SNP	 with	 reported	 associations	 with	 known	 obesity-

related	confounding	factors	(Table	A3)	as	reported	by	the	GWAS	catalog	

[33],	SNPnexus	[34]	and	ClinVar	[35].	We	studied	the	contribution	of	each	

SNP	 to	 the	 observed	 effects	 by	 carrying	 out	 a	 leave-one-out	 sensitivity	

analysis,	as	 implemented	 in	 the	 “TwoSampleMR”	package	 [11].	By	 these	

means,	we	observed	that	the	exclusion	of	one	SNP	at	a	time	did	not	affect	

the	observed	results.	
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Results	

Leveraging	 mendelian	 randomization	 as	 a	 novel	 methodological	

strategy,	we	studied	for	the	first	time	the	causal	contribution	of	body	fat	

distribution	to	the	risk	of	suffering	from	SSc	(Figure	1).	Here	we	used	the	

GWAS	 summary	 statistics	 of	 the	 largest	 SSc	 meta-analysis	 [3]	 as	 an	

outcome	and	three	obesity-related	traits	GWAS	comprising	thousands	of	

European	ancestry	individuals	as	exposures.	

Genomic	 correlation.	 Only	 the	 HLA	 locus	 harbours	 local	 genetic	

correlation	between	SSc	and	body	fat	distribution	

	
Figure	2.	Pairwise	global	genetic	correlation	observed	between	the	three	

obesity-related	 exposures	 and	 SSc.	 *	 =	 p	 >	 0.05	 (suggestive	 for	 statistical	

significance);	**	=	p	>	0.00625	(Bonferroni-corrected).	

At	a	genomic	scale,	we	observed	a	strong	genome-wide	correlation	

between	BMI	and	WHR	(rg	=	0.59,	[95%	CI	-0.016	-	0.051])	and	between	

WHR	and	WHRadjBMI	(rg	=	0.78,	[95%	CI	-0.01	-	0.03]),	but	not	between	

WHRadjBMI	 and	 BMI	 (rg	 =	 -4.02	 x	 10-2,	 [95%	 CI	 -0.016	 -	 0.049]),	 as	
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previously	 described	 [20]	 (Figure	 2).	 However,	 our	 results	 showed	 no	

evidence	of	correlation	between	SSc	and	the	three	tested	obesity-related	

traits	(BMI	rg	=	-0.039	[95%	CI	-0.033	-	0.102]	;	WHR	rg	=	-0.054,	[95%	CI	

-0.035	 -	 0.106];	 WHRadjBMI	 rg	 =	 -0.041,	 [95%	 CI	 -0.04	 -	 0.122],	 all	

observed	P	>	0.05)	(Figure	2).	

Even	when	there	is	no	correlation	between	traits	at	a	genome-wide	

level,	it	is	possible	that	the	traits	show	local	correlation	at	specific	loci.	To	

address	this	potential	correlation,	we	performed	a	local	genetic	correlation	

analysis	between	BMI,	WHR,	WHRadjBMI	and	SSc	(Figure	A1).	The	 local	

correlation	observed	in	these	regions	reached	rg	=	8.5	x	10-4	and	rg	=	2.6	

x	10-4	(Figure	A1).	

The	analysis	of	the	causal	relationship	between	obesity-related	traits	

and	systemic	sclerosis	is	limited	by	confounding	factors.	

Despite	 the	 limited	 genetic	 correlation	 found,	 we	 explored	 the	

possible	 causal	 relationship	 between	 body	 fat	 distribution	 and	 SSc.	

Considering	 the	 complex	 LD-patterns	 in	 the	 HLA-regions	 and	 the	 local	

genetic	 correlation	 found	 only	 in	 this	 locus,	 it	 was	 excluded	 from	 the	

following	MR	analyses.	The	available	SSc	dataset	were	powered	enough	to	

detect	 associations	 of	 25%	 increased	 risk	 of	 SSc	with	BMI	 (99%),	WHR	

(83%)	 and	 WHRadjBMI	 (92%)	 (Table	 A1),	 considering	 an	 explained	

phenotypic	 variance	 of	 2.5-5%	and	 the	 complete	 set	 comprising	 28,179	

individuals	(34.9%	cases).	We	were	confident	about	the	statistical	power	

estimated	 for	 the	 largest	 subsets	 of	 patients,	 for	 instance,	 females	 (BMI	

power	=	79%,	WHR	power	=	82%	and	WHRadjBMI	=	87%),	 lcSSc	 (BMI	

power	=	94%,	WHR	power	=	70%	and	WHRadjBMI	=	81%)	and	ACA+	(BMI	

power	=	83%,	WHR	power	=	53%	and	WHRadjBMI	=	65%).	However,	the	

analyses	for	the	less	frequent	patient	groups,	i.e.	males	(BMI	
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Table	 1.	 Association	 between	 genetically	 predicted	 obesity-related	 traits	 and	 risk	 of	 SSc.	 Analysis	 including	 index	 and	

secondary	 signals	 for	 the	 obesity-related	 traits	 and	 excluding	 the	HLA	 region.	 BMI:	 body	mass	 index,	WHR:	waist	 to	 hip	 ratio,	

WHRadjBMI:	WHR	adjusted	for	BMI,	MR:	Mendelian	randomization,	nSNPs:	number	of	single	nucleotide	polymorphisms,	OR:	Odds	

Ratio,	CI:	 confidence	 interval,	p:	p	value,	p	adj:	p	value	after	FDR	correction	 for	multiple	 testing,	 IVW:	 inverse-variance	weight,	

PRESSO:	pleiotropy	residual	sum	and	outlier,	NA:	not	applicable.	
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power	=	30%,	WHR	power	=	8%	and	WHRadjBMI	=	10%)	and	ATA+	

(BMI	 power	 =	 14%,	WHR	power	 =	 10%	 and	WHRadjBMI	 =	 12%)	were	

clearly	insufficient	to	identify	true	causal	relationships	(Table	A1).	

As	reported	in	Table	1	and	Table	A2,	classical	MR	methods	showed	

no	 significant	 evidence	 of	 causality	 for	 BMI	 or	 WHR	 on	 SSc	 neither	

including	only	the	index	SNPs	nor	considering	both	the	index	SNPs	and	the	

secondary	 signals.	 The	 results	 for	 BMI	 under	 the	 random-effects	 IVW	

model	 showed	 a	 suggestive	 positive	 association	 with	 BMI,	 but	 this	

association	did	not	reach	statistical	significance	(OR	under	random-effects	

IVW	=	1.15	 [95%	CI	 0.67	 -	 1.98])	 .	 Only	 a	 trend	of	 negative	 association	

considering	index	and	secondary	signals	was	observed	in	the	case	of	the	

random	effects	IVW	model	 for	WHR	(Table	1).	All	 the	remaining	models	

showed	P	>	0.05	and	the	ORs	ranged	0.93	-	1.15	for	BMI	and	0.27	-	0.82	for	

WHR.	In	the	case	of	WHRadjBMI	(WHR	after	regressing	out	the	effect	of	

BMI),	a	negative	association	with	SSc	reached	statistical	significance	in	the	

three	tested	models	(OR	under	random-effects	IVW	=	0.73	[95%	CI	0.56	-	

0.94],	MR-Egger	=	0.43	 [95%	CI	0.20-0.90],	MR-PRESSO	=	0.77	 [95%	CI	

0.60-0.99]	).	These	associations	with	WHRadjBMI	remained	negative	in	the	

analyses	that	included	only	index	signals,	but	only	the	MR-Egger	model	was	

significant	 after	multiple-testing	 correction	 (OR	 under	MR-Egger	 =	 0.69	

[95%	CI	0.51	-	0.93],	(Table	A2).	

We	carried	out	a	sensitivity	analysis,	which	implied	the	removal	of	

SNPs	 associated	 with	 known	 obesity-related	 confounders	

(Supplementary	Table	3),	to	address	the	effect	of	these	confounders	in	

the	lack	of	significance	for	the	BMI	models	and	the	negative	relationships	

with	WHR	 and	WHRadjBMI.	 As	 shown	 in	Table	 2	 and	Supplementary	

Table	4,	the	confounder-free	models	did	not	change	the	observed	negative	

relationship	and	none	of	them	reached	a	significant	result	after	



Chapter	2.	The	effect	of	body	Fat	Distribution	on	Systemic	Sclerosis	

	 117	

Table	 2.	 Association	 between	 genetically	 predicted	 obesity-related	 traits	 and	 risk	 of	 SSc.	 Analysis	 including	 index	 and	

secondary	signals	for	the	obesity-related	traits	and	excluding	the	HLA	region	and	known	obesity-related	confounder	SNPs.		BMI:	

body	mass	index,	WHR:	waist	to	hip	ratio,	WHRadjBMI:	WHR	adjusted	for	BMI,	MR:	Mendelian	randomization,	nSNPs:		number	of	

single	nucleotide	polymorphisms,	OR:	odds	ratio,	CI:	confidence	interval,	p:	p	value,	p	adj:	p	value	after	FDR	correction	for	multiple	

testing,	IVW:	inverse-variance	weight,	PRESSO:	pleiotropy	residual	sum	and	outlier,	NA:	not	applicable.	
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FDR	correction.	Although	we	observed	effect	size	heterogeneity	for	

the	different	genetic	variants	(Supplementary	Table	5),	 the	analyses	of	

the	intercept	parameter	in	the	MR-Egger	models	did	not	reveal	any	signs	

of	horizontal	pleiotropy	and	the	effects	were	not	affected	by	the	removal	of	

the	 outlier	 SNPs	 identified	 by	 the	 MR-PRESSO	 algorithm	 (Tables	 1-2,	

Supplementary	 Tables	 2	 and	 Supplementary	 Table	 4).	 Furthermore,	

leave-one-out	analyses	did	not	highlight	that	these	effects	were	influenced	

only	by	one	variant	(Supplementary	Figure	2).	

We	 decided	 to	 implement	 a	 MVMR	 model	 considering	 the	

significant	associations	observed	for	WHRadjBMI	and	the	limitations	of	the	

univariate	models	to	test	for	the	combined	influence	of	several	exposures	

and	to	control	for	the	effect	of	confounding	factors.	This	analysis	allowed	

us	to	directly	test	the	association	of	BMI	and	WHR	with	SSc	controlling	for	

the	effects	of	both	parameters	at	the	same	time.	As	expected,	the	results	of	

these	analyses	showed	an	effect	for	WHR	(MVMR	OR	0.80	[95%	CI	0.57-

1.13])	that	was	similar	to	the	previously	identified	effect	for	WHRadjBMI	

(Table	 3).	 Nevertheless,	 no	 significant	 association	 of	 BMI	with	 SSc	was	

revealed	(MVMR	OR	1.03	 [95%	CI	0.79-1.33])	 (Table	3).	These	 findings	

might	point	towards	a	negative	or	inexistent	effect	of	WHR	in	SSc	and,	if	

any,	a	very	modest	risk	effect	for	BMI.		

Considering	 the	 well-known	 clinical	 and	 genetic	 differences	

between	 the	 SSc	 subsets	 of	 patients	 (181),	 we	 explored	 subset-specific	

effects	 for	 the	 selected	 exposures.	 Several	 associations	 remained	

significant	 in	 the	 stratified	 analyses,	 especially	 in	 the	 largest	 and	more	

powerful	subsets,	such	as	lcSSc	(Supplementary	Table	6).	However,	the	

direction	and	magnitude	of	the	exposure	effects	were	consistent	in	all	the	

subsets	(Supplementary	Table	6),	which	suggested	an	uniform	effect,	if	

any,	in	all	the	patients.	There	were	no	significant	differences	between	the	
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Table	3.	Multivariable	MR	(MVMR)	model	 including	BMI.	WHR	and	risk	of	SSc.	Analysis	 including	 	 index	and	secondary	

signals	for	the	obesity-related	traits	and	excluding	the	HLA	region,	with	and		without	known	obesity-related	confounding	SNPs.	BMI:	

body	mass	index,	WHR:	waist	to	hip	ratio,		MR:	Mendelian	Randomization,	nSNPs:	number	of	Single	Nucleotide	Polymorphism,	OR	

stand	for		Odd	Ratio,	CI:	confidence	interval,	p:	p	value.	
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models	with	and	without	the	secondary	signals	(Supplementary	

Table	 6).	Moreover,	 taking	 into	 account	 the	 higher	 frequency	 of	 SSc	 in	

females	(9	female:	1	male		ratio)		(13),	we	performed	sex	specific	analyses	

too.	 In	 these	 analyses,	 we	 relied	 on	 female	 only	 and	 male	 only	 GWAS	

summary	statistics	for	both	SSc	and	the	obesity-related	risk	factors.	Once	

more,	although	the	risk	effect	of	BMI,	WHR	and	WHRadjBMI	seemed	more	

evident	 in	 men,	 these	 effects	 did	 not	 reach	 statistical	 significance	

(Supplementary	Table	6).		
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Discussion	

This	report	addressed	the	risk	effect	of	body	fat	distribution	in	SSc	

for	 the	 first	 time.	 We	 exhaustively	 exploited	 public	 GWAS	 summary	

statistics	for	both	SSc	and	for	anthropometric	traits	and	the	development	

of	 novel	 MR	 methods.	 We	 did	 not	 observe	 global	 genomic	 correlation	

between	 the	outcome	and	any	of	 the	exposures.	Moreover,	 local	 genetic	

correlation	 was	 only	 found	 in	 the	 HLA	 locus,	 a	 highly	 complex	 region.	

Different	 MR	 methods	 were	 then	 applied	 to	 identify	 possible	 causal	

relationships	between	the	obesity	traits	and	SSc.	However,	no	significant	

risk	causal	effect	of	the	exposures	was	found	in	this	case.	

Although	our	 results	do	not	 support	 the	causal	 relation	between	

exposures	and	outcome,	it	should	be	noted	that	the	statistical	power	of	the	

SSc	dataset	 is	modest	 compared	 to	 similar	 studies	performed	 to	date	 in	

other	IMDs,	such	as	RA	or	 IBD	(182)	(Supplementary	table	1).	SSc	 is	a	

rare	IMD	and,	despite	the	recent	advances	(65,66,74),	the	recruitment	of	

large	 patient	 cohorts	 remains	 challenging.	 Therefore,	 future	 efforts	 to	

enlarge	 the	 size	 or	 to	 complement	 the	 available	 SSc	 GWAS	 information	

might	help	to	identify	causal	risk	factors.	

We	found	that	the	effect	of	confounders	might	be	more	severe	in	

the	case	of	SSc	than	in	other	IMDs.	Gastrointestinal	involvement	(GI),	which	

affects	more	than	70%	of	the	SSc	patients	(182),	hinders	food	ingestion	and	

patients	are	mostly	thin	(183).	In	fact,	weight	loss	has	been	used	as	one	of	

the	SSc	diagnostic	markers	(181).	This	direct	effect	of	the	onset	symptoms	

in	 the	 exposures	 is	 known	 as	 reverse	 causality,	 and	 it	 is	 a	 remarkably	

difficult	confounding	factor	to	control	for	(184).	Reverse	causality	might	be	

the	cause	behind	both	the	lack	of	significant	risk	effects	of	BMI	in	SSc	and	

the	reported	negative	relationship	between	WHR	and	SSc,	which	becomes	
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more	 evident	 when	 the	 effect	 of	 BMI	 is	 subtracted	 in	 the	 analysis	 of	

WHRadjBMI	(Tables	1-2,	Supplementary	Table	2	and	Supplementary	

Table	4).		

Bad	diet	habits	and	obesity	are	associated	with	an	increased	risk	to	

suffer	from	IMDs	such	as	RA	and	IBD	(45,185,186).	Higher	BMI	has	been	

associated	with	increased	risk	to	Crohn’s	disease	(CD)	and	RA,	but	negative	

associations	with	BMI	have	been	reported	for	ulcerative	colitis	(UC)	and	a	

recent	study	found	reverse	causality	between	WHR	and	RA	(45,185,186).	

IMDs	 are	 often	 present	 as	 comorbidities	 and	 share	 altered	 molecular	

pathways,	 environmental	 triggers	 and	 genetic	 risk	 factors	 (187).	

Furthermore,	the	role	of	adipocytes	in	the	activation	of	the	immune	system	

is	prominent,	especially	due	to	the	release	of	adipokines	(188).	Adipokines	

are	 molecules	 known	 to	 be	 involved	 in	 the	 "obesity-autoimmunity"	

relationship	(42,189),	such	as	lectins	or	cytokines,	especially	adiponectin,	

but	 also	 interleukins	 and	 tumor	 necrosis	 factor	 alpha	 (TNFɑ)	 (42).	

Interestingly,	patients	with	SSc	and	a	high	BMI	have	been	shown	to	have	

higher	lectin	levels	than	healthy	controls	(190)	and	it	has	been	established	

that	 subcutaneous	 adipocytes	 can	 act	 as	 progenitor	 cells	 for	 fibroblasts	

(191,192).	 These	 fibroblasts	 may	 eventually	 transdifferentiate	 into	

myofibroblasts	 (193),	 activated	 profibrotic	 fibroblasts	 that	 are	

characteristic	of	 the	 fibrotic	 lesions	observed	 in	SSc	patients,	and	recent	

evidence	has	shown	that	the	activation	of	adipocyte-derived	mesenchymal	

cells	 from	 SSc	 skin	 biopsies	 to	myofibroblasts	 is	 possible	 using	 soluble	

molecules	present	the	skin	microenvironment	in	SSc		(194).	

In	order	to	rule	out	the	role	of	obesity	as	a	risk	factor	for	SSc,	body-

fat	distribution	measures	from	the	patients	before	the	onset	of	GI	or	BMI	

matched	case-control	sets	would	be	very	valuable	resources.	
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The	negative	association	that	is	observed	for	WHR	might	be	due	to	

additional	confounding	factors	that	are	inherent	to	SSc	and	that	affect	body	

fat	distribution,	for	example,	sex	or	lipid	profiles	(195).	Remarkably,	WHR	

is	different	in	women	than	in	men	and	there	is	a	clear	sex-bias	in	SSc	(181).	

Therefore,	we	hypothesized	that	there	could	be	a	sex-specific	association	

and	 performed	 stratified	 analyses	 with	 the	 female	 and	 male	 cohorts	

separately.	 Our	 results	 showed	 significant	 causal	 associations	 with	 SSc	

only	in	the	females,	but	considering	the	statistical	power	differences	and	

the	similarity	between	the	effect	sizes,	the	lack	of	significance	for	the	male	

group	may	be	likely	due	to	the	reduced	sample	size	(Supplementary	table	

1).	The	key	role	of	sample	size	as	a	limitation	of	our	study	to	identify	weak	

risk	 effects	 was	 also	 clear	 in	 other	 stratified	 analyses,	 as	 we	 found	

consistent	ORs	for	all	 the	tested	clinical	subtypes	of	SSc	patients	but	the	

models	 reached	 statistical	 significance	 only	 in	 the	 largest	 subsets	

(Supplementary	Table	6).		

In	 conclusion,	 this	 study	 found	 no	 significant	 evidence	 that	

supported	 the	 role	 of	 body-fat	 distribution	 as	 causal	 risk	 factor	 for	 SSc	

using	 2SMR	 methods.	 Nevertheless,	 the	 current	 GWAS	 have	 a	 limited	

statistical	 power	 to	 identify	 modest	 contributions	 to	 SSc	 risk	 and	 the	

intrinsic	 nature	 of	 the	 SSc	 clinical	 complications	 might	 be	 acting	 as	

potential	constraints	in	this	study.	Consequently,	further	analyses	will	be	

needed	to	rule	out	the	role	of	obesity	in	the	onset	of	SSc.	
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Abstract	

Systemic	 sclerosis	 (SSc)	 is	 a	 complex	 disease	 that	 affects	 the	

connective	 tissue,	 causing	 fibrosis.	 SSc	patients	 show	altered	 immune	cell	

composition	 and	 activation	 in	 the	 peripheral	 blood	 (PB).	 PB	 monocytes	

(Mos)	are	recruited	into	tissues	where	they	differentiate	into	macrophages,	

which	are	directly	involved	in	fibrosis.	To	understand	the	role	of	CD14+	PB	

Mos	in	SSc,	a	single-cell	transcriptome	analysis	(scRNA-seq)	was	conducted	

on	8	SSc	patients	 and	8	 controls.	Using	unsupervised	 clustering	methods,	

CD14+	cells	were	assigned	 to	11	 clusters,	which	added	granularity	 to	 the	

known	monocyte	 subsets:	 classical	 (cMos),	 intermediate	 (iMos)	 and	 non-

classical	Mos	 (ncMos)	 or	 type	 2	 dendritic	 cells.	 NcMos	were	 significantly	

overrepresented	 in	 SSc	 patients	 and	 showed	 an	 active	 IFN-signature	 and	

increased	expression	levels	of	PTGES,	in	addition	to	monocyte	motility	and	

adhesion	markers.	We	identified	a	SSc-related	cluster	of	IRF7+	STAT1+	iMos	

with	an	aberrant	IFN-response.	Finally,	a	depletion	of		M2	polarised	cMos	in	

SSc	 was	 observed.	 Our	 results	 highlighted	 the	 potential	 of	 PB	 Mos	 as	

biomarkers	for	SSc	and	provided	new	possibilities	for	putative	drug	targets	

for	modulating	the	innate	immune	response	in	SSc.	
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Highlights	

● Non-classical	monocytes	 in	 SSc	were	 characterised	by	 a	high	 IFN-

response	 signature	 and	 the	 upregulation	 of	 prostaglandin	 E2	

synthesis.		

● IRF7+	 STAT1+	 intermediate	 monocytes	 contributed	 especially	 to	

SSc.		

● M2	polarised	classical	monocytes	were	depleted	in	the	blood	of	SSc	

patients.		
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1. Introduction	

Systemic	 sclerosis	 (SSc)	 is	 a	 chronic	 life-threatening	 immune-

mediated	disease	(IMD),	which	is	characterised	by	an	imbalanced	immune	

response,	 endothelial	 damage	 and	 progressive	 fibrosis	 of	 the	 skin	 and	

internal	 organs	 [1].	 Clinical	 manifestations	 among	 patients	 are	 highly	

heterogeneous,	 involving	 different	 extents	 of	 fibrosis,	 the	 appearance	 of	

autoantibodies	against	different	nuclear	structures	and	the	onset	of	clinical	

complications	or	comorbidities	[1].	SSc	patients	are	classified	into	two	major	

clinical	 subtypes:	 limited	 cutaneous	 SSc	 (lcSSc),	 if	 fibrosis	 is	 restricted	 to	

specific	 areas	 of	 the	body	 (i.e.	 face	 and	 limbs),	 and	diffuse	 cutaneous	 SSc	

(dcSSc),	 if	 fibrosis	 is	 generalised	 and	 affects	 mostly	 the	 torso	 and	 the	

proximal	 regions	 of	 the	 limbs	 [1].	 From	 a	 geneticist	 point	 of	 view,	 SSc	 is	

classified	 as	 a	 complex	 disorder,	 as	 it	 is	 triggered	 by	 unknown	

environmental	 factors	 in	 genetically	 predisposed	 individuals	 [2].	 Large	

genetic	studies	have	contributed	to	establish	27	loci	as	firm	genetic	players	

in	SSc	susceptibility	[3].		

Both	 the	adaptive	and	 innate	responses	are	chronically	active	and	

aberrant	in	SSc	patients	[4].	In	this	regard,	innate	myeloid	cells	that	act	as	

antigen	 presenting	 cells	 (APCs)	 [5]	 have	 been	 shown	 to	 be	 involved	 in	

pathological	 tissue	 scarring	 and	 fibrosis	 in	 SSc	 patients	 [6].	 Moreover,	

alterations	 of	 the	 macrophage	 compartment	 have	 been	 suggested	 as	

essential	drivers	of	connective	tissue	fibrosis	in	SSc	[7].	Notably,	in	the	early	

stages	of	SSc	skin	fibrosis,	macrophages	show	a	proinflammatory	M1	and/or	

M2	 concomitant	 profile	 that	 might	 progress	 towards	 a	 M1/M2	

disequilibrium	in	later	stages	[8].	Furthermore,	a	new	set	of	CXCL4-induced	

macrophages,	 which	 might	 be	 linked	 with	 profibrotic	 skills,	 has	 been	

identified	in	SSc	patients.	However,	their	exact	role	in	the	disease	is	yet	to	be	

defined	[9].		
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Recently,	 the	 study	 of	 the	 molecular	 mechanisms	 leading	 to	

anomalous	macrophage	 behaviour	 in	 SSc-affected	 tissues	 has	 reached	 an	

unprecedented	 level	 of	 detail	 thanks	 to	 the	 improvements	 of	 single	 cell	

transcriptome	(scRNA-seq)	technologies	[6,10],	which	focused	on	the	tissue-

resident	 fibroblast,	 lymphocyte	 and	 macrophage	 populations	 [6,11,12].	

Regarding	 macrophages,	 pioneer	 studies	 have	 identified	 a	 highly	

proliferative	 SSc-specific	 M2	 macrophage	 subpopulation	 in	 the	 lungs	

distinguished	by	the	expression	of	osteopontin	(SPP1)	[10],	which	induces	

profibrotic	 characteristics	 in	 the	 fibroblasts	 [13].	 In	 the	 case	 of	 skin	

macrophages,	 scRNA-seq	 experiments	 of	 dcSSc	 skin	 have	 singled	 out	 a	

macrophage	subpopulation	characterised	by	the	expression	of	high	levels	of	

Fcγ	receptor	IIIA	(FCGR3A,	also	known	as	CD16)	[6].	

Interestingly,	 myeloid	 populations	 are	 not	 only	 a	 tissue-resident	

lineage,	but	also	circulate	in	the	peripheral	blood	as	monocytes	[4].	Due	to	

the	 systemic	 nature	 of	 the	 disease,	 the	 monocyte	 compartment	 of	 SSc	

patients	has	abnormal	biophysical	properties	and	increased	proportions	of	

circulating	 inflammatory	 non-classical	 monocytes	 (ncMo)	 [14–17].	

Moreover,	SSc	monocytes	have	been	reported		to	increase	their	adhesion	by	

reducing	 the	 expression	 of	 CD52	 [18]	 and	 upregulating	 CCR3	 [19]	 as	 a	

response	to	type	I	IFN.	Moreover,	circulating	myeloid	cells	in	the	blood	of	SSc	

patients,	 especially	 those	 with	 a	 severe	 disease,	 have	 a	 gene	 expression	

profile	that	combines	M1	and	M2	surface	markers	[20–22].	

Nevertheless,	 scRNA-seq	 technologies	 have	 not	 been	 applied	 to	

comprehensively	characterise	circulating	CD14+	monocytes	in	the	blood	of	

SSc	 patients.	 Therefore,	 we	 will	 investigate	 the	 composition	 and	 the	 cell	

subtype-specific	expression	profiles	of	the	monocyte	compartment	in	SSc	at	

the	highest	resolution	by	analysing	 the	single	cell	 transcriptomes	of	more	
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than	94,000	CD14+	peripheral	blood	cells	from	8	patients	affected	with	SSc	

and	8	controls.		

2. Methods	

2.1.	Patient	description		

The	study	cohort	consisted	of	16	women.	All	individuals	were	of	self-

reported	 European	 ancestry	 and	 of	 similar	 age	 (average	 age	 SSc	 =	 60;	

average	 age	 controls=	 59),	 8	 of	 them	 were	 diagnosed	 with	 SSc	 and	 the	

remaining	8	were	unaffected.	Patients	fulfilled	the	diagnostic	criteria	for	the	

disease	proposed	by	ACR	[23]	and	were	classified	into	limited	cutaneous	or	

diffuse	cutaneous	SSc	according	to	the	criteria	proposed	by	LeRoy	[24,25].	

Clinical	information	of	the	patients,	as	well	as	their	serological	profile	and	

drug	treatment	are	shown	in	Supplementary	Table	1.	All	participants	were	

selected	 from	 the	 Hospital	 Universitario	 San	 Cecilio	 (Granada,	 Spain)	 by	

qualified	staff	and	they	signed	a	written	consent	before	being	enrolled	in	the	

study.	All	samples	were	irreversibly	anonymised.		

2.2.	Cell	suspension	protocol	

Thirty	millilitres	of	PB	of	each	participant	were	collected	 in	EDTA	

tubes	 (Greiner	 #4550356)	 and	 processed	 for	 cryopreservation	 within	 1	

hour	of	extraction.	CD14+	cells	were	isolated	at	the	Instituto	de	Parasitología	

y	Biomedicina	López-Neyra	(Granada,	Spain).	Next,	plasma	was	separated	

from	peripheral	blood	mononuclear	cells	(PBMCs)	using	FicollⓇ	Paque	Plus	

(Merk	 #GE	 17-1440-02)	 density	 gradients	 in	 Leucosep	 centrifuge	 tubes	

(Greiner	#227290).	Positive	selection	of	CD14+	cells	was	performed	using	a	

magnetic	 bead	 kit	 (Stem	 Cell	 Easy	 Step,	 ref	 #17858)	 by	 following	 the	

protocol	 established	by	 the	manufacturer.	 The	CD14+	 cells	 accounted	 for	
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more	than	86.5%	of	the	cells	in	the	samples	as	confirmed	by	flow-cytometry	

analyses	and	high	CD14	mRNA	expression	was	later	confirmed	at	the	single	

cell	 level	 (Supplementary	 Figure	 1).	 Then,	 CD14+	 cell	 suspensions	 were	

cryopreserved	in	10%	DMSO	(Merk	D2438)	and	90%	foetal	bovine	serum	

(FBS,	Gibco	#10082-147)	medium	and	 frozen	 in	 a	 -80ºC	ultrafreezer	 at	 a	

controlled	rate	for	at	 least	24	hours	using	a	CoolCell	container	(Corning	#	

432000).	Samples	were	kept	in	liquid	nitrogen	for	long	term	storage.		

2.3.	Single	cell	RNA-sequencing	library	generation	

To	perform	single	cell	whole	transcriptome	sequencing	(scRNA-seq),	

we	used	the	Next	GEM	technology	by	10x	Genomics.	Samples	were	assayed	

following	the	manufacturer's	instructions	for	the	following	kits:	Chromium	

Next	GEM	Chip	G	Single	Cell	Kit	(10xGenomics,	PN-1000127)	and	Chromium	

Next	GEM	Single	Cell	5'	Library	and	Gel	Bead	Kit	v1.1	 (10xGenomics,	PN-

1000165_a).	 Subsequently,	 the	 generated	 cDNA	 libraries	were	 sequenced	

using	the	NovaSeq	6000	platform	(Illumina)	with	S2	and	SP	chemistry	v1.5.	

The	previously	described	settings	allowed	us	to	obtain	an	average	of	85.85%	

of	reads	in	cells,	with	an	average	of	31,847	reads	per	cell.	The	sequencing	

reads	 were	 aligned	 to	 the	 GRCh38	 genome	 build	 and	 unique	 molecular	

identifiers	(UMI)	were	processed	by	the	10x	Cell	Ranger	Single	Cell	Software	

Suite	 (v3.0.0)	 using	 default	 parameters,	 with	 an	 average	 of	 1,658	 genes	

identified	per	cell.	

2.4.	Single	cell	RNA-sequencing	data	analysis	

Cell	 Ranger	 results	 were	 imported	 into	 Scanpy	 (v1.8.2)	 (196)	 in	

Python	(v3.8.1).	All	individuals	passed	the	established	quality	filters.	Any	cell	

with	less	than	500	genes,	more	than	10%	of	reads	mapping	in	mitochondrial	

genes	or	more	than	30%	of	reads	mapping	in	ribosomal	genes	was	removed.	
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In	addition,	to	avoid	doublets,	any	cell	with	more	than	3,000	detected	genes	

was	discarded.	The	MTRNR2L8	gene	was	found	to	be	aberrantly	expressed	

in	 only	 one	 individual	 and	 was,	 therefore,	 excluded	 from	 the	 analysis.	

Altogether	94,525	CD14+	cells,	and	22,637	genes	passed	the	filters.		

Normalisation	 by	 library	 size	 and	 logarithmic	 transformation	was	

applied	to	the	resulting	UMIs	for	each	cell	that	passed	QC,	using	the	scanpy	

tools	and	their	default	settings.	Next,	the	scanpy	cell	cycle	analysis	tool	was	

used,	using	a	list	of	publicly	available	cell	cycle-related	genes	[27],	assigning	

to	each	cell	a	cell	cycle	phase.	We	used	5,000	highly	variable	genes	(HVG)	in	

our	downstream	analyses,	which	were	selected	at	this	point.	To	ensure	that	

the	 results	 were	 not	 biassed	 by	 biological	 variation,	 the	 following	

parameters	 were	 regressed	 out	 using	 the	 scanpy	 regress_out	 function:	

number	of	UMIs	per	cell,	proportion	of	reads	in	mitochondrial	and	ribosomal	

genes	and	cell	cycle	(S	phase	and	G2M	phase).	Finally,	the	resulting	data	were	

scaled	 to	 unit	 variance	 and	 values	 exceeding	 standard	 deviation	 10	were	

clipped.	

Scaled	data	were	then	used	to	perform	principal	component	analysis	

(PCA),	and	we	used	the	first	20	PCs	to	perform	a	Batch	Balanced	k-Nearest	

Neighbour	(BBkNN)	integration	graph,	using	the	individuals	as	a	correction	

key.	This	BBkNN	graph	was	later	used	for	embedding	and	visualisation	with	

the	Uniform	Manifold	Approximation	and	Projection	(UMAP)	algorithm	[28],	

as	well	as	for	unsupervised	clustering	with	the	Leiden	algorithm	[29].	All	the	

samples	 were	 properly	 integrated	 and	 similar	 clustering	 results	 were	

obtained	using	alternative	algorithms	(Supplementary	Figures	2	and	3).	The	

CellTypist	package	(v1.2.0)	 [30]	was	used	to	 identify	non-monocytic	cells,	

mainly	 lymphoid	 cells,	 which	 were	 removed	 from	 the	 data.	 Additionally,	

apoptotic	cells	were	identified	on	the	basis	of	a	panel	of	apoptosis	markers	
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and	discarded	 from	 further	analysis.	Finally,	94,525	cells	 remained	 in	 the	

dataset,	on	which	the	analyses	described	above	were	repeated.	

After	unsupervised	clustering	by	 the	Leiden	algorithm,	11	clusters	

were	defined.	Finally,	 the	11	clusters	defined	by	 the	unsupervised	Leiden	

clustering	algorithm	were	assigned	to	known	CD14+	cell	subsets	based	on	

genetic	 markers	 from	 the	 literature	 (Supplementary	 Figure	 4).	 However,	

each	cluster	was	analysed	individually	to	prevent	interpretation	bias	based	

on	previous	immunological	cell	subset	definitions.	

2.4.1.	Differential	gene	expression	

In	order	to	identify	genes	that	can	be	used	as	cluster-specific	marker	

genes	and	to	analyse	differential	gene	expression	(DE)	between	cells	in	the	

same	 cluster	 but	 originated	 from	 different	 conditions,	 we	 applied	 the	

rank_genes_groups	function	implemented	in	scanpy.	Scanpy	then	calculated	

differential	expression	for	each	gene	and	ranked	them	based	on	their	Z-score	

and	the	underlying	p-value.	A	Wilcoxon	statistical	 test	was	applied	for	DE	

calculation	 and	 the	 Benjamini-Hochberg	 FDR	 (FDR	 <	 0.1)	 strategy	 was	

applied	as	a	correction	method.	Log2	fold	changes	were	also	calculated	per	

group	as	implemented	in	the	previously	mentioned	function.	

2.4.2.	Pathway	enrichment	analysis	

The	top	10%	cluster	marker	genes	and	DE	genes	were	considered	for	

pathway	enrichment	analysis.	The	enrichment	analysis	was	performed	using	

the	Gene	Ontology	(GO),	Kyoto	Encyclopedia	of	Genes	and	Genomes	(KEGG)	

and	Reactome	databases	using	R	package	EnrichR	(v3.1.0).	A	p-value	<	0.05	

after	FDR	correction	was	established	as	a	statistical	significance	threshold.		
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2.4.3.	Trajectory	analysis	

To	 explore	 potential	 cell	 trajectories,	 we	 relied	 on	 the	 methods	

implemented	in	Monocle3	(v3.0)	[31].	For	this	purpose,	the	object	was	first	

converted	to	a	Seurat	(v4.3.0)	[32]	object,	using	the	SeuratData	(v0.2.2)	and	

SeuratDisk	 (v0.0.09020)	packages.	The	sample	was	 then	downsampled	 to	

9,000	 cells,	 and	 then	 converted	 to	 a	 cell	 data	 set	 object	 with	 the	 Seurat	

function	 as.cell_data_set.	 The	 effect	 sizes	 of	 the	 raw	 counts	 were	 then	

estimated	and	the	cluster_cell	function	was	applied	to	perform	the	clustering	

and	partitioning	of	the	data	in	order	to	calculate	the	cell	trajectories.	Finally,	

the	pseudotime	branches	were	inferred	with	the	learn_graph	function.	Based	

on	the	expression	of	genes	related	to	the	transdifferentiation	of	monocytes	

to	macrophages	 (FCGR3A,	CSF1R	and	RHOC),	 cluster	0	was	chosen	as	 the	

pseudotime	 root	 (this	 cluster	 corresponded	 to	 cluster	 1	 according	 to	 the	

monocle3	clustering).	

We	 used	 the	 graph_test	 and	 find_gene_modules	 functions	

implemented	 in	Monocle3	to	 identify	modules	of	genes	that	changed	with	

the	pseudotime.	We	applied	a	multiple	testing	correction	[33]	on	the	results	

and,	if	a	gene	had	a	q	value	≤0.05	and	a	Moran's	I	greater	than	0.05	[34]	(a	

measure	 of	 the	 degree	 of	 autocorrelation),	 it	 was	 considered	 to	 be	

significantly	associated	with	the	pseudotime	trajectory.	

To	perform	the	diffusion	mapping,	an	unsupervised	dimensionality	

reduction	analysis	package	Destiny	(v3.12.0)	[35]	was	used.	Previously,	the	

SingleCellExperiment	package	(v1.20.0)	[36]	was	needed	to	adapt	the	Seurat	

object	exported	from	Scanpy.		
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3. Results	

3.1.	 Peripheral	 blood	CD14+	monocytes	 show	a	 IFN	

signature	in	SSc		

In	 order	 to	 comprehensively	 characterise	 the	 pathological	

alterations	of	the	transcriptome	at	the	single	cell	level	in	PB	monocytes	of	

SSc	patients,	we	analysed	the	transcriptome	of	94,525	CD14+	cells.	As	shown	

in	 Supplementary	 Table	 1,	 our	 study	 cohort	 was	 composed	 of	 8	 women	

affected	by	SSc	(6	with	lcSSc	and	2	with	dcSSc)	and	8	non-affected	women.	

Patients	 had	 several	 years	 of	 disease	 duration	 and	 all	 of	 them	 presented	

Raynaud’s	 phenomenon	 and	 similar	 drug	 treatment.	 The	 majority	 of	 the	

recruited	patients	had	gastrointestinal	complications,	but	only	some	of	them	

showed	pulmonary	involvement.	The	patients	and	controls	were	matched	by	

ethnicity	and	age.		

CD14+	monocytes	represent	a	~10%	of	the	leukocytes	in	PB	[37]	and	

the	number	of	isolated	CD14+	cells	per	sample	was	consistent	between	the	

controls	 and	 the	 SSc	 patients,	 but	 also	 between	 patients	 with	 lcSSc	 and	

patients	with	dcSSc	(Supplementary	Table	2).	We	detected	not	only	CD14high	

but	 also	 CD14lowCD16high	 cells,	 which	 corresponded	 to	 the	 non-classical	

monocyte	population	[38].	Therefore,	the	analysed	cells	showed	a	modest	to	

high	CD14	expression	(Supplementary	Figure	1),	and	an	average	of	1,658	

genes	per	cell	were	detected.	

After	QC,	we	generated	an	integrated	data	set	combining	the	SSc	and	

control	CD14+	monocyte	transcriptomes.	We	observed	that	all	samples	were	

evenly	distributed	(Supplementary	Figure	2),	but	each	condition	showed	a	

distinct	 density	 pattern	 with	 qualitative	 differences	 between	 SSc	 and	

controls,	 as	 well	 as	 between	 lcSSc	 and	 dcSSc	 (Figure	 1A).	 Moreover,	 the	
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comparison	of	the	average	gene	expression	between	controls	and	SSc,	lcSSc	

or	dcSSc	 identified	 the	overexpression	 in	 cases	of	2,665,	2,640	and	1,057	

genes,	 respectively	 (Figure	 1B;	 Supplementary	 Figure	 5A	 and	 5B;	

Supplementary	Tables	3-5).		

The	 top	 DE	 genes	 (DEG)	 in	 SSc	 compared	with	 controls	 included	

interferon	 response	 genes,	 such	 as	 IFITM3,	 IRF1,	 IFITM2	 and	 IFI6.	

Nevertheless,	we	also	observed	monocyte	migration	markers,	 for	example	

LGALS2,	 and	 TMSB10.	 Additionally,	 antigen	 presentation	 molecules	 were	

remarkably	DE,	i.e.	HLA-A	and	HLA-DRB5	(Figure	1B;	Supplementary	Table	

3).	Furthermore,	relevant	SSc-associated	transcription	factors,	as	STAT1	and	

KLF6,	 showed	 a	 significantly	 increased	 expression	 in	 patients	 with	 SSc	

(Figure	1B;	Supplementary	Table	3).	 In	 fact,	pathway	enrichment	analysis	

highlighted	 that	 these	 SSc	 upregulated	 genes	 were	 enriched	 in	 several	

proinflammatory	mechanisms	such	as:	 response	 to	 type	 I	and	type	 II	 IFN,	

Toll-like	receptor	signalling	and	Class	 I	MHC-mediated	antigen	processing	

and	 presentation	 (Supplementary	 Table	 6).	 It	 should	 also	 be	 noted	 that	

overexpressed	 genes	 in	 SSc	 included	 several	 key	 players	 of	 the	 innate	

immune	response,	the	interferon-induced	guanylate	binding	protein	(GBP)	

family:	GBP1,	GBP2,	GBP3,	GBP4	and	GBP5	(Supplementary	Table	3)	[39].		
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Figure	1.	Cellular	density	and	differential	gene	expression	in	SSc	subtypes	

and	 controls.	 A)	 UMAP	 plots	 showing	 cellular	 density	 of	 CTRL,	 lcSSc,	 and	 dcSSc.	

Colour	 gradient	 indicates	 increasing	 density.	 B)	 Top	 10	 differentially	 expressed	

genes	in	SSc	vs.	CTRL,	lcSSc	vs.	CTRL,	and	dcSSc	vs.	CTRL.	C)	Top	10	differentially	

expressed	genes	between	lcSSc	and	dcSSc,	and	vice	versa.	Point	size	represents	the	

fraction	 of	 cells	 per	 group	 expressing	 each	 gene,	 and	 colour	 represents	 the	

expression	level	of	each	gene	in	each	group.	SSc:	Systemic	Sclerosis;	lcSSc:	limited	

cutaneous	SSc;	dcSSc:	diffuse	cutaneous	SSc;	CTRL:	controls.	

The	comparison	between	lcSSc	patients	and	controls	revealed	that	

the	general	biological	pathways	enriched	with	DE	genes	were	very	similar	to	

the	observed	trends	for	SSc	(Supplementary	Table	4).	However,	we	detected	

subtype	 specific	 overexpression	 of	 genes	 encoding	 proteins	 of	 the	

complement	cascade	(such	as,	CFD)	in	lcSSc	(Supplementary	Table	4).	On	the	

contrary,	 patients	 with	 dcSSc	 showed	 increased	 levels	 of	 the	 monocyte	

activation	related	genes,	such	as	LYZ,	CSF3R	(Supplementary	Table	5).		
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Additionally,	when	 lcSSc	 and	 dcSSc	were	 compared,	we	 identified	

1,156	 genes	 upregulated	 in	 lcSSc	 and	 636	 genes	 upregulated	 in	 dcSSc	

(Supplementary	Table	7).	Compared	with	dcSSc,	the	lcSSc	subtype	showed	

an	overexpression	of	some	interferon	response	genes	(i.e.	S100A4,	IFNGR2),	

subtype-specific	 increased	 levels	 of	 negative	 regulators	 of	 dendritic	 cell	

differentiation	(TMEM176A	and	TMEM176B)	[40],	and	an	enhanced	antigen	

presentation	profile	with	several	HLA	genes	amongst	the	most	DEG	(Figure	

1C;	Supplementary	Table	7).	On	the	other	hand,	the	top	dcSSc	upregulated	

genes	compared	to	lcSSc	were	involved	in	monocyte	migration	(SELL	[41],	

CD52	 [42],	 VCAN	 [43])	 and	 in	 monocyte	 differentiation,	 CLEC12A	 [44]	

(Figure	1B-C,	 Supplementary	Table	7).	These	DEGs	were	also	 enriched	 in	

interferon-related	 pathways	 and,	 additionally	 in	 intercellular	

communication,	 for	 example:	 immunoregulatory	 interactions	 between	 a	

lymphoid	 and	 a	 non-lymphoid	 cell	 (Supplementary	 Table	 8).	 In	 addition,	

RUNX3-mediated	immune	response	and	migration	were	in	the	top	enriched	

pathways	(Supplementary	Table	8).		

3.2.	Interferon	activated	non-classical	CD16+	RHOC+	

monocytes	express	high	levels	of	microsomal	prostaglandin	

E2	synthase-1	in	SSc	

Eleven	 cell	 clusters	 were	 defined	 on	 the	 basis	 of	 transcriptional	

similarity	by	implementing	the	community	detection	Leiden	algorithm	in	an	

UMAP	(Figure	2A)	[45].	All	the	individuals	contributed	to	all	clusters	(Figure	

2B)	 and	 there	 was	 no	 cluster	 restricted	 to	 SSc	 or	 the	 SSc	 subtypes	

(Supplementary	 Figure	 2).	 Notably,	 the	 implementation	 of	 the	 Louvain	

algorithm	 on	 a	 t	 -distributed	 stochastic	 neighbour	 embedding	 (t-SNE)	

visualisation	resulted	in	similar	clusters	(Supplementary	Figure	3).	
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Panels	of	known	membrane	surface	markers	allowed	us	to	manually	

annotate	clusters	into	the	three	major	monocyte	subsets:	cMo	(CD14+/SELL,	

5	clusters),	iMo	(HLA-DRA/CD74+,	4	clusters)	and	ncMo	(FCGR3A+/C1QA+,	1	

cluster)	 (Figure	 2C;	 Supplementary	 Figure	 4).	 We	 also	 detected	 a	 DC2	

population	(CD1C+	FCER1A+/CLEC10A+,	1	cluster).		

We	 observed	 that	 the	 ncMo	 compartment	 (cluster	 7)	 was	

significantly	overrepresented	 in	SSc	patients,	and	especially	 in	 lcSSc	cases	

(Figure	 2D;	 Supplementary	 Figure	 6).	 NcMo	 are	 CD16+	 cells,	 which	 was	

consistent	 with	 cluster	 7	 showing	 the	 highest	 expression	 of	 the	 CD16	

encoding	gene,	i.e.	FCGR3A	(Figure	2D,	Supplementary	Figure	4).	
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Figure	 2.	 A)	 UMAP	 of	 the	 11	 CD14+	 cell	 clusters	 from	 SSc	 and	 control	

samples,	obtained	using	Leiden	clustering	and	labelled	from	0	to	10.	B)	Proportion	

of	cells	in	each	cluster	by	condition	(CTRL	or	SSc)	and	by	individual.	Each	cluster	is	

represented	by	the	same	colour	as	in	panel	A.	C)	UMAP	with	the	clusters	classified	

and	 coloured	 according	 to	 the	 assigned	 cell	 type	 based	 on	 their	 expression	 of	

different	marker	genes.	Clusters	0,	5,	4,	6,	and	9	were	classified	as	cMo;	clusters	1,	2,	

3,	and	8	as	iMo;	cluster	7	as	ncMo;	and	cluster	10	as	DC2.	D)	Boxplots	representing	
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the	cell	proportions	for	CTRL,	SSc,	lcSSc,	and	dcSSc	(from	left	to	right)	in	clusters	7,	

8,	and	9	.	E)	Violin	plots	of	the	top	3	DE	genes	of	each	cluster	vs	the	rest,	with	colours	

representing	 the	 expression	 level	 in	 each	 group.	 cMo:	 classical	 monocytes;	 iMo:	

intermediate	monocytes;	ncMo:	non-classical	monocytes;	DC2:	dendritic	cells	type	

2;	DE:	differential	expression.	

This	 ncMo	 cluster	 was	 characterised	 by	 high	 expression	 of	 LST1,	

which	was	 also	 overexpressed	 in	 the	 SSc	 cells	 of	 this	 cluster	 (Figure	 2D,	

Supplementary	 Table	 9).	 LST1	 encodes	 a	 trans-membrane	 and	 soluble	

protein	induced	by	immune	response	against	bacteria	and	associated	with	

the	 inhibition	 of	 lymphocyte	 proliferation	 [46]	 .	 Moreover,	 cell	 motility-

related	genes,	such	as	COTL1	[47]	and	RHOC	[48],	were	also	clear	markers	

for	this	subset	of	monocytes	(Figure	2D,	Supplementary	Table	9).	It	should	

be	noted	that	RHOC	was	differentially	expressed	between	SSc	and	controls,	

as	well	as	being	overexpressed	in	lcSSc	cases	compared	with	dcSSc	patients.	

Although	 RHOC	 was	 a	 cluster	 marker	 (logFold	 change	 =	 4.3)	 for	 ncMos	

(cluster	7),	it	was	differentially	expressed	between	SSc	and	controls	in	ncMo	

but	also	in	the	nearby	subsets	of	antigen-presenting	iMos	(clusters	2	and	3)	

(Figure	3A;	Supplementary	Tables	3,	7,	9	and	10).	

The	interferon	signature	in	ncMo	was	clear	with	several	interferon	

induced	 genes,	 such	 as	 IFITM3	 and	 IFITM2	 in	 the	 top	 gene	markers	 and	

differentially	 overexpressed	 in	 SSc	patients	 (Supplementary	Tables	9	 and	

10).	 The	 DEGs	 with	 the	 largest	 log	 fold	 changes	 (logFold	 change	 >1.5)	

included	very	promising	loci	related	to	SSc-associated	fibrosis.	For	example,	

PTGES,	 which	 encodes	 an	 inducible	 microsomal	 enzyme	 that	 acts	

downstream	from		
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Figure	3.	Violin	plots	and	dotplots	of	gene	expression	 in	A)	cluster	7,	B)	

cluster	9	and	C)	cluster	8.	The	height	of	each	violin	indicates	the	cell	proportion	of	

each	cluster	and	colours	 indicate	expression	 levels	and	DE	between	controls	and	

lcSSc	and	dcSSc	is	depicted	in	the	dotpots.	
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cyclooxygenase-2	and	catalyses	the	prostaglandin	2	(PGE2)	synthesis	[49]	

or	CEACAM3,	a	cellular	adhesion	molecule	[50],	were	exclusively	DE	in	this	

cluster	 of	 ncMo	 (Figure	 3A;	 Supplementary	 Table	 10).Finally,	 several	

complement	system	genes,	such	as	C1QA,	C1QB,	C1QC	and	CSF1R,	showed	the	

greatest	fold	change	increases	in	the	ncMo	cluster	compared	with	the	rest	of	

the	CD14+	cells	(Figure	3A;	Supplementary	Table	10).	

3.3.	Migration	of	M2	polarised	monocytes	is	altered	in	

SSc	

We	 observed	 that	 cluster	 9	 was	 underrepresented	 in	 individuals	

affected	by	SSc,	which	was	especially	visible	 in	 lcSSc	patients	(Figure	2D).	

Cluster	 9,	 a	 cMo	 subset,	was	 characterised	 by	 a	 high	 expression	 of	 genes	

related	to	cell	adhesion	and	migration,	such	as	VCAN,	CD36,	VIM	and	ITGB2	

(Supplementary	 Table	 9).	 Moreover,	 pathway	 enrichment	 analysis	 of	 the	

marker	 genes	 showed	 that	 the	most	 relevant	pathways	 also	 included	 cell	

surface	 interactions	 at	 vascular	 wall	 and	 several	 pathways	 related	 to	

extracellular	 matrix	 composition,	 (such	 as	 chondroitin	 sulfate/dermatan	

sulfate	 metabolism,	 diseases	 associated	 with	 glycosaminoglycan	

metabolism,	etc.)	and	fibrosis	(interleukin-4	and	interleukin-13	signalling)	

[51]	(Supplementary	Table	11).		

Remarkably,	 this	 cluster	 showed	 markers	 of	 monocyte	 activation	

(AHNAK	[52],	DDX5	[53,54],	and	CD44	[55]).	Especially,	we	identified	several	

markers	of	polarisation	towards	a	M2	profibrotic	phenotype	[56],	 i.e.	AHR	

[52],	 TGFB1	 and	 CD163	 [57]	 (Figure	 3B	 and	 Supplementary	 Figure	 7).	

Additionally,	we	observed	some	M1	markers	among	the	cluster	9	markers	

(Supplementary	Figure	7),	such	as	NLRP3	and	IL1B	(Supplementary	Table	9)	

[58].	 However,	 NLRP3	 had	 a	 higher	 expression	 in	 controls	 than	 in	 SSc	

(logFold	 change	 =	 -0,23)	 and	 IL1B	 was	 not	 differentially	 expressed	
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(Supplementary	Table	9).	Finally,	the	SSc	cMos	in	this	cluster	showed	a	high	

overexpression	 of	 the	 S100A	 gene	 family	 (S100A8,	 S100A6,	 S100A10,	

S100A9)	 and	 other	 interferon-response	 genes	 (IRF1,	 IFITM3,	 IFITM2)	

(Figure	3B;	Supplementary	Table	10).	

Then,	we	analysed	the	composition	and	characteristics	of	an	iMo	IFN	

signature-related	cluster:	cluster	8.	SSc	patients	contributed	more	to	this	iMo	

cluster,	which	was	marked	by	very	high	expression	of	genes	related	to	IFN	

induction,	such	as	ISG15,	MX1,	MX2	and	IFI6	(Figures	2D	and	3C).	It	should	

be	 noted	 that	 two	master	 regulators	 of	 IFN-mediated	 immune	 activation,	

which	have	been	previously	involved	in	SSc	pathogenesis	and	appeared	DE	

in	 our	 comparison	 between	 all	 cells	 from	 SSc	 patients	 versus	 the	 control	

cells,	 IRF7	 and	 STAT1,	 marked	 exclusively	 this	 cluster	 (Supplementary	

Tables	4,	9	and	10).	As	expected	by	the	cluster	marker	genes,	DE	analysis	

showed	 that	 the	highest	 over-expression	 corresponded	 to	MHC-I	 (HLA-A)	

and	 MHC-II	 (HLA-DRB5)	 genes	 and	 members	 of	 the	 S100A	 family	

(S100A8/S100A9,	S100A6	and	S100A11),	all	markers	of	monocyte	activation	

and	inflammation	(Figure	3C).		

3.4.	The	expression	of	SSc	genetic	risk	loci	is	altered	in	

SSc	CD14+	monocytes		

Considering	our	success	in	establishing	IRF7	and	STAT1,	known	SSc	

genetic	risk	factors,	as	cluster	specific	markers,	we	checked	the	expression	

of	other	known	SSc	risk	loci	[3].	

We	observed	that	CSK,	RAB2A,	TSPAN32,	GRB2,	IL12RB1,	IRF8,	DDX6,	

and	TNIP1	were	DE	in	the	comparison	between	all	the	SSc	cells	and	all	the	

control	cells	(Supplementary	Table	3).	All	of	them	were	upregulated	in	SSc,	

but	 only	CSK,	 a	 kinase	 of	 the	 Src	 family	 that	 interacts	with	 the	 immune-
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related	PTPN22	 locus,	was	 significantly	upregulated	 in	 lcSSc	versus	dcSSc	

(Supplementary	Table	7).	Remarkably,	for	some	of	these	loci	we	were	able	

to	characterise	cluster	specific	DEs.		

We	 observed	 that	 the	 expression	 of	CSK	 was	 increased	 in	 patient	

cMos	(clusters	0,	4	and	5)	and	iMos	(clusters	1,	2,	3	and	8),	but	not	ncMos	or	

DC2	 (Supplementary	 Table	 10).	 On	 the	 contrary,	 RAB2A	 locus,	 which	

encodes	a	Rab	GTPase	involved	in	intracellular	vesicle	trafficking,	showed	

DE	scattered	in	several	monocyte	clusters	identified	as	either	cMos	(clusters	

0	and	5),	iMos	(cluster	2)	or	ncMos	(cluster	7).		

As	opposed	to	IRF7,	which	was	a	marker	gene	for	clusters	7	and	8	but	

showed	a	generalised	DE	in	several	monocyte	clusters,	IRF8	(also	involved	

in	 transcriptional	 regulation	 via	 IFN)	 was	 a	 common	marker	 for	 several	

clusters	and	it	was	upregulated	in	SSc	in	two	cMo	clusters	(clusters	0	and	3)	

(Supplementary	 Tables	 9	 and	 10).	 It	 should	 be	 noted	 that	 recent	 reports	

have	identified	a	CD14+	cell-exclusive	3D	chromatin	interaction	between	a	

SSc-associated	SNP,	which	was	located	in	the	vicinity	of	IRF8	(rs11117420),	

and	 the	 promoter	 of	 this	 locus	 using	 Hi-C	 study	 in	 CD14+	 monocytes	

obtained	from	SSc	patient	blood	[59].	

The	GRB2	locus	was	exclusively	overexpressed	in	the	SSc	cells	that	

belonged	 to	 cluster	 0,	 and	 ARHGAP31	 and	 TSPAN32	 were	 significantly	

upregulated	in	SSc	only	in	cluster	3	(Supplementary	Table	10).	

Notably,	IL12RB1,	which	had	been	previously	identified	as	a	genetic	

risk	locus	for	SSc	[3,60],	was	highly	expressed	in	the	inflammatory	SSc	ncMos	

(Supplementary	Table	9).	

Finally,	we	 observed	 that	 only	 one	 gene,	ANXA6,	 located	 near	 the	

TNIP1	SSc	genetic	susceptibility	locus	[61],	showed	a	decreased	expression	



Deciphering	the	genetic	basis	of	systemic	sclerosis	

	152	

in	 SSc	 patients	 compared	 to	 controls	 in	 all	 the	 defined	 clusters	 (logFold	

change	ranging	0.17-0.69)	(Supplementary	Tables	3-5).	Additionally,	ANXA6	

was	 a	 cluster	 marker	 for	 all	 the	 cMo	 clusters,	 except	 for	 cluster	 5	

(Supplementary	Table	 9).	 Interestingly,	 a	 decreased	 expression	 of	ANXA6	

and	 a	 physical	 interaction	 between	 the	 ANXA6	 promoter	 and	 a	 nearby	

enhancer	located	in	a	TNIP1	 intron	have	been	previously	described	in	SSc	

CD4+	lymphocytes	[62].	Moreover,	the	alleles	of	rs3792783,	a	SSc-associated	

SNP	located	in	TNIP1	[61],	correlated	both	with	the	methylation	status	of	the	

enhancer	and	with	ANXA6	expression	[62].	Therefore,	our	findings	support	

further	investigation	of	the	relevance	of	an	altered	expression	of	this	locus	

in	the	context	of		CD14+	and	especially	in	cMos	in	SSc	patients.		

3.5.	 IRF7+	 STAT1+	 intermediate	monocytes	 show	 a	

distinctive	IFN-response	in	SSc		

Then,	we	explored	the	relationship	between	the	different	monocyte	

clusters	and	studied	the	existence	of	specific	gene	modules	or	cellular	states	

that	 correlated	 with	 SSc.	 Consequently,	 we	 carried	 out	 a	 pseudotime	

analysis.	

We	 observed	 that	 the	 monocyte	 clusters	 seemed	 to	 gradually	

differentiate	from	cMos	towards	either	ncMos	or	DC2s	with	iMos	acting	as	a	

crossroads	(Figure	4A).	The	trajectory	root	was	located	in	cMo	clusters,	such	

as	 CD14+,	 SELL+,	 and	 CD36+	 (Supplementary	 Figure	 4).	 However,	 the	

progression	towards	the	endpoints	relied	on	the	expression	of	genes	such	as	

FCGR3A	(CD16)	and	FCER1A,	both	markers	of	ncMos	and	DC2s,	respectively	

(Figure	4B).		

Moreover,	the	cMo	clusters	located	at	the	start	of	the	trajectory	were	

clearly	characterised	by	markers	of	an	IFN-mediated	response,	i.e.	S100A12	

(Figure	 4B),	 that	 have	 already	 been	 addressed	 as	 SSc	 biomarkers	 above.	
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Nevertheless,	the	trajectory	ended	in	the	ncMo	cluster	and	it	was	driven	by	

the	 expression	 of	 two	 SSc-related	 markers:	 RHOC	 and	 CDKN1C	

(Supplementary	 Tables	 3,	 9	 and	 10).	 Both	 genes	 further	 suggested	 an	

overreactivity	of	ncMos	in	SSc,	since	the	protein	encoded	by	RHOC	is	key	in	

the	 regulation	 of	 cell	motility	 and	CDKN1C,	 also	 known	 as	P57,	 acts	 as	 a	

cyclin-dependent	tumour	suppressor.		

Figure	4.	A)	UMAP	showing	CD14+	cells	from	SSc	and	CTRLs	coloured	by	

pseudotime.	B)	Expression	of	the	top	6	genes	in	the	CD14+	pseudotime	C)	Diffusion	

maps	 coloured	 by	 cell	 type,	 pseudotime,	 and	 cluster	 3	 (from	 top	 to	 bottom).	 D)	

Heatmap	of	gene	module	expression	per	cluster.	Numbers	indicate	clusters.	
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Then,	we	took	into	account	that	the	estimated	pseudotime	seemed	to	

have	at	least	two	different	endpoints	(Figure	4A)	and	decided	to	calculate	a	

diffusion	map	to	identify	the	branching	points	and	connections	between	the	

different	 cell	 clusters.	The	diffusion	map	 confirmed	 that	ncMos	 and	DC2s	

were	 established	 as	 two	 clearly	 different	 branches	 and,	 although	 the	

different	iMos	clusters	were	located	between	the	cMos,	and	the	ncMos	or	the	

DCs,	 cluster	 3	 appeared	 as	 an	 intersection	 between	 cMos	 and	 their	

polarisation	to	ncMos	or	DC2s	(Figure	4B	and	C;	Supplementary	Figure	8).	

Although	 the	 transit	 from	cMos	 to	DC2s	 seemed	gradual,	 the	polarisation	

from	cMos	to	ncMos	looked	linear	with	cluster	3	as	a	bottleneck	(Figure	4C).	

Cluster	3	was	characterised	by	a	very	high	expression	of	HLA	class	II	genes,	

which	were	also	upregulated	by	the	SSc	cells	in	this	cluster	(Supplementary	

Tables	9	and	10).	

Finally,	 we	 identified	 modules	 of	 co-expressed	 genes	 in	 the	

trajectory	and	we	 focused	on	 those	 that	showed	a	cluster	specific	pattern	

(Figure	 4D).	 Module	 1	 was	 characteristic	 of	 the	 previously	 mentioned	

crossroads	iMos	cluster,	cluster	3	(Figure	4D).	This	gene	module	was	shaped	

by	 a	 variety	 of	 genes	 such	 as	 MTHFR	 (coding	 gene	 for	 the	

methylenetetrahydrofolate	reductase	enzyme)	and	CELA2A	(which	encodes	

a	 chymotrypsin	 like	 elastase)	 (Supplementary	 Table	 12).	 But	 pathway	

enrichment	suggested	that	this	module	might	be	correlated	with	signalling	

via	IL1R	(including	loci	such	as	JUN,	TGFB2,	IL1RN)	and	might	be	involved	in	

the	altered	proportions	of	monocyte	subsets	in	SSc.		

On	the	contrary,	module	19	was	integrated	by	ISG15	together	with	

several	 proteins	 of	 the	 GBP	 family	 (GBP1,	 GBP2,	 GBP3)	 and	 IFN-induced	

genes	 (IFI6,	 IFI44,	 IFI44L)	 that	 were	 previously	 described	 as	 DEG	 in	 SSc	

(Supplementary	 Table	 3	 and	 12).	 ISG15	 was	 a	 specific	 marker	 gene	 for	

cluster	 8	 (IRF7+	 STAT1+	 iMos),	 which	 was	 overrepresented	 in	 SSc	 and	
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showed	the	highest	expression	of	module	19	(Figures	2D,	3C	and	4D),	which	

allowed	us	to	restrict	this	particular	IFN-response	to	a	specific	subset	of	SSc	

iMos.	

4. Discussion	

In	specific	pathogenic	conditions,	as	in	the	SSc	fibrotic	tissue,	macrophages	

are	essential	for	the	activation	of	profibrotic	myofibroblasts	[4,5].	However,	still	in	

peripheral	 blood	 circulation,	 SSc	 Mos	 show	 altered	 composition	 and	 expression	

profiles	 [16,63].	 As	 opposed	 to	 affected	 tissue,	 blood	 is	 abundant	 and	 easily	

accessible,	 and	 it	 is	 often	 an	 appropriate	 biomarker	 for	 disease	 monitoring.	

Interestingly,	 single	 cell	 transcriptome	 analysis	 of	 PB	 immune	 cells	 and	Mos	 has	

been	fruitful	to	identify	unique	cell	populations	and	disease	activity-related	profiles	

in	IMDs	[64,65].	Despite	their	central	role	in	SSc	pathogenesis,	the	circulating	Mo	

compartment	 transcriptome	had	never	been	characterised	at	 the	 single	 cell	 level	

before.	

This	study	analysed	the	largest	number	of	the	circulating	CD14+	cells	(over	

90,000	 cells)	 in	 SSc	 patients	 compared	 to	 healthy	 controls.	 We	 prioritised	

identifying	 rare	 cell	 clusters	 and	 comprehensively	 characterising	 the	 differences	

between	clusters	over	addressing	interindividual	variability.	The	reported	findings	

provided	valuable	insights	into	CD14+	cellular	heterogeneity	and	dynamics,	and	to	

identify	disease	markers	in	SSc.	Nevertheless,	the	main	limitation	of	the	study	is	the	

number	of	studied	individuals	(8	SSc	patients	and	8	CTRLs)	and	further	replication	

in	larger	independent	cohorts	are	needed	to	validate	the	subtype-specific	findings.	

Therefore,	we	consider	that	the	comparisons	comprising	disease	subtypes	should	

be	treated	with	caution,	especially	in	the	case	of	dcSSc.		

Reassuringly,	we	observed	an	overrepresentation	of	inflammatory	ncMos	

(cluster	7)	(Figure	2D)	as	previously	described	[15,17].	Recently,	Carvalheiro	et	al.	

described	an	increased	frequency	of	CXCL10-producing	ncMo	in	SSc	and	an	elevated	

frequency	of	CXCL8-producing	ncMos	upon	stimulation	[66].	We	observed	that	the	

ncMos	in	Cluster	7	exhibited	a	very	high	CXCL10	expression	(logFold	change	=	1.3)	
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compared	to	other	clusters	(Supplementary	Table	9)	and	that	CXCL8	expression	was	

increased	in	SSc	ncMos	and	iMo	clusters	as	well	(Supplementary	Table	10).		

Additionally,	the	identified	ncMo	cluster	in	our	dataset	showed	a	very	high	

expression	of	known	IFN-induced	markers	produced	by	myeloid	cells	in	SSc	fibrotic	

skin,	such	as	S1008A/S100A9,	which	stimulate	keratinocyte	secretion	of	CXCL2	and	

CXCL3,	as	well	as	IL-6	(a	known	SSc	hallmark)	[67].	Consistent	with	a	IFN-mediated	

effect	 in	 ncMos,	 SSc	 patient	 treatment	 with	 anifrolumab	 (a	 human	 monoclonal	

antibody	against	the	interferon-α/β	receptor	subunit	1)	in	clinical	trials	correlated	

with	a	decreased	TGF-β	fibrosis	and	reduced	expression	levels	of	some	of	the	ncMo	

markers	observed	in	our	study,	such	as	TGB1,	CXCL10	and	B2M	[68]	(Supplementary	

Tables	9-10).	Therefore,	the	main	role	of	the	IFN-mediated	ncMo	activation	might	

be	to	influence	the	cytokine	profile	of	ncMos.		

We	 also	hypothesise	 that	 IFN	might	 affect	 ncMo	migration.	Of	 particular	

significance	is	the	upregulation	of	ncMo	tissue	migration	markers,	i.e.	CX3CR1	and	

CEACAM3	[50,69]	(Supplementary	Tables	9-10).	CEACAM3	and	several	members	of	

its	 family	 had	 been	 previously	 associated	 with	 SSc	 as	 well	 as	 correlated	 with	

interstitial	lung	disease,	but	these	previous	reports	related	CEACAM3	to	cMos	[67].	

Contrarily,	 our	 data	 showed	 that	 CEACAM3	 was	 an	 exclusive	marker	 for	 ncMos,	

while	CEACAM4	was	a	marker	for	cMos	and	iMos	clusters	(Figure	3B,	Supplementary	

Table	 9	 and	 10).	 The	 transcriptomic	 signature	 for	 increased	 motility	 that	 we	

describe	would	match	a	recent	study	that	investigated	the	biophysical	properties	of	

ncMos	 in	 SSc	 patients	 [16].	 Matei	 et	 al.	 found	 that	 the	 ncMo	 of	 patients	 were	

pathologically	 more	 activated	 and	 exhibited	 biophysical	 characteristics	 that	

rendered	them	more	prone	to	vascular	migration	and	tissue	infiltration	[16].	While	

a	mechanistic	explanation	for	the	IFN	signal	in	SSc	ncMos	was	out	of	the	scope	of	our	

study,	 our	 findings	 are	 consistent	 with	 an	 imbalanced	 cytokine	 production	 and	

migration	of	ncMos	in	this	disorder.	

Additionally,	 we	 discovered	 that	 the	 SSc	 inflammatory	 ncMos	 show	

increased	expression	of	prostaglandin	E	synthase,	which	is	also	known	as	mPGES-1	

(microsomal	 Prostaglandin	 E	 Synthase-1)	 and	 encoded	 by	 PTGES,	 in	 a	 cluster-
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specific	 fashion	 (Supplementary	Table	9).	Although	 the	 cytosolic	prostaglandin	E	

synthase	 gene	 (PTGES3)	 was	 a	 cluster	 marker	 for	 ncMos,	 only	 PTGES	 was	

overexpressed	in	SSc	ncMos	compared	to	control	ncMos	(Supplementary	Table	10).	

Prostaglandin-2	 injections	 are	 used	 as	 an	 effective	 treatment	 for	 Raynaud’s	

phenomenon	in	SSc	patients	due	to	its	effect	as	a	vasodilator	[70],	but	PGE2	has	a	

dual	effect	 in	 inflammation.	Depending	on	its	association	with	different	G-protein	

coupled	 PGE2	 receptor	 subtypes,	 PGE2	 shows	 an	 anti-inflammatory	 and	 pro-

resolving	activity	or	it	mediates	proinflammatory	non-resolving	immune	activation	

[71].	 Remarkably,	 mPGES-1	 is	 an	 inducible	 microsomal	 enzyme	 that	 has	 been	

associated	 with	 pathological	 overproduction	 of	 PGE2	 [72].	 We	 would	 like	 to	

highlight	that	fibroblast	from	PTGES	null	mice	were	resistant	to	the	bleomycin	skin	

fibrosis	 SSc	model,	 and	 that	PTGES	 has	 been	 involved	 in	monocyte/macrophage	

activation	via	PPARG	(a	known	SSc	genetic	risk	factor	[73]),	after	stimulation	with	

IL-17	 [74,75].	 Therefore,	 considering	 the	 recent	 advances	 in	 PTGES-specific	

inhibition,	 targeting	 this	 molecule	 specifically	 in	 SSc	 inflammatory	 ncMos	might	

provide	new	drug	targets	for	this	disease.			

Notably,	 a	 scRNA-seq	 analysis	 of	 SLE	 PBMCs	 reported	 that	 the	 Mo	

compartment	showed	the	highest	 interferon-stimulated	gene	expression	 increase	

[76],	concordantly	with	the	large	IFN-signature	gene	expression	profile	observed	in	

our	study.	Interestingly,	a	SLE-specific	cluster	that	was	integrated	by	Mos	expressing	

high	levels	of	IFN-induced	genes	had	similar	cluster	marker	genes	than	a	SSc-related	

cluster,	the	ISG15+LY6E+	iMo	cluster	(cluster	8)	(Figure	2D,	Supplementary	Table	

9).	Moreover,	this	cluster	showed	relevant	resemblance	to	a	C1qhi	monocyte	cluster	

that	was	recently	identified	in	a	scRNA-seq	study	in	PBMCs	of	patients	with	Behçet’s	

disease	 (BD)	 [77].	 Although	 we	 did	 not	 find	 a	 C1qhi	 cluster	 in	 SSc,	 the	 C1qhi	

monocytes	 in	 BD	 showed	 hybrid	 characteristics	 between	 the	 inflammatory	 SSc	

ncMos,	which	showed	the	largest	expression	of	complement	genes,	and	SSc-related	

iMos	(cluster	8)	(Supplementary	Table	9).	In	BD,	the	STAT1-mediated	response	to	

IFNɣ	was	correlated	with	IRF1	[78]	in	this	cluster.	Notably,	IRF1	was	one	of	the	most	

DEG	in	all	the	SSc	monocyte	clusters,	especially	in	dcSSc	patients,	and	a	marker	for	

cluster	8	(Supplementary	3-5,	10	and	9).	In	addition	to	IRF1,	SSc	iMos	in	cluster	8	
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showed	an	IRF7	signal.	Of	note,	genetic	variants	in	the	IRF7	locus	were	associated	

with	 SSc	 [79]	 and	 the	 STAT1/IRF7	 axis	 has	 also	 been	 implicated	 in	 fibroblast	

differentiation	into	myofibroblasts	in	SSc	skin	[11].	Therefore,	we	consider	that	our	

findings	support	 that	 inflammatory	ncMos	and	IFN-activated	 iMos	 in	SSc	have	an	

aberrant	 response	 to	 IFN	 that	 might	 predispose	 them	 to	 a	 biassed	 macrophage	

polarisation.		

As	 mentioned	 above,	 we	 observed	 several	 IFN-induced	 genes,	 such	 as	

several	S100A	family	members	or	IFITM	proteins,	significantly	DE	in	both	clinical	

subtypes	of	SSc	patients	(Supplementary	Tables	3-5).	There	is	increasing	evidence	

that	 suggests	 that	 high	 levels	 of	 these	 molecules	 might	 be	 associated	 with	 a	

deregulated	 monocyte	 proliferation	 and	 migration	 [67,80,81].	 Considering	 that	

IFITM	proteins,	especially	IFITM3,	have	been	shown	to	be	negatively	regulated	by	

mTOR	 inhibitors	 [82],	 our	 findings	 might	 support	 the	 emerging	 role	 of	 mTOR	

inhibition	as	a	promising	drug	target	for	SSc	[83]	and	particularly	for	lcSSc	patients,	

who	showed	the	highest	IFITM3	mRNA	levels	(Supplementary	Table	8).	

High	 levels	of	galectin-1	and	galectin-3	(encoded	by	LGALS1	and	LGALS3,	

respectively)	were	previously	reported	in	the	sera	of	SSc	patients	[84],	but	for	the	

first	time,	we	found	overexpression	of	LGALS2	in	SSc	(Supplementary	Tables	3-5	and	

10).	Remarkably,	gal-2	is	predominantly	expressed	in	the	gastrointestinal	tract	and	

it	 can	 bind	 to	 the	 surface	 of	 different	 immune	 lineages	 [85],	 including	Mos	 and	

macrophages	 [86].	 Nevertheless,	 unlike	 other	 galectins,	 gal-2	 is	 expressed	 in	

immune	cells	only	by	the	myeloid	lineage	[87].	Furthermore,	gal-2	acts	through	a	

CD14/toll-like	 receptor	 (TLR)-4	 pathway	 (a	 well-established	 SSc-related	

deregulated	 pathway	 in	 fibrotic	 skin	 and	 lung	 [88])	 by	 altering	Mo	 polarisation	

towards	 a	 proinflammatory	 phenotype	 [89].	 Considering	 that	 a	 gal-2	 antibody	

treatment	 has	 shown	 promising	 capacities	 of	 altering	 the	 polarisation	 of	

macrophages	in	a	murine	atherosclerosis	model	[90],	these	findings	might	also	open	

new	windows	for	treatment	in	SSc.	

M2	macrophages	are	known	to	be	increased	in	SSc	skin	[91]	and	to	produce	

high	 levels	 of	 TGF-𝜷.	 TGF-𝜷	 is	 a	 key	 profibrotic	 factor	 [92],	 which	 is	 known	 to	
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activate	Mos	more	 intensely	 in	 SSc	 than	 in	 healthy	 controls	 [93]	 and	 to	 polarise	

macrophages	towards	a	profibrotic	M2	phenotype	[94].	Interestingly,	we	observed	

a	cMo	cluster	(cluster	9)	that	showed	markers	of	M2	polarisation,	such	as	CD163	and	

TGFB1,	and	which	was	depleted	in	patients	with	SSc	(Figure	2D	and	Supplementary	

Figure	7).	Furthermore,	we	observed	that	the	top	cluster	9	markers	included	AHR	

and	 CD36	 (Supplementary	 Figure	 7,	 Supplementary	 Table	 9),	 which	 might	 be	

informative	of	the	role	of	these	monocytes	in	the	tissue.	AHR	has	a	key	role	in	M1/M2	

polarisation	 and	 is	 known	 to	 promote	 M2	 polarisation	 and	 suppress	 M1	

development	 [95].	 CD36	 is	 a	 relevant	 apoptotic	 cell	 receptor	 and	 phagocytosis	

promoter	that	has	been	linked	with	an	M2	phenotype	and	increased	fibrosis	[96].	

Additionally,	IL1B,	a	M1	marker	that	was	also	present	in	this	cluster	(Supplementary	

Table	9),	has	been	shown	to	also	mediate	the	activation	of	M2	macrophages	in	highly	

fibrotic	skin	tissue	[97].		

All	the	described	findings	connect	cluster	9	with	M2	polarised	monocytes	

being	 actively	 recruited	 to	 affected	 connective	 tissue	 and	 are	 consistent	with	 an	

altered	M1/M2	balance	in	SSc	blood	with	lower	M1	polarisation	levels	in	SSc.	The	

underrepresentation	 of	 a	 highly	 activated	 cluster	 in	 an	 IMD	 might	 seem	

counterintuitive,	but	we	hypothesise	that	it	would	be	due	to	an	increased	migration	

of	M2-polarised	monocytes	to	SSc-affected	tissue	in	patients.	Remarkably,	increased	

levels	of	monocyte	migration	markers,	such	as	VCAN	and	ITGB2,	were	observed	in	

this	cluster	(Figure	3B	and	Supplementary	Table	9).	VCAN	(also	known	as	versican)	

expression	have	been	related	with	increased	circulating	Mo	migration	in	SSc	[98].	

Besides,	ITGB2	has	been	identified	as	a	SSc-associate	monocyte	gene	and	found	to	

be	upregulated	in	SSc	skin	macrophages	[38].		

Finally,	 SSc	bleomycin	mouse	models	 showed	 that	 the	modulation	of	M2	

cytokine	 production	 by	 PDE4	 inhibition	 decreased	 skin	 fibrosis	 [99],	 and	 we	

observed	 high	 levels	 of	 expression	 of	PDE4	 in	 cluster	 9	 and	 other	 cMos	 clusters	

(Supplementary	 Table	 9).	 Therefore,	 we	 propose	 that	 specifically	 blocking	 the	

extravasation	of	the	novel	TPT1+	VCAN+	AHNAK+	cMo	cluster	into	challenged	tissue	

might	benefit	SSc	patients.		
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5. Conclusions	

In	 conclusion,	we	performed	 the	most	detailed	 characterisation	of	

the	 CD14+	 Mo	 compartment	 in	 SSc	 to	 date.	 We	 confirmed	 an	

overrepresentation	of	CD16+	ncMos	at	 single	 cell	 level.	 Inflammatory	SSc	

ncMos	showed	a	high	IFN-response	signature	and	the	upregulation	of	PGE2	
synthesis,	 monocyte	 adhesion	 markers	 and	 complement	 genes.	 We	 also	

identified	an	aberrant	IFN-response	in	IRF7+	STAT1+	SSc	iMos	and,	finally,	

we	 observed	 a	 depletion	 of	 M2	 polarised	 cMos	 in	 SSc.	 These	 results	

reinforced	the	role	of	PB	Mos	as	SSc	biomarkers	and	provided	new	windows	

for	clinical	monitoring	and	drug	targeting.			
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Figure	legends	

Figure	 1.	 Cellular	 density	 and	 differential	 gene	 expression	 in	 SSc	

subtypes	 and	 controls.	 A)	 UMAP	 plots	 showing	 cellular	 density	 of	 CTRL,	

lcSSc,	 and	 dcSSc.	 Colour	 gradient	 indicates	 increasing	 density.	 B)	 Top	 10	

differentially	expressed	genes	in	SSc	vs.	CTRL,	lcSSc	vs.	CTRL,	and	dcSSc	vs.	

CTRL.	C)	Top	10	differentially	expressed	genes	between	lcSSc	and	dcSSc,	and	
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vice	versa.	Point	size	represents	the	fraction	of	cells	per	group	expressing	

each	gene,	and	colour	represents	the	expression	level	of	each	gene	in	each	

group.	SSc:	Systemic	Sclerosis;	 lcSSc:	 limited	cutaneous	SSc;	dcSSc:	diffuse	

cutaneous	SSc;	CTRL:	controls.		

Figure	2.	A)	UMAP	of	the	11	CD14+	cell	clusters	from	SSc	and	control	

samples,	 obtained	 using	 Leiden	 clustering	 and	 labelled	 from	 0	 to	 10.	 B)	

Proportion	 of	 cells	 in	 each	 cluster	 by	 condition	 (CTRL	 or	 SSc)	 and	 by	

individual.	Each	cluster	is	represented	by	the	same	colour	as	in	panel	A.	C)	

UMAP	with	the	clusters	classified	and	coloured	according	to	the	assigned	cell	

type	based	on	their	expression	of	different	marker	genes.	Clusters	0,	5,	4,	6,	

and	9	were	classified	as	cMo;	clusters	1,	2,	3,	and	8	as	iMo;	cluster	7	as	ncMo;	

and	 cluster	 10	 as	 DC2.	 D)	 Boxplots	 representing	 the	 cell	 proportions	 for	

CTRL,	SSc,	lcSSc,	and	dcSSc	(from	left	to	right)	in	clusters	7,	8,	and	9	.	E)	Violin	

plots	 of	 the	 top	 3	 DE	 genes	 of	 each	 cluster	 vs	 the	 rest,	 with	 colours	

representing	the	expression	level	in	each	group.	cMo:	classical	monocytes;	

iMo:	 intermediate	 monocytes;	 ncMo:	 non-classical	 monocytes;	 DC2:	

dendritic	cells	type	2;	DE:	differential	expression.	

Figure	3.	Violin	plots	and	dotplots	of	gene	expression	in	A)	cluster	7,	

B)	 cluster	 9	 and	 C)	 cluster	 8.	 Colours	 indicate	 expression	 levels	 and	 DE	

between	controls	and	lcSSc	and	dcSSc	is	depicted	in	the	dotpots.	

Figure	 4.	 A)	 UMAP	 showing	 CD14+	 cells	 from	 SSc	 and	 CTRLs	

coloured	 by	 pseudotime.	 B)	 Expression	 of	 the	 top	 6	 genes	 in	 the	 CD14+	

pseudotime	C)	Diffusion	maps	coloured	by	cell	type,	pseudotime,	and	cluster	

3	(from	top	to	bottom).	D)	Heatmap	of	gene	module	expression	per	cluster.	

Numbers	indicate	clusters.	



Chapter	3.	Single	cell	RNA-seq	study	in	Systemic	Sclerosis	

	 163	

Supplementary	 Figure	 1.	 A)	 Flow	 cytometry	 plot	 for	 CD14+	

membrane	protein	 labelling	 resulting	 from	magnetic	bead	enrichment.	B)	

Combined	UMAP	of	SSc	and	CTRL	for	CD14	expression.	

Supplementary	 Figure	 2.	 A)	 Combined	 UMAP	 of	 SSc	 and	 CTRL	

samples	coloured	by	individual	B)	Combined	UMAP	of	SSc	and	CTRL	samples	

where	cells	are	coloured	based	on	their	condition.	

Supplementary	 Figure	 3.	 T-Distributed	 Stochastic	 Neighbour	

Embedding	(t-SNE)	maps	with	A)	clusters	defined	by	the	Leiden	algorithm,	

and	B)	clusters	calculated	using	the	Louvain	algorithm.	

Supplementary	Figure		4.	Classification	of	the	different	clusters	into	

cellular	identities	based	on	classical	monocytic	markers.	A)	UMAP	coloured	

according	 to	 the	 clusters	obtained	by	 the	Leiden	algorithm;	B)	Dotplot	 of		

cMo,	iMo,	ncMo,	and	DC2	marker	genes.	The	dot	size	represents	the	number	

of	cells	expressing	that	gene	and	the	colour	intensity	represents	the	median	

expression	 level.	 cMo:	 classical	monocytes;	 iMo:	 intermediate	monocytes;	

ncMo:	non-classical	monocytes;	DC2:	dendritic	cells	type	2.	

Supplementary	Figure	5.		A)	Top	10	differentially	expressed	genes	

in	SSc	vs.	CTRL,	lcSSc	vs.	CTRL,	and	dcSSc	vs.	CTRL	by	individual.	B)	Top	10	

differentially	expressed	genes	between	 lcSSc	and	dcSSc,	and	vice	versa	by	

individual.	Point	size	represents	the	fraction	of	cells	per	group	expressing	

each	gene,	and	colour	represents	the	expression	level	of	each	gene	in	each	

individual.	

Supplementary	Figure	6.	Combined	boxplot	and	violin	plot	of	the	

cellular	 composition	 of	 each	 cluster.	 The	 proportion	 of	 cells	 from	 CTRLs	

(purple)	and	SSc	(green)	is	represented	in	each	plot.	*	indicates	FDR	>	0.1.	
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Supplementary	 figure	 7.	 M1	 and	 M2	 macrophage	 marker	

expression	stratified	by	cluster.	The	size	of	the	dot	represents	the	percent	of	

cells	in	each	cluster	expressing	the	marker	and	the	color	shows	the	average	

expression.		

Supplementary	Figure	8.	Diffusion	map	colored	by	pseudotime	and	

by	cluster.		
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General	discussion	
To	 unravel	 the	 genetic	 architecture	 of	 an	 IMID	 researchers	 can	

benefit	from	both	generating	new	data	and	the	exploitation	of	the	available	

data	 sources,	 followed	 by	 the	 combination	 of	 them.	 This	 dissertation	

followed	both	approaches	in	order	to	clarify	some	aspects	in	SSc	onset	and	

pathogenesis.		

GWAS	have	marked	a	significant	revolution	in	genetics	ever	since	the	

publication	 of	 the	 first	 study	 17	 years	 ago	 (53).	 Over	 these	 nearly	 two	

decades,	the	genetic	landscape	of	various	diseases,	including	SSc,	has	greatly	

expanded	 (65).	 Moreover,	 the	 data	 obtained	 from	 GWAS	 have	 become	 a	

valuable	 resource	 for	 subsequent	 research.	 Finally,	 the	 genetic	 findings	

based	on	GWAS	are	gradually	 finding	their	way	into	daily	clinical	practice	

and	what	was	mere	science	fiction	a	few	years	ago	is	now	becoming	a	reality.		

For	 example,	 there	 are	 novel	 proposals	 for	 the	 implementation	 of	

GRS	or	PRS	in	clinical	practice	in	a	controlled	and	step-by-step	process	as	the	

G-PROB	tool	developed	by	Knevel	et	al.	in	2020	(101).	This	risk	prediction	

model	 enabled	 the	 prioritization	 between	 RA,	 SLE,	 spondyloarthropathy,	

psoriatic	arthritis,	and	gout.	Using	the	genetic	information	available	prior	to	

the	patient's	visit	to	the	clinic,	the	G-PROB	tool	allowed	the	exclusion	of	at	

least	one	of	the	candidate	diseases	during	clinical	assessments	and	resulted	

in	a	confirmed	diagnosis	in	64%	of	cases	(101).	This	model	was	a	proof	of	

concept	 and	 represented	a	 significant	 step	 towards	PRS	use	 in	 rheumatic	

diseases	 and	 a	 promising	 advance	 in	 the	 steps	 that	 the	 GWAS	 strategy	

opened	years	ago	for	precision	medicine.		

Genetic	risk	prediction	models	should	aspire	to	integrate	into	clinical	

practice,	 encompassing	 patients'	 genetic	 data	 before	 their	 appointments	
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through	 screening	 models	 similar	 to	 those	 already	 established	 for	

monogenic	 and	 hereditary	 diseases.	 These	 tools	 would	 facilitate	 shorter	

diagnostic	timelines,	providing	physicians	with	the	necessary	time	to	devise	

effective	therapies	and	providing	patients	with	relief	from	the	uncertainty	

associated	with	undiagnosed	conditions.	In	the	case	of	SSc,	a	recent	review	

by	Volkmann	et	al.	(7)	highlighted	that	patients	with	SSc	receive	a	definitive	

diagnosis	 in	65.9%	of	 cases	 at	 5	 years	 and	72.7%	at	10	years,	 relying	on	

indicators	such	as	Raynaud's	phenomenon,	disease-specific	autoantibodies,	

and	capillaroscopy	patterns.		

Therefore,	 we	 considered	 taking	 advantage	 of	 the	 privileged	

resources	of	our	team,	who	led	the	largest	SSc	GWAS	to	date,	and	generating	

the	first	SSc	GRS	as	part	of	this	dissertation.	Then,	we	analyzed	thousands	of	

models	and	finally	selected	a	GRS	model	that	included	33	highly	associated	

SNPs.	Moreover,	we	developed	subtype-specific	models	that	considered	the	

allele	effects	of	thousands	of	SNPs	on	the	different	serological	and	clinical	

subtypes	of	patients	(197).	We	would	like	to	highlight	that	our	GRS	model	

was	able	to	distinguish	between	SSc	and	other	IMIDs,	not	only	between	SSc	

and	 unaffected	 individuals,	 which	 is	 a	 major	 request	 from	 clinicians	 as	

differential	 diagnosis	 between	 IMIDs	 is	 key	 for	 them.	 For	 this	 reason,	we	

think	that	we	set	the	basis	for	a	new	discrimination	tool	that	could	help	in	

differential	diagnosis	in	the	early	stages	of	SSc.		

Our	results	also	proved	that	biochemical	analyses	and	demographic	

data	 could	 significantly	 enhance	 the	 accuracy	 of	 predictive	 models.	 The	

incorporation	of	a	multivariable	model	that	included	cell	counts	for	various	

immune	 cell	 types	 and	 age	 resulted	 in	 a	 substantial	 enhancement	 of	

accuracy,	 increasing	 the	 AUC	 to	 encouraging	 values	 (AUCGRS	 =	 0.69,	

AUCdiscovery	 =	 0.84).	 Additionally,	 considering	 the	 results	 of	 the	 scRNA-seq	

analysis	in	CD14+	monocytes	included	in	this	thesis,	we	hypothesize	that	our	
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model	might	 improve	if	 levels	of	the	altered	populations	were	included	in	

the	model	similarly	to	inclusion	of	M0	macrophages,	which	were	included	as	

part	 of	 the	 immune	 cell	 counts.	 It	 is	 worth	 noting	 that	 the	 ncMos	

CD14lowCD16high	monocyte	population	was	previously	shown	to	be	elevated	

in	 SSc	 patients	 and	 confirmed	 in	 our	 study	 (12,198).	 Our	 research	 has	

underscored	 the	 significant	 role	 of	 this	 monocyte	 subpopulation	 in	 the	

inflammation	observed	in	SSc	patients,	potentially	adding	crucial	elements	

to	a	prospective	model,	including	the	consideration	of	PTGES	expression	as	

a	SSc-related	marker.	These	biological	or	cellular	factors,	in	conjunction	with	

traditional	risk	factors,	may	enrich	prediction	models,	thereby	contributing	

to	enhanced	diagnostic	accuracy.	

Nonetheless,	 for	 the	 seamless	 integration	 of	 PRS	 into	 clinical	

practice,	we	must	equip	clinicians	with	the	requisite	training	to	interpret	and	

communicate	 the	 results	 to	 patients	 (98,171).	 Additionally,	 we	must	 not	

overlook	the	broader	population's	need	for	data	interpretation	and	privacy,	

given	that	PRS	necessitates	a	substantial	volume	of	genetic	information.	In	

this	 context,	 comprehending	 the	 concept	 of	 high	 and	 low-risk	 individuals	

and	 how	 clinicians	 can	 therapeutically	 intervene	 remains	 a	 complex	

challenge	(98).	In	this	regard,	models	as	ours,	should	be	brought	closer	to	

physicians	in	a	collaborative	effort.	Not	just	to	receive	feedback	and	improve	

it,	but	to	integrate	it	into	their	clinical	practice	more	easily.	

Finally,	 the	extensive	 catalog	of	GWAS	studies	published	 in	 recent	

years	 is	 predominantly	 based	 on	 individuals	 of	 European	 ancestry,	

rendering	 PRS	models	 inadequately	 applicable	 to	 other	 populations	with	

limited	predictive	value	outside	this	demographic	(102,199,200).	In	our	own	

GRS	model,	there	are	differences	between	the	predictive	value	between	the	

cohorts,	 with	 an	 AUC	 range	 from	 0.60	 to	 0.75.	 Consequently,	 there	 is	 an	

urgent	need	to	revise	existing	PRS	models	or	develop	new	ones	that	account	
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for	these	disparities	(102,199–202).	In	this	regard,	recently	Zhang	et	al	(202)	

published	a	new	approach	in	this	direction,	CT-SLEB,	an	algorithm	trained	

with	multiple	 sources	 of	 non-European	 population	 cohorts,	 to	 cover	 this	

large	range	of	 the	population.	Another	approach	 involves	adjusting	GWAS	

for	 a	 polygenic	 score,	 as	 recently	 published	 by	 Campos	 et	 al.	 (201),	 to	

enhance	 statistical	 power	 for	 discovery	 across	 all	 ancestral	 groups.	

Regarding	 SSc,	 a	 new	 GWAS	 is	 being	 carried	 out	 including	 larger	 non-

European	 cohorts	 at	 the	moment.	 Several	 trans-ethnic	 studies	 have	 been	

conducted	in	SSc	previously,	such	as	the	most	recent	study	in	Turkish	and	

Iranian	 populations	 (203),	 led	 by	 our	 group,	 and	 the	 study	 conducted	 in	

Japanese	 and	 European	 populations	 by	 Terao	 et	 al.	 (90).	 Trans-ethnic	

studies	have	also	been	performed	in	other	IMIDs	using	GWAS	data,	as	seen	

in	RA,	resulting	in	the	identification	of	124	loci,	36	of	which	were	novel	(204).	

Therefore,	 a	 project	 should	be	planned	 in	 the	disease	with	 a	 trans-ethnic	

approach,	 boosting	 the	 statistical	 power	 with	 largest	 cohort	 and	 taking	

advantage	of	natural	differences	in	LD	across	ethnically	diverse	populations.	

Our	 predictive	 model	 should	 serve	 as	 a	 baseline	 for	 future	 PRSs	 in	 the	

disease	that	encompass	or	are	adjusted	for	different	ethnicities.	

As	 described	 in	 the	 introduction	 of	 this	 dissertation,	 despite	 the	

advances	 in	 the	 field	 of	 genetics,	 the	 known	 environmental	 risk	 factors	

contributing	 to	 the	development	 of	 SSc	 are	 limited	 and	primarily	 revolve	

around	exposure	to	various	chemicals	(176).	Environmental	factors	related	

to	 lifestyle	 have	 not	 been	 thoroughly	 explored,	 with	 little	 to	 no	 new	

contributions	 in	 recent	 years.	 Therefore,	 with	 the	 second	 publication	

included	in	this	dissertation,	our	aim	was	to	broaden	the	knowledge	about	

the	 risk	 factors	 affecting	 the	disease,	 focusing	on	 an	 extremely	 important	

social	issue—obesity—and	using	cutting-edge	statistical	techniques	like	MR.	
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Obesity	 as	 a	determining	 factor	 in	 SSc	was	previously	 studied	but	

within	 the	 context	 of	 SSc-ILD.	Nagy	 et	 al.	 (205)	 investigated	 the	 effect	 of	

overweight	 conditions	 on	 SSc-ILD	 patients	 and	 pulmonary	 deterioration.	

They	observed	that	those	with	a	lower	BMI	(BMI	<	25	kg/m2)	experienced	a	

significant	 increase	 in	 pulmonary	 deterioration	 compared	 to	 those	 with	

higher	BMI	values.	 In	their	publication,	 the	authors	questioned	why	being	

overweight	 appeared	 to	 be	 a	 protective	 factor	 against	 SSc-ILD	 (205).	

Although	it	has	been	demonstrated	that	obesity	is	a	risk	factor	for	IMDs	(45),	

our	results	did	not	seem	to	dismiss	this	counterintuitive	protective	effect	in	

SSc.	However,	due	the	nature	of	the	disease,	it	is	difficult	to	discern	the	effect	

of	the	SNPs	in	SSc	patients,	as	happens	in	other	IMDs.	

It	 should	 be	 highlighted	 that	 GI	 occurs	 in	 90%	 of	 SSc	 patients,	

according	 to	 recent	 studies	 (206).	 Furthermore,	 despite	 guidelines	

published	 by	 leading	 medical	 organizations	 related	 to	 SSc,	 such	 as	 The	

European	 League	 Against	 Rheumatism	 (EULAR)	 Scleroderma	 Trials	 and	

Research	Group	and	the	United	Kingdom	Scleroderma	Study	Group	(UKSSG)	

(207,208),	 rheumatologists	 continue	 to	 face	 challenges	 in	 its	 treatment	

(206).	It	has	been	confirmed	that	SSc	patients	tend	to	have	lower	body	mass	

and	even	malnutrition	issues	due	to	GI	involvement	(209).	We	hypothesize	

that	due	to	these	complications	of	SSc,	the	proinflammatory	role	of	obesity	

that	was	observed	in	other	IMIDs	would	not	cause	an	increased	risk	in	SSc	

as	obesity	would	hardly	develop	in	SSc	patients	and	the	risk	variants,	even	if	

present,	will	not	exert	their	risk	effects.	Even	though	we	did	not	establish	a	

causal	relationship	between	body	mass	distribution	and	SSc,	the	relevance	

of	adipocytes	in	inflammation	has	been	known	for	over	two	decades	due	to	

their	release	of	cytokines	and	adipokines	(41).	Hence,	we	cannot	rule	out	the	

role	that	adipocytes	may	play	in	the	disease.		
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In	spite	of	this	negative	result,	we	think	that	the	scientific	community	

should	not	cease	efforts	 to	study	different	environmental	 risk	 factors	and	

their	 causal	 relationship	with	 SSc.	 As	 recently,	 taking	 advantage	 of	 2SMR	

approach,	our	group	successfully	established	a	potential	causal	relationship	

between	genetically	predicted	longer	telomeres	in	leukocytes	and	the	onset	

of	SSc	(210).	Thanks	to	the	availability	of	public	GWAS	data	in	repositories	

like	 the	 GWAS	 catalog	 (94),	 we	 can	 continue	 to	 make	 strides	 in	

understanding	the	risk	factors	impacting	SSc,	covering	a	largely	uncharted	

territory	to	date.	Factors	such	as	vitamin	or	metabolite	 levels,	smoking	or	

hormone	production	are	subjects	of	investigation	in	2SMR	studies	and	are	

now	publicly	available	for	research.	

Genetic	 predisposition	 in	 combination	 with	 environmental	 risk	

factors	 affect	 the	 individual	 outcome,	 including	 the	 generalized	 immune	

imbalance	in	SSc.	A	number	of	transcriptomic	and	DNA	conformation	studies	

showed	cell	type-specific	effects	in	different	immune	lineages	in	the	disease.	

For	example,	Hi-ChIP	results	(65)	or	the	Hi-C	capture	study	(144)	confirmed	

T	cell	and	monocyte	specific	3D	DNA	contacts.	However,	the	majority	of	the	

cell-specific	 analyses	 in	 SSc	 have	 focused	 on	 studying	 the	 transcriptomic	

profiles	of	different	subsets.	

In	 the	 case	 of	 monocytes,	 previous	 transcriptomic	 studies	

investigated	 their	 role	 in	 SSc	 both	 in	 Europeans	 (142)	 and	 in	 African	

Americans	(211).	Beretta	et	al.	(142)	found	a	dysregulation	of	several	crucial	

pathways,	 as	 type	 I	 IFN	 or	 Toll	 like	 receptor	 (TLR)	 cascade;	 Neutrophil	

showed	as	the	major	contributor	to	the	gene	expression	in	their	whole	blood	

study.	However,	no	specific	subpopulations	were	identified,	or	biomarkers	

established.	Allen	et	al.	(211)	results	contrast	with	previous	methylation	and	

eQTLs	studies,	as	they	found	modest	differences	between	cases	and	controls.	

They	 concluded	 that	 these	 contracts	 may	 be	 due	 to	 variation	 in	 DNA	
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methylation	and	gene	expression	across	cell	types,	 individuals	of	different	

genetic	clinical	and	environmental	backgrounds	(211).	 In	both	cases,	only	

cMo	and	ncMo	were	targeted,	leaving	aside	iMo,	as	it	is	difficult	to	capture	

them.	With	scRNA-seq,	which	allows	for	greater	granularity	in	analysis,	we	

were	able	to	confirm	the	over-representation	of	ncMos	and	to	identify	and	

characterize	 SSc-related	 clusters	 of	 iMos.	 Those	 population	 were	

IRF7+STAT1+iMos	or	HLA-DRA+HLA-DRB1+iMos,	which	might	contribute	to	

SSc	 pathogenesis	 through	 different	 paths,	 such	 as	 controlling	 the	

differentiation	 to	 ncMo,	 as	 it	 could	 be	 inferred	 in	 the	 trajectory	 analyses	

(Figure	 4D	 of	 Chapter	 3)	 (198).	 In	 this	 regard,	 we	 took	 a	 first	 step	 in	

demonstrating	iMo	may	have	a	role	in	SSc.	

Previously	published	scRNA-seq	studies	 in	SSc	 focused	on	affected	

tissues	as	crucial	to	the	disease	as	the	skin	and	lungs.	Thanks	to	these	studies,	

specific	 cellular	 populations	 were	 defined	 in	 patients,	 suggesting	 a	

pathogenic	cellular	microenvironment	(159–161).	Immune	cells	are	part	of	

this	microenvironment,	with	aberrant	behavior	of	myeloid	cells	and	some	

lymphocyte	 populations	 (130,212).	 Blood	 sampling	 is	much	 less	 invasive	

than	 a	 lung	 or	 skin	 biopsy,	 is	 less	 stressful	 for	 the	 patient,	 requires	 no	

recovery	time,	and	can	be	done	during	a	routine	visit	to	the	physician.	In	the	

blood,	 immune	 cells	 belonging	 to	 both	 the	 innate	 and	 adaptive	 immune	

systems	can	be	sampled	while	migrating	to	the	affected	tissues.	Therefore,	

identifying	 the	 abnormal	 behavior	 of	 these	 cells	 in	 blood	 can	 lead	 us	 to	

develop	new	treatments	and	therapeutic	targets.	Despite	these	advantages	

and	the	fact	that	SSc	is	a	systemic	disorder,	little	research	using	scRNA-seq	

has	been	done	on	peripheral	blood	circulating	immune	populations	(213).		

Before	 the	 publication	 of	 the	 third	 manuscript	 included	 in	 this	

dissertation,	only	one	study	had	conducted	an	exploration	of	PBMCs	with	

inconclusive	 results	 (160),	 and	 another	 study	 screened	 the	 single	



Deciphering	the	genetic	basis	of	systemic	sclerosis	

	186	

transcriptome	of	837	monocytes,	in	which	they	found	a	inflammatory	gene	

module	of	ncMo	(213).	With	more	than	90,000	analyzed	monocyte	cells	from	

patients	 and	 controls,	 we	 conducted	 the	 most	 comprehensive	

characterization	of	CD14+	Mos	in	SSc	so	far.	We	were	able	to	define	a	specific	

profile	 of	 these	 cells	 in	 patients,	 differentiate	 between	 different	

subpopulations,	 and	 identify	 key	 genes	 in	 their	 pro-inflammatory	 profile.	

For	 instance,	 several	 publications	 had	 previously	 identified	 the	 S100A	

protein	 family	as	a	potential	biomarker	 for	 the	disease	 (214–216).	 In	our	

scRNA-seq	 study,	 we	 have	 also	 observed	 the	 overexpression	 of	 genes	

encoding	 some	 of	 these	 proteins	 in	 various	 monocyte	 populations,	

reinforcing	 the	 validity	 of	 scRNA-seq	 for	 both	 discovering	 new	 cell	

populations	and	confirming	data	obtained	through	other	techniques.		

One	of	the	key	findings	in	the	third	publication	of	this	dissertation	

was	the	over-expression	of	PTGES	in	ncMo	among	SSc	patients	(198).	PTGES	

encodes	Prostaglandin	E	Synthase,	an	enzyme	within	the	Prostaglandin	E2	

(PGE2)	 pathway,	 suggesting	 its	 potential	 as	 a	 biomarker	 for	 the	 disease,	

which	 should	 be	 validated	 in	 a	 larger	 cohort.	 This	 result	 also	 prompts	

questions	about	the	role	of	prostaglandins	in	SSc.	While	prostaglandins,	with	

their	vasodilating	effects,	are	effective	 in	 treating	Raynaud's	phenomenon	

and	 digital	 ulcers	 (217),	 other	 prostaglandin-derived	 lipids	 have	 been	

identified	with	potential	implications	in	the	disease	(218).	Given	that	PGE2	is	

a	known	inflammation	mediator,	and	PTGES	has	been	proposed	as	an	anti-

inflammatory	 target	 (219),	 we	 believe	 that	 both	 molecules	 are	 worth	

exploring	 in	 the	 context	 of	 SSc.	 Consequently,	 PGE2	 might	 potentially	

contribute	 to	 ncMo-mediated	 inflammation	 and	 PTGES	 might	 serve	 as	 a	

promising	biomarker.	

Additionally,	our	study	serves	as	a	bridge	that	connects	circulating	

cells	with	the	altered	profiles	of	tissue	resident	immune	cells.	We	identified	
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two	cellular	clusters	with	this	function,	one	with	a	cellular	destination	to	M2	

monocytes	and	another	to	type	2	dendritic	cells.	Both	cell	types	are	essential	

in	 the	 inflammatory	 response	and	cellular	activation,	 and	both	have	been	

found	to	be	altered	in	the	skin	of	SSc	patients	(128,130).	

Adaptive	immune	responses	play	a	crucial	role	in	SSc	pathogenesis.	

CD4+	T	cells,	which	are	central	to	this	response,	exert	influence	through	their	

activation	 and	 immune	 regulation,	 mediated	 by	 factors	 like	 the	 T	 cell	

receptor	(TCR)	and	the	release	of	cytokines.	Although	previous	research	has	

highlighted	the	imbalances	and	polarization	of	CD4+	T	cell	subtypes	(220),	

the	 interaction	 between	 adaptive	 and	 innate	 immune	 response	 and	 their	

impact	 on	 SSc	 remains	 to	 be	 fully	 understood,	 with	 the	 HLA	 acting	 as	 a	

central	element	connecting	them.	In	SLE,	Guo	et	al.	(221)	analyzed	CD4+	T	

cells	 and	 established	 correlations	 between	 chromatin	 accessibility	 and	

disease	 severity.	 They	 also	 identified	 transcriptional	 dysfunction	 within	

Treg	 cells,	 particularly	within	 a	 Treg	 subgroup	 exhibiting	 exhaustion-like	

properties	(221).	Similarly,	in	the	case	of	RA,	Argyriou	et	al.	(222)	conducted	

scRNA-seq	 on	 synovial	 fluid	 CD4+	 T	 cells	 and	 identified	 the	 G-protein	

coupled	 receptor	56	 (GPR56)	 as	 a	marker	 that	distinguishes	T	peripheral	

helper	 cells	 in	 ACPA+	 and	 ACPA-	 RA	 patients.	 In	 this	 regard,	 our	 group	

conducted	a	scRNA-seq	study	on	CD4+	T	cells,	with	the	same	cohort	as	in	the	

scRNA-seq	 in	monocytes	 (198)	 included	 in	 this	 thesis.	 The	CD4+	 study	 is	

designed	to	delve	into	the	characterization	of	CD4+	subpopulations	within	

PBMCs	 from	 SSc	 patients,	 mirroring	 the	 approaches	 used	 in	 the	

aforementioned	studies.	

The	 incidence	 of	 SSc	 exhibits	 a	 gender	 bias,	 as	 reflected	 in	 the	

prevalence	ratio	between	women	and	men,	which	stands	at	8:2	 (15).	The	

implementation	 of	 sex	 stratification	 was	 a	 clear	 limitation	 of	 the	 studies	

included	in	this	doctoral	thesis.	However,	it's	noteworthy	that	sex	was	not	
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among	 the	 covariates	 that	 contributed	 the	most	 to	 the	PRS	model	 in	 this	

dissertation,	despite	the	evidence	indicating	such	a	bias.	Nevertheless,	our	

scRNA-seq	study	cohort	included	only	women	and	we	could	not	address	if	

sex-based	differences	were	observed	at	the	transcriptomic	level.	In	any	case,	

we	consider	that	high-resolution	transcriptomic	studies,	such	as	scRNA-seq,	

offer	a	promising	avenue	to	elucidate	 the	underlying	reasons	 for	sex	bias.	

Such	studies	require	fewer	individuals	while	providing	a	high	level	of	detail.	

Peters	 et	 al.	 (223)	 outline	 studies	 of	 sex	 bias	 in	 three	 phases,	 the	 first	 of	

which	pertains	to	sex	and	gender	differences	at	the	disease's	general	level	

(risk,	 disease	 presentation,	 etc.),	 the	 second	 at	 the	mechanistic	 level,	 and	

finally,	the	practical	 implications.	In	the	case	of	SSc,	due	to	the	prevalence	

ratio,	conducting	large-scale	research	can	be	a	complex	challenge	to	achieve	

the	necessary	statistical	power	for	reliable	results.	However,	transcriptomic	

studies	can	fill	the	gap	and	bring	us	closer	to	the	second	point	mentioned	by	

Peters	and	Woodward,	providing	insights	into	the	sex-specific	mechanisms	

and	metabolic	pathways	involved.	

Finally,	an	important	step	that	should	be	taken	in	the	future	to	make	

the	most	out	of	the	findings	and	dataset	generated	in	this	thesis	would	be	the	

integration	of	the	various	layers	of	‘omics’	that	we	explored.	A	good	example	

of	 future	 possibilities	 would	 be	 the	 application	 of	 single-cell	 disease	

relevance	 score	 (scDRS),	 a	 tool	 that	 links	 PRS	 with	 scRNA-seq	 data,	

identifying	 cells	 that	 express	 high-risk	 genes	 based	 on	GWAS	 data	 (150).	

Another	 possible	 framework	 would	 include	 the	 implementation	 of		

CellPhonedb	 and	 NitcheNet,	 which	 are	 tools	 aimed	 at	 investigating	

communication	between	different	cell	types	using	information	from	genes	

encoding	receptors	and	soluble	molecules	(224,225).	These	are	 just	a	 few	

examples	of	integration	tools	emerging	to	bridge	the	gaps	between	data	from	

individual	studies.	
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This	dissertation	comprised	multiple	approaches	to	shed	light	 into	

the	 molecular	 causes	 of	 SSc.	 The	 establishment	 of	 the	 GRS	 model	 has	

provided	a	 foundation	 for	predicting	disease	risk	considering	genetic	 risk	

markers.	 Although	 our	 results	 couldn't	 establish	 a	 causal	 relationship	

between	obesity	traits	and	SSc,	we	contributed	to	the	understanding	of	risk	

factors	in	SSc.	Lastly,	through	the	characterization	of	monocytes	in	SSc,	we	

took	a	significant	step	toward	defining	the	role	that	these	cells	play	in	the	

disease's	 pathogenesis	 and	 their	 possible	 use	 as	 disease	 biomarkers.	

Therefore,	through	these	diverse	approaches,	we	contributed	to	advancing	

the	knowledge	of	the	disease	and	laying	the	groundwork	for	future	research.	
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Conclusions	
1. A	 sensitive	 genomic	 risk	 score	 capable	 of	 distinguishing	 between	

patients	with	systemic	sclerosis	and	unaffected	individuals,	between	

different	 serological	 subtypes	 of	 systemic	 sclerosis	 and	 between	

systemic	sclerosis	patients	and	 individuals	affected	by	rheumatoid	

arthritis	and	Sjögren's	syndrome	was	developed.	

2. No	significant	evidence	 indicating	 that	body	 fat	distribution	was	a	

causal	 risk	 factor	 for	 systemic	 sclerosis	 was	 found	 using	 a	 two-

sample	Mendelian	randomization	strategy.	

3. Single	 cell	 transcriptome	 analysis	 revealed	 that	 non-classical	

monocytes	 are	 overrepresented	 in	 the	 blood	 of	 systemic	 sclerosis	

patients,	 exhibit	 an	 inflammatory	 and	 interferon	 signal	 and	 are	

characterized	 by	 the	 overexpression	 of	 PTGES,	 which	 encodes	 an	

enzyme	in	the	prostaglandin	E2	metabolism.	

4. A	 population	 of	 intermediate	 monocytes	 characterized	 by	 an	

aberrant	 response	 to	 interferon	 and	marked	 by	 the	 expression	 of	

IRF7	and	STAT1	was	found	in	the	blood	of	systemic	sclerosis	patients.	

5. A	depletion	of	classical	monocytes	polarized	into	M2	macrophages	

was	observed	in	the	blood	of	systemic	sclerosis	patients.	
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Conclusiones	
1. Se	desarrolló	una	puntuación	de	riesgo	genómico	capaz	de	distinguir	

sensiblemente	entre	pacientes	con	esclerosis	sistémica	y	personas	

no	 afectadas,	 entre	 diferentes	 subtipos	 serológicos	 de	 esclerosis	

sistémica	 y	 entre	 pacientes	 con	 esclerosis	 sistémica	 e	 individuos	

afectados	por	artritis	reumatoide	y	síndrome	de	Sjögren.	

2. No	 se	 encontraron	 pruebas	 significativas	 que	 indiquen	 que	 la	

distribución	de	grasa	corporal	sea	un	factor	de	riesgo	causal	para	la	

esclerosis	 sistémica	 utilizando	 una	 estrategia	 de	 aleatorización	

mendeliana	de	dos	muestras.	

3. Un	análisis	del	transcriptoma	de	células	individuales	reveló	que	los	

monocitos	no	clásicos	están	sobrerrepresentados	en	la	sangre	de	los	

pacientes	con	esclerosis	sistémica,	muestran	una	señal	inflamatoria	

e	interferón	y	se	caracterizan	por	la	sobreexpresión	de	PTGES,	que	

codifica	una	enzima	en	el	metabolismo	de	la	prostaglandina	E2.	

4. Se	encontró	una	población	de	monocitos	intermedios	caracterizados	

por	 una	 respuesta	 aberrante	 al	 interferón	 y	 marcados	 por	 la	

expresión	de	IRF7	y	STAT1	en	la	sangre	de	pacientes	con	esclerosis	

sistémica.	

5. Se	observó	una	disminución	de	 los	monocitos	clásicos	polarizados	

hacia	 macrófagos	 M2	 en	 la	 sangre	 de	 pacientes	 con	 esclerosis	

sistémica.	
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The	 heart	 of	 science	 is	 an	 essential	 balance	 between	 two	 seemingly	

contradictory	attitudes—an	openness	to	new	ideas,	no	matter	how	bizarre	or	

counterintuitive,	and	the	most	ruthlessly	skeptical	scrutiny	of	all	ideas,	old	and	

new.	
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