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Abstract

Themajor technological advances of recent years have led to the generation of large amounts
of data from which, if properly processed and analyzed, relevant information can be ex-
tracted for many fields such as science, business or communication. Machine learning,
which is part of the process known as knowledge discovery in databases, is emerging as a
discipline focused on the study of techniques that allow machines to learn from data, in the
sense of recognizing patterns or drawing inferences from previously unseen data.

Within machine learning, there is a set of algorithms called similarity-based learning
algorithms, which are inspired by one of the most powerful mechanisms of human learn-
ing: recognizing objects based on their similarity to other previously seen objects. These
algorithms require a distance or similarity measure between the data, which allows us to
assess the similarity of any two samples. This distance or similarity measure is crucial for
the correct functioning of these algorithms, since the quality of the results obtained depends
on it.

In this thesis, the distancemetric learning problem is addressed. This problem consists in
learning the distance or similarity measures from the data itself, so that they can be success-
fully used later in similarity-based learning algorithms. Specifically, this project tackles the
study and development of distancemetric learning algorithms and their application in novel
or uncommon problems of machine learning, beyond the classic classification or regression
problems.

This thesis addresses the following objectives:

1. The study of distance metric learning and its algorithms from both a theoretical and
an experimental point of view. To this end, the development of a software library with
the highest-performing algorithms in the field is proposed, as well as a tutorial that
includes a theoretical review, an experimental study and an analysis of the results of
the algorithms.

2. The development of new distance metric learning algorithms for unconventional or
singular problems, i.e., machine learning problems beyond the classic standards of
classification or regression. To achieve this goal, three distance metric learning al-
gorithms have been developed and proposed for the first time in this thesis, which
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address three different singular problems: imbalanced, ordinal and monotonic classi-
fication.

3. The development of deep metric learning models to tackle complex problems. In re-
cent years, deep learning has revolutionized the field of machine learning, and this
revolution has also reached distance metric learning. Deep metric learning proposes
newmodels for learning distances that open up a new range of possibilities in this field.
In addition, these methods have proven to be effective in some of the most challeng-
ing problems in deep learning, such as those where little data is available. In regard,
this thesis includes a proposal for a deep metric learning model applied to a natural
language processing problem with data scarcity.

4. The analysis of the explainability of the developed models, based on the explainable
characteristics of the similarity-based learning algorithms, and on how learning a dis-
tance influences these characteristics.

5. The specialization of the developed proposals for their application in real problems.
This is addressed together with the third objective in the natural language processing
problem treated.

This thesis project successfully addresses the above objectives and thus leaves notable
contributions in the field of distancemetric learning. The software library and tutorial devel-
oped here provide a solid basis for understanding the state-of-the-art in traditional distance
metric learning, and a practical starting point for thosewhowant to enter the discipline. The
algorithms proposed in the second objective provide new perspectives to address less com-
mon problems in machine learning; the deep metric learning models developed in the third
objective show the potential of combining deep learning and distance metric learning, and
are also applied in a real case study, thus addressing the fifth objective. Finally, the explain-
ability study proposed in the fourth objective analyzes, for one of the developed algorithms,
how distance metric learning can influence the explainability of the resulting model.
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Resumen

Los grandes avances tecnológicos de los últimos años han traído consigo la generación de
grandes cantidades de datos, de los cuales se puede extraer información relevante para nu-
merosos campos, como la ciencia, los negocios o la comunicación, si se procesan y analizan
adecuadamente. El aprendizaje automático, englobado dentro del proceso conocido como
knowledge discovery in databases, surge como disciplina centrada en el estudio de técnicas
que permitan que las máquinas puedan aprender a partir de los datos, en el sentido de reco-
nocer patrones o hacer inferencia sobre datos no vistos previamente.

Dentro del aprendizaje automático, hay una rama de algoritmos denominados de apren-
dizaje basados en semejanza, que se inspiran en uno de los mecanismos más potentes del
aprendizaje humano: el reconocimiento de objetos basado en la similitud con otros objetos
previamente vistos. Estos algoritmos requieren de una medida de distancia o de similitud
entre los datos, que permita determinar cómo de parecidos son cualesquiera dos ejemplos
de los que se disponga. Esta medida de distancia o similitud es crucial para el correcto fun-
cionamiento de estos algoritmos, ya que de ella depende la calidad de los resultados que se
obtengan.

En esta tesis se aborda el problema del aprendizaje de métricas de distancia, que consiste
en aprender las medidas de distancia o similitud a partir de los propios datos, de forma que
puedan ser empleadas posteriormente en algoritmos de aprendizaje por semejanza de forma
exitosa. En concreto, se afronta el estudio y desarrollo de algoritmos de aprendizaje de dis-
tancias y su aplicación en problemas novedosos o poco comunes del aprendizaje automático,
más allá de los problemas clásicos de clasificación o regresión.

Esta tesis aborda los siguientes objetivos:

1. En primer lugar, se propone abordar el estudio del aprendizaje de distancias y sus al-
goritmos tanto de un punto de vista teórico como experimental. Para ello, se plantea el
desarrollo de una librería software con los algoritmos más destacados de la disciplina,
y un tutorial que incluya una revisión teórica, un estudio experimental y un análisis
de resultados de los mismos.

2. El segundo objetivo plantea el desarrollo de nuevos algoritmos de aprendizaje de dis-
tancias para problemas no convencionales o singulares, es decir, problemas del apren-
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dizaje automático que se salen de los estándares clásicos de clasificación o regresión.
Para cumplir con este objetivo, se han desarrollado tres algoritmos de aprendizaje de
distancias, propuestos por primera vez en esta tesis, que abordan tres problemas sin-
gulares diferentes: clasificación desbalanceada, ordinal y monotónica.

3. El tercer objetivo se centra en el aprendizaje de distancias profundo. En los últimos
años, el aprendizaje profundo ha revolucionado el campo del aprendizaje automático,
y esa revolución también ha llegado al aprendizaje de distancias. El aprendizaje de
distancias profundo propone nuevos modelos para aprender distancias que abren un
nuevo abanico de posibilidades en este área. Además, estos métodos han demostrado
ser efectivos en algunos de los problemas más desafiantes del aprendizaje profundo,
como aquellos en los que se dispone de pocos datos. Esta tesis incorpora una propuesta
de modelo de aprendizaje de distancias profundo aplicada a un problema de procesa-
miento del lenguaje natural con escasez de datos.

4. El cuarto objetivo es transversal y plantea el análisis de la explicabilidad de los mo-
delos desarrollados, apoyándose en las características explicables de los algoritmos de
aprendizaje por semejanza, y en cómo aprender una distancia influye a dichas carac-
terísticas.

5. Por último, se plantea la especialización de las propuestas desarrolladas para su apli-
cación en problemas reales. Esto se aborda conjuntamente con el tercer objetivo en el
problema de procesamiento del lenguaje natural tratado.

La tesis aborda con éxito los objetivos enumerados, dejando así aportaciones destacables
en el campo del aprendizaje de métricas de distancia. Con la librería software desarrollada y
el tutorial se proporciona una base sólida para comprender el estado del arte del aprendiza-
je de métricas de distancia tradicional, y un punto de partida para iniciarse en la disciplina
de forma práctica. Los algoritmos propuestos en el segundo objetivo proporcionan nuevas
perspectivas para abordar problemasmenos habituales del aprendizaje automático, y losmo-
delos de aprendizaje de distancias profundo desarrollados en el tercer objetivo muestran el
potencial de combinar aprendizaje profundo y aprendizaje de distancias, siendo aplicados
además en un caso de estudio real, abordando así el quinto objetivo. Por último, el estudio
de la explicabilidad propuesto en el cuarto objetivo analiza, para uno de los algoritmos de-
sarrollados, cómo el aprendizaje de distancias puede influir en la explicabilidad del modelo
resultante.



xvii

Table of Contents

I PhD Dissertation 1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Notation and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Background on distance metric learning . . . . . . . . . . . . . . . . 21
2.3 Singular supervised learning problems . . . . . . . . . . . . . . . . . 23
2.4 Modern challenges in machine learning and deep learning . . . . . . 24
2.5 Deep distance metric learning . . . . . . . . . . . . . . . . . . . . . . 27

3 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1 Creation of a unified software framework and a general reference for
DML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Development or adaptation of DML algorithms for singular problems 38
6.3 Deep metric learning and complex problems . . . . . . . . . . . . . . 40
6.4 Explainability analysis of the developed models . . . . . . . . . . . . 42
6.5 Application of DML to real problems . . . . . . . . . . . . . . . . . . 42

7 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1 Creation of a unified software framework and a general reference for

DML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Development or adaptation of DML algorithms for singular problems 45
7.3 Deep metric learning and complex problems . . . . . . . . . . . . . . 46
7.4 Explainability analysis of the developed models . . . . . . . . . . . . 47



xviii

8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

II Publications 57
1 pyDML: A Python Library for Distance Metric Learning . . . . . . . . . . . . . 59
2 A tutorial ondistancemetric learning: Mathematical foundations, algorithms,

experimental analysis, prospects and challenges . . . . . . . . . . . . . . . . 69
3 Ordinal regression with explainable distance metric learning based on or-

dered sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4 Metric learning for monotonic classification: turning the space up to the lim-

its of monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

III Trabajo en progreso 205
1 Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

1.1 Motivación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
2 Antecedentes y trabajo relacionado . . . . . . . . . . . . . . . . . . . . . . . . 209

2.1 Few-shot learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
2.2 Extracción de relaciones . . . . . . . . . . . . . . . . . . . . . . . . . 209
2.3 Aprendizaje de distancias profundo . . . . . . . . . . . . . . . . . . . 210
2.4 Pre-entrenamiento contrastivo . . . . . . . . . . . . . . . . . . . . . . 211

3 Propuesta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
3.1 Función de pérdida espejo . . . . . . . . . . . . . . . . . . . . . . . . 213
3.2 Muestreo robusto: identificando ejemplos fiables . . . . . . . . . . . . 214

4 Experimentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
4.1 Setup experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
4.2 Resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

5 Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

References 223



xix

List of Abbreviations

AI Artificial Intelligence

CBR Case-Based Reasoning

C-Index Concordance Index

CMOML Chain Maximizing Ordinal Metric Learning

CNCA Condensed Neighborhood Component Analysis

DA Domain Adaptation

DML Distance Metric Learning

GNN Graph Neural Network

FSL Few Shot Learning

KCMOML Kernel Chain Maximizing Ordinal Metric Learning

KDD Knowledge Discovery in Databases

𝑘-NN 𝑘-Nearest Neighbors

LM3L Large Margin Monotonic Metric Learning

MAE Mean Absolute Error

ML Machine Learning

NCA Neighborhood Component Analysis

NCM Nearest Class Mean

NLP Natural Language Processing

NMI Non-Monotonic Index

NN Nearest Neighbors



xx

NOTA none-of-the-above

RE Relation Extraction

SVM Support Vector Machine

XAI Explainable Artificial Intelligence



1

Chapter I

PhD Dissertation

«Quiet people have the loudest minds.».
– Stephen Hawking.





1 Introduction 3

1 Introduction

The content of this Ph.D. dissertation is inspired by one of the most important cognitive
mechanisms of human learning. Let us imagine that we are visiting a friend’s house for
the first time, and he shows us his living room. Immediately, we begin to recognize all the
objects we see: a table, a chair, a sofa, a television, a telephone, … All this even though we
have never been there before. How are we able to do this? How do we know that the table is
indeed a table and not some other object? The answer to these questions is that we are able
to recognize the objects by their similarity to other objects that we have seen before. That is,
because we have seen tables, chairs, televisions, telephones, etc. in other places before. And
we may have never seen exactly the same table, or the same telephone, but we have seen
objects similar enough to be able to determine that they are of the same type. Although we
take this process for granted and do not usually think about it consciously, it is essential to
our learning from birth.

We can take this a step further. Let us imagine that we are shown several pictures of
animal species that we have never seen before. We immediately realize that we do not know
what they are. We may think they are similar to some species we have seen before, but we
recognize that they are not similar enough to be considered the same species. That is, we
are able to determine that it is an animal unlike any other we have seen, even though we
cannot say exactly what it is. Not only that, but once we are told what the animal is, we may
be able to recognize it as soon as we see a picture of it again. That is to say, once we have
learned this concept, we are able to identify it every time it is presented to us. And the most
natural fact is that, in order to learn it, we only need to be told about that concept once, or a
few times at most.

If we transfer this idea to the field of technology, one of the first questions that may come
tomind is: can wemake a computer learn by similarity, as we humans do? More specifically,
when a device receives input data of any kind, is it possible to make it capable of recognizing
what it is based on similarity to other data it has previously received?

The first thing we need to consider is how to handle the input data. These data can
be practically anything we can think of, depending on the problem we are trying to solve:
images, text, metrics, colors, surveys, etc. It is necessary to extract the relevant information
from these data in a way that can be processed by a computer. In general, from any type of
data we will be able to extract a set of features that can be encoded as a numerical vector. So,
once we have these numerical data, can we establish a similarity measure among them?

The answer is yes. Once we have our vectors or points in the plane, in space, or in any
higher dimension, we can measure distances among them, and consequently say that two
instances are similar if they are close, and different if they are far. Then, the data that make
up the “memory” of our device will contain all the previous experiences learned and, when
new data are received, we can compute its similarity to the stored data and, based on that,
determine what kind of data it is.

Figure 1 shows an example of this learning mechanism. Let us imagine that our data are
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images of animals, which we have managed to transform into two-dimensional numerical
data—as shown in the figure—andwewant ourmachine to learn to recognizewhich animal
it is each timewe receive a new image of an animal. Already in thememory of our device we
have the colored dots representing different types of animals: dog (blue), cat (red) and horse
(green). And now we have three new images, (1), (2) and (3), and we want to find out what
type of animal they represent. The vector associated with image (1) is surrounded by blue
points, whichmeans that it is similar to the data of type “dog” we had stored previously, and
quite different from the other two types, since it is far from them. Therefore, our machine
can conclude that example (1) is a dog. Example (2) is close to the red points, but also close
to one of the blue dots. Possibly because of the shape or colors of the image, our engine
finds similarities with both the cat images and the dog images we had stored. In any case,
the vector associated with example (2) is somewhat closer to the red points, so example (2)
would ultimately be classified as a cat. Finally, example (3) is isolated from all the others.
This situation would be analogous to being shown a picture of an animal we have never
seen before: it does not resemble anything we have previously encountered, so we cannot
tell what animal it is.

Although the above example seems to mimic the human similarity learning mechanism
well, it has two drawbacks. First, we do not know how the data represented in the space of
Figure 1 were obtained from the images. Even if we assume that the data represent the most
relevant information from the images, we have no guarantee that, just by being represented
in the plane, the most similar images must be closer together. Or at least close in the sense
we assume, which is related to the second drawback: in Figure 1 we have assumed that the
concept of “close” is given by the usual distance in the plane, the Euclidean distance. But
what if this distance is not always the right one? Let us have a look at Figure 2. In this
case, we see that the data are arranged—strangely, but there is a clear pattern. The relevant
information seems to be represented in the vertical coordinate, which determines what type
the given examples will be (A, B or C). But, in this case, the new samples (marked with ’?’)
aremisclassified because they are closer to exampleswith a different vertical coordinate, and
the Euclidean distance cannot extract such information. In general, we will have a myriad
of ways to measure distance, and it is very likely that Euclidean distance is not the most
appropriate in many cases. This is the point of divergence with respect to human learning.
While we have internalized a virtually infallible similarity measure for any pair of objects
presented to us, finding an appropriate similarity measure for a given problem is one of the
major challenges of machine-level similarity-based learning.

Just as in Figure 1 we used the stored data to try to identify new data, it may be natural
to ask the following question: what if an appropriate distance can also be found by learning
it from the data themselves? Since ideally data of the same type should be close and data of
different types should be far apart (which is referred to as the smoothness assumption), why
not extract from the data themselves what must be “close” and what must be “far apart”?
This is the basis of distance metric learning, which we will formalize later. The purpose of
this Ph.D. thesis in the research area of Data Science is to deepen this discipline with the
development of models to solve different problems in the field of Machine Learning and
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Figure 1: Similarity-based learning of animal species.

Data Mining.
In today’s digital landscape, the amount of data generated, collected and stored around

the world has grown exponentially. This vast ocean of information holds valuable insights
and opportunities that can transform industries, improve decision-making, and drive signif-
icant advances in a wide range of fields. However, managing, analyzing and extracting use-
ful information from this overwhelming amount of data poses significant challenges. This
is where the process of Knowledge Discovery in Databases (KDD) [PF91] comes in to trans-
form data into valuable information and, ultimately, useful knowledge.

KDD is an interdisciplinary field that combines datamining, machine learning, statistics
and database techniques to discover hidden patterns, trends and relationships in data. The
process of data mining can be divided into several stages [MR05]: problem specification,
data extraction and selection, data preprocessing and transformation, data mining, inter-
pretation and evaluation. Machine Learning (ML) [SSBD14] is the branch of Artificial In-
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Figure 2: When the Euclidean distance is not the right one.

telligence (AI) concerned with the design and development of algorithms and models that
enable computers to detect relevant patterns in data, and it is of great importance in many
stages of the KDD process. Especially in data mining [HK06, A+15], responsible for extract-
ing knowledge from data, with the help of ML techniques, but also in the preprocessing
and transformation stage [GLH15], where such techniques can be used to detect noise, fill
incomplete data, select relevant features and, in general, transform the data to make it of
higher quality [LGGRG+20] for the data mining stage.

Within ML techniques, similarity-based learning is based on the idea that data of the
same type must be similar—in the sense that their representation in the feature space must
be close—according to some measure of similarity or distance that is defined. This type of
algorithm can be applied to a variety of learning problems of general interest. For example,
given a set of labeled data, we can try to predict the labels of incoming data according to their
similarity to the data we already have. Or, given an unlabeled dataset, we can try to find ap-
propriate groupings of data of the same type based on the similarity among them. Similarity-
based learning techniques have been around since the early days of ML; in fact, one of the
best known algorithms is the 𝑘-Nearest Neighbors (𝑘-NN) classifier [CH67], which, given a
set of labeled data and a sample to label, assigns to that sample the majority label among its
𝑘 nearest neighbors within the labeled data, following the idea shown in Figures 1 and 2.

In order for similarity-based learning techniques such as 𝑘-NN to work, it is necessary
to establish a measure of similarity or, equivalently, a measure of distance, among the data.
Typically, standard distances, such as the Euclidean distance, are used when working with
numerical data. However, these standard distances may not be the most appropriate for
the data we are working with because they do not take into account the underlying char-
acteristics of the dataset. Distance Metric Learning (DML) [XJRN03] was created with the
purpose of learning distances from the data itself, so that they can later be used by similarity-
based learning algorithms to achieve better performance. Thus, it can be considered as a set
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of data preprocessing and transformation techniques to improve the quality of the data for
subsequent similarity-based learning.

There are three main paradigms in machine learning: supervised, unsupervised and re-
inforcement learning. DML, together with similarity learning, encompasses a wide variety
of techniques of different nature, having scope in all three paradigms:

• Supervised learning: the goal of this paradigm is to learn a function to predict the
labels of incoming data, given a training set of labeled data. Depending on the nature
of the labels, there are two main types of problems: classification [DH+06], where
the labels take a finite set of values, and regression [DS98], in which the labels take
continuous values. DML can be used in supervised learning to bring data of the same
class or with close labels closer together and push those of different classes farther
apart. This can improve the subsequent performance of similarity-based classifiers or
regressors, such as 𝑘-NN.

• Unsupervised learning: in this paradigm there are no labeled data, and the goal
is to find patterns or structures. This paradigm consists of problems such as cluster-
ing [Mir12], which consists in finding clusters of data that are similar. Again, the
similarity among the data is critical, so similarity-based learning algorithms like 𝑘-
means [M+67] are very useful in this problem. DML can be very effective in this prob-
lem if additional information about the data is available, as we will see below. On the
other hand, DML is a powerful tool in another unsupervised problem: dimensionality
reduction. This problem consists in reducing the number of variables in the data while
retaining asmuch relevant information as possible. Its goals include cleaning the data
and reducing the computational cost of learning algorithms. The arrangement of the
data in space and the distances among them are fundamental to find a suitable projec-
tion of the data, so DML techniques can be used to find such a projection by relying
on the distances.

• Reinforcement learning: in this paradigm, the goal is to learn a policy that maxi-
mizes the long-term reward obtained by an agent in an environment [KLM96]. The
agent interacts with the environment by performing actions, and the environment re-
sponds with a reward and a new state. DML can be used in this paradigm to learn
a distance metric that allows the agent to encode meaningful representations of the
states by creating a feature space in which the states that are similar are close to-
gether [TKS11].

DML algorithms have been widely used to enhance similarity-based learning algorithms
in traditional problems such as standard classification, regression or clustering [WS09,
GHRS05, MVPC13, XJRN03, WT07]. The first objective of this thesis is to study these al-
gorithms and their replication at software level, with the aim of deepening the knowledge
of this discipline and providing a framework for their experimental application.

However, the technological development of recent years poses new challenges, either
because of the emergence of new learning problems for which it is necessary to adapt tra-
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ditional techniques, or because of the new tools available to solve them. As for the new
problems that arise, in this thesis we highlight several variants of the supervised learning
problem:

• Semi-supervised learning: it includes problems where partial supervision is avail-
able [VEH20], which can be expressed in several ways. On the one hand, wemay have
two subsets of data, one labeled and one unlabeled; the goal is to take advantage of the
unlabeled data—which are usuallymuchmore numerous because they are less expen-
sive to obtain—to improve classification or regression accuracy. The propagation of
information from labeled to unlabeled data can be done by relying on the similarity of
the data, so again DML comes into play in this problem [ZG02]. On the other hand,
we could have weak supervision, which means that, even if we do not know the labels
of the data, we know that there are samples that must be of the same type and samples
that must be different. DML can be used to bring together samples that must be sim-
ilar and separate those that must be different. This can be applied to problems such
as constrained clustering [GAPDP+23], where the goal is to find appropriate clusters,
knowing that there are samples that must be in the same cluster and others that must
be in different clusters.

• Imbalanced classification: in this classification variant, the unevenness in the num-
ber of samples in each class results in one ormoremajority classes and one ormore un-
derrepresented minority classes [FGG+18]. This often results in learning algorithms
being biased towards the majority classes that in turn causes poor performance in the
minority classes. Just as certain similarity-based techniques have been used to ad-
dress the problem [Har68], the simultaneous use of these techniques and DML can be
of great help in achieving substantial improvements in the problem.

• Ordinal regression: in this variant, the data labels take values from an ordered
set [GPOSM+16], such as the stars of product ratings or the severity levels of a disease.
In this case, it is the similarity among the labels that is relevant, since the closer two
values are in the labels, the more similar their inputs should be. Incorporating this be-
havior into a DML technique can significantly improve the performance of similarity-
based ordinal classifiers.

• Monotonic classification: in this ordinal regression problem, the input data also
have ordering constraints [CGK+19]. For example, in a house pricing prediction prob-
lem, if all the attributes of one house are superior to those of another house in the
same neighborhood, it is logical that the price of the former will be higher than that
of the latter. As in ordinal regression, DML can be useful, but in this case the distance
metric must take into account the monotonicity constraints of the data.

These problems are of interest in many real-world applications such medicine [FDA23,
HLW+16], industry [YWH+23], economics [LPC+23, CL14, ZG22] or anomaly detec-
tion [TLL22]. The second objective of this thesis focuses on proposing models for these
types of problems and evaluating their performance.
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Moreover, among the new tools that have emerged from the technological advances of
the last few years, it is worth highlighting deep learning [GBC17], which has revolutionized
the field of ML. It is based on the use of deep neural networks, which are able to work
with a wide variety of data types and automatically learn representations of the data. These
representations are typically of high quality and, as a result, deep neural networks have
achieved outstanding results on a broad range of ML problems. However, deep learning
also brings along new challenges; most notably:

• The need for large amounts of data to learn: deep neural networks have millions
of parameters to learn and therefore need large amounts of data to tune them. Few
Shot Learning (FSL) [WYKN20] is a discipline that attempts to address this problem:
in FSL problems, a very small training dataset is available, and the goal is to learn to
classify new data with those few samples—and possibly with a larger auxiliary dataset
of a different type from that of the one being learned.

• The lack of transparency in the models: deep neural networks are very complex
models, so it is nearly impossible to understand how they work and why the make the
decisions they do. This is a problem in many applications, such as medicine, where
trust in the model ultimately depends on the reasons behind its decisions. The devel-
opment of an Explainable Artificial Intelligence (XAI) is an emerging research field
that aims to address this problem [ADRDS+20], not only in deep neural networks but
in anyMLmodel in general. XAIs are part of amore general concept called trustowrhy
AI. Trustworthy AI encompasses a broader set of principles and practices to ensure
that AI systems are robust, legal and ethical [AAES+23]. One of the requirements to
achieve this goal is model transparency, defined as the ability for a model to be under-
stood by a human in a natural way. And a fundamental component of transparency
in a model is that it is able to explain the decisions it makes [DRDSC+23].

In recent years, DMLmodels using deep neural networks internally have been proposed,
giving rise to a new learning paradigm: deep distance metric learning or deep metric learn-
ing [KB19]. Deep metric learning seeks to combine the learning potential of deep neural
networks with the smoothness assumption DML is inspired by in order to learn models that
are able to represent data optimally from a similarity point of view and with higher perfor-
mance than classic DML models. Deep metric learning models differ from deep learning
models in that the latter learn to recognize the different classes in the data, while the former
learn to discriminate between samples of different types without the need to explicitly recog-
nize each class present in the problem, which has proven to be very useful in problems such
as FSL [LYMX23]. The development of deep metric learning models and their application
to complex deep learning problems such as FSL is the third objective of this thesis.

Finally, two further objectives are addressed in this thesis. First, as already mentioned,
the development of learning models that are explainable is of interest in numerous real-
world applications. The fourth objective of this thesis deals with the study of explainability
in DML models and posterior similarity-based learning, and the interaction between the
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two. The last objective of the thesis explores the application of the developed models in real
problems.

To conclude this introduction, we give a summary of the structure of this thesis. It is
made up of three chapters: the Ph.D. dissertation (Chapter I), the publications that support
the knowledge and conclusions presented in the dissertation (Chapter II) and the work in
progress that completes the remaining objectives proposed for the thesis (Chapter III). The
dissertation consists of this introduction and the following sections: Section 2 elaborates
on the theoretical foundations and concepts used throughout the thesis; Sections 3, 4 and 5
detail the justification, objectives andmethodology onwhich this thesis is built, respectively;
a summary of the research performed is presented in Section 6, and the results obtained are
discussed in Section 7; finally, Section 8 discusses the conclusions of this thesis and future
lines of research.

Chapter II contains the publications that support the knowledge and conclusions pre-
sented in the dissertation. Four publications have been included: three have been published
in international indexed journals, and one is currently undergoing the second round of peer
review. The publications are listed below:

• pyDML: A Python Library for Distance Metric Learning.

• A tutorial on distance metric learning: Mathematical foundations, algorithms, exper-
imental analysis, prospects and challenges.

• Ordinal regression with explainable distance metric learning based on ordered se-
quences.

• Metric learning for monotonic regression: turning the space up to the limits of mono-
tonicity.

Finally, Chapter III presents the current state of the last work planned for this thesis,
which is still in progress. This work is written as a scientific paper and its content and struc-
ture are further detailed in that chapter.
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Introducción

El contenido de esta tesis nace inspirado por uno de los mecanismos cognitivos más impor-
tantes del aprendizaje humano. Imaginemos que vamos de visita por primera vez a casa de
un conocido, y nos enseña su salón. Inmediatamente, empezamos a reconocer todos los ob-
jetos que vamos viendo: una mesa, una silla, un sofá, una televisión, un teléfono, … Y todo
esto a pesar de no haber estado nunca allí antes. ¿Cómo somos capaces de hacer esto? ¿Cómo
sabemos que la mesa es efectivamente una mesa y no cualquier otro objeto? La respuesta a
estas preguntas es que somos capaces de reconocer los objetos por su similitud con otros ob-
jetos que ya habíamos visto previamente. Es decir, porque ya habíamos visto antes, en otros
lugares, tanto mesas, como sillas, como televisiones, como teléfonos. Y puede que nunca
antes hayamos visto una mesa exactamente igual, o ese teléfono, etc., pero sí hemos visto
objetos lo suficientemente parecidos como para poder determinar que son del mismo tipo.
Aunque este proceso lo tenemos más que asumido y normalmente no nos paramos a pensar
en él, es esencial en nuestro aprendizaje desde que nacemos.

Podemos ir un paso más allá. Imaginemos que nos enseñan varias fotos de especies ani-
males que nunca hemos visto antes. Inmediatamente nos damos cuenta de que no sabemos
lo que son. Podemos pensar que son similares a alguna especie que sí hayamos visto antes,
pero reconocemos que no lo suficiente como para que se puedan considerar del mismo ti-
po. Es decir, somos capaces de determinar que es un animal diferente a cualquier otro que
hayamos visto, aunque no podamos decir qué es exactamente. Y no solo eso, sino que, posi-
blemente, una vez nos digan de qué animal se trata, en cuanto veamos una imagen de nuevo
de dicho animal, vamos a saber reconocerlo inmediatamente. Es decir, una vez aprendido
ese concepto, somos capaces de identificarlo cada vez que se nos presente. Y lo más normal
es que para aprender nos baste con que nos hayan hablado de ese concepto una sola vez, o
unas pocas veces como mucho.

Si trasladamos esta idea al campo tecnológico, una de las primeras preguntas que se nos
puede venir a la mente es la siguiente: ¿podemos hacer que un ordenador aprenda por seme-
janza como lo hacemos los humanos? Más concretamente, si un dispositivo recibe un dato
de entrada, de cualquier tipo, ¿es posible hacer que sea capaz de identificar de qué se trata
basándose en la similitud con otros datos que ya haya recibido antes?

En primer lugar, tenemos que plantear cómo tratar los datos de entrada. Estos datos pue-
den ser prácticamente cualquier cosa que nos podamos imaginar, según el problema que
se quiera tratar: imágenes, texto, medidas, colores, encuestas, etc. Es necesario extraer la
información relevante de estos datos de forma que pueda ser tratada por un ordenador. En
general, de cualquier tipo de dato vamos a poder extraer una serie de características que
puedan ser representadas mediante un vector de números. Entonces, una vez disponemos
de estos datos numéricos, ¿podemos establecer una medida de similitud entre ellos?

La respuesta es sí. Una vez tenemos nuestros vectores o puntos en el plano, el espacio,
o cualquier dimensión superior, podemos medir distancias entre ellos, y en consecuencia,
decir que dos ejemplos son similares si están cerca, y diferentes en caso contrario. Entonces,
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los datos que forman la “memoria” de nuestro dispositivo contendrán todas las experiencias
previas aprendidas, y cuando se recibe un nuevo dato, podemos observar su similitud con
los datos memorizados, y en base a ello determinar qué tipo de dato es.

La Figura 3 muestra un ejemplo de este mecanismo de aprendizaje. Imaginemos que
nuestros datos son imágenes de animales, que hemos conseguido transformar en datos nu-
méricos bidimensionales, como los de la imagen, y queremos que nuestra máquina aprenda
a reconocer, cada vez que nos llegue una nueva imagen de un animal, de qué animal se trata.
Ya almacenados en la memoria de nuestro dispositivo tenemos los puntos coloreados, que
representan a distintos tipos de animales: perro (azul), gato (rojo) y caballo (verde). Y aho-
ra hemos recibido tres nuevas imágenes, (1), (2) y (3), que queremos averiguar a qué tipo
de animal representan. El vector asociado a la imagen (1) está rodeado de puntos azules, lo
que quiere decir que es parecido a los datos que ya teníamos almacenados de tipo ”perro”, y
bastante diferente de los otros dos tipos, ya que se encuentra lejos de ellos. En consecuencia,
nuestra máquina puede concluir que el ejemplo (1) es un perro. El ejemplo (2) está cerca
de los puntos rojos, pero también está cerca de uno de los puntos azules. Posiblemente por
la forma o los colores de la imagen, nuestro dispositivo encuentra similitudes tanto con las
imágenes de gatos que teníamos almacenadas, como con las de perros. En cualquier caso,
el vector asociado al ejemplo (2) se encuentra algo más cerca de los puntos rojos, por lo que
finalmente el ejemplo (2) sería clasificado como gato. Por último, el ejemplo (3) está aislado
de todos los demás. Esta situación sería la análoga a la de cuando nos enseñan una ima-
gen de un animal que no hemos visto nunca. No es parecido a nada que hayamos visto con
anterioridad, y por tanto, no podemos decir de qué animal se trata.

El ejemplo anterior aparenta emular bien el mecanismo de aprendizaje por semejanza
humano, pero presenta dos inconvenientes. En primer lugar, los datos que aparecen repre-
sentados en el espacio de la Figura 3 no sabemos cómo han sido obtenidos a partir de las
imágenes. Aunque asumamos que los datos representan la informaciónmás relevante de las
imágenes, no tenemos garantías de que al quedar representados en el plano, las imágenes
más similares tengan que estar más cerca. O por lo menos, cerca en el sentido que estamos
asumiendo, lo que va ligado al segundo inconveniente: y es que, en la Figura 3 hemos dado
por hecho que el concepto de “cercanía” viene dado por la distancia usual en el plano, la
distancia euclídea. Pero, ¿y si esta distancia no fuera la adecuada siempre? Fijémonos en la
Figura 4. En este caso, vemos que los datos están dispuestos de forma extraña, pero se obser-
va un patrón claro. La información relevante parece quedar representada en la coordenada
vertical, la cual determina de qué tipo van a ser los ejemplos dados (A, B o C). Pero en este
caso, los ejemplos nuevos que nos llegan (marcados con ’?’), son mal clasificados porque
están más cerca de ejemplos con otra coordenada vertical, y la distancia euclídea no puede
extraer dicha información. En general, vamos a disponer de infinitas formas de medir dis-
tancias, y lo más probable es que la distancia euclídea no sea la más adecuada en muchos
casos. Este es el punto divergente con respecto al aprendizaje humano. Mientras que noso-
tros tenemos interiorizada una medida de similitud prácticamente infalible para cualquier
par de objetos que se nos presenten, la búsqueda de una medida de similitud adecuada para
un problema concreto es uno de los principales desafíos del aprendizaje por semejanza a
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Figura 3: Aprendizaje por semejanza de tipos de animales.

nivel de máquina.
Al igual que en la Figura 3 usábamos los datos memorizados para tratar de identificar

a los nuevos datos, puede resultar natural hacerse la siguiente pregunta: ¿y si también se
puede encontrar una distancia adecuada aprendiéndola de esos mismos datos? Puesto que,
idealmente, los datos del mismo tipo deberían ser cercanos y los datos de distinto tipo de-
berían estar alejados, lo que se conoce como principio de uniformidad, ¿por qué no extraer
de los propios datos qué tiene que ser “cerca” y qué “lejos”? Esta es la base del aprendizaje
de métricas de distancia, que formalizaremos más adelante. La finalidad de esta tesis docto-
ral en el área de investigación de la ciencia de datos es la profundización en esta disciplina,
con el desarrollo de modelos que permitan resolver diferentes problemas en el ámbito del
aprendizaje automático y la minería de datos.

En el panorama actual de la era digital, la cantidad de datos generados, recopilados y al-
macenados a nivel global ha experimentado un crecimiento exponencial. Este vasto océano
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Figura 4: Cuando la distancia euclídea no es la adecuada.

de información alberga valiosos conocimientos y oportunidades que pueden transformar
industrias, mejorar la toma de decisiones y ofrecer avances significativos en diversos cam-
pos. Sin embargo, la gestión, análisis y extracción de información útil de esta abrumadora
cantidad de datos plantea desafíos significativos. Es aquí donde entra en juego el proceso
de descubrimiento de conocimiento en bases de datos (Knowledge Discovery in Databases -
KDD) [PF91], que busca convertir datos en información valiosa y, en última instancia, en
conocimiento útil.

El KDD es un área interdisciplinaria que combina técnicas de minería de datos, apren-
dizaje automático, estadística y bases de datos para descubrir patrones, tendencias y rela-
ciones ocultas en los datos. El proceso de KDD se puede dividir en varias etapas [MR05]:
especificación del problema, extracción y selección de datos, preprocesamiento y transfor-
mación, minería de datos, interpretación y evaluación. El aprendizaje automático (Machine
Learning - ML) [SSBD14] es la rama de la inteligencia artificial que se ocupa del diseño y
desarrollo de algoritmos y modelos que permitan a los ordenadores la detección de patrones
relevantes en los datos, y es de gran importancia enmuchas etapas del KDD. Especialmente,
en laminería de datos [HK06, A+15], encargada de extraer el conocimiento de los datos, con
la ayuda de las técnicas de ML, pero también en la etapa de preprocesamiento y transforma-
ción [GLH15], donde dichas técnicas pueden emplearse para detectar ruido, rellenar datos
incompletos, seleccionar características relevantes y, en general, transformar los datos para
que sean de mayor calidad [LGGRG+20] de cara al proceso de minería de datos.

Dentro de las técnicas de ML, el aprendizaje por semejanza se basa en la idea de que
datos de un mismo tipo tienen que ser similares, en el sentido de que su representación
en el espacio en el que se trabaje tiene que ser parecida, de acuerdo con alguna medida de
similitud o distancia que se defina. Este tipo de algoritmos pueden aplicarse en multitud
de problemas de aprendizaje de interés general. Por ejemplo, dado un conjunto de datos
etiquetados, podemos tratar de predecir las etiquetas de nuevos datos que nos lleguen en
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base a la similitud con los datos que ya tenemos. O bien, dado un conjunto de datos sin
etiquetar, podemos tratar de encontrar agrupamientos adecuados de datos de unmismo tipo
en base a la similitud entre ellos. Las técnicas de aprendizaje por semejanza son conocidas
desde los inicios del aprendizaje automático. Uno de los algoritmos más conocidos es el
clasificador de los 𝑘 vecinos más cercanos (𝑘-NN - 𝑘-nearest neighbors) [CH67], el cual, dado
un conjunto de datos etiquetados y un ejemplo para etiquetar, asigna a dicho ejemplo la
etiqueta mayoritaria entre los 𝑘 ejemplos más cercanos en los datos etiquetados, siguiendo
la idea que se mostró en las Figuras 3 y 4.

Para que las técnicas de aprendizaje por semejanza como el 𝑘-NN funcionen, es necesario
establecer una medida de similitud o, equivalentemente, una medida de distancia, entre los
datos. Normalmente, se suelen utilizar distancias estándar, como por ejemplo, la distancia
euclídea, en el caso de trabajar con datos numéricos. Sin embargo, estas distancias estándar
pueden no ser las más apropiadas para los datos con los que trabajemos, ya que no tienen en
cuenta las características subyacentes del conjunto de datos. El aprendizaje de métricas de
distancia (DML -Distance Metric Learning) [XJRN03] surge con la finalidad de aprender las
distancias a partir de los propios datos, de forma que puedan ser utilizados posteriormente
por algoritmos de aprendizaje por semejanza conmejores resultados. En consecuencia, pue-
de considerarse como un conjunto de técnicas de preprocesamiento y transformación de los
datos para mejorar su calidad de cara a un aprendizaje por semejanza posterior.

En el aprendizaje automático, se distinguen tres grandes paradigmas: supervisado, no
supervisado y semi-supervisado. El DML junto con el aprendizaje por semejanza engloban
gran variedad de técnicas de diferentes naturalezas, teniendo alcance en los tres paradigmas:

• Aprendizaje supervisado: el objetivo de este paradigma es, dado un conjunto de
datos etiquetados, aprender una función que permita predecir la etiqueta de nuevos
datos. Según la naturaleza de las etiquetas, se distinguen dos problemas principales:
la clasificación [DH+06], en el que las etiquetas toman un conjunto finito de valores,
y la regresión [DS98], en el que las etiquetas toman valores continuos. El DML puede
utilizarse en el aprendizaje supervisado para acercar datos de una misma clase o con
etiquetas cercanas, y alejar aquellos de clases diferentes. Esto permite mejorar el ren-
dimiento posterior de algoritmos de clasificación o regresión por semejanza, como el
𝑘-NN.

• Aprendizaje no supervisado: en este paradigma, no se dispone de datos etiqueta-
dos, y el objetivo es encontrar patrones o estructuras en los datos. Este paradigma lo
componen problemas como el clustering [Mir12], que consiste en encontrar agrupa-
mientos de datos que sean similares. De nuevo, la similitud entre los datos vuelve a
ser fundamental, y en consecuencia algoritmos de aprendizaje por semejanza como
el 𝑘-means [M+67] son de gran utilidad en este problema. El DML puede ser de gran
utilidad en este problema si se dispone de información adicional sobre los datos, co-
mo veremos en el siguiente párrafo. Por otra parte, el DML es de gran utilidad en otro
problema no supervisado: la reducción de dimensionalidad. Este problema consiste
en reducir el número de variables en los datos de forma que se mantenga la mayor
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parte de la información relevante. Tiene como objetivos la limpieza de los datos y la
reducción del coste computacional de los algoritmos de aprendizaje, entre otros. La
disposición de los datos en el espacio y las distancias entre ellos son fundamentales
para encontrar una proyección adecuada de los datos, por lo que las técnicas de DML
pueden utilizarse para encontrar tal proyección apoyándose en las distancias.

• Aprendizaje por refuerzo: la finalidad de este paradigma es aprender una políti-
ca de actuación que maximice a largo plazo el beneficio obtenido por un agente en
un entorno determinado [KLM96]. El agente interacciona con el entorno realizando
acciones y el entorno responde con un beneficio y un nuevo estado. El DML puede
utilizarse en este paradigma para aprender métricas de distancia que permitan codi-
ficar representaciones significativas de los estados y crear un espacio de atributos en
los que los estados más similares sean cercanos [TKS11].

Los algoritmos de aprendizaje de distancias han sido ampliamente utilizados para re-
forzar algoritmos de aprendizaje por semejanza en problemas tradicionales como la clasifi-
cación, la regresión o el clustering [WS09, GHRS05, MVPC13, XJRN03, WT07]. El primer
objetivo de esta tesis plantea el estudio de estos algoritmos y su replicación a nivel de soft-
ware, con la finalidad de profundizar en el conocimiento de esta disciplina y de disponer de
un framework que permita su aplicación experimental.

Sin embargo, el desarrollo tecnológico de los últimos años plantea nuevos desafíos, bien
por la aparición de nuevos problemas de aprendizaje para los que es necesario adaptar las
técnicas tradicionales, o bien por las nuevas herramientas de las que disponemos para abor-
darlos. En cuanto a los nuevos problemas que surgen, en esta tesis destacamos varias varian-
tes del problema supervisado:

• Aprendizaje semi-supervisado: engloba problemas en los que se dispone de super-
visión parcial [VEH20]. Esto puede traducirse de distintas formas. Por un lado, pode-
mos disponer de dos subconjuntos de datos, uno etiquetado y otro no. El objetivo es
aprovechar los datos no etiquetados, que suelen ser muchos más al ser menos costoso
obtenerlos, para mejorar los resultados de clasificación o regresión. La propagación
de la información de los datos etiquetados a los no etiquetados puede hacerse apoyán-
dose en la similitud de los datos, por lo que de nuevo el DML entra en juego en este
problema [ZG02]. Por otro lado, podemos disponer de supervisión débil, que consiste
en que, aunque no conozcamos las etiquetas de los datos, sabemos que hay datos que
tienen que ser del mismo tipo y datos que tienen que ser diferentes. El DML puede
aplicarse para acercar los datos que tienen que ser similares y alejar los que tienen
que ser distintos. Esto puede aplicarse sobre problemas como el clustering con restric-
ciones [GAPDP+23], en el que se pretende encontrar agrupamientos adecuados sabien-
do que hay ejemplos que deben estar en un mismo cluster y otros que deben estar en
clusters diferentes.

• Clasificación desbalanceada: en este problema de clasificación, el número de ejem-
plos de cada clase es muy desigual, de forma que suele haber una o varias clases ma-
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yoritarias y una o varias clases minoritarias que están poco representadas [FGG+18].
Esto amenudo provoca el sesgo de los algoritmos de aprendizaje hacia la clasemayori-
taria, obteniendo un rendimiento pobre en las clases minoritarias. Al igual que ciertas
técnicas basadas en semejanza han sido utilizadas para abordar este problema [Har68],
la utilización simultánea de estas técnicas y DML puede ser de gran utilidad para con-
seguir mejoras sustanciales en el problema.

• Clasificación ordinal: en este problema de clasificación, las etiquetas de los datos to-
man valores de un conjunto ordenado [GPOSM+16], como por ejemplo, las estrellas
de una valoración de un producto, o los niveles de gravedad de una enfermedad. En es-
te caso, la similitud entre las etiquetas es importante, ya que cuantomás cercanos sean
dos valores en las etiquetas, más parecidos deberían ser los datos. Integrar este com-
portamiento en una técnica de DML puedemejorar significativamente el rendimiento
de los clasificadores por semejanza ordinales.

• Clasificación monotónica: es un problema de clasificación ordinal en el que, ade-
más, los datos de entrada también tienen restricciones de orden [CGK+19]. Por ejem-
plo, en un problema de predecir precios de casas, si todos los atributos de una casa
son superiores a los de otra en un mismo barrio, es lógico que el precio de la primera
sea mayor que el de la segunda. Al igual que en la clasificación ordinal, el DML pue-
de ser de utilidad, pero en este caso, la medida de distancia debe tener en cuenta las
restricciones de orden de los datos.

Estos problemas son de interés en numerosas áreas de aplicación real, como medici-
na [FDA23, HLW+16], industria [YWH+23], economía [LPC+23, CL14, ZG22] o detección
de anomalías [TLL22]. El segundo objetivo de esta tesis se centra en proponer modelos para
este tipo de problemas y la evaluación de su rendimiento.

Por otra parte, entre las nuevas herramientas que han surgido del desarrollo tecnológico
de los últimos años, hay que destacar el aprendizaje profundo of deep learning [GBC17]. El
deep learning ha revolucionado el campo del aprendizaje automático en los últimos años. Se
basa en el uso de redes neuronales profundas, que son capaces de trabajar con tipos de datos
muy variados y aprender representaciones de los datos de forma automática. Estas represen-
taciones suelen ser de gran calidad, y en consecuencia, las redes neuronales profundas han
conseguido resultados sobresalientes en multitud de problemas de aprendizaje automático.
Sin embargo, el aprendizaje profundo también presenta nuevos desafíos, entre los que se
destacan:

• Lanecesidaddegrandes cantidadesdedatospara aprender: las redes neuronales
profundas disponen de millones de parámetros para aprender, y por ello necesitan
grandes cantidades de datos para ajustarlos. El few-shot learning (FSL) [WYKN20] es
una disciplina que intenta abordar este problema. En los problemas de FSL, se dispone
de un conjunto de datos de entrenamiento muy pequeño, y el objetivo es aprender
a clasificar nuevos datos con esos pocos ejemplos, y posiblemente, un conjunto más
grande auxiliar, de naturaleza diferente al que se desea aprender.
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• La falta de transparencia de los modelos: las redes neuronales profundas son mo-
delos muy complejos, y por ello, es difícil entender cómo funcionan y por qué toman
las decisiones que toman. Esto es un problema en muchas aplicaciones, como por
ejemplo, enmedicina, donde es necesario entender por qué unmodelo ha tomado una
decisión para poder confiar en él. El desarrollo de una inteligencia artificial explicable
(XAI - explainable artificial intelligence) es un campo de investigación emergente que
trata de abordar este problema [ADRDS+20], no solo en las redes neuronales profun-
das, sino en cualquier modelo de aprendizaje automático en general. Las XAIs forman
parte de un conceptomás general denominado inteligencia artificial confiable. La inte-
ligencia artificial confiable engloba un conjunto más amplio de principios y prácticas
para asegurar que los sistemas de inteligencia artificial sean robustos, legales y éti-
cos [AAES+23]. Uno de los requisitos para lograr este objetivo es la transparencia de
los modelos, definida como la habilidad de un modelo para ser entendido por el ser
humano de manera natural. Y un componente fundamental para la transparencia en
un modelo es que sea capaz de dar cuenta de las decisiones que toma [DRDSC+23].

En los últimos años, se han propuesto modelos de DML que utilizan internamente redes
neuronales profundas, dando lugar a un nuevo paradigma de aprendizaje: el aprendizaje de
distancias profundo o deep metric learning [KB19]. El aprendizaje de distancias profundo
busca combinar el potencial de aprendizaje de las redes neuronales profundas con el prin-
cipio de uniformidad en el que se inspira el DML, para aprender modelos que sean capaces
de representar los datos de forma óptima desde el punto de vista de la semejanza, y con un
mayor rendimiento que losmodelos clásicos deDML. Losmodelos del aprendizaje de distan-
cias profundo se diferencian de los de aprendizaje profundo en que los segundos aprenden
a reconocer las distintas clases de datos, mientras que los primeros aprenden a discriminar
entre ejemplos de distinto tipo sin la necesidad de reconocer explícitamente cada clase de
las que dispone el problema, lo que ha demostrado ser de gran utilidad en problemas co-
mo el few-shot learning [LYMX23]. El desarrollo de modelos de aprendizaje de distancias
profundo, y su aplicación en problemas complejos del aprendizaje profundo, como el FSL,
constituye el tercer objetivo de esta tesis.

Por último, dos objetivos más se plantean en esta tesis. En primer lugar, como ya se ha
mencionado, el desarrollo de modelos de aprendizaje que sean explicables es de interés en
numerosas aplicaciones reales. El cuarto objetivo de esta tesis aborda el estudio de la explica-
bilidad en los modelos de aprendizaje de distancias y el aprendizaje por semejanza posterior,
y la interacción entre ambos. El último objetivo de la tesis plantea la aplicación de los mode-
los desarrollados en problemas reales.

Para concluir esta introducción, presentamos un resumen de la estructura de esta tesis.
La tesis se compone de tres capítulos: la disertación doctoral, en el Capítulo I, las publicacio-
nes que avalan los conocimientos y conclusiones expuestos en la misma, en el Capítulo II,
y el trabajo en progreso que completa los objetivos restantes propuestos en esta disertación,
en el Capítulo III. La disertación la forman esta introducción y las siguientes secciones. La
sección 2 presenta los fundamentos teóricos y conceptos utilizados a lo largo de la tesis. Las
secciones 3, 4 y 5 presentan la justificación, los objetivos y la metodología sobre las que se
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sustenta la tesis, respectivamente. En la sección 6 se presenta un resumen de la investigación
llevada a cabo, y en la sección 7 se discuten los resultados obtenidos. Por último, la sección 8
presenta las conclusiones de la tesis y las líneas futuras de investigación.

El Capítulo II presenta las publicaciones que avalan los conocimientos y conclusiones
expuestos en la disertación. Se presentan cuatro publicaciones: tres de ellas están publicadas
en revistas indexadas internacionales y una de ellas está actualmente en revisión, en segunda
vuelta. Las publicaciones son las siguientes:

• pyDML: A Python Library for Distance Metric Learning.

• A tutorial on distance metric learning: Mathematical foundations, algorithms, experi-
mental analysis, prospects and challenges.

• Ordinal regressionwith explainable distancemetric learning based on ordered sequen-
ces.

• Metric learning for monotonic regression: turning the space up to the limits of mono-
tonicity.

Por último, el Capítulo III presenta el estado actual del último trabajo planeado para
esta tesis, aún en progreso. Este trabajo está redactado también como un paper científico y
su contenido y estructura son detallados en dicho capítulo.
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2 Preliminaries

This section introduces the concepts required to understand the remainder of Chapter I.
First, we present the notation and the foundations of the concepts discussed in this disserta-
tion in Section 2.1. Then, the distance metric learning problem is introduced in Section 2.2.
The supervised singular problems that have been discussed in this thesis are presented after-
wards, in Section 2.3. Next, the modern challenges of machine learning and deep learning
tackled in this thesis are introduced in Section 2.4. Finally, deepmetric learning is discussed
in Section 2.5.

2.1 Notation and preliminaries

This dissertation will mainly focus on the supervised learning paradigm. Unless other-
wise specified, we will assume a set of 𝑁 training samples 𝒟 = {(x𝑖, 𝑦𝑖)}𝑁𝑖=1, where x𝑖 ∈ 𝒳,
for 𝑖 = 1,… ,𝑁 are the input samples and 𝑦𝑖 ∈ 𝒴, for 𝑖 = 1,… ,𝑁 are the corresponding
labels. The input space𝒳 will depend on the nature of the data we are working with. When
the input data is composed of 𝑑-dimensional numerical feature vectors, we will consider
𝒳 ⊂ ℝ𝑑, the 𝑑-dimensional Euclidean space. The output space 𝒴 will depend on the super-
vised learning taskwe are dealingwith. The goal of supervised learning is to learn a function
𝑓 ∶ 𝒳 → 𝒴 that maps input samples to their corresponding labels.

When working on Euclidean spaces, the use of matrices may be needed. We will de-
note as ℳ𝑑′×𝑑(ℝ) the set of all the matrices of dimension 𝑑′ × 𝑑. Recall that a matrix
𝐿 ∈ ℳ𝑑′×𝑑(ℝ) can be biunivocally identified with a linear map 𝐿∶ ℝ𝑑 → ℝ𝑑′ . Conse-
quently, 𝐿 can be thought of interchangeably as a matrix or as a linear map. We will also
denote asℳ𝑑(ℝ) the set of all the square matrices of order 𝑑. The definite matrices will be
specially relevant in the development of this dissertation; we will denote asℳ𝑑(ℝ)+ (resp.
ℳ𝑑(ℝ)+0 ) the set of all the positive definite (resp. positive semidefinite) matrices of order 𝑑.
Amatrix𝑀 ∈ ℳ𝑑(ℝ) is positive definite (resp. positive semidefinite) if and only if x𝑇𝑀x > 0
(resp. x𝑇𝑀x ≥ 0) for all x ∈ ℝ𝑑 ⧵ {0}.

2.2 Background on distance metric learning

Distance metric learning (DML) is an ML task that consists in learning distances from a
dataset. The learned distances can then be used to improve the performance of a wide range
of ML algorithms. For any given non-empty set 𝒳, a distance (also called distance metric or
metric) over 𝒳 is any function 𝑑∶ 𝒳 × 𝒳 → ℝ with the following properties:

1. Coincidence: 𝑑(x, y) = 0 ⟺ x = y, for all x, y ∈ 𝒳.
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2. Symmetry: 𝑑(x, y) = 𝑑(y, x), for all x, y ∈ 𝒳.

3. Triangle inequality: 𝑑(x, y) ≤ 𝑑(x, z) + 𝑑(z, y), for all x, y, z ∈ 𝒳.

A pseudodistance is a function 𝑑∶ 𝒳 × 𝒳 → ℝ that, instead of the coincidence property,
satisfies the weaker property 𝑑(x, x) = 0. Pseudodistances are also considered useful in met-
ric learning-related tasks, and implicitly provide additional benefits such as dimensionality
reduction. Following the standards in the literature, in this dissertation we will use the term
distance to refer to both actual distances and pseudodistances.

Distances meet the minimum requirements for a consistent measurement, in the sense
that removing any of the conditions in the definition results in scenarios in where the mea-
surement for a pair of elements and the relative measurements between different pairs vary
depending on the order in which they are taken. However, it is not clear whether the human
similarity learning process follows the same rules [AP88]. That is why other similarity ap-
proaches that relax the symmetry and triangle inequality assumptions, such as divergences,
have been proposed in the literature [BHS15]. In any case, the research on this topic ismostly
focused on distances, and the scope of this dissertation is limited to the study of distances as
well.

In the supervised setting, the ultimate goal of DML is to minimize a loss function
ℓ(𝑑, 𝑆, 𝐷, 𝑅), for 𝑑 ∈ 𝒟, where 𝒟 is the search space containing the distances to use in
the given problem. The sets 𝑆 and 𝐷 represent the similar and dissimilar pairs, respectively,
which can be obtained directly from the labels if tackling a classification problem. The set
𝑅 represents a remarkable feature in several algorithms and problems: triplet constraints
(𝑥𝑖, 𝑥𝑗 , 𝑥𝑙), which impose that 𝑥𝑖 should bemore similar to 𝑥𝑗 than to 𝑥𝑙. ℓmust be defined in
a way that, when the loss is minimized, the similar samples are brought closer together and
the dissimilar samples are pushed further apart. Each DML algorithm proposal approaches
the definition of ℓ differently [WS09, GHRS05], and the choice of the loss function is a key
decision to make when designing a new DML algorithm.

2.2.1 Linear distance metric learning

Working with continuous data in Euclidean spaces is a traditional approach, since any other
data type can usually be transformed into numerical data using the right tools [GLH15,
LLSD20], and the availability of distances for optimization is higher than in discrete spaces.
In this scenario, the most common approach is to learn a Mahalanobis distance. For
any 𝑀 ∈ ℳ𝑑(ℝ)+0 , the Mahalanobis distance induced by 𝑀 is defined as 𝑑𝑀(x, y) =
√(x − y)𝑇𝑀(x − y), for all x, y ∈ ℝ𝑑. Since every𝑀 ∈ ℳ𝑑(ℝ)+0 can be decomposed as𝑀 =
𝐿𝐿𝑇 with 𝐿 ∈ ℳ𝑑(ℝ), theMahalanobis distance can be equivalently expressed as 𝑑𝑀(x, y) =
‖𝐿(x− y)‖2, for all x, y ∈ ℝ𝑑, i.e., the Euclidean distance after transforming the data with 𝐿.
Therefore, the problem of learning a Mahalanobis distance can be reduced to the problem
of learning a linear transformation 𝐿 ∈ ℳ𝑑(ℝ). The choice of using𝑀 or 𝐿 is often a matter
of convenience and depends on the algorithm. Using 𝑀 frequently leads to convex opti-
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mization problems and optimality guarantees [XJRN03, DKJ+07], while 𝐿 usually allows
for dimensionality reduction, faster computations and data cleaning [WZ07, NMDB17].

2.2.2 Non-linear distance metric learning

The Mahalanobis approach is limited by the linearity of the transformation. Although this
issue is not as noticeable as with linear classifiers, since the learned distance can be used
later with non-linear classifiers such as the 𝑘-NN, a great learning potential is still being lost
when the data distribution is complex. There are different ways of approaching non-linear
distance metric learning. The most prominent are:

• Kernel distance metric learning: kernel DML approximations map the data to a
higher dimensional space, in which the data ideally becomes linearly separable. Then,
a distance metric is learned in the new space [TL07, NMDB17, WZ07]. The kernel
trick is used to avoid the explicit computation of the mapping, which is computation-
ally expensive, similarly to how it is applied in other learners such as Support Vector
Machines (SVMs) [Bur98].

• Local distance metric learning: local DML approximations simultaneously learn
several distances locally, in multiple regions of the space, like several clusters [WS09]
or neighborhoods of each sample [WKW12]. This approach is specially useful when
the data distribution is heterogeneous and the global structure is not well defined.

• Deep distance metric learning: deep metric learning has become a very active re-
search area in recent years. It will be discussed in detail in Section 2.5.

2.3 Singular supervised learning problems

The supervised learning paradigm is the most common in ML. The standard classifi-
cation and regression problems have been widely explored in ML in general and in DML
in particular [WS09, GHRS05, MVPC13, WT07]. However, more and more problems of in-
terest arise whose singularities render classic supervised learning-based approaches largely
inadequate. In this section, we will introduce and describe the singular problems that have
been addressed in this thesis. These problems are variants of the conventional classification
problem, and are:

• Imbalanced classification: in imbalanced datasets there are significant differences
between the number of samples representing each class [FGG+18]. This is a com-
mon problem in real-world applications, like disease diagnosis [AFB23] or fraud de-
tection [KSVK23], where the positive (disease or fraud) samples are usually much less
frequent than the negative (healthy or non-fraud) ones. The conventional classifica-
tion algorithms are usually biased towards the majority classes, and thus the minority
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classes are usuallymisclassified. Themost common approaches to tackle this problem
more effectively involve biasing the algorithms by giving greater weight to the minor-
ity classes [LLW02], or modifying the data distribution by oversampling the minority
classes [CBHK02] or undersampling the majority classes [Har68].

• Ordinal regression: ordinal regression is an intermediate problem between classifi-
cation and regression, inwhich the labels are ordered but not numerical [GPOSM+16].
This problem is common in applications like product rating [ZLL+17] or disease sever-
ity prediction [YTM+21], where there is a natural order among the labels (very bad <
bad < indifferent < good < very good, or severe < moderate < mild, respectively), but
the distances among them are not quantifiable. The algorithms for ordinal regression
problems should take into account the varying importance of prediction errors: pre-
dicted labels farther away from the real ones should be penalized more [CK05, CK07].

• Monotonic classification: monotonic classification is a constrained ordinal regres-
sion problem in which, in addition to the order relation among the labels, the input
data can also be ordered and the prediction should be monotonically increasing with
respect to the input data [CGK+19]. Formally, if we denote the order relation in𝒳 as≼,
and the order relation in 𝒴 as≤, a monotonic problem satisfies that, for any given pair
of samples (x𝑖, 𝑦𝑖) and (x𝑗 , 𝑦𝑗), if x𝑖 ≼ x𝑗 then 𝑦𝑖 ≤ 𝑦𝑗 . This problem arises in areas like
credit default prediction or medical diagnosis as well [SAM96], where the input data
may be comparable (e.g. salary and debts, or age and cholesterol level, respectively)
and the outputs (e.g. credit risk or disease severity, respectively) should be monoton-
ically increasing with respect to the input data. Monotonic classifiers should extend
the ordinal ones in order to be able to handle monotonicity constraints [DF08, CL14].

2.4 Modern challenges in machine learning and deep learning

Advances in artificial intelligence and machine learning research in recent years, and
in particular the development of deep learning, have raised new challenges that need to be
addressed. In particular, this thesis deals with two of them, already discussed in Section
1: the need for large amounts of data to learn in deep learning models, and the lack of
transparency in certain ML models, including the deep learning ones. In this section, we
present the problems that have been proposed to address these two challenges.

2.4.1 Few-shot learning

FSL [WYKN20] is a subfield of ML that addresses the challenge of training models to recog-
nize and generalize from a limited amount of data. In traditional ML, and in deep learning
in particular, models often require large datasets for effective training. However, in many
real-world scenarios, collecting extensive data for every new task or category is impractical
or cost-prohibitive. FSL aims to enable machines to learn quickly and accurately from just a
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few examples—typically a handful or even a single example—per category. FSL is also use-
ful in a scenario where data are imbalanced and present rare cases that are difficult to collect.
And, ultimately, it lays the groundwork for moving towards human intelligence, capable of
learning new concepts from a few examples.

The general FSL problem for classification is formulated as follows. Suppose we are
given for training two different datasets, 𝔻base and 𝔻novel. 𝔻base = {( ̃x𝑖, ̃𝑦𝑖)∶ ̃x𝑖 ∈ 𝒳base, 𝑦𝑖 ∈
𝒴base}𝑁base

𝑖=1 is the base dataset, which is a big auxiliary dataset used to make the model learn
a general representation of the data, and does not need to be strictly related to the true
data available for the problem. These true data are contained in 𝔻novel = {(x𝑖, 𝑦𝑖)∶ x𝑖 ∈
𝒳novel, 𝑦𝑖 ∈ 𝒴novel}𝑁novel

𝑖=1 . The labels to predict are always different to the labels from the base
set, i.e., 𝒴base ∩𝒴novel = ∅. In the usual setup, both datasets are available and 𝑁base ≫ 𝑁novel.

When testing, we are also given a pair (at least one, but we may have multiple pairs) of
datasets, from the same domain as 𝔻novel: the support set, 𝔻𝑆 = {(x𝑖, 𝑦𝑖)∶ x𝑖 ∈ 𝒳novel, 𝑦𝑖 ∈
𝒴novel}𝑁𝑆

𝑖=1, and the query set, 𝔻𝑄 = {x1,… , x𝑄} ⊂ 𝒳novel, not necessarily labeled. The few-
shot learning classification task consists in learning a classifier 𝑓∶ 𝒳novel → 𝒴novel from 𝔻𝑆
to predict the labels of the samples in 𝔻𝑄, assuming that 𝑁𝑆 is very small (usually 𝑁𝑆 ≤ 5).

The support set is usually considered to have a few classes with the same number of
samples for each class. When 𝔻𝑆 contains 𝐶 classes and 𝑁 samples for each class, the prob-
lem is called 𝐶-way 𝑁-shot classification. In particular, when 𝑁 = 1, the problem is called
one-shot classification. A special case is the so-called zero-shot classification, in which the
labels in the query set have not been seen in the support set (or just the support set is empty).
The zero-shot classification problem is usually addressed by using auxiliary data, such as se-
mantic information about the classes that were not present during training, in order to be
able to predict them. The generalized zero-shot classification task assumes that the samples
in 𝔻𝑄 can be both known and unknown. In this case, the task can also be to predict the
class of a known sample and to detect the unknown samples. An FSL problem is said to
be cross-domain when 𝑋base and 𝑋novel have different probability distributions (i.e. they are
from different domains), and cross-modal when 𝑋base and 𝑋novel are of different natures (e.g.
images and texts) [LYK+23].

Currently, multiple ways have been proposed to approach the FSL problem: data-based
approaches focus on augmenting the datasets𝔻novel and𝔻𝑆 (and, possibly,𝔻base) using prior
information, to obtain a dataset big enough to make reliable predictions [QBL18, SBB+16];
algorithm-based approaches try to learn an initial learning parameter or a meta-learner us-
ing 𝔻base, to serve as a good starting point for the learning process with 𝔻novel [CMPT+17,
RL16]; and model-based approaches use the prior information from 𝔻base to reduce the hy-
pothesis space [KZS+15, VBL+16, SSZ17]. The deep metric learning methods that we will
discuss in Section 2.5 combine features from these three approaches: the sampling strategies
contribute to augment the dataset, the models are usually first trained on 𝔻base to obtain a
better starting point and transfer the knowledge to 𝔻novel and, mainly, most of the models
generate embeddings in a lower dimensional space that reduces the size of the hypothesis
space.
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2.4.2 Explainable artificial intelligence

An explainable artificial intelligence (XAI) can be defined as “one that produces details or
reasons to make its functioning clear or easy to understand” [ADRDS+20]. The need for XAI
has emerged due to the substantial advancements inMLmodel performance in recent years,
which have not been accompanied by corresponding progress inmodel interpretability. This
lack of interpretability is a major obstacle to the adoption of ML across domains like health-
care, finance, and law, where model decisions must be justified and explained. Moreover,
the absence of interpretability can give rise to biased or unjust models, resulting in discrimi-
nation against specific demographic groups. Consequently, the development of XAI models
is imperative to ensure that ML model decisions are equitable and impartial, fostering trust
and confidence among users.

Concerning similarity-based learning andDML, which is the scope of this dissertation, it
is interesting to analyze the explainability potential of these algorithms. The 𝑘-NNalgorithm
and, in general, any distance-based classifiers thatmake their predictions based on instances
or prototypes can be considered transparent, since a human can naturally understand how
themodel internally works. In particular, as it was stated in Section 1, similarity-based learn-
ing algorithms are possibly the ones thatmatch the human learning process themost. Trans-
parency is another key concept, and it can be broken down into three levels [ADRDS+20]:
simulatability, decomposability and algorithmic transparency. The 𝑘-NN classifier and sim-
ilar methods can be easily simulated by a human for a reasonable 𝑘. Each part of the model
can be understood separately, although a high number of variables or a complex distance
measure can be obstacles for decomposability. Moreover, the lazy learning feature of these
methods make them completely algorithmically transparent: it is really easy to understand
why these models have made a decision by looking at the neighbors or prototypes of the
predicted sample. The overall transparency of these classifiers is high, which makes them
suitable for applications where the interpretability is a must.

The DML methods themselves are not so easy to interpret. The linear methods can be
analyzed, since themetricmatrix shows the interactions between each pair of samples. How-
ever, this is not enough to make a DML algorithm transparent. For non-linear methods, the
interpretability is even more difficult. They can be considered black-boxes, specially when
talking about the deep models. However, since they are usually designed and applied in
conjunction with a similarity-based classifier, the aggregate model can still be considered a
transparentmodel: the reasonwhy amodelmakes a decision can still be understood by look-
ing at the neighbors or prototypes. In addition, those neighbors or prototypes may be more
informative due to the performance boost provided by the DML algorithm. To conclude, it
is interesting to remark that 𝑘-NN can be considered a Case-Based Reasoning (CBR) sys-
tem [AP94, LSG+19]. CBR systems encompass approaches to solving a problem that are
inspired by other similar situations that have already been solved. Therefore, CBR is trans-
parent in the same sense as 𝑘-NN. CBR is used as an explainable post-analysis for less trans-
parent models. In the case at hand, the combination of DML and 𝑘-NN can be understood
as a CBR system that arises organically because of the nature of both algorithms.
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2.5 Deep distance metric learning

Deep distance metric learning or deep metric learning [KB19] is a subfield of both deep
learning and DML that focuses on training neural networks to learn embeddings of data
points in a way that preserves the similarity or dissimilarity relationships between them.
The primary goal of deepmetric learning is tomap input data points into a high-dimensional
space such that semantically similar data points are mapped closer to each other while dis-
similar points are pushed farther apart.

Deep metric learning methods have enjoyed a great success in recent years. The power-
ful representation learning capabilities of deep neural networks allow deep metric learning
methods to capture complex relationships in the data that traditional DMLmethodsmay not
be able to identify. And, compared to other deep learning methods, deep metric learning fo-
cuses on learning embeddings that capture the fine-grained similarity structure of data, and
their models tend to produce more discriminative representations; this makes them well-
suited for tasks such as image retrieval, face recognition, and object tracking [WZW+17].
Deep metric learning models have also shown to be able to generalize and recognize previ-
ously unseen data points given only a few training samples [LYMX23].

Typically, deepmetric learningmodels start from a base architecture capable of receiving
input data and producing feature vector embeddings as output; the difference with other
deep learning models lies in the way they are trained. The main general models in this
discipline are detailed below.

Autoencoders. Autoencoders have become popular unsupervised deep learning mod-
els that encode the input data into a feature space and then reconstruct the input from
the embedding [BKG23]. They are trained to minimize a reconstruction error loss func-
tion, which forces the model to learn embeddings that capture the most important features
of the inputs. Autoencoders, as a generalization of the principal component analysis algo-
rithm [Jol02]—which is considered an unsupervised linear DML algorithm for dimension-
ality reduction—can be considered unsupervised deep metric learning models. They are
composed of two subnetwork modules, the encoder and the decoder, which are responsi-
ble for mapping the input samples to the feature space and for bringing them back to the
original space, respectively.

Siamese networks and contrastive loss. Siamese networks [KZS+15] are one of the
first neural network models designed for deep metric learning. This model contains two
identical subnetworks that share the same parameters. When training, the network is fed
two samples, one for each subnetwork. If both are expected to be similar (e.g. the samples
belong to the same class), the network is trained to produce similar embeddings for both
samples. They are considered a positive pair. If the samples are expected to be dissimilar (e.g.
they belong to different classes), the network is trained to produce dissimilar embeddings.
This pair of samples is called a negative pair. This training is achieved via a contrastive loss
function that penalizes the network when the embeddings of positive pairs are too far apart,
or when the embeddings of negative pairs are too close. The base contrastive loss function
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is defined, for the pair of samples (x𝑖, x𝑗), as:

𝐿contrastive(x𝑖, x𝑗) = (1 − 𝑦𝑖𝑗)
1
2𝑑(x𝑖, x𝑗)

2 + 𝑦𝑖𝑗
1
2 [max(0,𝑚 − 𝑑(x𝑖, x𝑗))]

2 ,

where 𝑦𝑖𝑗 = 1 if x𝑖 and x𝑗 are similar, and 𝑦𝑖𝑗 = 0 if they are dissimilar. The parameter𝑚 is
a margin that controls the minimum distance between dissimilar samples, and 𝑑 is the base
distance to use in the embedding space (e.g. the Euclidean distance).

Tripletnetworks. Triplet networks [HA15] are an extension of siamese networks. They
consider three identical subnetworks that share the same parameters. The network is fed a
triplet (x, x+, x−) ∈ 𝒳3, where 𝑥 is the anchor sample, 𝑥+ is a positive sample expected to
be similar to 𝑥, and 𝑥− is a negative sample expected to be dissimilar to 𝑥. The network is
trained to move the anchor sample close to the positive sample, and far from the negative
sample. The base triplet loss function is defined, for the triplet (x, x+, x−), as:

𝐿triplet(x, x+, x−) = max(0,𝑚 + 𝑑(x, x−) − 𝑑(x, x+)),

where 𝑚 is, again, a margin constant. In general, the siamese and triplet networks can be
extended to consider 𝑘-tuplets of any finite size [YT19]. The base loss functions can also be
adapted to include regularization terms or other activation functions, such as the softmax
or softplus functions, to normalize the outputs or soften the hard cut of the hinge loss of the
base functions [ZLZ+21].

Matching networks. Matching networks [VBL+16] are a deep metric learning model
designed to work on FSL problems. They also introduce episodic training, which is a train-
ing method that simulates the test phase and, therefore, makes the training phase more sim-
ilar to a real-world scenario where few training samples are available. At each episode, the
model is fed a unique support set (different from the one used in testing but with the same
size and number of classes) and a query sample, randomly extracted from 𝔻novel. Through
an attention mechanism, matching networks weigh the importance of the support samples
for the query. Then, at the prediction stage, the network is fed both the support set and a
test sample, and through the attention mechanism the most relevant training samples are
selected to predict the label of the test sample, following a 𝑘-NN-like attention-weighted
voting scheme.

Prototypical networks. Prototypical networks [SSZ17] are deep learning models that
learn a representation for each class in the training or support data. During the training
phase, following the episodic approach of matching networks, the model is fed a support
set and a query sample. The embeddings of the support set are used to obtain a prototype
for each class by averaging the embeddings of the samples belonging to each class. The
loss function is computed as the log-softmax probability of the true class for the query point
with respect to the prototypes. After each episode, the network is updated, modifying the
embeddings and the prototypes of the given data. At the prediction stage, the class label for
the test sample is obtained as the label of the prototype that is closest to the embedding of
the test sample.
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Relation networks. Relation networks are the first attempt at a deep metric learning
model that directly learns a similarity function instead of computing embeddings or proto-
types using discriminative loss functions [SYZ+18]. Following episodic training aswell, both
support and query samples are fed to an embedding module that produces a feature vector
for each sample. Then, each support embedding is concatenated with each query embed-
ding, and the concatenated vectors are fed to a relation module that computes a similarity
score for each pair of samples. A mean squared error loss between the similarity scores and
the ground truth is used to optimize the parameters of bothmodules. At the prediction stage,
for each query sample, the label of the support sample with the highest similarity score is
assigned to it.

Graph neural networks. Graph Neural Networks (GNNs) are deep learning models
designed to work with graph data. They have become an interesting approach for deep met-
ric learning, due to their ability tomodel the similarity scores in the data [SE18]. The general
approach also consists in obtaining feature vectors through an embedding module. These
embeddings will be the nodes to be fed to the GNN. Throughout the GNN layers, the edge
values will be assigned, whichwill determine the final similarity between the data in the out-
put layer. The labels will be assigned again according to the most similar support samples.
For the training phase, a softmax layer is appended to transform the similarity scores into
class probabilities, and a categorical cross entropy loss is used to update the model weights.

All the meta-architectures described above are illustrated in Figure 5. From these gen-
eral models many other specific models can be derived, according to the specific needs of
the problem to be solved [LYMX23, KB19, GGKC22]. Notice that, remarkably, there are
other relevant factors to take into account when designing a deep metric learning model
apart from the meta-architectures. The inner architecture modules used is one of these fac-
tors. The choice of loss function is also relevant, since the base loss functions described can
be polished to adapt them to the problem and the type of data [PGH+20]. And, at last, a
particularly important aspect in deep metric learning is the training and sampling strategy.
The episodic training introduced in [VBL+16] has been shown to be a good approach for
few shot learning problems, and the sampling strategy is determinant in models such as the
siamese or triplet networks. A hardmining strategy, which focuses on taking the closest sam-
ples from different classes or the farthest samples from the same class, allows the model to
learn faster and accelerate convergence. On the other hand, an easy mining strategy, which
focuses on taking the closest samples from the same class or the farthest samples from differ-
ent classes, can help the data within the same class to have a more compact representation
and, therefore, be easier to classify [XSP20].
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(a) Siamese networks.

(b) Triplet networks. (c) Autoencoders.

(d) Matching networks. (e) Prototypical networks.

(f) Relation networks.

(g) Graph neural networks.

Figure 5: General architectures of the main deep metric learning models.
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3 Justification

Within the realmofML, similarity-based learning has evolved into a significant andnotewor-
thy research area. Its intuitiveness and transparency makes it useful in applications where
understanding the decisions made by the algorithms is crucial. The models are also often
able to learn without requiring excessive amounts of data, and the simplicity of their designs
means that they can be adapted to different types of problems.

DML has gained considerable relevance because of its connection to similarity-based
learning algorithms and the enormous capacity of the former to improve the performance
of the latter. DML algorithms can also be designed for a multitude of problems, as can
similarity learners. They also have numerous learning paradigms which can be adapted to
different types of data depending on their complexity. In particular, deep metric learning
methods have grown alongwith the rise of deep learning and have demonstrated their poten-
tial to solve problems where other deep learning methods have more difficulty. The specific
reasons that motivate this thesis on DML are listed below.

• Firstly, DML is a relevant area of research that was still in development at the begin-
ning of this thesis project. The software tools available for DML were dispersed and
incomplete and, although several studies on DML had been published, there was not
a clear starting point for researchers interested in the area. Both these issues must be
addressed in order to advance DML and to open it up to the scientific community.

• Secondly, most DML algorithms focus on standard classification problems, without
taking into account the various peculiarities that many machine learning problems
can present. The proposed thesis project attempts to exploit the potential of DML in
unconventional variants of the classification problem, as the concept of what can be
considered similar or not can be refined depending on the data being dealt with.

• Thirdly, deep metric learning research is at a key moment right now. The potential of
deep learning has been demonstrated inmany areas, and the aggregation with DML is
no exception. The project proposes the application of deepmetric learning to complex
ML problems, such as FSL, which is a promising line of research where deep metric
learning is expected to have a significant impact.

• Fourthly, the similarity-based learners are considered explainable models and can
even be used to provide CBR explanations for less transparent models. But there is
still a gap on how DML can impact the explainability of similarity-based models and
how explainable the DML models themselves can be, and this thesis project aims to
start filling this gap by analyzing the explainability of the DML models proposed.

To summarize, the proposed thesis project constitutes a substantiated contribution to
the advancement of DML. This contribution is justified by the significance of the field and
the demand for a comprehensive reference that encompasses both software and literature.
It also addresses the limitations of existing unconventional classification techniques and
explores the potential of applying deep metric learning to complex problems. Furthermore,
it seeks to examine the intricate relationships between similarity-based learning, DML, and
the aspect of explainability.
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4 Objectives

After presenting the fundamental concepts from the state-of-the-art, we can delve into the
objectives that motivate this thesis. The first one is to provide a general reference and a uni-
fied software framework for the DML area. Then, with that foundation already established,
the next objectives tackle the development of new DML models, including shallow models
in singular classification problems, and deep models for complex ML problems. Finally,
the last objectives revolve around the explainability of the DML models proposed and the
application of DML to real problems. These objectives are detailed below.

Creation of a unified software framework and a general reference for DML. The
first objective of this thesis is to provide a general reference for the field of DML. This ref-
erence will be a tutorial consisting of a review of the current state of DML—including an
introduction to DML and its mathematical foundations—, a taxonomy of the most impor-
tant existingmodels, and an experimental analysis of their performance. This reference will
be complementedwith a software framework that will allow the implementation of themost
representative DML models. This framework will be designed to be extensible, so that new
models can be easily added to it, and it will also include a set of tools to facilitate the analysis
of the models implemented.

Development or adaptation of DML algorithms for singular problems. As it has al-
ready been observed, DML algorithms are mostly designed for standard classification prob-
lems. However, there are many other problems with singularities that make them a poor
match for conventional algorithms. Among these singular problems, several non-standard
variants of the classification problem stand out: imbalanced classification, ordinal regres-
sion and monotonic classification. The development of models to address these problems
has constituted the second objective of this thesis.

Deep metric learning and complex problems. Deep metric learning has grown to be
a research topic with effective applications in many problems, such as FSL. The aim of this
objective includes the implementation, study and visualization of the deep metric learning
meta-architectures, the analysis of the complex problems in deep learning and how to ap-
proach them with deep metric learning, and the development of a model to address a com-
plex problem.

Explainability analysis of the developed models. It is interesting to explore how the
DML models interact with the explainable features of the similarity-based learners. In this
way, there are different aspects to explore: how DML can improve the intuitiveness of the
results provided by a similarity-basedmethod, howwell the decisionmade by a DMLmodel
with a similarity-based classifier can be understood by a human, and how the DML model
itself can provide additional conclusions that may also be useful for the user.
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Application of DML to real problems. Finally, the last objective of this thesis is to apply
the developed models to real problems. The aim is to demonstrate the potential of DML in
real applications, and to analyze the performance of the models in real scenarios.
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5 Methodology

The development of this thesis has been carried out based on the following method of work
and experimentation, inspired by the scientific method:

• Observation. Study of the state of the art of distance metric learning and its exten-
sions to deep learning. Analysis of complex problems and their possible modelling by
means of distance metric learning techniques.

• Hypothesis formulation. Design of distance metric learning and deep distancemet-
ric learning algorithms for singular and complex problems.

• Collection of observations. Application of the developed algorithms to different
datasets belonging to the different problems dealt with and obtaining results.

• Hypothesis testing. Analysis of the quality of the proposals, comparing them with
other state-of-the-art techniques.

• Proof or refutation of hypotheses. Acceptance, rejection or modification of tech-
niques developed as a result of the tests carried out.

• Thesis or scientific theory. Extraction, drafting and acceptance of conclusions drawn
during the process.
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6 Summary

The knowledge amassed in this thesis is disseminated across five distinct studies, three of
them already published in scientific journals, one submitted and under peer review, and
one work in progress with the aim of publication. The purpose of this section is to provide a
concise overview and introduction to these studies, with a detailed discussion of their results
to follow in Section 7. The list of the works already published or submitted to review is
presented below, while the work in progress is discussed in Chapter III:

• Suárez, J. L., García, S. & Herrera, F. (2020). pyDML: a Python library for distance
metric learning. Journal of Machine Learning Research, 21(96), 1-7.

• Suárez, J. L., García, S. & Herrera, F. (2021). A tutorial on distance metric learning:
Mathematical foundations, algorithms, experimental analysis, prospects and challenges.
Neurocomputing, 425, 300-322. DOI: https://doi.org/10.1016/j.neucom.2020.
08.017

• Suárez, J. L., García, S. & Herrera, F. (2021). Ordinal regression with explainable dis-
tance metric learning based on ordered sequences. Machine Learning, 110(10), 2729-
2762. DOI: https://doi.org/10.1007/s10994-021-06010-w.

• Suárez, J. L., González-Almagro, G., García, S. & Herrera, F. (2023). Metric learning
for monotonic classification: turning the space up to the limits of monotonicity.

The rest of this section is structured in accordance with the publications listed above and
the goals detailed in Section 4. Firstly, Section 6.1 presents a summary of the software devel-
oped and the tutorial created. Secondly, Section 6.2 summarizes the studies related to the
development of DML algorithms for singular problems. Afterwards, Section 6.3 introduces
the studies related to the application of deep metric learning to complex problems. Finally,
Section 6.4 shows a summary on how explainability has been analyzed in the developed pro-
posals, while Section 6.5 outlines the applications of DML that have been carried out in real
problems.

6.1 Creation of a unified software framework and a general reference for
DML

At the beginning of this thesis project, shallow DML was a well-known area of research but
it lacked two main components to increase accessibility to the ML community: a unified
software framework to make DML readily available and easy to use for researchers, and a
general reference that could serve as a starting point for researchers interested in the area.

The first component, the unified software framework, was developed in the first study
associated with this thesis. The framework, called pyDML, is a Python library that imple-
ments the most representative DML algorithms. It is designed to be fully compatible with
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the Scikit-Learn algorithms [PVG+11] and extensible, so that new algorithms can be easily
added to it. It also includes a set of tools to facilitate the analysis of themodels implemented,
such as functions to plot and tune the models. The publication associated with this study is:

Suárez, J. L., García, S. & Herrera, F. (2020). pyDML: a Python library for distance
metric learning. Journal of Machine Learning Research, 21(96), 1-7.

The second componentwas developed as a tutorial onDML thatwas published in the sec-
ond study associated with this thesis. This tutorial encompasses a study of distance metric
learning that includes its mathematical foundations, an analysis of the most relevant DML
algorithms in supervised, semi-supervised and unsupervised scenarios (including around 20
of them), an experimental analysis of the studied methods in 34 well-known datasets from
the literature, a Bayesian statistical analysis of the results, and a discussion of the prospects
and challenges of the area. The tutorial is complemented by an appendix that includes a
comprehensive description of the algorithms analyzed and the mathematical foundations
studied. The expectation is that this tutorial will serve as a general reference for the DML
area, and as a starting point for researchers looking to enter this field. In conjunction with
the developed software framework, this research effort was also expected to help us to learn
in depth about DML methods and to create an extensive basis to start the development of
the models foreseen in the following objectives. The publication associated with this study
is:

Suárez, J. L., García, S. & Herrera, F. (2021). A tutorial on distance metric learn-
ing: Mathematical foundations, algorithms, experimental analysis, prospects and
challenges. Neurocomputing, 425, 300-322. DOI: https://doi.org/10.1016/j.
neucom.2020.08.017

6.2 Development or adaptation of DML algorithms for singular problems

As it was mentioned above, most DML algorithms have been designed for standard classi-
fication problems and their potential in singular problems can still be further explored. To
fulfill this objective, two different studies have been conducted. The first one tackles the de-
velopment of a new DML algorithm for ordinal regression problems, while the second one
explores possibilities to apply DML to monotonic classification problems.

6.2.1 DML for ordinal regression

One of the main issues of ordinal regression is how to tackle this problem properly from a
purely ordinal perspective. It is common either to consider the problem as a classification
problem by ignoring the ordinal nature of the data, or to consider it as a regression problem
by assuming that we can quantify the differences between labels—which may not be the
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case. DML is a promising approach in this context, since it can be applied to bring samples
closer in the embedding space the more similar their labels are in the output space.

In the first study associated with this objective, we propose a new DML algorithm for
ordinal regression problems that is built around the concept of ordered sequences. In the
neighborhood of any sample in the training set, we define two concepts of ordered sequence:
one in the input space, which consists in sequences of samples with increasing distances
to the anchor sample, and another one in the output space, which consists in sequences
of labels whose values go up or down with respect to the anchor label. When a sequence is
ordered in both spaces, we call it a chain. The proposed algorithm, called ChainMaximizing
Ordinal Metric Learning (CMOML), is trained to maximize the number of chains in the
neighborhood of each sample.

Since the objective function of CMOML is not differentiable, a black-box differential
evolution optimizer [Pri13] is proposed. A kernel version of the algorithm, Kernel Chain
Maximizing Ordinal Metric Learning (KCMOML), is also proposed to deal with non-linear
problems. The algorithms are tested on a wide variety of ordinal datasets and compared
with other DML proposals for ordinal regression and the general state-of-the-art in this area.
The publication associated with this study is:

Suárez, J. L., García, S. & Herrera, F. (2021). Ordinal regression with explainable
distance metric learning based on ordered sequences. Machine Learning, 110(10),
2729-2762. DOI: https://doi.org/10.1007/s10994-021-06010-w.

6.2.2 DML for monotonic classification

Monotonic classification restricts ordinal regression by addingmonotonic constraints to the
data. If two samples can be compared, then their labels should also be comparable, and
with the same relation as in the input space. The difficulty that arises with DML in this
problem compared with unconstrained ordinal regression is that a transformer-based ap-
proach (learning 𝐿 instead of 𝑀) may easily violate the monotonic constraints. To learn a
non-metric-based approach it is crucial for the transformed space to not bemodified enough
that monotonic constraints start being violated or variables stop being meaningful.

To do this, in the second study associatedwith this objectivewe propose a newDML algo-
rithm formonotonic classification that learns a linearmap to transform the input spacewith-
out introducing newmonotonic constraints that were not present in the original space. The
proposed algorithm is called Large Margin Monotonic Metric Learning (LM3L), and makes
use of two special types of matrices: monotonic matrices and M-matrices. These matrices
have very interesting properties that allow the monotonicity of the dataset to be preserved
when they are used as a linear transformation. The algorithm is trained using a variation of
the traditional large margin loss [WT07] adapted to the ordinality of the problem, and com-
paredwith the Euclidean distance using different distance-based classifiers, bothmonotonic
and non-monotonic. The publication associated with this study is:
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Suárez, J. L., González-Almagro, G., García, S. & Herrera, F. (2023). Metric learning
for monotonic classification: turning the space up to the limits of monotonicity.

6.2.3 Additional work on DML for singular problems

In addition to the two proposed studies for ordinal regression and monotonic classifica-
tion that make up the second objective and part of the publications of this thesis, addi-
tional work on DML for imbalanced classification has been carried out. This work com-
bines the potential of Neighborhood Component Analysis (NCA) [GHRS05]—one of the
most powerful DML algorithms for 𝑘-NN classification—and the condensed nearest neigh-
bors rule [Har68]—a similarity-based undersampling technique that synergizes well with
the NCA optimization mechanism. The hybridization of these two techniques results in a
new DML classifier, called Condensed Neighborhood Component Analysis (CNCA), which
is able to learn a distance and undersample an imbalanced dataset at the same time. This
study is part of a conference paper and is not included in this thesis, but it will bementioned
in Section 8.2.

6.3 Deep metric learning and complex problems

Deep metric learning, as a part of deep learning, has experienced significant growth thanks
to the boom of the deep learning field. Its greater discriminative capacity makes deepmetric
learning algorithms a very powerful complement to the rest of deep learning, with great po-
tential in problems such as FSL, where deep learning struggles to perform effective learning.

In this thesis project, as part of an international internship at the University of Cardiff, a
collaborationwith the Knowledge Representation and Reasoning and the Natural Language
Processing (NLP) groups of the University of Cardiff was carried out. The aim of this collab-
oration was to apply deep metric learning to the problem of FSL in the context of Relation
Extraction (RE).

The relation extraction problem [BB07] is an NLP problem that focuses on identifying
and extracting semantic relationships between entities mentioned in text. The goal is to de-
termine the type of relationship that exists between two or more entities in a given sentence
or document. This is typically achieved by analyzing the text to identify specific patterns,
keywords, or linguistic cues that indicate the nature of the relationship.

As an example, let us consider the sentence “Madrid is the capital of Spain”. In this
sentence, the entities are “Madrid” and “Spain”, and the relationship between these entities
is “is_the_capital_of”. In this example, relation extraction involves identifying that “Madrid”
and “Spain” are related, and that the relationship between them is “is_the_capital_of”.

The RE problem is found inmany fields, playing a crucial role in areas such as: construct-
ing knowledge graphs [ZFH23], which are useful in applications related to semantic web,
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question answering or data integration; sentiment analysis [ZHX+22], where extracting re-
lations between entities and their associated sentiments can yield a deeper understanding of
opinion and sentiment in text; recommendation systems, since extracting relations between
users, products, and their preferences can be used to provide users with more personalized
and relevant recommendations [WZZ+23]; biomedical and scientific research [SC22], where
relation extraction can be used to find relationships between genes, proteins, drugs, diseases,
and other entities, for tasks such as drug discovery or disease modeling.

Few-shot relation extraction is a specialized RE task where the goal is to extract semantic
relationships between entities in text with very limited training data. In traditional relation
extraction, models are trained on a large dataset with labeled samples of entity pairs and
their corresponding relations. However, few-shot relation extraction deals with scenarios
where only a small number of training samples are available—often just a few or even one—
from which to extract relations between entities. Few-shot RE has applications in a variety
of domains where collecting labeled data is challenging, such as in the biomedical domain
or other domains withmany technical terms in general, where there is a lack of labeled data.

The study associated with this objective focuses on the application of deep metric learn-
ing to the few-shot RE problem in the FewRel dataset [GHZ+19], which is a popular bench-
mark dataset for few-shot RE. Current few-shot RE approaches focus on contrastive pretrain-
ing [PGH+20], which consists in pretraining an NLP model such as BERT [DCLT19] with a
contrastive loss function (in a siamese meta-architecture), to bring pairs of sentences with
the same relation closer in the embedding space and push pairs of sentences with different
relations farther away. The pretraining is done on a large dataset extracted using Wikipedia
as a corpus andWikidata [VV19] as the knowledge graph. Then, the model is fine-tuned on
the FewRel dataset using a prototypical network with episodic training. This base model has
been extended in several ways. For example, by adding more learning tasks to the pretrain-
ing model [QLT+21] or by weighting the labels from the pretraining dataset depending on
how noisy they are likely to be [HLS22].

In this study, we propose to extend the contrastive pretraining approach in several ways:

• Firstly, we add to the loss function an additional term consisting in an autosupervised
contrastive loss. This loss is computed by taking positive pairs using a different strat-
egy. For any sentence given, a partner sentence for the positive pair is made by ran-
domly masking parts of the sentence that do not include the entities. These positive
pairs are also fed to themodel, and the loss is computed as the contrastive loss between
the original sentence and the masked sentence. This is done to shift the focus of the
model away from parts of the sentence that may be irrelevant to learn the relations.

• Secondly, we modify the mining strategy for the pairs that are sampled in the super-
vised contrastive loss term. We identify that some of the samples may bemore reliable
than others in terms of how many sentences with the same relations are present in
the neighborhood of the samples, how many different pairs of entities appear in that
neighborhood, and if the sentence structure varies sufficiently within the neighbor-
hood. We make those reliable samplesmore likely to be fed to the model.
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• Finally, we hypothesize that the embeddings generated by BERT are not optimally
distributed in space for the RE task at hand. Samples from identical relations may be
split into different clusters, which is not ideal. Therefore, we propose the application
of additional metric learning on the embeddings obtained from the pre-training to
facilitate further learning in the prototypical network.

This study is a work in progress. The preliminar work associated with this study is dis-
cussed in Chapter III.

6.4 Explainability analysis of the developed models

The need for explainable models has dramatically increased in recent years. Due to the
explainable characteristics of similarity-based models, it is of interest to study explainability
also in DML and, therefore, this study is proposed as an objective. Note that this objective is
cross-sectional, since the study to be carried out is applicable to any DMLmodel developed.

Specifically, in this thesis this objective has been addressed in the proposed model for
ordinal regression discussed in Section 6.2.1. A similarity-based classifier like the 𝑘-NNused
in the experiments can be seen as a CBR system, which gives us a point of view from which
to analyze the explainability of the proposed models.

The proposed explainability study selects several datasets from the experimentation as
a study case. On these datasets, the CBR-based explanations of the 𝑘-NN classifier with
the Euclidean distance and the 𝑘-NN classifier with the distance learned by CMOML are
analyzed. This is done by taking the 3 nearest neighbors of each test sample by each of the
models. For the selected datasets, we make a displayable graphical representation of the
samples and their neighbors. The task is to identify, from these representations, if there are
features in the neighbors that are contributing effectively to the decisionmade by themodel,
and how these features change according to the model used.

As an additional task, we also explore how well CMOML can make bidimensional and
tridimensional embeddings, so that under these spaces the decisions made by the model
can be visualized and understood. This is done by learning a dimensionality reduction map
𝐿 ∈ ℳ𝑑′×𝑑(ℝ) using the CMOML algorithm, and analyzing the outputs in the datasets
selected for the explainability study.

6.5 Application of DML to real problems

In the practical section, the implementation of ML models in real problems is essential to
gauge the scope and real applicability of thesemodels. The successful application of amodel
in a real problem means that the developed model is empirically validated.

This objective is again cross-cutting, as applicability can be assessed in any developed
model. In the context of this thesis, this objective has been addressed in the development of
the deep metric learning model in Section 6.3. This model has been developed and applied
to the few-shot relation extraction problem, as explained in that section.
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7 Discussion of Results

Of the objectives set out in the thesis, the second and third objectives require experimen-
tal analysis to demonstrate the performance of the models developed. In the first objective,
in addition, an experimental analysis of the most important methods in the classical DML
literature is carried out. It is therefore important to follow a consistent experimentalmethod-
ology that guarantees that the results are reliable and comparable, and that is complemented
with a statistical validation that demonstrates that the results are robust, generalizable and
not the result of chance.

The experiments developed to meet the objectives of this thesis follow this logic, using
validation techniques for the training and prediction of models, specific metrics for each
problem addressed that show the goodness of the models developed, comparison with lead-
ing algorithms in the problem and the families of algorithms selected for it, and Bayesian
statistical tests [BCDZ17] that validate the comparisons established between the different
algorithms.

This section summarises the results obtained in each of the studies that complete the
objectives of this thesis. Analogous to Section 6, this section is structured in accordance
with the publications listed above and the goals detailed in Section 4. Section 7.1 summarizes
the conclusions drawn from the literature study of DML, the software development and the
experimental analysis conducted. Section 7.2 shows the results obtained with CMOML and
LM3L in ordinal regression and monotonic classification, respectively. Section 7.3 presents
the current state of the approach developed for the few-shot RE problem. The last objective,
the application of DML to real problems, is also analyzed in this section, since it is part of the
same study. Finally, Section 7.4 analyzes the conclusions extracted from the explainability
analysis performed on CMOML.

7.1 Creation of a unified software framework and a general reference for
DML

The two studies developed to cover this objective have resulted in contributions of great
interest in different parts of the field of DML.

The software library developed in the first study, pyDML, provides an accessible imple-
mentation of the most popular methods of traditional DML, highlighting algorithms de-
signed for supervised classification but also including unsupervised and weakly supervised
ones. It currently exceeds 20 implemented algorithms, including implementations of mod-
els developed in this thesis. In addition to the algorithms, additional tools have been incor-
porated, such as a plotting module that allows for the visualization of the distances and the
classification grid of the algorithms, and a tuningmodule that facilitates the hyperparameter
selection for the algorithms.

pyDML features continuous integration, conforms to the Python PEP8 style guide and
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maintains a changelog and standard documentation powered by Sphinx and Numpydoc.
The algorithms in the library follow a hierarchical class structure that also adapts to the
Scikit-Learn hierarchy, making it easily extensible. Furthermore, it is available on GitHub1
under the GPL license and therefore accessible for community contribution through issues
and pull requests. At the time of writing, the GitHub repository has 169 stars. pyDML is also
available in the official Python package index, PyPI.

The second study, the tutorial on DML, offers an overview of shallow DML and its al-
gorithms. In the theoretical study of DML and its algorithms, a novel classification for the
algorithms is proposed, which is composed of: algorithms specialized in dimensionality re-
duction, algorithms specialized on improving distance-based classifiers, information theory-
based algorithms, and kernel methods. This theoretical study helped to identify the main
areas to take into account when developing new DML algorithms and to propose new per-
spectives and challenges for future directions in the field.

Finally, the experimental analysis performed in the tutorial has allowed us to compare
the performance of the most representative DML algorithms not only in a standard 𝑘-NN
classification setup, but also in several additional setups such as Nearest Class Mean (NCM)
classification, kernel classification anddimensionality reduction. The experimental analysis
was performed with the algorithms implemented in pyDML.

The conventional 𝑘-NN setup consisted in evaluating the accuracy of the 𝑘-NN classifier
after applying each of the DML algorithms. This was done by using a stratified 10-fold cross
validation on 34 well-known classification datasets from the literature. The datasets were
min-max normalized prior to the execution of the algorithms to give the same importance to
all the features at the time of computing the distance. The distances were evaluated with the
𝑘-NN classifier considering several values for 𝑘: 3, 5 and 7. Then, the results obtained were
validated using Bayesian sign pairwise tests to determine whether the differences between
each pair of algorithms were statistically significant. This main experiment has laid the
foundations for the rest of the experiments carried out throughout the thesis. The cross-
validation, normalization, classification and statistical validation schemes have beenmostly
kept intact in the rest of the experiments in the whole thesis project, with some necessary
variations depending on the problem.

The remaining experimentation that composed this tutorial consisted in, firstly, a perfor-
mance analysis of the algorithms specialized inNCMclassification, which followed a similar
scheme to the one used in the conventional 𝑘-NN setup, but replacing the 𝑘-NN with the
NCM classifier. Then, the kernel based methods were also evaluated using again the 𝑘-NN
classifier; however, several kernels for each algorithm were tried in order to identify which
kernel was themost suitable for each algorithm. Finally, the dimensionality reduction exper-
iments weremade to show the potential of the DML algorithms as dimensionality reduction
methods. In this case, the DML algorithms that are capable of performing dimensionality
reduction were applied to map the data to different dimensions. Then, the 𝑘-NN classifier
was applied again to evaluate the results on the different dimensions.

1https://github.com/jlsuarezdiaz/pyDML
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The overall results of this extensive experimentation helped us to identify the most pow-
erful algorithms in terms of 𝑘-NN classification and NCM classification, which was con-
sistent with the algorithmic classification proposed in the study. This has been especially
important when proposing new algorithms in the following objectives, since their designs
have been heavily influenced by the best performing algorithms in some cases. It was also
shown that the kernel versions of the algorithmswere able to improve the results in themore
complex datasets when the appropriate kernel was chosen. Finally, the capability of several
DML algorithms to reduce the dimensionality of the data was also corroborated, being able
to keep producing good results in low dimensions in many cases or even improving them.

7.2 Development or adaptation of DML algorithms for singular problems

The two studies related to this objective prove the feasibility of applying DML to singular
problems. The problems tackled in both studies are proven to be modelable in a DML-like
framework, since the label distributions in the space can be set in correspondence with the
distances between the samples in the space. In particular, CMOML and LM3L have been
proven to outperform the distance-based state-of-the-art for ordinal regression and mono-
tonic classification, respectively, and to even be competitive with the general state-of-the-art
in these areas. Sections 7.2.1 and 7.2.2 discuss the results obtained with these two methods
and the conclusions drawn from the results, respectively.

7.2.1 DML for ordinal regression

CMOML, our DML proposal for ordinal regression, has been tested on 36 different datasets;
23 of them are real-world ordinal datasets, while the remaining 13 are equal-frequency dis-
cretized datasets for regression. CMOML has been evaluated using a stratified 5-fold cross
validation appended to a median-vote 7-NN classifier, which is the natural extension of the
classic majority-vote 𝑘-NN for ordinal regression. The results obtained by CMOML have
been compared with the results of the Euclidean distance and of the main DML proposal for
ordinal regression [NMDB18], with the same classifier. The Concordance Index (C-Index)
metric, which measures the ratio between the number of correctly ordered pairs and the
total number of pairs, has been used to compare the results.

The results, validated by a Bayesian sign test, show that CMOML clearly outperforms
both other distances. The experimental analysis was extended to include several main state-
of-the-art ordinal regressionmethods: two variants of the SVMs for ordinal regression [CK07,
LL12], an extended bayesian network for ordinal regression [HWL20] and a kernel extreme
learning machine for ordinal regression [SLY+19]. The same experimentation scheme was
used, and the results obtained by CMOML remained competitive with the state-of-the-art.
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7.2.2 DML for monotonic classification

Our DML proposal for monotonic classification, LM3L, has been tested on 10 different well-
known monotonic datasets from the literature. LM3L is, to the best of our knowledge, the
firstDMLproposal formonotonic classification. Therefore, the aimof the experimental anal-
ysis is to showwhether the distance learned by LM3L is able to outperform the Euclidean dis-
tance under different scenarios. For this purpose, we considered several variants of the 𝑘-NN
classifier, both monotonic and non-monotonic: the traditional and the median-vote 𝑘-NNs,
the monotonic 𝑘-NN variants [DF08] and the monotonic fuzzy 𝑘-NN variants [GGL+21]. A
stratified 5-fold cross validation was used to evaluate the results.

Three different metrics have been considered in this study. Tomeasure the quality of the
prediction performance, we chose two ordinal metrics: Mean Absolute Error (MAE) and
C-Index. Tomeasure the monotonicity of the predictions, we proposed two Non-Monotonic
Index (NMI) variants to observe how many pairs remained monotonic in the training set
after being transformed and howmany test samples interfered with the monotonicity of the
training set. We also reported the total number of comparable pairs, since after the data trans-
formation some pairs may not be comparable anymore. The results, validated with Bayesian
sign tests, show that LM3L when combined with the median-vote 𝑘-NN classifier outper-
forms the Euclidean distance in the ordinal performance metrics, while also contributing to
the reduction of the non-monotonicity of the dataset at the cost of losing some comparable
pairs. It is remarkable how this combination is able to outperform the monotonic classi-
fiers, despite the median-vote not being monotonic and LM3L having also been tested with
the monotonic classifiers.

7.3 Deep metric learning and complex problems

The FewRel dataset for the few-shot RE problem presents a private test set evaluated through
an online platform to which the predictions are uploaded and fromwhich the evaluation re-
sults are obtained. Consequently, the methodology followed for the evaluation of the model
presented for this objective will be based on the training of themodel with the public FewRel
data, and its subsequent evaluation through the platform with the private data. The FewRel
test set is composed of a multitude of problems of four types: 5-way 1-shot, 5-way 5-shot,
10-way 1-shot and 10-way 5-shot. For each problem, the support set and the query to be
predicted with that support set are given. The final metric used is the average hit rate of the
queries on each problem.

The FewRel test set is divided into three different subsets of different nature:

• FewRel 1.0: consists of data of the same nature as the base FewRel training set.

• FewRel 2.0 Domain Adaptation (DA): the data in this test set are obtained from
biomedical databases, which are different in nature from the one that composes the
FewRel training set. This is a much more challenging problem, since no similar data
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has been seen during training and the model must acquire a sufficiently large discrim-
inative capacity to be able to predict them correctly.

• FewRel 2.0 none-of-the-above (NOTA): this test set can be considered a zero-shot
variant of the problem. In this case, it is not guaranteed that the relation to be predicted
is present in the support set; consequently, it is possible for a model to predict NOTA
to indicate such absence. This task is evaluated differently, under 5-way 1-shot and
5-way 5-shot classification considering two different NOTA rates in the labels: 15 %
and 50 %.

The work under development for the problem has already demonstrated competitive
results with respect to the base contrastive pretraining approaches currently proposed as a
solution to the problem. Our current model has been tested in FewRel 1.0 and FewRel 2.0
DA, and incorporates the autosupervised loss component and the mining strategy described
in Section 6.3. Both of the components separately contribute to the improvement of the
results, and the combination is outperforming the base contrastive pretraining in most of
the problems. There is still work to be done in order to obtain more significant differences,
for which the third component of the proposal described in Section 6.3, together with the
refinement of the mining strategy and the autosupervised loss importance, are expected to
be key.

7.4 Explainability analysis of the developed models

In addition to analyzing how CMOML outperforms the main DML proposal for ordinal re-
gression and is competitive with the state-of-the-art, the explainability of CMOML has also
been analyzed. Unlike the other comparedmethods from the state-of-the-art, CMOMLwith
the 𝑘-NN classifier is able to provide explanations for the predictions it makes.

As a CBR system, CMOMLwith 𝑘-NN is able to explain the decision it makes in terms of
the neighbors selected for the sample to test. In the analysis performed, where we compared
the CBR results between CMOML and the Euclidean distance, we observed that the neigh-
bors that CMOML obtains exhibit features that are more relevant to the decision made by
the model than those present in the neighbors obtained by the Euclidean distance. In terms
of human reasoning, this means that the neighbors obtained by CMOML are more likely to
be the neighbors that a human would select. This makes CMOML a reliable explainable ap-
proach for ordinal regression when combined with 𝑘-NN, which makes it more useful than
the compared methods in applications where it is crucial to understand the decisions made
by the model.
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8 Conclusions and Future Work

This section concludes the thesis (Section 8.1), gathers all the relevant studies we have pub-
lished (Section 8.2), and provides notes on future research lines (Section 8.3).

8.1 Conclusions

This thesis proposes an innovative and rigorous analysis of DML, which provides both a
global vision of the topic, at the theoretical and implementation level, and new perspectives,
with the development of three new DML proposals in different areas. The general objective
of the thesis is to broaden the knowledge on DML and approach it from new points of view.
For this purpose, a bibliographic review was elaborated together with a software library to
carry out an in-depth study of the discipline and exhaustive experimental work to demon-
strate and validate the quality of the developed proposals.

To achieve the first objective, themost relevant algorithms in the field of DMLwere gath-
ered and subjected to exhaustive analysis. This led to the development of a software library
that integrates these algorithms in the same homogeneous environment. Complementing
this library, a tutorial was developedwhich explains in detail both the basics of DML and the
developed algorithms, and compares them experimentally. The development of the rest of
the proposals of this thesis was aided by the insight gained from the analysis of the existing
algorithms and the identification of their strengths and weaknesses.

The second objective concerns the development ofDMLalgorithms in singular problems,
and focused mainly on two problems: ordinal regression and monotonic classification. The
first problem was addressed through the CMOML algorithm, which tries to unify the input
and output spaces from a combinatorial point of view, considering sequences of data in the
neighborhoods and a heuristic optimization. CMOML proved to be dominant compared to
the main DML proposals for ordinal classification, and competitive with respect to the state-
of-the-art in the discipline. The second problem was tackled through the LM3L algorithm.
This proposal addressed monotonic classification with DML for the first time, and takes
advantage of the properties of a subset of matrices to respect the monotonicity of the data.
LM3L was shown to outperform distance-based classifiers with Euclidean distance, both
monotonic and non-monotonic, when combined with the appropriate classifier.

The third objective focuses on a currently hot area: deep metric learning, which has
grown in popularity with the rise of deep learning due to its ability to complement it in prob-
lems where classic deep learning models run into more difficulties. In particular, in this
objective we have tackled the problem of FSL applied to relation extraction, a problem of
great interest in NLP. For this purpose, relevant improvements were introduced into the
main FSL proposals for RE, inspired by contrastive pre-training together with a prototypi-
cal network. These improvements, which consist in refining the loss function to take into
account additional information, modifying the mining strategy to train with more reliable
samples, and introducing additional DML to optimize the feature vectors obtained by the
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model, have currently led to improvements with respect to the base model, and more signif-
icant improvements are expected to be achieved by further polishing these proposals.

Finally, the last two objectives involve the study of the explainability in the developed
models and the application of the models to real problems, respectively. The first of these
has been addressed on CMOML. The analysis of the explainability of this model has led
to the conclusion that, when combined with the 𝑘-NN classifier, the two of them form a
CBR system in which the neighbors considered in the model to make the decisions reveal
more identifying features that resemble those that would influence actual human decision-
making. As for the last objective, it is answered via the proposal for the few-shot relation
extraction problem addressed with deep metric learning in the third objective.

Conclusiones

Esta tesis propone un análisis del DML desde un punto de vista innovador y riguroso, que
proporciona tanto una visión global, a nivel teórico y de implementación, de la temática
y las propuestas más relevantes en el área, como nuevas perspectivas, con el desarrollo de
tres nuevas propuestas de DML en distintos ámbitos. La tesis tiene como objetivo general
ampliar los conocimientos sobre el DML y abordarlo desde nuevas perspectivas. Para ello, se
ha elaborado una revisión bibliográfica acompañada de una biblioteca software para realizar
un estudio profundo de la disciplina y estudios experimentales exhaustivos para demostrar
y validar la capacidad de las propuestas desarrolladas.

Para lograr el primer objetivo, se han recopilado los algoritmos más relevantes en el ám-
bito del DML, para los cuales se ha realizado un análisis exhaustivo. Esto ha concluido con
la elaboración de una biblioteca software que integra a estos algoritmos en un mismo en-
torno homogéneo. Complementando a esta biblioteca, se ha desarrollado un tutorial que
detalla tanto los fundamentos del DML como de los algoritmos desarrollados, y los compa-
ra experimentalmente. El análisis de los algoritmos ha permitido identificar las fortalezas
y debilidades de los mismos, las cuales se han aprovechado para desarrollar el resto de pro-
puestas de esta tesis.

El segundo objetivo aborda el desarrollo de algoritmos de DML en problemas singulares,
y se ha centrado principalmente en dos problemas: la clasificación ordinal y monotónica.
El primer problema se ha abordado mediante el algoritmo CMOML, que busca unificar los
espacios de entrada y salida desde una perspectiva combinatoria, considerando sucesiones
de datos en los vecindarios y una optimización heurística. CMOML ha demostrado ser do-
minante en comparación a las principales propuestas de DML para clasificación ordinal, y
ser competitivo con respecto al estado del arte de la disciplina. El segundo problema se ha
abordado con el algoritmo LM3L. Esta propuesta aborda por primera vez la clasificaciónmo-
notónica con DML, y aprovecha las propiedades de un subconjunto de matrices para respe-
tar la monotonía de los datos. LM3L ha demostrado ser capaz de mejorar a los clasificadores
basados en distancias con la distancia euclídea, tanto monotónicos como no monotónicos,
cuando se combina con el clasificador adecuado.
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El tercer objetivo se centra en un área candente en la actualidad: el aprendizaje de distan-
cias profundo, el cual ha crecido en popularidad junto con el auge del aprendizaje profun-
do, debido a su capacidad de complementarlo en problemas donde los modelos clásicos de
aprendizaje profundo tienenmás dificultades. En particular, en este objetivo se ha abordado
el problema de FSL aplicado a la extracción de relaciones, un problema de gran interés en el
procesamiento del lenguaje natural. Para ello, se han introducido mejoras relevantes en las
principales propuestas de FSL para RE, inspiradas en pre-entrenamiento contrastivo junto
con una red de prototipos. Estas mejoras, consistentes en el refinamiento de la función de
pérdida para considerar información adicional, la modificación del muestreo de ejemplos
para entrenar con ejemplos más fiables y la introducción de DML adicional para optimizar
los vectores de atributos obtenidos por el modelo, han supuesto actualmente mejoras con
respecto al modelo base, y se espera conseguir mejoras más significativas perfeccionando
estas propuestas.

Por último, los dos últimos objetivos abordan el estudio de la explicabilidad en los mode-
los desarrollados y la aplicación de los modelos a problemas reales, respectivamente. El pri-
mero de ellos se ha abordado sobre CMOML. El análisis de la explicabilidad de este modelo
ha permitido concluir que, cuando es combinado con el clasificador 𝑘-NN, forman conjun-
tamente un sistema CBR en el que los vecinos que se consideran en el modelo para tomar las
decisiones dejan a la vista rasgos más identificativos que son más cercanos a los que podría
considerar un humano para tomar la misma decisión. En cuanto al último objetivo, este
se está abordando en la propuesta para el problema de FSL para extracción de relaciones
abordado con técnicas de aprendizaje de distancias profundo en el tercer objetivo.
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8.3 Future work

The results of this thesis open up new avenues for research in DML and suggest new chal-
lenges in the discipline that may be of interest, both in the field of ML and data mining
and for the scientific community in general. This section presents these lines of work and
challenges that have emerged throughout the development of this thesis.

• DML and big datasets. Although this problem has been mitigated with the rise of
deep metric learning, shallow DML methods, which are mostly based on the com-
putation of the distance matrix, are still not scalable to big datasets in terms of both
number of samples and features. Feature selection, dimensionality reduction, big data
and parallelization techniques provide a lot of possibilities to improve the efficiency
of the most computationally expensive shallow DML methods.
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• DML and trustworthy AI. The boom in AI technologies in recent years has made
it necessary to consider how it should be regulated in order to avoid some of the ma-
jor risks it may pose, such as the generation and spread of misinformation, bias that
discriminate against certain groups, or the violation of data privacy. In this scenario,
the concept of trustworthy AI arises to lay the foundations for the development of a
responsible and safe AI. XAI, as a component of AI transparency, plays a key role
in trustworthy AI. XAI has already been addressed in this thesis, but there are still
open questions and lines of research in this area [AAES+23]. Some examples related
to DML are the following:

– The extension to deep metric learning models, to learn more powerful 2D or 3D
embeddings that can be easily visualized and understood by humans.

– The discriminative approach lacks the confidence measure that the recognition
approach has. Transforming similarities into a reliable confidence measure is a
challenge that remains unaddressed.

– The development of methods that provide explanations at attribute level, high-
lighting which features in the input data may be most influential in determining
the similarity between instances.

– The development of DML models where real-time decision-making is essential,
such as autonomous driving, where the model must be able to explain its deci-
sions in real time.

More generally, trustworthy AI also opens up new areas of research [DRDSC+23]
where DML can be useful. Some to highlight are:

– Fairness. Analyze the bias of a distance learned by a model to ensure that sim-
ilarity metrics are not biased against certain groups [Cho17]. Future work may
involve creating distance metrics that are sensitive to fairness constraints and
minimizing bias in similarity assessments [EFS23].

– Data privacy. Develop models that do not compromise the privacy of the
data owners. DML may be useful in several privacy preserving techniques.
For instance: in secure multi-party computation and homomorphic encryp-
tion [YPB+14], it may be useful to learn distances that preserve the relationships
between the encrypted and decrypted spaces; in differential privacy [Dwo06],
DML algorithms that are able to add controlled noise to the pairwise distances
may be of interest [HWM+20]; in federated learning [ZXB+21], it must be taken
into account that embeddings cannot be shared between different data owners—
how to learn a distance for each client and how to aggregate the distances is the
key factor to develop a federated DML model [PHY21].

– Robustness. Develop models that are robust to adversarial attacks or data per-
turbations [AM18]. In particular, similarity-based methods may help to improve
the robustness of deep models and to detect adversarial samples [MZY+19].
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– Data quality. Place a primary focus on the quality, accessibility and manage-
ment of data. The quality of the data used to train ML models is critical to
achieving high performance AI systems [ZBL+23]. Sometimes it can be even
more important than the model itself. It is therefore necessary to implement
techniques to assess the quality of the data, to preprocess it and tomitigate biases.
When synthetic data is generated (e.g., in data augmentation or generative mod-
els), it is important to validate this process to ensure that the data is trustworthy.
Distance-based algorithms, and hence DML algorithms, can play an important
role in many aspects of data quality, such as outlier and corner case detection, or
density analysis for synthetic data generation.

• Multi-domain andmulti-modal metric learning. Most of the DML literature has
a limited scope of learning a single distance function for a single dataset. However,
with the great technological advances of recent years and their implementation in a
wide variety of industries, this may fall short of addressing real-world problems. On
the one hand, it is common to find problems that involvemultiple datasets whichmay
be of different domains. This can be due to multiple data sources, varying data collec-
tion times or locations, or an insufficient amount of data of interest that needs to be
complemented by a bigger dataset from a different domain. Deep metric learning has
already started to be used in multi-domain tasks, such as the FSL problem addressed
in this thesis, but there is still a lot of work ahead in this area towards a more general
and robust multi-domain metric learning.
On the other hand, with the rise of social networks, multimedia platforms and areas
such as computer vision or NLP, there is an increasing need for models that can simul-
taneously deal with data of different natures, such as images, text, videos, numerical
data, etc. Multi-modal learning arises with the aim of generating models capable of
tackling this task. With the development of deep learning and its ability to deal with
any type of data, this problem has gained popularity [SLS+21]. The extension to deep
metric learning is the natural next step. Merging all the data of different modalities
into the same embedding space becomes key, and in turn how to train the model to
discriminate adequately taking into account all modalities also becomes key.

• Beyond distancemetric learning: general similarity learning. DML algorithms
are a subgroup of the similarity learning algorithms that require the learned similarity
functions to be distances. The analytical properties of distances such as the Euclidean,
Malahanobis or kernel distances make them suitable for many optimization tasks and
the distance properties leave no room for ambiguity about what is considered similar
and what is not. DML has captured nearly all the attention within similarity learn-
ing since the early days of the discipline. However, when comparing to the human
similarity-based reasoning, it is not clear that all the distance properties are relevant.
As an example, consider the triangle inequality, which states that two items will al-
ways be more similar than the sum of the similarities of each item with an intermedi-
ate item; it is easy to find examples where this does not apply in human reasoning. For
instance, a human may not consider a person and a horse similar at all, but they may
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consider both similar to a centaur, thus violating the triangle inequality. Therefore,
it is of interest to go deeper into more generic similarity metrics, going hand in hand
with psychology, to pave the way towards a similarity learning closer to that of human
beings.

• Metric learning towards a general purpose AI. General purpose AI represents the
goal of creating AI systems that can perform a wide range of tasks with human-level
proficiency [TMP+24]. While currently, AI systems tend to be specialized for specific
tasks, the long-term vision is to develop AI models that can adapt and generalize its
learning to new domains. Combining the insights discussed above, DML can play
an important role in the development of general purpose AIs. A sufficiently generic
similarity measure capable of effectively comparing cross-modal data may be a key
factor in the development of AI models that can address diverse tasks with limited
data, mirroring human-like problem-solving abilities. Trustworthy AI is essential for
general purpose AI as well, as the broader the AI’s capabilities, the more critical it
becomes to ensure ethical, explainable and accountable behavior.
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«If a machine is expected to be infallible, it cannot also be intelligent.».
– Alan Turing.
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Abstract
pyDML is an open-source python library that provides a wide range of dis-
tance metric learning algorithms. Distance metric learning can be useful to
improve similarity learning algorithms, such as the nearest neighbors clas-
sifier, and also has other applications, like dimensionality reduction. The
pyDML package currently provides more than 20 algorithms, which can be
categorized, according to their purpose, in: dimensionality reduction algo-
rithms, algorithms to improve nearest neighbors or nearest centroids clas-
sifiers, information theory based algorithms or kernel based algorithms,
among others. In addition, the library also provides some utilities for the
visualization of classifier regions, parameter tuning and a stats website with
the performance of the implemented algorithms. The package relies on
the scipy ecosystem, it is fully compatible with scikit-learn, and is dis-
tributed underGPLv3 license. Source code and documentation can be found
at https://github.com/jlsuarezdiaz/pyDML.

Keywords Distance Metric Learning ⋅ Classification ⋅Mahalanobis Distance ⋅Dimension-
ality ⋅ Python.

1 Introduction

The use of distances in machine learning has been present since its inception, since they
provide a similarity measure between the data. Algorithms such as the nearest neighbor
classifier [1] use that similarity measure to label new samples. Traditionally, standard dis-
tances, like the euclidean distance, have been used to measure the data similarity. However,
a standard distance may not fit our data properly, so the learning results could be non op-
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timal. Finding a distance that brings similar data as close as possible, while moving non
similar data away can significantly increase the quality of similarity based learning algo-
rithms. This is the task that distance metric learning carries out.
Distance metric learning (DML) [2, 3, 4] is a machine learning discipline with the purpose of
learning distances fromadataset. If we focus onMahalanobis distances, which are expressed
as 𝑑𝑀(𝑥, 𝑦) = √(𝑥 − 𝑦)𝑇𝑀(𝑥 − 𝑦), where 𝑀 is a positive semidefinite matrix, learning a
distance reduces to learning the matrix𝑀. This is equivalent to learning a linear map 𝐿. In
this case, 𝑀 = 𝐿𝑇𝐿 and the learned distance is equivalent to the euclidean distance after
applying the transformation 𝐿 to the data. Therefore, DML algorithms aim at optimizing
functions parameterized by a positive semidefinite (also called metric) matrix 𝑀, or by a
linear map 𝐿 [5, 6].
Several DML libraries have been developed in different programming languages. In R, we
can find the package dml [7], which proposes 11 DML algorithms. However, only 5 al-
gorithms are currently implemented and the package has not exhibited activity for some
time. In MATLAB, the DistLearn1 toolkit provides links to several DML implementations,
many of them corresponding to the original authors. However, many of the links are cur-
rently broken and the algorithms are not presented in a unified framework. In Python, the
metric-learn library [8] provides 9 different DML algorithms, mostly oriented towards
weak supervised learning, with the exception of a few classical supervised DML algorithms.
In this paper, we present the pyDML library, a Python package that gathers a wide vari-
ety of DML algorithms. The following sections describe the main features of the software,
some instructions for installation and usage, several quality standards to which the project
subscribes, and finally we expose our plans on future functionalities to be included in the
project.

2 Software Description

The pyDML library currently contains around 20 (mostly supervised) algorithms and dis-
tances that can be used to prepare a dataset for a subsequent similarity-based learning. These
algorithms, and some of their main features, are shown in Table 1.
Python, the chosen programming language, is widely used in machine learning, and has
several libraries specialized in this field. The main one is Scikit-Learn [23], an efficient
open-source library for machine learning, which relies on the Scipy2 ecosystem, which con-
tains numerical calculus libraries, such as NumPy, data processing libraries, such as Pandas,
or data visualization libraries, such as Matplotlib. Python has been also chosen because
until now it does not have an extensive library with supervised DML algorithms. pyDML tries
to fill this gap, providing numerous supervisedDML algorithms, both classic algorithms and
new proposals.

1https://www.cs.cmu.edu/~liuy/distlearn.htm
2https://www.scipy.org

2



Pub. 1 - pyDML 63

Algorithm/distance Supervised Dimensionality
reduction

Oriented to improve... Information
theory based

Kernel
version

Learns ...
(𝐿 or𝑀)

Euclidean 7 7 Just a static distance 7 7 Identity
Covariance 7 7 Just a static distance 7 7 𝑀
PCA [9] 7 3 Non-specific 7 7 𝐿
LDA [10] 3 3 Non-specific 7 7 𝐿
LLDA [11] 3 3 Non-specific 7 7 𝐿
ANMM [12] 3 3 k-NN 7 7 𝐿
LMNN [5] 3 3 k-NN 7 7 Both
NCA [13] 3 3 1-NN 7 7 𝐿
NCMML [14] 3 3 Nearest class mean 7 7 𝐿
NCMC [14] 3 3 Generalized NCM 7 7 𝐿
ITML [15] Weak 7 Non-specific 3 7 𝑀
DMLMJ [16] 3 3 k-NN 3 7 𝐿
MCML [17] 3 7 Non-specific 3 7 𝑀
LSI / MMC [18] Weak 7 Non-specific 7 7 𝑀
DML-eig [6] Weak 7 Non-specific 7 7 𝑀
LDML [19] 3 7 Non-specific 7 7 𝑀
GMML [20] Weak 7 Non-specific 7 7 𝑀
KDA [21] 3 3 Non-specific 7 3 𝐿
KLLDA [11] 3 3 Non-specific 7 3 𝐿
KANMM [12] 3 3 k-NN 7 3 𝐿
KLMNN [22] 3 3 k-NN 7 3 𝐿
KDMLMJ [16] 3 3 k-NN 3 3 𝐿

Table 1: Current algorithms/distances available in the pyDML library.

The design followed for the development of the algorithms has preserved the structure
of the algorithms of the Scikit-Learn library. In particular, the DML algorithms are
included in the group of transformation algorithms, where the transformation consists
in applying the learned linear map to the samples. Therefore, the implemented algo-
rithms inherit from a template class DML_Algorithm, which in turn inherits from the
sklearn.base.TransformerMixin3 class of the Scikit-Learn toolkit. This hierarchy al-
lows the DML algorithms to be treated as black-box transformers, which facilitates their
handling and pipelining with other Scikit-Learn algorithms. The DML_Algorithm class
provides the inherited methods fit(X,y) and transform(X), to learn the distance and
apply it to the data, following the Scikit-Learn syntax, as well as the specific methods
metric(), transformer() and metadata() that allow us to access the learned metric ma-
trix, the learned linear map or several metadata generated during the learning process, re-
spectively.
It is important to emphasize that these algorithms include different hyperparameters that
can be modified to improve the performance or to change the conditions of the learned
distances. To this end the package includes tune functions, which allow the parameters of
the DML algorithms to be easily estimated with cross validation, using the success rate of
a 𝑘-neighbors classifier or some of the metadata of the algorithms as validation metrics. A
detailed description of all hyperparameters for each algorithm can be found in the pyDML’s
full documentation4.

3http://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#
sklearn.base.TransformerMixin

4https://pydml.readthedocs.io/

3
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The pyDML library also incorporates graphical tools for the representation and evaluation
of the learned distances, which use the Matplotlib library internally. These tools allow
labeled data to be represented, along with the regions determined by any Scikit-Learn
classifier, including distance-based classifiers, for which several functionalities are provided
to easily represent the effect of different distances.

3 Installation and Usage

The pyDML library can be installed through PyPI (Pythonpackage index), using the command
pip install pyDML. It is also possible to download or clone the repository directly from
GitHub. In such a case, the installation of the software package can be done by running the
setup script available in the root directory, using the command python setup.py install.
Once installed, we can access all DML algorithms, and the additional functionalities, by
importing the desired class within the dmlmodule.
As already mentioned, the way DML algorithms are used is similar to the Scikit-Learn
transformers. Figure 1 shows a basic example. More detailed examples of all the posibilities
offered by pyDML can be found in the documentation5.

1 >>> import numpy as np # NumPy library

2 >>> from sklearn.datasets import load_iris # Iris dataset

3 >>> from dml import NCA # Loading DML algorithm

4

5 >>> # Loading dataset

6 >>> iris = load_iris()

7 >>> X = iris['data']

8 >>> y = iris['target']

9

10 >>> nca = NCA() # DML construction

11 >>> nca.fit(X,y) # Fitting algorithm

12

13 >>> # We can look at the algorithm metadata

14 >>> # after fitting it

15 >>> meta = nca.metadata()

16 >>> meta

17 {'final_expectance': 0.95771240234375,

18 'initial_expectance': 0.8380491129557291,

19 'num_iters': 3}

20 >>> # We can see the metric the algorithm has learned.

21 >>> M = nca.metric()

22 >>> M

23 array([[ 1.1909, 0.5129, -2.1581, -2.0146],

24 [ 0.5129, 1.5812, -2.1457, -2.1071],

25 [-2.1581, -2.1457, 6.4688, 5.8628],

26 [-2.0146, -2.1071, 5.8628, 6.8327]])

27 >>> # Equivalently, we can see the learned linear map.

28 >>> L = nca.transformer()

29 >>> L

30 array([[ 0.7796, -0.0191, -0.3586, -0.2399],

31 [-0.0444, 1.0074, -0.2993, -0.2581],

32 [-0.6074, -0.5728, 2.1609, 1.3521],

33 [-0.4606, -0.4875, 1.2573, 2.2091]])

34 >>> # Finally, we can obtain the transformed data,

35 >>> # or transform new data.

36 >>> Lx = nca.transform() # Transforming training set.

37 >>> Lx[:5,:]

38 array([[ 3.3590, 2.8288, -1.8073, -1.8538],

39 [ 3.2126, 2.3339, -1.3993, -1.5179],

40 [ 3.0887, 2.5743, -1.6085, -1.6490],

41 [ 2.9410, 2.4181, -1.0583, -1.3027],

42 [ 3.2791, 2.9340, -1.8038, -1.8565]])

Figure 1: Use of distance metric learning algorithms in pyDML.

4 Quality Standards

The project code follows the PEP8 style standards for Python code. Continuous integration
is performed, using the Travis CI service, to ensure back-compatibility and integrate code

5https://pydml.readthedocs.io/en/latest/examples.html

4
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in a simple way. The project adheres to Semantic Versioning and uses the Keep a Changelog
standards to make it easier to users to see the changes between each version. A thorough
documentation is provided using sphinx and numpydoc, and is hosted in the Read the Docs
platform. Finally, a stats website is also provided6, where the performance of the imple-
mented algorithms is evaluated under different conditions [2]. Those algorithms available
in other DML libraries are also compared to each other in this website.

5 Conclusions and Future Work

In this paper, we presented a new Python library that integrates a wide range of distance
metric learning algorithms, with additional functionalities such as visualization or param-
eter estimation. The pyDML library is fully compatible with Scikit-Learn and is distributed
under GPLv3 license.
As future work we plan to extend the library by adding more recent algorithms, and also
algorithms oriented to problems beyond standard classification, like ordinal classification
[24], imbalanced classification [25] or non-standard problems [26]. Wewill also explore new
ways of learning distances beyond the Mahalanobis approach, such as deep metric learning
[27].
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Abstract
Distance metric learning is a branch of machine learning that aims to learn
distances from the data, which enhances the performance of similarity-
based algorithms. This tutorial provides a theoretical background and foun-
dations on this topic and a comprehensive experimental analysis of themost-
known algorithms. We start by describing the distancemetric learning prob-
lem and its mainmathematical foundations, divided into threemain blocks:
convex analysis, matrix analysis and information theory. Then, we will
describe a representative set of the most popular distance metric learning
methods used in classification. All the algorithms studied in this paper will
be evaluated with exhaustive testing in order to analyze their capabilities
in standard classification problems, particularly considering dimensional-
ity reduction and kernelization. The results, verified by Bayesian statistical
tests, highlight a set of outstanding algorithms. Finally, we will discuss sev-
eral potential future prospects and challenges in this field. This tutorial will
serve as a starting point in the domain of distance metric learning from both
a theoretical and practical perspective.
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1 Introduction

The use of distances in machine learning has been present since its inception. Distances
provide a similarity measure between the data, so that close data will be considered simi-
lar, while remote data will be considered dissimilar. One of the most popular examples of
similarity-based learning is the well-known nearest neighbors rule for classification, where
a new sample is labeled with the majority class within its nearest neighbors in the training
set. This classifier was presented in 1967 by [1], even though this idea had already been
mentioned in earlier publications [2, 3].
Algorithms in the style of the nearest neighbors classifier are among the main motivators of
distance metric learning. These kinds of algorithms have usually used a standard distance,
like the Euclidean distance, to measure the data similarity. However, a standard distance
may ignore some important properties available in our dataset, and therefore the learning
results might be non optimal. The search for a distance that brings similar data as close as
possible, while moving non similar data away, can significantly increase the quality of these
algorithms.
During the first decade of the 21st century some of the most well-known distance metric
learning algorithms were developed, and perhaps the algorithm from [4] is responsible for
drawing attention to this concept for the first time. Since then, distance metric learning has
established itself as a promising domain in machine learning, with applications in many
fields, such asmedicine [5, 6], security [7, 8], socialmediamining [9, 10], speech recognition
[11, 12], information retrieval [13, 14], recommender systems [15, 16] and many areas of
computer vision, such as person re-identification [17, 18], kinship verification [19, 20] or
image classification [21, 22].
Although distance metric learning has proven to be an alternative to consider with small
and medium datasets [23], one of its main limitations is the treatment of large data sets,
both at the level of number of samples and at the level of number of attributes [24]. In recent
years, several alternatives have been explored in order to develop algorithms for these areas
[25, 26].
Several surveys on distance metric learning have been proposed. Among the well-known
surveys we can find the work of [27], [28], [29] and [30]. However, we must point out sev-
eral ‘loose ends’ present in these studies. On the one hand, they do not provide an in-depth
study of the theory behind distance metric learning. Such a study would help to understand
the motivation behind the mechanics that give rise to the various problems and tools in this
field. On the other hand, previous studies do not carry out enough experimental analyses
that evaluate the performance of the algorithms on sufficiently diverse datasets and circum-
stances.
In this paperwe undergo a theoretical study of supervised distancemetric learning, inwhich
we show the mathematical foundations of distance metric learning and its algorithms. We
analyze several distancemetric learning algorithms for classification, from the problems and
the objective functions they try to optimize, to themethods that lead to the solutions to these
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problems. Finally, we carry out several experiments involving all the algorithms analyzed
in this study. In our paper, we want to set ourselves apart from previous publications by
focusing on a deeper analysis of the main concepts of distance metric learning, trying to get
to its basic ideas, as well as providing an experimental framework with the most popular
metric learning algorithms. We will also discuss some opportunities for future work in this
topic.
Regarding the theoretical background of distance metric learning, we have studied three
mathematical fields that are closely related to this topic. The first one is convex analysis
[31, 32]. Convex analysis is present in many distance metric learning algorithms, as these
algorithms they try to optimize convex functions over convex sets. Some interesting proper-
ties of convex sets, as well as how to deal with constrained convex problems, will be shown
in this study. We will also see how the use of matrices is a fundamental part whenmodeling
our problem. Matrix analysis [33] will therefore be the second field studied. The third is
information theory [34], which is also used in some of the algorithms we will present.
As explained before, our work focuses on supervised distance metric learning techniques.
A large number of algorithms have been proposed over the years. These algorithms were
developed with different purposes and based on different ideas, so that they could be classi-
fied into different groups. Thus, we can find algorithms whose main goal is dimensionality
reduction [35, 36, 37], algorithms specifically oriented to improve distance based classifiers,
such as the nearest neighbors classifier [38, 39], or the nearest centroid classification [40],
and a few techniques that are based on information theory [41, 42, 43]. Some of these al-
gorithms also allow kernel versions [44, 45, 36, 42], that allow for the extension of distance
metric learning to highly dimensional spaces.
As can be seen in the experiments, we compare all the studied algorithms using up to 34 dif-
ferent datasets. In order to do so, we define different settings to explore their performance
and capabilities when considering maximum dimension, centroid-based methods, differ-
ent kernels and dimensionality reduction. Bayesian statistical tests are used to assess the
significant differences among algorithms [46].
In summary, the aims of this tutorial are:

• To know and understand the discipline of distance metric learning and its founda-
tions.

• To gather and study the foundations of themain supervised distancemetric learning
algorithms.

• To provide experiments to evaluate the performance of the studied algorithms under
several case studies and to analyze the results obtained. The code of the algorithms
is available in the Python library pydml [47].

So as to avoid overloading the paperwith a large theoretical content a publicly downloadable
theoretical supplement is provided as appendix of the current public draft in ArXiv [48]. In
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this document Appendix B presents in a rigorous and detailed manner the mathematical
foundations of distance metric learning, structured in the three blocks discussed previously,
and Appendix C provides a detailed explanation of the algorithms.
Our paper is organized as follows. Section 2 introduces the distance metric problem and its
mathematical foundations, explains the family of distances we will work with and shows
several examples and applications. Section 3 discusses all the distance metric learning al-
gorithms chosen for this tutorial. Section 4 describes the experiments done to evaluate the
performance of the algorithms and shows the obtained results. Finally, Sections 5 and 6 con-
clude the paper by indicating possible future lines of research in this area and summarizing
the work done, respectively. We also provide a glossary of terms at the end of the document
(A) with the acronyms used in the paper.

2 Distance Metric Learning andMathematical Foundations

In this section we will introduce the distance metric learning problem. To begin with, we
will provide reasons to support the distance metric learning problem in Section 2.1. Then,
wewill go over the concept of distance, with special emphasis on theMahalanobis distances,
which will allow us to model our problem (Section 2.2). Once these concepts are defined, in
Section 2.3 we will describe the distance metric learning problem, explaining what it con-
sists of, how it is handled in the supervised case and how it is modeled so that it can be
treated computationally. To understand the basics of distance metric learning we provide a
summary of the mathematical foundations underlying this field in Section 2.4. These foun-
dations support the theoretical description of this discipline as well as the numerous dis-
tance metric learning algorithms that will be discussed in Section 3 and [48, Appendix C].
The mathematical background is then developed extensively in [48, Appendix B]. Finally,
we will finish with Section 2.5 by detailing some of the uses of distance metric learning in
machine learning.

2.1 Distance Metric Learning: Why andWhat For?

Similarity-based learning algorithms are among the earliest used in the field of machine
learning. They are inspired by one of the most important components in many human cog-
nitive processes: the ability to detect similarities between different objects. This ability has
been adapted to machine learning by designing algorithms that learn from a dataset accord-
ing to the similarities present between the data. These algorithms are present in most areas
of machine learning, such as classification and regression, with the 𝑘-Nearest Neighbors
(𝑘-NN) rule [1]; in clustering, with the 𝑘-means algorithm [49]; in recommender systems,
with collaborative approaches based also on nearest neighbors [50]; in semi-supervised
learning, to construct the graph representations [51]; in some kernel methods such as the
radial basis functions [52], and many more.
Tomeasure the similarity between data, it is necessary to introduce a distance, which allows
us to establish a measure whereby it is possible to determine when a pair of samples is more
similar than another pair of samples. However, there is an infinite number of distances we
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can work with, and not all of them will adapt properly to our data. Therefore, the choice of
an adequate distance is a crucial element in this type of algorithm.
Distance metric learning arises to meet this need, providing algorithms that are capable of
searching for distances that are able to capture features or relationships hidden in our data,
which possibly a standard distance, like the Euclidean distance, would not have been able to
discover. From another perspective, distance metric learning can also be seen as the miss-
ing training step in many similarity-based algorithms, such as the lazy nearest-neighbor ap-
proaches. The combination of both the distance learning algorithms and the distance-based
learners allows us to build more complete learning algorithms with greater capabilities to
extract information of interest from our data.
Choosing an appropriate distance learned from the data has proven to be able to greatly
improve the results of distance-based algorithms in many of the areas mentioned above. In
addition to its potential when adhering to these learners, a good distance allows data to be
transformed to facilitate their analysis, with mechanisms such as dimensionality reduction
or axes selection, as we will discuss later.

2.2 Mahalanobis Distances

We will start by reviewing the concept of distance and some of its properties.
Definition 1. Let 𝑋 be a non-empty set. A distance ormetric over 𝑋 is a map 𝑑∶ 𝑋 ×𝑋 → ℝ
that satisfies the following properties:

1. Coincidence: 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦, for every 𝑥, 𝑦 ∈ 𝑋 .

2. Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), for every 𝑥, 𝑦 ∈ 𝑋 .

3. Triangle inequality: 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧), for every 𝑥, 𝑦, 𝑧 ∈ 𝑋 .

The ordered pair (𝑋, 𝑑) is called ametric space.

The coincidence property stated above will not be of importance to us. That is why we
will also consider mappings known as pseudodistances, which only require that 𝑑(𝑥, 𝑥) =
0, instead of the coincidence property. In fact, pseudodistances are strongly related with
dimensionality reduction, which is an important application of distance metric learning.
From now on, when we talk about distances, we will be considering proper distances as
well as pseudodistances.
Remark. As an immediate consequence of the definition, we have the following additional
properties of distances:

4. Non negativity: 𝑑(𝑥, 𝑦) ≥ 0 for every 𝑥, 𝑦 ∈ 𝑋 .

5. Reverse triangle inequality: |𝑑(𝑥, 𝑦) − 𝑑(𝑦, 𝑧)| ≤ 𝑑(𝑥, 𝑧) for every 𝑥, 𝑦, 𝑧 ∈ 𝑋 .

6. Generalized triangle inequality: 𝑑(𝑥1, 𝑥𝑛) ≤ ∑𝑛−1
𝑖=1 𝑑(𝑥𝑖, 𝑥𝑖+1) for 𝑥1,… , 𝑥𝑛 ∈ 𝑋 .
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Whenwework in the 𝑑-dimensional Euclidean space, a family of distances become very use-
ful in the computing field. These distances are parameterized by positive semidefinite ma-
trices and are known asMahalanobis distances. In what follows, we will refer toℳ𝑑′×𝑑(ℝ)
(resp.ℳ𝑑(ℝ)) as the set of matrices of dimension 𝑑′×𝑑 (resp. squarematrices of dimension
𝑑), and to 𝑆𝑑(ℝ)+0 as the set of positive semidefinite matrices of dimension 𝑑.
Definition 2. Let 𝑑 ∈ ℕ and𝑀 ∈ 𝑆𝑑(ℝ)+0 . TheMahalanobis distance corresponding to the
matrix𝑀 is the map 𝑑𝑀 ∶ ℝ𝑑 × ℝ𝑑 → ℝ given by

𝑑𝑀(𝑥, 𝑦) = √(𝑥 − 𝑦)𝑇𝑀(𝑥 − 𝑦), 𝑥, 𝑦 ∈ ℝ𝑑.

Mahalanobis distances come from the (semi-)dot products in ℝ𝑑 defined by the positive
semidefinite matrix 𝑀. When 𝑀 is full-rank, Mahalanobis distances are proper distances.
Otherwise, they are pseudodistances. Note that the Euclidean usual distance is a particular
example of a Mahalanobis distance, when𝑀 is the identity matrix 𝐼. Mahalanobis distances
have additional properties specific to distances over normed spaces.

7. Homogeneousness: 𝑑(𝑎𝑥, 𝑎𝑦) = |𝑎|𝑑(𝑥, 𝑦), for 𝑎 ∈ ℝ, and 𝑥, 𝑦 ∈ ℝ𝑑.

8. Translation invariance: 𝑑(𝑥, 𝑦) = 𝑑(𝑥 + 𝑧, 𝑦 + 𝑧), for 𝑥, 𝑦, 𝑧 ∈ ℝ𝑑.

Sometimes the term “Mahalanobis distance” is used to describe the squared distances of the
form 𝑑2𝑀(𝑥, 𝑦) = (𝑥 − 𝑦)𝑇𝑀(𝑥 − 𝑦). In the area of computing, it is much more efficient to
work with 𝑑2𝑀 rather than with 𝑑𝑀 , as this avoids the calculation of square roots. Although
𝑑2𝑀 is not really a distance, it keeps themost useful properties of 𝑑𝑀 from the distancemetric
learning perspective, as we will see, such as the greater or lesser closeness between different
pairs of points. That is why the use of the term “Mahalanobis distance” for both 𝑑𝑀 and 𝑑2𝑀
is quite widespread.
To end this section, we return to the issue of dimensionality reduction that we mentioned
when introducing the concept of pseudodistance. When we work with a pseudodistance 𝜎
over a set 𝑋 , it is possible to define an equivalence relationship given by 𝑥 ∼ 𝑦 if and only
if 𝜎(𝑥, 𝑦) = 0, for each 𝑥, 𝑦 ∈ 𝑋 . Using this relationship we can consider the quotient space
𝑋/∼, and the map �̂�∶ 𝑋/∼×𝑋/∼ → ℝ given by �̂�([𝑥], [𝑦]) = 𝜎(𝑥, 𝑦), for each [𝑥], [𝑦] ∈ 𝑋/∼.
This map is well defined and is a distance over the quotient space. When 𝜎 is a Mahalanobis
distance over ℝ𝑑, with rank 𝑑′ < 𝑑 (we define the rank of a Mahalanobis distance as the
rank of the associated positive semidefinite matrix matrix), then the previous quotient space
becomes a vector space isomorphic to ℝ𝑑′ , and the distance �̂� is a full-rank Mahalanobis
distance overℝ𝑑′ . That is why, when we have a Mahalanobis pseudodistance onℝ𝑑, we can
view this as a proper Mahalanobis distance over a lower dimensional space, hence we have
obtained a dimensionality reduction.

2.3 Description of Distance Metric Learning

Distance Metric Learning (DML) is a machine learning discipline with the purpose of learn-
ing distances from a dataset. In its most general version, a dataset 𝒳 = {𝑥1,… , 𝑥𝑁} is avail-
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able, on which certain similarity measures between different pairs or triplets of data are
collected. These similarities are determined by the sets

𝑆 = {(𝑥𝑖, 𝑥𝑗) ∈ 𝒳 × 𝒳∶ 𝑥𝑖 and 𝑥𝑗 are similar.},
𝐷 = {(𝑥𝑖, 𝑥𝑗) ∈ 𝒳 × 𝒳∶ 𝑥𝑖 and 𝑥𝑗 are not similar.},
𝑅 = {(𝑥𝑖, 𝑥𝑗 , 𝑥𝑙) ∈ 𝒳 × 𝒳 ×𝒳∶ 𝑥𝑖 is more similar to 𝑥𝑗 than to 𝑥𝑙.}.

With these data and similarity constraints, the problem to be solved consists in finding, after
establishing a family of distances𝒟, those distances that best adapt to the criteria specified
by the similarity constraints. To do this, a certain loss function ℓ is set, and the sought-after
distances will be those that solve the optimization problem

min
𝑑∈𝒟

ℓ(𝑑, 𝑆, 𝐷, 𝑅).

When we focus on supervised learning, in addition to dataset 𝒳 we have a list of labels
𝑦1,… , 𝑦𝑁 corresponding to each sample in𝒳. The general formulation of the DML problem
is easily adapted to this new situation, just by considering the sets 𝑆 and 𝐷 as sets of pairs
of same-class samples and different-class samples, respectively. Two main approaches are
followed to establish these sets. The global DML approach considers the sets 𝑆 and 𝐷 to be

𝑆 = {(𝑥𝑖, 𝑥𝑗) ∈ 𝒳 × 𝒳∶ 𝑦𝑖 = 𝑦𝑗},
𝐷 = {(𝑥𝑖, 𝑥𝑗) ∈ 𝒳 × 𝒳∶ 𝑦𝑖 ≠ 𝑦𝑗}.

On the other hand, the local DML approach replaces the previous definition of 𝑆 with

𝑆 = {(𝑥𝑖, 𝑥𝑗) ∈ 𝒳 × 𝒳∶ 𝑦𝑖 = 𝑦𝑗 and 𝑥𝑗 ∈ 𝒰(𝑥𝑖)},

where 𝒰(𝑥𝑖) denotes a neighborhood of 𝑥𝑖, that is, a set of points that should be close to 𝑥𝑖,
which has to be established before the learning process by using some sort of prior informa-
tion, or a standard similarity measure. The set 𝐷 remains the same in the local approach,
since different-class samples are not meant to be similar in a supervised learning setting. In
addition, the set 𝑅 may be also available in both approaches by defining triplets (𝑥𝑖, 𝑥𝑗 , 𝑥𝑙)
where in general 𝑦𝑖 = 𝑦𝑗 ≠ 𝑦𝑙, and they verify certain conditions imposed on the distance
between 𝑥𝑖 and 𝑥𝑗 , as opposed to the distance between 𝑥𝑖 and 𝑥𝑙. This is the case, for exam-
ple, for impostors in the LMNN algorithm (see Section 3.2.1 and [38]). In any case, labels
have all the necessary information in the field of supervised DML. From now on we will
focus on this kind of problem.
Furthermore, focusing on the nature of the dataset, practically all of the DML theory is de-
veloped for numerical data. Although it is possible to define relevant distances for non-
numerical attributes [53, 54] and although some learning processes can be performed with
them [55, 56], the richness of the distances available to numerical features, their ability to
be parameterized computationally, and the fact that nominal data can be converted to nu-
merical variables or ordinal variables, with appropriate encoding [57], cause the relevant
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distances in this discipline to be those defined for numerical data. For this reason, from
now on, we will focus on supervised learning problems with numerical datasets.
Wewill suppose then that𝒳 ⊂ ℝ𝑑. As we saw in the previous section, for finite-dimensional
vector spaces we have the family of Mahalanobis distances,𝒟 = {𝑑𝑀 ∶ 𝑀 ∈ 𝑆𝑑(ℝ)+0 }. With
this family, we have at our disposal all the distances associated with dot products inℝ𝑑 (and
in lower dimensions). In addition, this family is determined by the set of positive semidefi-
nite matrices, and therefore, we can use these matrices, which we will call metric matrices,
to parameterize distances. In this way, the general problem adapted to supervised learning
with Mahalanobis distances can be rewritten as

min
𝑀∈𝑆𝑑(ℝ)+0

ℓ(𝑑𝑀 , (𝑥1, 𝑦1),… , (𝑥𝑁 , 𝑦𝑁)).

However, this is not the only way to parameterize this type of problem. We know, from the
matrix decomposition theorem discussed in Section 2.4 and [48, Theorem 5], that if 𝑀 ∈
𝑆𝑑(ℝ)+0 , then there is a matrix 𝐿 ∈ ℳ𝑑(ℝ) so that𝑀 = 𝐿𝑇𝐿, and this matrix is unique except
for an isometry. So, then we get

𝑑2𝑀(𝑥, 𝑦) = (𝑥 − 𝑦)𝑇𝑀(𝑥 − 𝑦) = (𝑥 − 𝑦)𝑇𝐿𝑇𝐿(𝑥 − 𝑦) = (𝐿(𝑥 − 𝑦))𝑇(𝐿(𝑥 − 𝑦)) = ‖𝐿(𝑥 − 𝑦)‖22.

Therefore, we can also parameterizeMahalanobis distances through anymatrix, although in
this case the interpretation is different. When we learn distances through positive semidef-
inite matrices we are learning a new metric over ℝ𝑑. When we learn distances with the
previous 𝐿 matrices, we are learning a linear map (given by 𝑥 ↦ 𝐿𝑥) that transforms the
data in the space, and the corresponding distance is the usual Euclidean distance after pro-
jecting the data onto the new space using the linear map. Both approaches are equivalent
thanks to the matrix decomposition theorem [48, Theorem 5].
In relation to dimensionality, it is important to note that, when the learned metric 𝑀 is
not full-rank, we are actually learning a distance over a space of lower dimension (as we
mentioned in the previous section), which allows us to reduce the dimensionality of our
dataset. The same occurs when we learn linear maps that are not full-rank. We can extend
this case and opt to learn directly linear maps defined by 𝐿 ∈ ℳ𝑑′×𝑑(ℝ), with 𝑑′ < 𝑑. In this
way, we ensure that data are directly projected into a space of dimension no greater than 𝑑′.
Both learning the metric matrix𝑀 and learning the linear transformation 𝐿, are useful ap-
proaches to model DML problems, each one with its advantages and disadvantages. For ex-
ample, parameterizations via𝑀 usually lead to convex optimization problems. In contrast,
convexity in problems parameterized by 𝐿 is not so easy to achieve. On the other hand,
parameterizations using 𝐿 make it possible to learn projections directly onto lower dimen-
sional spaces, while dimensional constraints for problems parameterized by 𝑀 are not so
easy to achieve. Let us examine these differences with simple examples.
Example. Many of the functions we will want to optimize will depend on the squared distance
defined by the metric 𝑀 or by the linear transformation 𝐿, that is, either they will have terms
of the form ‖𝑣‖2𝑀 = 𝑣𝑇𝑀𝑣, or of the form ‖𝑣‖2𝐿 = ‖𝐿𝑣‖22. Both the maps 𝑀 ↦ ‖𝑣‖2𝑀 and
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𝐿 ↦ ‖𝑣‖2𝐿 are convex (the first is actually affine). However, if we want to substract terms in this
way, we lose convexity in 𝐿, because the mapping 𝐿 ↦ −‖𝑣‖2𝐿 is no longer convex. In contrast,
the mapping𝑀 ↦ −‖𝑣‖2𝑀 is still affine and, therefore, convex.
Example. Rank constraints are not convex, and therefore we may not dispose of a projection
onto the set corresponding to those constraints, unless we learn the mapping (parameterized
by 𝐿) directly to the space with the desired dimension, as explained before. For example, if we
consider the set 𝐶 = {𝑀 ∈ 𝑆2(ℝ)+0 ∶ 𝑟(𝐴) ≤ 1}, we get 𝐴 = (2 0

0 0) ∈ 𝐶 and 𝐵 = (0 0
0 2) ∈ 𝐶.

However, (1 − 𝜆)𝐴 + 𝜆𝐵 = 𝐼 ∉ 𝐶, for 𝜆 = 1/2.

2.4 Mathematical Foundations of Distance Metric Learning

There are three main mathematical areas that support DML: convex analysis, matrix anal-
ysis and information theory. The first provides the necessary tools so that many of the algo-
rithms can address their optimization problems. Thanks to the second we can parameterize
DML, and in this way we can compute the different problems. It also provides us with some
interesting results when it comes to solving certain problems related to dimensionality re-
duction. Finally, the third field provides us with concepts and tools that are very useful for
designing algorithms that use probability distributions associated with the data.

2.4.1 Convex Analysis

Let us begin with convex analysis. One of the properties of convex sets that makes convex
analysis of great interest in DML is known as the convex projection theorem [48, Theorem 2],
which ensures that for any non-empty convex closed set 𝐾 inℝ𝑑 and for every point 𝑥 ∈ ℝ𝑑

there is a single point 𝑥0 ∈ 𝐾 for which the distance from 𝑥 to 𝐾 is the same to the distance
from 𝑥 to 𝑥0. That is, the distance from 𝑥 to 𝐾 is materialized in the point 𝑥0, which is called
the projection of 𝑥 to 𝐾.
The existence of a projection mapping onto any closed and convex set in ℝ𝑑 is fundamental
when optimizing convex functions with convex constraints, which are frequent, in particu-
lar, in many DML algorithms. Let us first discuss optimization mechanisms when working
with unconstrained differentiable functions, which, although they do not strictly take part
in convex analysis, are also present in some DML algorithms and are the basis for convex
optimization mechanisms. In these cases, the most popular techniques are the well-known
gradient descent methods, which are iterative methods. The basic idea of gradient descent
methods is to move in the direction of the gradient of the objective function in order to opti-
mize it. We show in [48, Appendix B.1.2] that, indeed, small displacements in the gradient
direction guarantee the improvement of the objective function, proving the effectiveness of
these methods.
Returning to the constrained case, we can see that gradient descent methods are no longer
valid, since the displacement in the gradient direction can no longer fulfill the constraints.
However, we will show that, if after the gradient step we project the obtained point onto the
convex set determined by the constraints, the combination of both movements contributes
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to improving the value of the objective function as long as the initial gradient step is small
enough. This extension of gradient descent to the constrained convex case is known as the
projected gradient method. There are also other approaches, such as the penalty methods,
which allow these problems to be handled by transforming the constrained objective func-
tion into a new unconstrained objective function in which the violations of the previous
constraints are converted into penalties that worsen the value of the new objective function
[58]. They will not usually, however, be preferred in the matrix problems we will be dealing
with, as they may be computationally expensive and difficult to adapt [59].
Finally, we must highlight other tools of interest for the optimization problems to be stud-
ied. Firstly, when working with convex problems with multiple constraints, the projections
on each individual constraint are often known, but the projection onto the set determined
by all the constraints is not. With the method known as the iterated projections method
[48, Appendix B.1.2] we can approach this projection by subsequently projecting onto each
of the individual constraints until convergence (which is guaranteed) is obtained. Lastly,
convex functions that are not differentiable everywhere can still be optimized following the
approaches discussed here, as they admit sub-gradients at every point. Sub-gradient descent
methods [48, Appendix B.1.2] can work in the same way as gradient descent methods and
can therefore be appliedwith convex functions thatmay not be differentiable at some points.

2.4.2 Matrix Analysis

As we have already seen, matrices are a key element in DML. There are several results
that are essential for the development of the DML theory and its algorithms. The first of
these is thematrix decomposition theorem [48, Theorem 5], which was alreadymentioned in
Section 2.3. This theorem states that for any positive matrix 𝑀 ∈ 𝑆𝑑(ℝ)+0 there is a matrix
𝐿 ∈ ℳ𝑑(ℝ) so that𝑀 = 𝐿𝑇𝐿 and 𝐿 is unique except for an isometry. This result allows us to
approach DML from the two perspectives (learning the metric𝑀 or learning the linear map
𝐿) already discussed in Section 2.3.
An important aspect when designing DML algorithms is the geometric manipulation of the
matrices (for learning both𝑀 and 𝐿). Observe that to be able to talk about the convex analy-
sis concepts discussed previously over the set of matrices, we first need to establish an inner
product over them. The Frobenius inner product allows us to identify matrices as vectors
where we add the matrix rows one after the other, and then compute the usual vectorial in-
ner product with these vectors. With the Frobenius product we convert the matrices set in
a Hilbert space, and therefore can apply the convex analysis theory studied in the previous
section.
Staying on this subject, we have to highlight a case study of particular interest. We will see
many situations where we want to optimize a convex function defined on a matrix space,
with the restriction that the variable is positive semidefinite. These optimization problems
are convex and are usually called semidefinite programming problems. We can optimize
these objective functions using the projected gradient descent method. The semidefinite
projection theorem [48, Theorem 4] states that we can compute the projection of a matrix
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onto the positive semidefinite cone by performing an eigenvalue decomposition, nullifying
the negative eigenvalues and recomposing the matrix with the new eigenvalues. Therefore,
we know how to project onto the constraint set and consequently we can apply the projected
gradient method.
Finally, we will see that certain algorithms, especially those associated with dimensionality
reduction, use optimization problems with similar structures. These problems involve one
ormore symmetricmatrices and the objective function is obtained as a trace after performing
certain operationswith thesematrices. This is, for instance, the case of the objective function
of the well-known principal components analysis, which can be written as

max
𝐿∈ℳ𝑑′×𝑑(ℝ)

tr (𝐿𝐴𝐿𝑇)

s.t.: 𝐿𝐿𝑇 = 𝐼,

where 𝐴 is a symmetric matrix of dimension 𝑑. These problems have the property that they
can be optimized without using gradient methods, since an optimum can be built by taking
the eigenvectors associated with the largest eigenvalues of thematrices involved in the prob-
lem (in the case described here, the eigenvectors of 𝐴). In [48, Appendix B.2.3] we present
these problems in more detail and show how their solution is obtained.

2.4.3 Information Theory

Information theory is a branch of mathematics and computer theory with the purpose of
establishing a rigorous measure to quantify the information and disorder found in a com-
munication message. It has been applied in most science and engineering fields. In DML,
information theory is used in several algorithms to measure the closeness between prob-
ability distributions. Then, these algorithms try to find a distance metric for which these
probability distributions are as close as possible or as far as possible, depending on what
distributions are defined. The measures used in this area, unlike distances, only require the
properties of non-negativity and coincidence, and are called divergences. We will use two
different divergences throughout this study:

• The relative entropy or the Kullback-Leibler divergence, defined for probability distri-
butions 𝑝 and 𝑞, and 𝑋 the random variable corresponding to 𝑝 as

KL(𝑝‖𝑞) = 𝔼𝑝 [log
𝑝(𝑋)
𝑞(𝑋) ] .

• The Jeffrey divergence or the symmetric relative entropy, defined for 𝑝, 𝑞 and 𝑋 in the
same conditions as above, as

JF(𝑝‖𝑞) = KL(𝑝‖𝑞) + KL(𝑞‖𝑝).

The key fact that makes divergences very useful in DML is that, when the distributions in-
volved are multivariate gaussian, these divergences can be expressed in terms of matrix di-
vergences, which give rise to problems that can be dealt with quite effectively using the tools
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described in this section. In [48, Appendix B.3] we present the matrix expressions obtained
for the Kullback-Leibler and the Jeffrey divergences for the most remarkable cases.

2.5 Use Cases in Machine Learning

This section describes some of the most prominent uses of DML in machine learning, illus-
trated with several examples.

• Improve the performance of distance-based classifiers. This is one of themain
purposes of DML. Using such learning, a distance that fits well with the dataset and
the classifier can be found, improving the performance of the classifier [38, 39]. An
example is shown in Figure 1.

Figure 1: Suppose we have a dataset in the plane, where data can belong to three different
classes, whose regions are defined by parallel lines. Suppose that we want to classify new
samples using the one nearest neighbor classifier. If we use Euclidean distance, we would
obtain the classification regions shown in the image on the left, because there is a greater
separation between each sample in class B and class C than there is between the regions.
However, if we learn an adequate distance and try to classify with the nearest neighbor clas-
sifier again, we obtain much more effective classification regions, as shown in the center
image. Finally, as we have seen, learning a metric is equivalent to learning a linear map and
to use Euclidean distance in the transformed space. This is shown in the right figure. We
can also observe that data are being projected, except for precision errors, onto a line, thus
we are also reducing the dimensionality of the dataset.

• Dimensionality reduction. As we have already commented, learning a low-rank
metric implies a dimensionality reduction on the dataset we are working with. This
dimensionality reduction provides numerous advantages, such as a reduction in the
computational cost, both in space and time, of the algorithms that will be used later,
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or the removal of the possible noise introduced when picking up the data. In ad-
dition, some distance-based classifiers are exposed to a problem called curse of di-
mensionality (see, for example, [60], sec. 19.2.2). By reducing the dimension of the
dataset, this problem also becomes less serious. Finally, if deemed necessary, pro-
jections onto dimension 1, 2 and 3 would allow us to obtain visual representations
of our data, as shown in Figure 2. In general, many real-world problems arise with
a high dimensionality, and need a dimensionality reduction to be handled properly.

Figure 2: ’Digits’ dataset consists of 1797 examples. Each of them consists of a vector with 64
attributes, representing intensity values on an 8x8 image. The examples belong to 10 differ-
ent classes, each of them representing the numbers from 0 to 9. By learning an appropriate
transformation we are able to project most of the classes on the plane, so that we can clearly
perceive the differentiated regions associated with each of the classes.

• Axes selection and data rearrangement. Closely related to dimensionality re-
duction, this application is a result of algorithms that learn transformations which
allow the coordinate axes to be moved (or selected according to the dimension), so
that in the new coordinate system the vectors concentrate certain measures of infor-
mation on their first components [61]. An example is shown in Figure 3.

• Improve the performance of clustering algorithms. Many of the clustering al-
gorithms use a distance to measure the closeness between data, and thus establish
the clusters so that data in the same cluster are considered close for that distance.
Sometimes, although we do not know the ideal groupings of the data or the number
of clusters to establish, we can know that certain pairs of points must be in the same
cluster and that other specific pairs must be in different clusters [4]. This happens
in numerous problems, for example, when clustering web documents [62]. These
documents have a lot of additional information, such as links between documents,
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Figure 3: The dataset in the left figure seems to concentrate most of its information on the
diagonal line that links the lower left and upper right corners. By learning an appropriate
transformation, we can get that direction to fall on the horizontal axis, as shown in the center
image. As a result, the first coordinate of the vectors in this new basis concentrates a large
part of the variability of the vector. In addition, it seems reasonable to think that the values
introduced by the vertical coordinate might be due to noise, and so, we can even just keep
the first component, as shown in the right image.

which can be included as similarity constraints. Many clustering algorithms are par-
ticularly sensitive to the distance used, although many also depend heavily on the
parameters with which they are initialized [63, 64]. It is therefore important to seek
a balance or an appropriate aggregation between these two components. In any case,
the parameter initialization is beyond the scope of this paper.

• Semi-supervised learning. Semi-supervised learning is a learningmodel inwhich
there is one set of labeled data and another set (generally much larger) of unlabeled
data. Both datasets are intended to learn a model that allows new data to be labeled.
Semi-supervised learning arises from the fact that in many situations collecting un-
labeled data is relatively straightforward, but assigning labels can require a super-
visor to assign them manually, which may not be feasible. In contrast, when a lot
of unlabeled data is used along with a small amount of labeled data, it is possible to
improve learning outcomes considerably, as exemplified in Figure 4. Many of these
techniques consist of constructing a graphwithweighted edges from the data, where
the value of the edges depends on the distances between the data. From this graph
we try to infer the labels of thewhole dataset, using different propagation algorithms
[51]. In the construction of the graph, the choice of a suitable distance is important,
thus DML comes into play [65].
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Figure 4: Learning with only supervised information (left) versus learning with all unsuper-
vised information (right).

From the applications we have seen, we can conclude that DML can be viewed as a pre-
processing step for many distance-based learning algorithms. The algorithms analyzed in
our work focus on the first three applications of the above enumeration. It should be noted
that, although the fields above are those where DML has traditionally been used, today, new
prospects and challenges for DML are being considered. They will be discussed in Section
5.

3 Algorithms for Distance Metric Learning

This section introduces some of the most popular techniques currently being used in super-
vised DML. Due to space issues, the section will give a brief description of each of the algo-
rithms, while a detailed description can be found in [48, Appendix C], where the problems
the algorithms try to optimize are analyzed, together with their mathematical foundations
and the techniques used to solve them.
Table 1 shows the algorithms studied throughout this work, including name, references and
a short description. These algorithms will be empirically analyzed in the next section. This
study is not intended to be exhaustive and therefore only some of the most popular algo-
rithms have been selected for the theoretical study and the subsequent experimental analy-
sis.
Wewill nowprovide a brief introduction to these algorithms. According to themain purpose
of each algorithm, we can group them into different categories: dimensionality reduction
techniques (Section 3.1), algorithms directed at improving the nearest neighbors classifiers
(Section 3.2), algorithms directed at improving the nearest centroid classifiers (Section 3.3),
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Name References Appendix
section [48]

Description

PCA [66] C.1.1 A dimensionality reduction technique that ob-
tains directions maximizing variance. Although
not supervised, it is important to allowdimension-
ality reduction in other algorithms that are not
able to do so on their own.

LDA [35] C.1.2 A dimensionality reduction technique that ob-
tains direction maximizing a ratio involving
between-class variances and within-class vari-
ances.

ANMM [36] C.1.3 A dimensionality reduction technique that aims
at optimizing an average neighborhood margin
between same-class neighbors and different-class
neighbors, for each of the samples.

LMNN [38] C.2.1 An algorithm aimed at improving the accuracy of
the 𝑘-neighbors classifier. It tries to optimize a
two-term error function that penalizes, on the one
hand, large distance between each sample and its
target neighbors, and on the other hand, small dis-
tances between different-class samples.

NCA [39] C.2.2 An algorithm aimed at improving the accuracy
of the 𝑘-neighbors classifier, by optimizing the
expected leave-one-out accuracy for the nearest
neighbor classification.

NCMML [40] C.3.1 An algorithm aimed at improving the accuracy of
the nearest class mean classifier, by optimizing a
log-likelihood for the labeled data in the training
set.

NCMC [40] C.3.2 A generalization of the NCMML algorithm aimed
at improving nearest centroids classifiers that al-
low multiple centroids per class.

ITML [41] C.4.1 An information theory based technique that aims
at minimizing the Kullback-Leibler divergence
with respect to an initial gaussian distribution, but
while keeping certain similarity constraints be-
tween data.

DMLMJ [42] C.4.2 An information theory based technique that aims
atmaximizing the Jeffrey divergence between two
distributions, associated to similar and dissimilar
points, respectively.

MCML [43] C.4.3 An information theory based technique that tries
to collapse same-class points in a single point, as
far as possible from the other classes collapsing
points.

LSI [4] C.5.1 ADML algorithm that globally minimizes the dis-
tances between same-class points, while fulfilling
minimum-distance constraints for different-class
points.

DML-eig [67] C.5.2 A DML algorithm similar to LSI that offers a dif-
ferent resolution method based on eigenvalue op-
timization.

LDML [68] C.5.3 A probabilistic approach for DML based on the lo-
gistic function.

KLMNN [38]; [44] C.6.1 The kernel version of LMNN.
KANMM [36] C.6.2 The kernel version of ANMM.
KDMLMJ [42] C.6.3 The kernel version of DMLMJ.
KDA [45] C.6.4 The kernel version of LDA.

Table 1: Description of the DML algorithms analyzed in this study.
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or algorithms based on information theory (Section 3.4). These categories are not necessar-
ily exclusive, but we have considered each of the algorithms in the category associated with
their dominant purpose. We also introduce, in Section 3.5 several algorithms with less spe-
cific goals, and finally, in Section 3.6, the kernel versions for some of the algorithms studied.
We will explain the problems that each of these techniques try to solve. For a more detailed
description of each algorithm, the reader can refer to the corresponding section of the ap-
pendix supplement [48], as shown in Table 1.

3.1 Dimensionality Reduction Techniques

Dimensionality reduction techniques try to learn a distance by searching a linear transfor-
mation from the dataset space to a lower dimensional Euclidean space. We will describe the
algorithms PCA [66], LDA [35] and ANMM [36].

3.1.1 Principal Components Analysis (PCA)

PCA [66] is one of the most popular dimensionality reduction techniques in unsupervised
DML. Although PCA is an unsupervised learning algorithm, it is necessary to talk about
it in our paper, firstly because of its great relevance, and more particularly, because when
a supervised DML algorithm does not allow a dimensionality reduction, PCA can be first
applied to the data in order to be able to use the algorithm later in the lower dimensional
space.
The purpose of PCA is to learn a linear transformation from the original spaceℝ𝑑 to a lower
dimensional space ℝ𝑑′ for which the loss when recomposing the data in the original space
is minimized. This has been proven to be equivalent to iteratively finding orthogonal direc-
tions forwhich the projected variance of the dataset ismaximized. The linear transformation
is then the projection onto these directions. The optimization problem can be formulated as

max
𝐿∈ℳ𝑑′×𝑑(ℝ)

𝐿𝐿𝑇=𝐼

tr (𝐿Σ𝐿𝑇) ,

where Σ is, except for a constant, the covariance matrix of 𝒳, and tr is the trace operator.
The solution to this problem can be obtained by taking as the rows of 𝐿 the eigenvectors of
Σ associated with its largest eigenvalues.

3.1.2 Linear Discriminant Analysis (LDA)

LDA [35] is a classical DML technique with the purpose of learning a projection matrix
that maximizes the separation between classes in the projected space usingwithin-class and
between-class variances. It follows a scheme similar to the one proposed by PCA, but in this
case it takes the supervised information provided by the labels into account.
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The optimization problem of LDA is formulated as

max
𝐿∈ℳ𝑑′×𝑑(ℝ)

tr ((𝐿𝑆𝑤𝐿𝑇)−1(𝐿𝑆𝑏𝐿𝑇)) ,

where 𝑆𝑏 and 𝑆𝑤 are, respectively, the between-class andwithin-class scattermatrices, which
are defined as

𝑆𝑏 = ∑
𝑐∈𝒞

𝑁𝑐(𝜇𝑐 − 𝜇)(𝜇𝑐 − 𝜇)𝑇 ,

𝑆𝑤 = ∑
𝑐∈𝒞

∑
𝑖∈𝒞𝑐

(𝑥𝑖 − 𝜇𝑐)(𝑥𝑖 − 𝜇𝑐)𝑇 ,

where 𝒞 is the set of all the labels, 𝒞𝑐 is the set of indices 𝑖 for which 𝑦𝑖 = 𝑐 ∈ 𝒞, 𝑁𝑐 is the
number of samples in𝒳 with class 𝑐, 𝜇𝑐 is the mean of the training samples in class 𝑐 and 𝜇
is the mean of the whole training set. The solution to this problem can be found by taking
the eigenvectors of 𝑆−1𝑤 𝑆𝑏 associated with its largest eigenvalues to be the rows of 𝐿.

3.1.3 Average NeighborhoodMargin Maximization (ANMM)

ANMM [36] is another DML technique specifically oriented to dimensionality reduction
that tries to solve some of the limitations of PCA and LDA.
The objective of ANMM is to learn a linear transformation 𝐿 ∈ ℳ𝑑′×𝑑(ℝ), with 𝑑′ ≤ 𝑑 that
maximizes an average neighborhood margin defined, for each sample, by the difference be-
tween its average distance to its nearest neighbors of different class and the average distance
to its nearest neighbors of same class.
If we consider the set𝒩𝑜

𝑖 of the 𝜉 samples in 𝒳 nearest to 𝑥𝑖 and with the same class as 𝑥𝑖,
and the set 𝒩𝑒

𝑖 of the 𝜁 samples in 𝒳 nearest to 𝑥𝑖 and with a different class to 𝑥𝑖, we can
express the global average neighborhood margin, for the distance defined by 𝐿, as

𝛾𝐿 =
𝑁
∑
𝑖=1

( ∑
𝑘∶ 𝑥𝑘∈𝒩𝑒

𝑖

‖𝐿𝑥𝑖 − 𝐿𝑥𝑘‖2
|𝒩𝑒

𝑖 |
− ∑

𝑗 ∶ 𝑥𝑗∈𝒩𝑜
𝑖

‖𝐿𝑥𝑖 − 𝐿𝑥𝑗‖2
|𝒩𝑜

𝑖 |
) .

In this expression, each summand is associated with each sample 𝑥𝑖 in the training set,
and the positive term inside each summand represents the average distance to its 𝜁 near-
est neighbors of different classes, while the negative term represents the average distance to
its 𝜉 nearest neighbors of the same class. Therefore, these differences constitute the average
neighborhood margins for each sample 𝑥𝑖. The global margin 𝛾𝐿 can be expressed in terms
of a scatterness matrix containing the information related to different-class neighbors, and a
compactness matrix that stores the information corresponding to the same-class neighbors,
that is,

𝛾𝐿 = tr(𝐿(𝑆 − 𝐶)𝐿𝑇),
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where 𝑆 and 𝐶 are, respectively, the scatterness and compactnessmatrices, defined as

𝑆 = ∑
𝑖

∑
𝑘∶ 𝑥𝑘∈𝒩𝑒

𝑖

(𝑥𝑖 − 𝑥𝑘)(𝑥𝑖 − 𝑥𝑘)𝑇
|𝒩𝑒

𝑖 |

𝐶 = ∑
𝑖

∑
𝑗 ∶ 𝑥𝑗∈𝒩𝑜

𝑖

(𝑥𝑖 − 𝑥𝑗)(𝑥𝑖 − 𝑥𝑗)𝑇
|𝒩𝑜

𝑖 |
.

If we impose the scaling restriction 𝐿𝐿𝑇 = 𝐼 (scaling would increase the average neighbor-
hood margin indefinitely), the average neighborhood margin can be maximized by taking
the eigenvectors of 𝑆 − 𝐶 associated with its largest eigenvalues to be the rows of 𝐿.

3.2 Algorithms to Improve Nearest Neighbors Classifiers

One of themain applications of DML is to improve other distance based learning algorithms.
Since the nearest neighbors classifier is one of the most popular distance based classifiers
many DML algorithms are designed to improve this classifier, as is the case with LMNN [38]
and NCA [39].

3.2.1 Large Margin Nearest Neighbors (LMNN)

LMNN [38] is aDMLalgorithmaimed specifically at improving the accuracy of the 𝑘-nearest
neighbors classifier.
LMNN tries to bring each sample as close as possible to its target neighbors, which are 𝑘 pre-
selected same-class samples requested to become the nearest neighbors of the sample, while
trying to prevent samples from other classes from invading a margin defined by those target
neighbors. This setup allows the algorithm to locally separate the classes in an optimal way
for 𝑘-neighbors classification.
Assuming the sets of target neighbors are chosen (usually they are taken as the nearest
neighbors for Euclidean distance), the error function that LMNN minimizes is a two-term
function. The first term is the target neighbors pulling term, given by

𝜀𝑝𝑢𝑙𝑙(𝑀) =
𝑁
∑
𝑖=1

∑
𝑗⇝𝑖

𝑑𝑀(𝑥𝑖, 𝑥𝑗)2,

where 𝑑𝑀 is the Mahalanobis distance corresponding to 𝑀 ∈ 𝑆𝑑(ℝ)+0 and 𝑗 ⇝ 𝑖 iff 𝑥𝑗 is a
target neighbor of 𝑥𝑖. The second term is the impostors pushing term, given by

𝜀𝑝𝑢𝑠ℎ(𝑀) =
𝑁
∑
𝑖=1

∑
𝑗⇝𝑖

𝑁
∑
𝑙=1
(1 − 𝑦𝑖𝑙)[1 + 𝑑𝑀(𝑥𝑖, 𝑥𝑗)2 − 𝑑𝑀(𝑥𝑖, 𝑥𝑙)2]+,

where 𝑦𝑖𝑙 = 1 if 𝑦𝑖 = 𝑦𝑙 and 0 otherwise, and [⋅]+ is defined as [𝑧]+ = max{𝑧, 0}. Finally, the
objective function is given by

𝜀(𝑀) = (1 − 𝜇)𝜀𝑝𝑢𝑙𝑙(𝑀) + 𝜇𝜀𝑝𝑢𝑠ℎ(𝑀), 𝜇 ∈]0, 1[.
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This function can be optimized using semidefinite programming. It is possible to optimize
this function in terms of 𝐿, using gradient methods, as well. By optimizing in terms of𝑀 we
gain convexity in the problem, while by optimizing in terms of 𝐿 we can use the algorithm
to force a dimensionality reduction.

3.2.2 Neighborhood Components Analysis (NCA)

NCA [39] is another DML algorithm aimed specifically at improving the accuracy of the
nearest neighbors classifiers. It is designed is to learn a linear transformation with the goal
of minimizing the leave-one-out error expected by the nearest neighbor classification.
To do this, we define the probability that a sample 𝑥𝑖 ∈ 𝒳 has 𝑥𝑗 ∈ 𝒳 as its nearest neighbor
for the distance defined by 𝐿 ∈ ℳ𝑑(ℝ), 𝑝𝐿𝑖𝑗 , as the softmax

𝑝𝐿𝑖𝑗 =
exp (−‖𝐿𝑥𝑖 − 𝐿𝑥𝑗‖2)
∑
𝑘≠𝑖

exp (−‖𝐿𝑥𝑖 − 𝐿𝑥𝑘‖2)
(𝑗 ≠ 𝑖), 𝑝𝐿𝑖𝑖 = 0.

The expected number of correctly classified samples according to this probability is obtained
as

𝑓(𝐿) =
𝑁
∑
𝑖=1

∑
𝑗∈𝐶𝑖

𝑝𝐿𝑖𝑗 ,

where 𝐶𝑖 is the set of indices 𝑗 so that 𝑦𝑗 = 𝑦𝑖. The function 𝑓 can be maximized using gra-
dient methods, and the distance resulting from this optimization is the one that minimizes
the expected leave-one-out error, and therefore, the one that NCA learns.

3.3 Algorithms to Improve Nearest Centroids Classifiers

Apart from the nearest neighbors classifiers, other distance-based classifiers of interest are
the so-called nearest centroid classifiers. These classifiers obtain a set of centroids for each
class and classify a new sample by considering the nearest centroids to the sample. There
are alsoDML algorithms designed for these classifiers, as is the case for NCMMLandNCMC
[40].

3.3.1 Nearest Class MeanMetric Learning (NCMML)

NCMML [40] is a DML algorithm specifically designed to improve the Nearest Class Mean
(NCM) classifier. To do this, it uses a probabilistic approach similar to that used by NCA to
improve the accuracy of the nearest neighbors classifier.
In this case, we define the probability that a sample 𝑥𝑖 ∈ 𝒳 will be labeled with the class 𝑐,
according to the nearest class mean criterion, for the distance defined by 𝐿 ∈ ℳ𝑑′×𝑑(ℝ), as
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𝑝𝐿(𝑐|𝑥) =
exp (− 1

2
‖𝐿(𝑥 − 𝜇𝑐)‖2)

∑
𝑐′∈𝒞

exp (− 1
2
‖𝐿(𝑥 − 𝜇𝑐′)‖2)

,

where 𝒞 is the set of all the classes and 𝜇𝑐 is the mean of the training samples with class 𝑐.
The objective function that NCMML tries to maximize is the log-likelihood for the labeled
data in the training set, according to the probability defined above, that is,

ℒ(𝐿) = 1
𝑁

𝑁
∑
𝑖=1

log𝑝𝐿(𝑦𝑖|𝑥𝑖).

This function can be optimized using gradient methods.

3.3.2 Nearest Class with Multiple Centroids (NCMC)

NCMC is the generalization of the nearest class mean classifier. In this classifier, a set with
an arbitrary number of centroids is calculated for each class, using a clustering algorithm.
Then, a new sample is classified by assigning the label of its nearest centroid.
An immediate generalization of NCMML allows us to learn a distance directed at improv-
ing NCMC. This DML algorithm is also referred to as NCMC. In this case, instead of
the class means, we have a set of centroids {𝑚𝑐𝑗 }

𝑘𝑐
𝑗=1, for each class 𝑐 ∈ 𝒞. The gener-

alized probability that a sample 𝑥𝑖 ∈ 𝒳 will be labeled with the class 𝑐 is now given by
𝑝𝐿(𝑐|𝑥) = ∑𝑘𝑐

𝑗=1 𝑝𝐿(𝑚𝑐𝑗 |𝑥), where 𝑝𝐿(𝑚𝑐𝑗 |𝑥) are the probabilities that𝑚𝑐𝑗 is the closest cen-
troid to 𝑥, and is given by

𝑝𝐿(𝑚𝑐𝑗 |𝑥) =
exp (− 1

2
‖𝐿(𝑥 − 𝑚𝑐𝑗 )‖2)

∑
𝑐∈𝒞

𝑘𝑐
∑
𝑖=1

exp (− 1
2
‖𝐿(𝑥 − 𝑚𝑐𝑖 )‖2)

.

Again, NCMC maximizes the log-likelihood function ℒ(𝐿) = 1
𝑁
∑𝑁

𝑖=1 𝑝𝐿(𝑦𝑖|𝑥𝑖) using gradi-
ent methods.

3.4 Information Theory Based Algorithms

Several DML algorithms rely on information theory to learn their corresponding distances.
The information theory concepts used in the algorithms we will introduce below are de-
scribed in [48, Appendix B.3]. These algorithms have similar working schemes. First, they
establish different probability distributions on the data, and then they try to bring these
distributions closer or further away using divergences. The information theory based algo-
rithms we will study are ITML [41], DMLMJ [42] and MCML [43].
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3.4.1 Information Theoretic Metric Learning (ITML)

ITML [41] is a DML technique intended to find a distance metric as close as possible to an
initial pre-defined distance, on which similarity and dissimilarity constraints for same-class
and different-class samples are satisfied. This approach tries to preserve the properties of
the original distance while adapting it to our dataset thanks to the restrictions it adds.
We will denote the positive definite matrix associated with the initial distance as𝑀0. Given
any positive definite matrix 𝑀 ∈ 𝑆𝑑(ℝ)+ and a fixed mean vector 𝜇, we can construct a
normal distribution 𝑝(𝑥|𝑀) with mean 𝜇 and covariance 𝑀. ITML tries to minimize the
Kullback-Leibler divergence between 𝑝(𝑥|𝑀0) and 𝑝(𝑥|𝑀), subject to several similarity con-
straints on the data, that is

min
𝑀∈𝑆𝑑(ℝ)+

KL(𝑝(𝑥|𝑀0)‖𝑝(𝑥|𝑀))

s.t.: 𝑑𝑀(𝑥𝑖, 𝑥𝑗) ≤ 𝑢, (𝑖, 𝑗) ∈ 𝑆
𝑑𝑀(𝑥𝑖, 𝑥𝑗) ≥ 𝑙, (𝑖, 𝑗) ∈ 𝐷,

where 𝑆 and 𝐷 are sets of pairs of indices on the elements of 𝒳 that represent the samples
considered similar and not similar, respectively (normally, same-labeled pairs and different-
labeled pairs), and 𝑢 and 𝑙 are, respectively, upper and lower bounds for the similarity and
dissimilarity constraints. This problem can be optimized using gradient methods combined
with iterated projections in order to fulfill the constraints.

3.4.2 Distance Metric Learning through the Maximization of the Jeffrey
divergence (DMLMJ)

DMLMJ [42] is another DML technique based on information theory that tries to separate,
with respect to the Jeffrey divergence, two probability distributions, the first associated with
similar points while the second is associated with dissimilar points.
DMLMJ defines two difference spaces: a 𝑘-positive difference space that contains the differ-
ences between each sample in the dataset and its 𝑘-nearest neighbors from the same class,
and a 𝑘-negative difference space that contains the differences between each sample and its
𝑘-nearest neighbors from different classes. Over these spaces, for a distance determined by
a linear transformation 𝐿 ∈ ℳ𝑑′×𝑑(ℝ), two gaussian distributions 𝑃𝐿 and 𝑄𝐿 with equal
mean are assumed. Then, the problem that DMLMJ optimizes is

max
𝐿∈ℳ𝑑′×𝑑(ℝ)

𝑓(𝐿) = JF(𝑃𝐿‖𝑄𝐿) = KL(𝑃𝐿‖𝑄𝐿) + KL(𝑄𝐿‖𝑃𝐿).

This problem can be transformed into a trace optimization problem similar to those of PCA
and LDA, and can also be solved by taking eigenvectors from the covariance matrices in-
volved in the problem.
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3.4.3 Maximally Collapsing Metric Learning (MCML)

MCML [43] is another DML technique based on information theory. The key idea of this
algorithm is the fact that we would obtain an ideal class separation if we could project all
the samples from the same class on a same point, far enough away from the points on which
the rest of the classes would be projected.
In order to try to achieve this, MCML defines a probability that a sample 𝑥𝑗 will be classified
with the same label as 𝑥𝑖, with the distance given by a positive semidefinite matrix 𝑀 ∈
𝑆𝑑(ℝ)+0 , 𝑝𝑀(𝑗|𝑖), as the softmax

𝑝𝑀(𝑗|𝑖) =
exp(−𝑑𝑀(𝑥𝑖, 𝑥𝑗)2)

∑
𝑘≠𝑖

exp(−𝑑𝑀(𝑥𝑖, 𝑥𝑘)2)
.

Then, it also defines a probability 𝑝0(𝑗|𝑖) for the ideal situation in which all the same-class
samples collapse into the same point, far enough away from the collapsing points of the
other classes, given by

𝑝0(𝑗|𝑖) ∝ {1, 𝑦𝑖 = 𝑦𝑗
0, 𝑦𝑖 ≠ 𝑦𝑗

.

MCML tries to bring 𝑝𝑀(⋅|𝑖) as close to the ideal 𝑝0(⋅|𝑖) as possible, for each 𝑖, using the
Kullback-Leibler divergence between them. Therefore, the optimization problem is formu-
lated as

min
𝑀∈𝑆𝑑(ℝ)+0

𝑓(𝑀) =
𝑁
∑
𝑖=1

KL [𝑝0(⋅|𝑖)‖𝑝𝑀(⋅|𝑖)] .

This function can be minimized using semidefinite programming.

3.5 Other Distance Metric Learning Techniques

In this section we will study some different proposals for DML techniques. The algorithms
we will analyze are LSI [4], DML-eig [67] and LDML [68].

3.5.1 Learning with Side Information (LSI)

LSI [4], also sometimes referred to as Mahalanobis Metric for Clustering (MMC) is possibly
one of the first algorithms that has helped make the concept of DML more well known.
This algorithm is a global approach that tries to bring same-class data closer together while
keeping data from different classes far enough apart.
Assuming that the sets 𝑆 and 𝐷 represent, respectively, pairs of samples that should be con-
sidered similar or dissimilar (i.e. samples that belong to the same class or to different classes,
respectively), LSI looks for a positive semidefinite matrix 𝑀 ∈ 𝑆𝑑(ℝ)+0 that optimizes the
following problem:
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min
𝑀

∑
(𝑥𝑖 ,𝑥𝑗)∈𝑆

𝑑𝑀(𝑥𝑖, 𝑥𝑗)2

s.t.: ∑
(𝑥𝑖 ,𝑥𝑗)∈𝐷

𝑑𝑀(𝑥𝑖, 𝑥𝑗) ≥ 1

𝑀 ∈ 𝑆𝑑(ℝ)+0 .

This problem can be optimized using gradient descent together with iterated projections in
order to fulfill the constraints.

3.5.2 Distance Metric Learning with eigenvalue optimization (DML-eig)

DML-eig [67] is a DML algorithm inspired by the LSI algorithm of the previous section,
proposing a very similar optimization problem but offering a completely different resolution
method, based on eigenvalue optimization.
We will once again consider the two sets 𝑆 and 𝐷, of pairs of samples that are considered
similar and dissimilar, respectively. DML-eig proposes an optimization problem that slightly
differs from that proposed by the LSI algorithm, given by

max
𝑀

min
(𝑥𝑖 ,𝑥𝑗)∈𝐷

𝑑𝑀(𝑥𝑖, 𝑥𝑗)2

s.t.: ∑
(𝑥𝑖 ,𝑥𝑗)∈𝑆

𝑑𝑀(𝑥𝑖, 𝑥𝑗)2 ≤ 1

𝑀 ∈ 𝑆𝑑(ℝ)+0 .

This problem can be transformed into a minimization problem for the largest eigenvalue of
a symmetric matrix. This is a well-known problem and there are some iterative methods
that allow this minimum to be reached [69].

3.5.3 Logistic Discriminant Metric Learning (LDML)

LDML [68] is a DML algorithm in which the optimization model makes use of the logistic
function.
Recall that the logistic or sigmoid function is the map 𝜎∶ ℝ → ℝ given by

𝜎(𝑥) = 1
1 + 𝑒−𝑥 .

In LDML, the logistic function is used to define a probability, which will assign the greater
probability the smaller the distance between points. Given a positive semidefinite matrix
𝑀 ∈ 𝑆𝑑(ℝ)+0 , this probability is expressed as

𝑝𝑖𝑗,𝑀 = 𝜎(𝑏 − ‖𝑥𝑖 − 𝑥𝑗‖2𝑀),
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where 𝑏 is a positive threshold value that will determine the maximum value achievable by
the logistic function, and that can be estimated by cross validation. LDML tries to maximize
the log-likelihood given by

ℒ(𝑀) =
𝑁
∑
𝑖,𝑗=1

𝑦𝑖𝑗 log𝑝𝑖𝑗,𝑀 + (1 − 𝑦𝑖𝑗) log(1 − 𝑝𝑖𝑗,𝑀),

where 𝑦𝑖𝑗 is a binary variable that takes the value 1 if 𝑦𝑖 = 𝑦𝑗 and 0 otherwise. This function
can be optimized using semidefinite programming.

3.6 Kernel Distance Metric Learning

Kernel methods constitute a paradigm within machine learning that is very useful in many
of the problems addressed in this discipline. They usually arise in problemswhere the learn-
ing algorithm capability is reduced, typically due to the shape of the dataset. A classic learn-
ing algorithm where the kernel trick is very useful is the Support Vector Machines (SVM)
classifier [70]. An example for this case is given in Figure 5.
In DML, the usefulness of kernel learning is a consequence of the limitations given by the
Mahalanobis distances. Although learned metrics can later be used with non-linear clas-
sifiers, such as the nearest neighbors classifier, the metrics themselves are determined by
linear transformations, which, in turn, are determined by the image of a basis in the de-
parture space, which results in the fact that we only have the freedom to choose the image
of as much data as the dimension has the space, mapping the rest of the vectors by linear-
ity. When the amount of data is much larger than the space dimension this can become a
limitation.
The kernel approach for DML follows a similar scheme to that of SVM. If we work with a
dataset 𝒳 = {𝑥1,… , 𝑥𝑁} ⊂ ℝ𝑑, the idea is to send the data to a higher dimensional space,
using a mapping 𝜙∶ ℝ𝑑 → ℱ, where ℱ is a Hilbert space called the feature space, and then
to learn in the feature space using a DML algorithm. The way we will learn a distance in
the feature space will be via a continuous linear transformation 𝐿∶ ℱ → ℝ𝑑′ , where 𝑑′ ≤ 𝑑
(observe that 𝐿 is not necessarily a matrix, since ℱ is not necessarily finite dimensional),
which we will also denote as 𝐿 ∈ ℒ(ℱ,ℝ𝑑′).
As occurswith SVM, a great inconvenience ariseswhen sending the data to the feature space,
and that is that the problem dimension can greatly increase, and therefore the application
of the algorithms can be very expensive computationally. In addition, if we want to work in
infinite dimensional feature spaces, it is impossible to deal with the data in this case, unless
we turn to the kernel trick.
We define the kernel function as the mapping 𝐾∶ ℝ𝑑 × ℝ𝑑 → ℝ given by 𝐾(𝑥, 𝑥′) =
⟨𝜙(𝑥), 𝜙(𝑥′)⟩. The success of kernel functions is due to the fact that many learning algo-
rithms only need to know the dot products between the elements in the training set to be
able to work. This will happen in the DML algorithms we will study later. We can observe,
as an example, that the calculation of Euclidean distances, which is essential in many DML
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Figure 5: SVM and kernel trick. This binary classifier looks for the hyperplane that best
separates both classes. Therefore, it is highly limited when the dataset is not separable by
hyperplanes, as is the case for the dataset in the upper-left image. A solution consists of
sending the data into a higher dimensional space, where data can be separated by hyper-
planes, and apply the algorithm there, as it can be seen in the remaining images. The kernel
trick allows us to execute the algorithm only in terms of the dot products of the samples in
the new space, which makes it possible to work on very high dimensional spaces, or even
infinite dimensional spaces. The existence of a representer theorem for SVM also allows the
solution to be rewritten in terms of a vector with the size of the number of samples.
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algorithms, can be made using only the kernel function. Indeed, for 𝑥, 𝑥′ ∈ ℝ𝑑, we have

‖𝜙(𝑥) − 𝜙(𝑥′)‖2 = ⟨𝜙(𝑥) − 𝜙(𝑥′), 𝜙(𝑥) − 𝜙(𝑥′)⟩
= ⟨𝜙(𝑥), 𝜙(𝑥)⟩ − 2⟨𝜙(𝑥), 𝜙(𝑥′)⟩ + ⟨𝜙(𝑥′), 𝜙(𝑥′)⟩
= 𝐾(𝑥, 𝑥) + 𝐾(𝑥′, 𝑥′) − 2𝐾(𝑥, 𝑥′).

(1)

The next common problem for all the kernel-based DML algorithms is how to deal with the
learned transformation. Since we are trying to learn a map 𝐿 ∈ ℒ(ℱ,ℝ𝑑′), we may not be
able to write it as a matrix, and when we can, this matrix may have dimensions that are too
large. However, as 𝐿 is continuous and linear, using the Riesz representation theorem, we
can rewrite 𝐿 as a vector of dot products by fixed vectors, that is, 𝐿 = (⟨⋅, 𝑤1⟩,… , ⟨⋅, 𝑤𝑑′⟩),
where 𝑤1,… ,𝑤𝑑′ ∈ ℱ. Furthermore, for the algorithms we will study, several representer
theorems are known [71, 52, 45, 42, 72]. These theorems allow the vectors𝑤𝑖 to be expressed
as a linear combination of the samples in the feature space, that is, for each 𝑖 ∈ {1,… , 𝑑′},
there is a vector 𝛼𝑖 = (𝛼𝑖1,… , 𝛼𝑖𝑁) ∈ ℝ𝑁 so that 𝑤𝑖 = ∑𝑁

𝑗=1 𝛼𝑖𝑗𝜙(𝑥𝑗). Consequently, we can
see that

𝐿𝜙(𝑥) = 𝐴(
𝐾(𝑥1, 𝑥)

⋮
𝐾(𝑥𝑁 , 𝑥)

) , (2)

where 𝐴 ∈ ℳ𝑑′×𝑁(ℝ) is given by 𝐴𝑖𝑗 = 𝛼𝑖𝑗 .
Thanks to these theorems, we can address the problem computationally as long as we are
able to calculate the coefficients of matrix 𝐴. When transforming a new sample it will suf-
fice to construct the previous column matrix by evaluating the kernel function between the
sample and each element in the training set, and then multiplying 𝐴 by this matrix. On a
final note, when training it is useful to view the kernel map as a matrix 𝐾 ∈ 𝑆𝑁(ℝ), where
𝐾𝑖𝑗 = 𝐾(𝑥𝑖, 𝑥𝑗). A similar (in this case not necessarily square) matrix can be constructed
when testing, with all the dot products between the train and test samples. By choosing
the appropriate column of this matrix, we will be able to transform the corresponding test
sample using Eq. 2.
Each DML technique that supports the use of kernels will use different tools for its per-
formance, each one based on the original algorithms. In [48, Appendix C.6] we describe
the kernelizations of some of the algorithms already introduced, namely, LMNN, ANMM,
DMLMJ and LDA.

4 Experimental Framework and Results

With the algorithms introduced in the previous section, several experiments have been car-
ried out. This section describes these experiments and shows the results.

4.1 Description of the Experiments

For the DML algorithms studied, a collection of experiments has been developed, consisting
of the following procedures.
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1. Evaluation of all the algorithms capable of learning atmaximumdimension, applied
to the 𝑘-NN classification, for different values of 𝑘.

2. Evaluation of the algorithms aimed at improving nearest centroid classifiers, applied
to the corresponding centroid-based classifiers.

3. Evaluation of kernel-based algorithms, experimenting with different kernels, ap-
plied to the nearest neighbors classification.

4. Evaluation of algorithms capable of reducing dimensionality, for different dimen-
sions, applied to the nearest neighbors classification.

When we mention in experiment 1 that an algorithm is “capable of learning at maximum
dimension” we are excluding those dimensionality reduction algorithms that only learn a
change of axes, as is the case with both PCA and ANMM, which at maximum dimension
learn a transformation whose associated distance is still the Euclidean. LDA is kept, as-
suming that it will always take the maximum dimension that it is able to, which will be
the number of classes of the problem. The algorithms directed at centroid-based classifiers
are also excluded from experiment 1, together with those based on kernels, which will be
analyzed in experiments 2 and 3, respectively.
The stated experiments indicate that the magnitude with which we will measure the per-
formance of the algorithms is the result of the 𝑘-neighbors classification, except in the case
of the algorithms based on centroids, which will use their corresponding classifier. These
classifiers will be evaluated by a 10-fold cross validation. The results obtained from the pre-
dictions on the training set will also be included, in order to evaluate possible overfitting.
To evaluate the algorithms, we will use the implementations available in the Python library
pyDML [47]. The algorithms will be executed using their default parameters, which can be
found in the pyDML documentation1. These default parameters have been set with standard
values. The following exceptions to the default parameters have been made:

• The LSI algorithm will have the parameter supervised = True, as it will be used
for supervised learning.

• In the dimensionality reduction experiment (4), the algorithmswill have the dimen-
sion number parameter set with the value of the dimension being evaluated.

• The parameter k of LMNN and KLMNN will be equal to the number of neighbors
being considered in the nearest neighbors classification.

• LMNNwill be executedwith stochastic gradient descent, instead of semidefinite pro-
gramming, in dimensionality reduction experiments, thus learning a linear transfor-
mation instead of a metric.

1https://pydml.readthedocs.io/
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• The parameters n_friends and n_enemies of ANMM and KANMM will be equal
to the number of neighbors being considered in the nearest neighbors classification.

• The parameter n_neighbors of DMLMJ and KDMLMJ will be equal to the number
of neighbors being considered in the nearest neighbors classification.

• The parameter centroids_num of NCMC will be equal to the parameter
centroids_num being considered in its corresponding classifier, NCMC_Classifier.

As for the datasets used in the experiments, up to 34 datasets have been collected and all of
them are available in KEEL2. All these datasets are numeric, do not contain missing values,
and are oriented to standard classification problems. In addition, although some of theDML
algorithms scale well with the number of samples, others cannot deal with datasets that are
too large, so it was decided that for sets with a high number of samples, a subset of a size that
all algorithms can deal with, keeping the class distribution the same, would be selected. The
characteristics of these datasets are described in Table 2. All datasets have been min-max
normalized to the interval [0, 1], feature to feature, prior to the execution of the experiments.
Finally, we describe the details of the experiments 1, 2, 3 and 4:

1. Algorithms will be evaluated with the classifiers 3-NN, 5-NN and 7-NN.

2. NCMML will be evaluated with the Scikit-Learn NCM classifier, while NCMC
will be evaluated with its associated classifier, available in pyDML, for two different
values: 2 centroids per class and 3 centroids per class.

3. Algorithms will be evaluated with 3-NN classifier, using the following kernels: lin-
ear (Linear), grade-2 (Poly-2) and grade-3 (Poly-3) polynomials, gaussian (RBF)
and laplacian (Laplacian). The kernel version of PCA3 will be also included in the
comparison. Only the smallest datasets will be considered, so that they can be ap-
plicable to the algorithms that scale the worst with the dimension (recall that the
kernel trick forces algorithms to work in dimensions of the order of the number of
samples).

4. Algorithms will be evaluated with the classifiers 3-NN, 5-NN and 7-NN. The dimen-
sions used are: 1, 2, 3, 5, 10, 20, 30, 40, 50, the maximum dimension of the dataset,
and the number of classes of the dataset minus 1. In this case, the following high-
dimensionality datasets are selected: sonar, movement_libras and spambase. The
algorithms to be evaluated in this experiment are: PCA, LDA, ANMM, DMLMJ,
LMNN and NCA.

2KEEL, knowledge extraction based on evolutionary learning [73]: http://www.keel.es/.
3It is implemented in Scikit-Learn: http://scikit-learn.org/stable/modules/generated/

sklearn.decomposition.KernelPCA.html. Its theoretical details can be found in [72].
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Dataset Number of samples Number of features Number of classes
appendicitis 106 7 2
balance 625 4 3
bupa 345 6 2
cleveland 297 13 5
glass 214 9 7
hepatitis 80 19 2
ionosphere 351 33 2
iris 150 4 3
monk-2 432 6 2
newthyroid 215 5 3
sonar 208 60 2
wine 176 13 3
movement_libras 360 90 15
pima 768 8 2
vehicle 846 18 4
vowel 990 13 11
wdbc 569 30 2
wisconsin 683 9 2
banana (20 %) 1,060 2 2
digits 1,797 64 10
letter (10 %) 2,010 16 26
magic (10 %) 1,903 10 2
optdigits 1,127 64 10
page-blocks (20 %) 1,089 10 4
phoneme (20 %) 1,081 5 2
ring (20 %) 1,480 20 2
satimage (20 %) 1,289 36 7
segment (20 %) 462 19 7
spambase (10 %) 460 57 2
texture (20 %) 1,100 40 11
thyroid (20 %) 1,440 21 3
titanic 2,201 3 2
twonorm (20 %) 1,481 20 2
winequality-red 1,599 11 11

Table 2: Datasets used in the experiments.
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4.2 Results

This section shows the results of the cross-validation for the different experiments. We will
only show the results of the 3-NN classifier in the experiments that use nearest neighbors
classifiers in this text. The results obtained for the remaining 𝑘-NN used in the experiments
are available on the pyDML-Stats4 website, where the results of all these experiments have
been stored. The scripts used to do the experiments can also be found on this website. We
have added the average score obtained and the average ranking to the results of the exper-
iments 1, 2 and 3. The ranking has been made by assigning integer values between 1 and
𝑚, where 𝑚 is the number of algorithms being compared in each experiment (adding half
fractions in case of a tie), according to the position of the algorithms over each dataset, 1
being the best algorithm, and𝑚 the worst. The content of the different tables elaborated is
described below.

• Table 3 shows the cross-validation results obtained for experiment 1, using the 3-
NN score as the evaluation measure. Some cells do not show results because the
algorithm did not converge.

• Table 4 shows the results of experiment 2. NCM and NCMC classifiers with 2 and
3 centroids per class were used as evaluation measures. For each classifier, the Eu-
clidean distance (Euclidean + CLF) and the distance learning algorithmassociated
with the classifier (NCMML / NCMC (2 ctrd) / NCMC (3 ctrd)) have been evalu-
ated.

• Table 5 shows the cross-validation results obtained on the training set for the kernel-
based algorithms using the 3-NN classifier. Table 6 shows the corresponding results
obtained on the test set.

• Table 7 shows the cross-validation results for experiment 4 in dataset sonar, using
the classifier 3-NN. On the left are the results for the training set, and on the right,
the results for the test set. Each row shows the results for the different dimensions
evaluated. Tables 8 and 9 show the corresponding dimensionality results over the
datasets movement_libras and spambase, respectively.

4Source code: https://github.com/jlsuarezdiaz/pyDML-Stats. The current website is located at
https://jlsuarezdiaz.github.io/software/pyDML/stats/versions/0.0.1-1/
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PCA LDA ANMM DMLMJ NCA LMNN
1 .5016 .9011 .6965 .7826 .9214 .7237
2 .5891 - .7670 .8050 .9807 .8782
3 .7729 - .8359 .8333 .9770 .9513
5 .8215 - .8904 .9033 .9759 .9914
10 .8600 - .8958 .9652 .9764 .9994
20 .8541 - .8872 .9583 .9668 1.000
30 .8456 - .8627 .9508 .9706 1.000
40 .8365 - .8424 .9460 .9839 1.000
50 .8312 - .8370 .9263 .9850 1.000
Max. Dimension .8317 - .8317 .9097 .9823 1.000
N. Classes - 1 .5016 .9011 .6965 .7826 .9214 .7237

PCA LDA ANMM DMLMJ NCA LMNN
1 .5619 .7782 .6770 .7256 .8073 .6640
2 .6293 - .7541 .7113 .8077 .7593
3 .7641 - .8395 .7741 .8265 .8077
5 .8075 - .8263 .8182 .8220 .8408
10 .8699 - .8751 .8651 .8270 .8654
20 .8601 - .8749 .8844 .8699 .8703
30 .8610 - .8649 .8749 .8653 .8754
40 .8465 - .8610 .8697 .8792 .8613
50 .8565 - .8515 .8654 .8558 .8706
Max. Dimension .8370 - .8370 .8361 .8703 .8706
N. Classes - 1 .5619 .7782 .6770 .7256 .8073 .6640

Table 7: Results of dimensionality reduction experiments on sonar with 3-NN (train - test)

PCA LDA ANMM DMLMJ NCA LMNN
1 .1938 .3339 .2414 .2720 .3360 .2547
2 .2813 .5362 .4597 .4720 .6638 .5416
3 .5232 .6143 .6435 .6684 .7195 .6900
5 .6873 .7211 .7473 .7918 .8188 .8156
10 .7831 .8661 .8053 .8857 .8383 .8485
20 .7978 - .7972 .8705 .8442 .8490
30 .7981 - .7978 .8652 .8438 .8514
40 .7972 - .7975 .8594 .8469 .8526
50 .7972 - .7972 .8538 .8431 .8498
Max. Dimension .7972 - .7972 .8460 .8516 .8490
N. Classes - 1 .7932 .8685 .8061 .8901 .8398 .8438

PCA LDA ANMM DMLMJ NCA LMNN
1 .1747 .3169 .2675 .2694 .2606 .2673
2 .2574 .4553 .4800 .4476 .6181 .5251
3 .5483 .4978 .6680 .6684 .6920 .6499
5 .7177 .5938 .7763 .7774 .7655 .8012
10 .8007 .7001 .8119 .8711 .8017 .8220
20 .8139 - .8106 .8829 .8143 .8333
30 .8139 - .8139 .8696 .8191 .8133
40 .8139 - .8139 .8605 .8323 .8233
50 .8139 - .8139 .8627 .8310 .8255
Max. Dimension .8139 - .8139 .8649 .8319 .8133
N. Classes - 1 .8185 .6642 .8137 .8811 .8274 .8211

Table 8: Results of dimensionality reduction experiments on movement_libras with 3-NN
(train - test)

PCA LDA ANMM DMLMJ NCA LMNN
1 .8369 .9215 .8567 .6995 .9420 .9340
2 .8316 - .8869 .7724 .9420 .9386
3 .8487 - .8973 .8886 .9388 .9335
5 .8784 - .9079 .9009 .9415 .9335
10 .8681 - .9222 .9195 .9400 .9318
20 .8700 - .9067 .9217 .9400 .9297
30 .8586 - .8787 .8867 .9403 .9328
40 .8572 - .8654 .8727 .9369 .9318
50 .8536 - .8560 .8596 .9374 .9299
Max. Dimension .8500 - .8500 .8635 .9391 .9285
N. Classes - 1 .8369 .9215 .8567 .6995 .9420 .9340

PCA LDA ANMM DMLMJ NCA LMNN
1 .8106 .8871 .8587 .6588 .9044 .8872
2 .8261 - .8850 .7173 .9197 .8958
3 .8543 - .9090 .8807 .9152 .9068
5 .8782 - .9049 .8700 .9111 .9069
10 .8826 - .9198 .9044 .9153 .9113
20 .8695 - .9048 .8937 .9155 .9005
30 .8502 - .8675 .8851 .9154 .9027
40 .8547 - .8567 .8611 .9111 .9005
50 .8655 - .8633 .8569 .9133 .9070
Max. Dimension .8654 - .8654 .8525 .9154 .9092
N. Classes - 1 .8106 .8871 .8587 .6588 .9044 .8872

Table 9: Results of dimensionality reduction experiments on spambase with 3-NN (train -
test)
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4.3 Analysis of Results

4.3.1 In-depth analysis

Below we will describe the main details observed in the algorithms for the different experi-
ments carried out.

• NCA. In terms of the results obtained in the first experiment, we can clearly see that
NCA has obtained the best results. This is partly due to the fact that the algorithms
have been evaluated with nearest neighbors classifiers, and that NCA was specifi-
cally designed to improve this classifier. NCA came first in most of the validations
over the training set, showing its ability to fit to the data, but it has also obtained
clear victories in many of the datasets over the test set, thus also demonstrating a
great capacity for generalization. We have to note that NCA (and also other algo-
rithms such as LMNN) commits substantial errors in datasets such as titanic [73].
This is a numerical-transformed dataset, but of a categorical nature, and with many
repeated elements that may belong to different classes. This may be causing highly
discriminative algorithms such as NCA or LMNN not being able to transform the
dataset appropriately. This justifies how in certain situations other algorithms can
be more useful than those that show better behavior in general [74].

• LMNN and DMLMJ. We can also see that DMLMJ and LMNN algorithms stand
out, although not as much as NCA. These algorithms are also directed at nearest
neighbor classification, which justifies these good results. LMNN seems to have a
slow convergence with the projected gradient method, and it could have achieved
better results with a greater number of iterations. In fact, in the analysis of dimen-
sionality reduction experiments we will observe that LMNN performs much better
with the stochastic gradient descent method.

• LSI. LSI is another algorithm that is capable of obtaining very good results on cer-
tain datasets, but it is penalized by many others, where it is not able to optimize
enough, not even being able to converge in several datasets.

• ITML and MCML. ITML and MCML are two algorithms that, despite getting the
best results in a very small number of cases, they get decent results in most datasets,
resulting in quite a stable performance. ITML does not learn too much from the
characteristics of the training set, but is able to generalize what has been learned
in quite an effective way, being possibly the algorithm that loses the least accuracy
over the test set, with respect to the training set. On the other hand, MCML has
more learning capacity, even showing a slight overfitting, as its results are worse
than those of many algorithms on the test set.

• LDA. Another algorithm in which we can see overfitting, perhaps more clearly,
is LDA. This algorithm is capable of getting very good results on the training set,
surpassing most of the algorithms, but it gets noticeably worse when evaluated on
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the test dataset. Recall that LDA is able to learn only a maximum dimension equal
to the number of classes of the dataset minus one. This may be causing a loss of
important information on many datasets by the projection it learns.

• DML-eig and LDML. Finally, although DML-eig and LDML are able to get better
results than Euclidean distance on the training sets, on several datasets they have
obtained quite low quality results. On many of the test datasets, they are surpassed
by the Euclidean distance.

• Untrained 𝑘-NN. The untrained 𝑘-NN or, equivalently, the classical 𝑘-NN with
Euclidean distance, is always outperformed by some of the distance-learned 𝑘-NNs
in the training set, and is also mostly outperformed in the test set. This shows the
benefits of learning a distance as opposed to the traditional use of the nearest neigh-
bor classifier. The untrained 𝑘-NN also shows better average results on the test set
than on the training set, and is the only one among all the compared algorithms.
This may be due to the fact that, as it is not using a pretrained distance, it is unlikely
to overfit, although according to the results there is a lot of room for improvement
in both training and test sets for this basic version.

• NCMMLandNCMC. If we analyze the results of the centroid-based classifiers, we
can easily observe that in the vast majority of cases the classifier has worked much
better after learning the distance with its associated learning algorithm, than it has
by using the Euclidean distance. It can also be observed that the results are sub-
ject to great variability, depending on the number of centroids chosen. This shows
that the choice of an adequate number of centroids that adapt well to the disposi-
tion of the different classes is fundamental to achieve successful learning with these
algorithms.

• Kernel algorithms. Focusing now on the kernel-based algorithms, it is interesting
to note how KLMNN with laplacian kernel is able to adjust as much as possible to
the data, getting a 100 % success rate on most of the datasets. This success rate is
not transferred, in general, to the test data, showing that this algorithm overfits with
laplacian kernel. We can also observe that the best results are distributed in a varied
way among the different evaluated options. The choice of a suitable kernel that fits
well with the disposition of the data is decisive for the performance of kernel-based
algorithms.

• Dimensionality reduction experiments. To conclude our analysis, dimension-
ality experiments allow us to observe that the best results are not always obtained
when considering the maximum dimension. This may be due to the fact that the
algorithms are able to denoise the data, ensuring that the classifier used later does
not overfit. We also see that we cannot reduce the dimension as much as we want,
because at some point we start losing information, which happens in many cases
with LDA, which is its great limitation. In general, we can observe that all algo-
rithms improve their results by reducing dimensionality until a certain value, al-
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though the best results are provided by LMNN, DMLMJ and NCA. The results ob-
tained by LMNNopen the possibility of using this algorithmwith stochastic gradient
descent, instead of the semidefinite programming algorithm used in the first exper-
iment, since the results it provides are quite good. Although these algorithms have
obtained better results, the use of ANMM and LDA (as long as the dimension al-
lows it) is important for the estimation of an adequate dimension, since they are
much more efficient than the first ones. As for PCA, it gets the worst results in low
dimensions, probably due to not considering the information of the labels.

4.3.2 Global analysis

In order to complete the verbal analysis, we have developed a series of Bayesian statistical
tests to assess the extent to which the performance of the different algorithms analyzed out-
performs the other algorithms. To do this, we have elaborated several pairwise Bayesian
sign tests [46]. In these tests, we will consider the differences between the obtained scores
of two algorithms, assuming that their prior distribution is a Dirichlet Process [75], defined
by a prior strength 𝑠 = 1 and a prior pseudo-observation 𝑧0 = 0. After considering the score
observations obtained for each dataset, we obtain a posterior distribution which gives us the
probabilities that one algorithm outperforms the other. We also introduce a rope (region
of practically equivalent) region, in which we consider the algorithms to have equivalent
performance. We have designated the rope region to be the one where the score differences
are in the interval [−0.01, 0.01]. In summary, from the posterior distributionwe obtain three
probabilities: the probability that the first algorithm outperforms the second, the probability
that the second algorithmoutperforms the first one, and the probability that both algorithms
are equivalent. These probabilities can be visualized in a simplex plot for a sample of the
posterior distribution, in which a greater tendency of the points towards one of the regions
will represent a greater probability.
To do the Bayesian sign tests, we have used the R package rNPBST [76]. In Figure 6 we pair-
wise compare some of the algorithms that seem to have better performance in experiment 1
with 3-NN (NCA, DMLMJ and LMNN) with the results of the 3-NN classifier for Euclidean
distance. In the comparisonmade between Euclidean distance and NCA, we can clearly see
that the points are concentrated close to the [NCA, rope] segment. This shows us that Eu-
clidean distance is unlikely to outperformNCA, and there is also a high probability for NCA
to outperform Euclidean distance, since a big concentration of points is in the NCA region.
We obtain similar conclusions for DMLMJ against Euclidean distance, although in this case,
despite the fact that Euclidean distance is still unlikely to win, there is a greater concentra-
tion of points in the rope region. In the comparison made between LMNN and Euclidean
distance, we see a more centered concentration of points, that is slightly weighted towards
the LMNN region. In the comparisons made between the DML algorithms we observe the
points weighted to the [NCA, rope] segment, which concludes the difficulty of outperform-
ing NCA, and between DMLMJ and LMNN we can see a pretty level playing field that is
slightly biased to the DMLMJ algorithm.
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The outperforming of Euclidean distance is even clearer in the results from experiment 2.
For these algorithms, we can clearly observe that the points are concentrated in the region
corresponding to the nearest centroid metric learning algorithm, as shown in Figure 7. We
have elaborated more pairwise Bayesian sign tests for the rest of the algorithms in experi-
ment 1. The results of these tests can also be found on the pyDML-Stats website4.

5 Prospects and Challenges in Distance Metric Learning

Throughout this tutorial we have seen what DML consists of and how it has traditionally
been applied in machine learning. However, the development of technology in recent years
has given rise to new problems that cannot be adequately addressed from the point of view
of classic machine learning. In the same way, this technological development has led to the
creation new tools that are very useful when facing new problems, as well as allowing better
results to be obtained with the more traditional problems.
Focusing on DML, both the new problems and the new tools are generating new prospects
where inwhich applying DML could be of interest, and as well as generating new challenges
in the design and application of DML. Below we will describe some of the most outstanding
ones.

5.1 Prospects of Distance Metric Learning in Machine Learning

Nowadays there aremany fields where the further development of DMLmight be of interest.
On the one hand, the large volumes of data that are usually being handled todaymake it nec-
essary to adapt or design newalgorithms that canwork properlywith both high-dimensional
data andhuge amounts of examples. Similarly, newproblems are arising, whichmake it nec-
essary to reconsider the algorithms so that they can handle these problems in an appropriate
way. On the other hand, many of the tools provided by machine learning, from the classical
ones to the most modern ones, can be used in line with DML to achieve better results. We
outline these prospects below.

• Hybridization with feature selection techniques to solve high dimensional
data problems. DML is of great interest in many real problems in high dimension-
ality, such as face recognition, where it is very useful to be able to measure the sim-
ilarity between different images [30]. When we work with datasets of even greater
dimensionality, the treatment of distances can become too expensive, since it would
be necessary to store matrices of very large dimensions. In these situations, it may
be of interest to combine DML with feature selection techniques prepared for very
high dimensional data [77, 26].

• Big Data solutions. The problem of learning when the amount of data we have
is huge and heterogeneous is one of the challenges of machine learning nowadays
[78]. In the case of the DML algorithms, although many of them, especially those
based on gradient descent, are quite slow and do not scale well with the number of
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Figure 6: Bayesian sign results for NCA, DMLMJ, LMNN and Euclidean distance with 3-
NN.
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Figure 7: Bayesian sign test results for the comparison between scores of nearest centroid
classifiers with their corresponding DML algorithm against the same classifier with Eu-
clidean distance. The results are shown for nearest class mean classifier (left), nearest class
with 2 centroids (center) and nearest class with 3 centroids (right).

samples, they can be largely parallelized in both matrix computations and gradient
descent batches. As a result, DML can be extended to handle Big Data by developing
specialized algorithms and integrating them with frameworks such as Spark [79]
and Cloud Computing architectures [80].

• Application of distance metric learning to singular supervised learning
problems. In this paper, we have focused on DML for common problems, like
standard classification and dimensionality reduction, and we have also mentioned
its applications for clustering and semi-supervised learning. However, DML can be
useful in a wide variety of non-standard learning tasks [81], and can be carried out
either by designing new algorithms or by adapting known algorithms from standard
problems to these tasks. In recent years, several DML proposals have been made in
problems like regression [82], multi-dimensional classification [83], ordinal classi-
fication [84], multi-output learning [85] and even transfer learning [86, 13].

• Hybridization with shallow learning techniques. Over the years, some
distance-based algorithms, or some of their ideas or foundations, have been com-
binedwith other algorithms in order to improve their learning capabilities in certain
problems. For example, the concept of nearest-neighbors has been combined with
classifiers such as Naive-Bayes, obtaining a Naive-Bayes classifier whose feature dis-
tributions are determined by the nearest neighbors of each class [87]; with neural
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networks, to find the best neural network architecture [88]; with random forests, by
exploiting the relationship between voting points and potential nearest neighbors
[89]; with ensemble methods, like bootstrap [90, 91]; with support vector machines,
training them locally in neighborhoods [92]; or with rule-learning algorithms, ob-
taining the so-callednested generalized exemplar algorithms [93]. The distances used
in these combinations of algorithms can condition their performance, so designing
appropriate distance learning algorithms for each of these tasks can help achieve
good results. Staying on this subject, another option is to hybridize directly DML
with other techniques, like ensemble learning [94].

• Hybridization with deep learning techniques. In recent years, machine learn-
ing has experienced great popularity thanks to the development of deep learning,
which is capable of obtaining very good results in different learning problems [95].
As in the previous case, it is possible to combine distance-based algorithms or their
foundations with deep learning techniques to improve their learning capabilities.
For instance, [96] use the 𝑘-nearest neighbors classifier to provide interpretability
and robustness to deep neural networks. Another prospect that has gained popular-
ity in recent years is based on the use of neural networks to learn distances, which is
being referred to as deepmetric learning [97, 98, 99, 100, 101]. Deep learning is likely
to play an important role in the future ofmachine learning, and thus its combination
with DML may lead to interesting advances in both fields.

• Other approaches for the concept of distance. Most of the current DML the-
ory focus on Mahalanobis distances. However, some articles open a door to learn-
ing about other possible distances, such as local Mahalanobis distances, that lead
to a multi-metric learning [38], or approaches beyond the Mahalanobis theory
[102, 103]. The deep metric learning approach discussed above is another way of
handling a wider range of distances. By developing new approaches, we will have a
greater variety of distances to learn, and thus have a greater chance of success.

5.2 Challenges in Distance Metric Learning

In addition to the numerous action horizons, DML presents several challenges in terms of
the design of its algorithms, which can lead to substantial improvements. We describe these
challenges below.

• Non-linear distance metric learning. As we have already mentioned, since
learning a Mahalanobis distance is equivalent to learning a linear map, there are
many problems where these distances are not able to capture the inherent non-
linearity of the data. Although the non-linearity of a subsequent learning algorithm,
such as the nearest neighbors classifier, may mitigate this fact, that algorithm could
benefit much more from a distance capable of capturing the non-linearity of the
dataset. In this sense, we have already seen how the kernelization of DML algo-
rithms can be applied to fit non-linear data. Extending the kernel trick to other
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algorithms besides those presented, by searching for suitable parameterizations and
representer theorems, is another possible task to carry out. Another possibility for
non-linear DML is to adapt classical objective functions so that they can work with
non-linear distances, such as the 𝜒2 histogram distance, or with non-linear transfor-
mations of the data learned by another algorithm, such as gradient boosting [104].

• Multi-linear distance metric learning. In learning problems where the data are
images or videos, the traditional vector representation may not be the most appro-
priate to fit the data properly. Vector representation does not allow, for example, for
the consideration of neighborhood relationships between pixels in an image. It is
therefore better to consider images as matrices, or more generally, as multi-linear
mappings or tensors. Some DML algorithms can be adapted so that they can learn
distances in tensor spaces [105, 36, 106], which will be more suitable for similarity
learning in datasets that support this representation. The development or exten-
sion of techniques for multi-linear DML is a challenge that has many applications
in a field such as computer vision, where DML has been shown to be quite useful
[17, 19, 21, 68].

• Other optimizationmechanisms. The algorithmswe have studied optimize their
objective functions by applying gradient descent methods. However, the possibili-
ties in terms of optimization mechanisms are very broad, and choosing the most
appropriate method can contribute to achieving better values in the objective func-
tions. In addition, the consideration of different optimization methods may lead to
the design of new objective functions that may be appropriate for new problems or
approaches and that cannot be optimized by classical gradient methods. In this way,
we have studied several differentiable objective functions in this tutorial, uncon-
strained or with convex constraints, but for those non-convex functions the gradient
descent methods (even the stochastic version) cannot guarantee a convergence to
the global optimum. If we wanted to consider functions with even worse analytical
characteristics or constraints, such as non-differentiability or integer constraints, we
could not even use this type of method. For the non-convex and differentiable case,
we are still able to use the information of the derivatives of the objective function,
and some refinements of the classic gradient methods, such as AdaDelta, RMSprop
or Adam have shown good performance in this type of problem [107]. In the most
general case, we are only able to afford to evaluate the objective function, and some-
times not a very high number of times, due to its complexity. This general case is
usually called black-box optimization. To optimize these functions, a wide variety
of proposals have been made. If we cannot afford to evaluate the objective function
many times, Bayesian optimization may be an interesting alternative [108]. If the
objective function is not so complex, evolutionary algorithms can provide us with a
great capability of exploration in the search space. Their repertoire is much broader
and includes techniques such as simulated annealing, particle swarm optimization
or response surface methods, among others [109], thus many tools are available to
address the most diverse optimization problems. These heuristics can also be used
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over differentiable optimization problems, and sometimes they can even outperform
gradient methods, thanks to their greater ability to escape from local optima [110].
The evolutionary approach has been explored recently in several DML problems
[111, 112].

6 Conclusions

In this tutorial we have studied the concept of distance metric learning, showing what it is,
what its applications are, how to design its algorithms, and the theoretical foundations of
this discipline. We have also studied some of the most popular algorithms in this field and
their theoretical foundations, and explained different resolution techniques.
In order to understand the theoretical foundations of distance metric learning and its algo-
rithms, it was necessary to delve into three differentmathematical theories: convex analysis,
matrix analysis and information theory. Convex analysis has it possible to present many of
the optimization problems studied in the algorithms, along with some methods for solving
them. Matrix analysis provided many useful tools to help understand this discipline, from
how to parameterize Mahalanobis distances, to the optimization with eigenvectors, going
through the most basic algorithm of semidefinite programming. Finally, information the-
ory has motivated several of the algorithms we have studied.
In addition, several experiments have been developed that have allowed for the evaluation of
the performance of the algorithms analyzed in this study. The results of these experiments
have allowed us to observe how algorithms such as LMNN, DMLMJ, and especially NCA
can considerably improve the nearest neighbors classification, and how centroid-based dis-
tance learning algorithms also improve their corresponding classifiers. We have also seen
the wide variety of possibilities offered by kernel-based algorithms, and the advantages that
an appropriate reduction of the dimensionality of the datasets can offer.

Acknowledgements

Our work has been supported by the research project TIN2017-89517-P and by a research
scholarship (FPU18/05989), given to the author Juan Luis Suárez by the Spanish Ministry
of Science, Innovation and Universities.

Compliance with ethical standards

Declaration of competing interest

The authors declare that there is no conflict of interest.

45



116 Chapter II. Publications

A Glossary of terms

ANMM Average Neighborhood Margin Maximization

DML Distance Metric Learning

DML-eig Distance Metric Learning with eigenvalue optimization

DMLMJ Distance Metric Learning through the Maximization of the Jeffrey divergence

ITML Information Theoretic Metric Learning

KANMM Kernel Average Neighborhood Margin Maximization

KDA Kernel Discriminant Analysis

KDMLMJ Kernel Distance Metric Learning through the Maximization of the Jeffrey di-
vergence

KLMNN Kernel Large Margin Nearest Neighbors

𝑘-NN 𝑘-Nearest Neighbors

LDA Linear Discriminant Analysis

LDML Logistic Discriminant Metric Learning

LMNN Large Margin Nearest Neighbors

LSI Learning with Side Information

MCML Maximally Collapsing Metric Learning

MMC Mahalanobis Metric for Clustering

NCA Neighborhood Components Analysis

NCM Nearest Class Mean

NCMC Nearest Class with Multiple Centroids

NCMML Nearest Class Mean Metric Learning

PCA Principal Components Analysis

SVM Support Vector Machines
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Abstract
The purpose of this paper is to introduce a new distance metric learning al-
gorithm for ordinal regression. Ordinal regression addresses the problem
of predicting classes for which there is a natural ordering, but the real dis-
tances between classes are unknown. Since ordinal regression walks a fine
line between standard regression and classification, it is a common pitfall to
either apply a regression-like numerical treatment of variables or underrate
the ordinal information applying nominal classification techniques. On a
different note, distance metric learning is a discipline that has proven to be
very useful when improving distance-based algorithms such as the nearest
neighbors classifier. In addition, an appropriate distance can enhance the
explainability of this model. In our study we propose an ordinal approach
to learning a distance, called chain maximizing ordinal metric learning. It
is based on the maximization of ordered sequences in local neighborhoods
of the data. This approach takes into account all the ordinal information in
the data without making use of any of the two extremes of classification or
regression, and it is able to adapt to data for which the class separations are
not clear. We also show how to extend the algorithm to learn in a non-linear
setup using kernel functions. We have tested our algorithm on several ordi-
nal regression problems, showing a high performance under the usual eval-
uation metrics in this domain. Results are verified through Bayesian non-
parametric testing. Finally, we explore the capabilities of our algorithm in
terms of explainability using the case-based reasoning approach. We show
these capabilities empirically on two different datasets, experiencing signif-
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icant improvements over the case-based reasoning with the traditional Eu-
clidean nearest neighbors.

Keywords Distance Metric Learning ⋅ Ordinal regression ⋅ Nearest neighbors.

1 Introduction

Ordinal regression is amachine learning taskwhich aims to predict variables that take values
in an ordered and non-numerical set. It is an interesting research topic with applications in
many areas, such as weather forecasting [1], medicine [2, 3, 4], psychology [5], social media
mining [6] or computer vision [7, 8, 9]. This type of problem arises in many situations with
human labelers, since they usually prefer to quantify data using categorical values rather
than continuous values. The key element that differentiates ordinal regression from stan-
dard classification and regression is the presence of an order relation among the labels and
of unquantifiable differences between two consecutive labels. This makes it necessary to
adapt the traditional classification and regression techniques or to design new approaches
to deal with ordinal regression problems in an appropriate way [10].
Since ordinal regression walks a fine line between classification and regression, it was tradi-
tionally common to approach the problem from one of these naive perspectives. This could
lead to suboptimal approaches, as they might not take adequate advantage of the ordinal in-
formation in the data. Over time, the problem of ordinal regression has become increasingly
important, due to its presence in many real problems, and new methods have been devel-
oped. [11] propose to decompose the ordinal regression problem into binary subproblems
considering the inequalities with each of the possible classes. For each subproblem a bi-
nary classifier is trained and finally the prediction probabilities are aggregated to obtain the
final ordinal class. [12] propose a generalization of the perceptron for ordinal regression,
modifying the output layer to handle ordinal labels. [13] extend support vector machines
for ordinal regression problems by imposing constraints on the classes, both explicit and
implicit. [14] propose an original method to address this problem, which consists in adding
additional dimensions to the data and replicating them in these dimensions. In this new
scenario, the problem is transformed into a binary problem where the binary label assigned
to each dimensionwill depend on the original ordinal class. The problem then can be solved
using a binary classifier. [15] extend the AdaBoost ensemble to adapt it to ordinal classes.
More recently, [16] propose an encoding and a kernel version of extreme learning machines
to deal with ordinal regression problems, and [17] extend the Bayesian network classifiers
by maximizing several metrics that better adapt to imbalanced and ordinal problems.
Learning using similarities between data is quite effective and adaptable to a wide variety of
problems. It is inspired by the human ability to detect similarities among different objects,
and it is one of the oldest practices carried out in machine learning [18]. Since similarity-
based learning is based on human reasoning, it also allows us to develop explainable models
for which their learned knowledge can be interpreted [19, 20]. Similarity-based approaches
need to establish a similarity measure, or equivalently, a distance metric, among the data.
Typically, standard distances, such as the Euclidean distance, are used for this purpose.
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However, standard distances may not fit our data as well as a distance that has been learned
from the dataset itself. Learning a suitable distance that allows us to facilitate a subsequent
knowledge extraction is the task of distance metric learning [21]. Distance metric learning
has proven to be highly effective for many different problems in machine learning, such as
multi-dimensional classification [22] and multi-output learning [23].
Distance metric learning can be really useful for ordinal regression, since the learned dis-
tances can help to capture the ordinal information of the data. By learning a distance, we
can get similar data to have similar labels as well, according to the order relation among the
classes. In this way, the subsequent similarity learning will be more effective.
Several proposals to learn distances for ordinal regression problems have been formulated
[24, 25], but they use the differences between classes internally, whichmaymake themmore
appropriate for standard regression problems.
A more recent proposal [26] attempts to overcome this drawback by drawing inspiration
from one of the most popular distance metric learning algorithms, LMNN [27]. This algo-
rithm relies on the large margin principle to locally bring same-class data closer together,
while preventing data from other classes from getting close to a specific limit. The extension
to the ordinal case ismade by adding further constraints so that, for a given sample, the sam-
ples with the most distant classes in the output space cannot be brought as close together in
the input space as others with closer labels. This algorithm also supports a kernel version
that is able to learn a distance in very high dimensional spaces. We will refer to the linear
and kernel version of this proposal as LODML and KODML, respectively. However, seek-
ing an airtight separation of classes, like this algorithm does, may be undesirable in many
ordinal regression problems. Ordinal datasets are usually small and suffer from a high de-
gree of subjectivity in their labeling [28]. Examples of this subjectivity are datasets that are
generated from likert scales [29] or pain intensity scales for medical purposes. In these cases
the perception of the classes may be different for each labeler. This results in heterogeneous
datasets with unclear class boundaries. The underlying order is what actually contains the
information in the dataset, rather than the true classes assigned to each sample.
Therefore, two of the main drawbacks from which the existing distance metric learning al-
gorithms tend to suffer when applied to ordinal regression are:

• The quantification of differences between classes during the operation of the algo-
rithms.

• The assumption that classes in ordinal datasets can be easily separated.

In this paperwe propose a newdistancemetric learning algorithm for ordinal regression that
overcomes these drawbacks. Our algorithm, which we have called chain maximizing ordi-
nal metric learning (CMOML), is based on the premise that no matter how heterogeneous
our dataset is, a distance-based classifier can better predict a sample when labels gradu-
ally become more and more different as we move away from the sample in any direction.
In order to support our proposal, Figure 1 illustrates a good data layout for distance-based
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ordinal regression. This figure is a snapshot of a bidimensional dataset around the point
𝑥 ∈ ℝ2. We can see here that, although there is not a clear boundary between each class in
the dataset, when we move away from 𝑥 in most directions we notice that the labels begin
to increase (marked with the red dashed arrows) or decrease (marked with the blue dashed
arrows) gradually. Therefore, a distance-based classifier is expected to perform well around
𝑥. CMOML is based on this idea in order to transform the data such that a good arrangement
for a subsequent distance-based learning can be achieved. If many same-class samples are
found, they will move closer to one another. If there is more variety, an optimal local sorting
will be sought like in Figure 1.

Figure 1: A snapshot of a 2D ordinal dataset around the point 𝑥. When we move away from
𝑥 inmost directions, the labels gradually increase or decrease. This benefits similarity-based
or distance-based classification around 𝑥.

CMOML looks for a distance that respects the local ordinal trend in our dataset as much
as possible. This is achieved by introducing the concept of ordered sequences. For each
sample we take a neighborhood from which we construct two types of sequences around
the sample: sequences of samples, in the input space, and the corresponding sequences of
labels, in the output space. An order relation can be established in both types of sequences,
and when a pair of sequences is ordered in both the input and output space, we will refer to
that pair as a chain. The goal of CMOML is tomaximize the number of chains in the dataset.
The configuration of the algorithm also allows it to be applied in high dimensional spaces
with the support of the kernel functions. We will refer to the kernel version of CMOML as
KCMOML.
The design of CMOML makes it possible to solve the problems of the previous proposals,
since a) the labels are not treated numerically, as the sequences will only consider the rel-
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ative positions between them, and b) the sequential approach fits the structure of the data
regardless of the quality of the class separation.
In order to analyze the time complexity of CMOML we have performed a computational
analysis of the algorithm,which includes a comparisonwith the time complexity of the state-
of-the-art of metric learning for ordinal regression. The analysis shows that the compared
algorithms have similar time complexities and, due to the nature of CMOML, it can highly
benefit from parallelization.
To evaluate the performance of CMOMLwehave carried out several experiments on datasets
for ordinal regression. The results, supported by a Bayesian statistical analysis, show that
CMOML is an outstanding algorithm within the family of distance metric learning algo-
rithms for ordinal regression, in addition to being competitive with the ordinal regression
state-of-the-art.
CMOML also offers benefits in terms of explainability that the compared algorithms lack.
The case-based reasoning approach [30] allows nearest neighbors-based algorithms to show
their learned knowledge in an understandableway [20, 19]. By combining nearest neighbors
with the distance that CMOML learns, we can make the neighbors we obtain much more
intuitive to our human reasoning. We will show this empirically. To do this, we will analyze
on two different datasets how the nearest neighbors behave with the Euclidean distance and
with the distance learned by CMOML. Additionally we will see that CMOML can perform
dimensionality reduction and we will explore its benefits in terms of understandability.
Our paper is organized as follows. Section 2 describes the distancemetric learning and ordi-
nal regression problems. Section 3 shows our proposal of distancemetric learning for ordinal
regression. Section 4 describes the experiments developed to evaluate the performance of
our algorithm, and the results obtained. Section 5 shows how to combine CMOMLand case-
based reasoning to obtain explainable models and discusses the benefits of this approach on
two different datasets. Finally, Section 6 ends with the concluding remarks.

2 Background

In this section we will describe the problems and tools that will be used throughout the
paper.

2.1 Distance metric learning

Distancemetric learning [21] is a discipline of machine learning that aims to learn distances
from the data, where distance refers to a map 𝑑∶ 𝒳 × 𝒳 → ℝ, with 𝒳 a non-empty set,
satisfying the following conditions:

1. Coincidence: 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦, for every 𝑥, 𝑦 ∈ 𝒳.

2. Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), for every 𝑥, 𝑦 ∈ 𝒳.

3. Triangle inequality: 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧), for every 𝑥, 𝑦, 𝑧 ∈ 𝒳.
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Distance metric learning frequently focuses on learning Mahalanobis distances, since they
are parameterized by matrices, and therefore they are easy to handle from a computational
perspective. Given a positive semidefinite (also called metric) matrix𝑀 of dimension 𝑑, the
Mahalanobis distance associated with𝑀, for each 𝑥, 𝑦 ∈ ℝ𝑑, is given by

𝑑𝑀(𝑥, 𝑦) = √(𝑥 − 𝑦)𝑇𝑀(𝑥 − 𝑦).

Since every metric matrix𝑀 can be decomposed as𝑀 = 𝐿𝑇𝐿, where 𝐿 is a matrix with the
same number of columns as 𝑀, and verifying that 𝑑𝑀(𝑥, 𝑦) = ‖𝐿(𝑥 − 𝑦)‖2, a Mahalanobis
distance can also be understood as the Euclidean distance after applying the linear map
defined by the matrix 𝐿. Thus, distance metric learning comes down to learning a metric
matrix𝑀 or to learning a linear map matrix 𝐿. Both approaches are equally valid, and each
one has different advantages. For instance, learning𝑀 usually leads to convex optimization
problems, while learning 𝐿 can be used to guarantee a dimensionality reduction with no
additional cost.

2.2 Ordinal regression and similarity approaches

Ordinal regression [10] is a machine learning problem consisting in, similarly to classifica-
tion and regression, predicting the output label 𝑦 ∈ 𝒴 of an input vector 𝑥 ∈ ℝ𝑑, given
a training set of labeled samples 𝑆 = {(𝑥1, 𝑦1),… , (𝑥𝑁 , 𝑦𝑁)}, with 𝑥1,… , 𝑥𝑁 ∈ ℝ𝑑 and
𝑦1,… , 𝑦𝑁 ∈ 𝒴. What differentiates ordinal regression from classification and regression
is the nature of the set 𝒴. 𝒴 is a finite set 𝒴 = {𝑙1,… , 𝑙𝐶} of length 𝐶 ≥ 3, over which an
order relation < is defined so that 𝑙𝑖 < 𝑙𝑖+1, for 𝑖 = 1,… , 𝐶 − 1. In addition, although the
values in 𝒴 are ordered, their differences are not quantifiable, that is, the operations 𝑙𝑖 − 𝑙𝑗
are not defined, for any 𝑖, 𝑗 ∈ 1,… , 𝐶. Therefore, the exclusive information that 𝒴 provides
in ordinal regression problems is the relative positions between the labels. It is often com-
mon to represent𝒴 as𝒴 = {1,… , 𝐶} together with the order relation of the natural numbers,
always taking into account that the differences between the values in 𝒴 should not be used
in this problem.
In ordinal regression, committing a prediction error with a class close to the real one in 𝒴
is not as serious as committing an error predicting the class furthest away from the true
one. Therefore, both the algorithms and the evaluation metrics have to be adapted to face
this problem and evaluate their solutions adequately. For this purpose, traditional methods
such as support vector machines have been adapted to this problem by imposing constraints
in order to respect the ordering of the classes [13, 31], or by reducing to binary problems in
an appropriate way [32]. Other proposals try to adapt conventional loss or gain functions
in order to handle ordinal data in the best possible way. These functions have been tested
with algorithms such as decision trees [33], Bayesian networks [17] or extreme learning
machines [16], as well as with gradient-based learners [34, 35], such as back-propagation
neural networks. Finally, deep learning has also taken a leading role in this problem, with
proposals that are mainly applied in fields related to computer vision [36, 4, 8].
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In the context of similarity-based learning, the 𝑘-nearest neighbors (𝑘-NN) approach [18] can
be easily extended to the ordinal case. To do this, we have to consider the general aggregation
function for a 𝑘-NN algorithm [37, 38], given by

𝑓(𝑥) = argmin
𝑦∈𝒴

𝑘
∑
𝑗=1

𝑤𝑗𝑝(𝑦𝑖𝑗 , 𝑦),

where 𝑥 is the sample to be predicted, 𝑖𝑗 , 𝑗 = 1,… , 𝑘 are the indices of the 𝑘-nearest neigh-
bors of 𝑥 in the training set, 𝑤𝑗 are weights to be considered for each neighbor, and 𝑝 is a
penalty function that measures how wrong it might be to label 𝑥 with each of the classes,
according to the information given for each of the neighbors. Observe that if all the weights
are equal and 𝑝(𝑦, 𝑦∗) = [[𝑦 ≠ 𝑦∗]], 𝑓 becomes the classic majority-vote aggregation function
of the 𝑘-NN (here, [[⋅]] denotes the indicator function for the condition inside the brackets).
When the labels are ordinal, we can use additional penalty functions that take into account
the order relation between the labels. According to [39], one of the most popular penalty
functions is the 𝐿1 penalty1, given by 𝑝(𝑦, 𝑦∗) = |𝑦 − 𝑦∗|. This penalty function leads to
the median-vote or weighted-median-vote 𝑘-NN approaches, both of them being immediate
extensions of this algorithm to ordinal regression.
In the context of distance metric learning for ordinal regression, [26] recently proposed the
distance metric learning approach LODML (linear ordinal distance metric learning). This
approach is based on the classic large margin nearest neighbors (LMNN) algorithm for dis-
tance metric learning. LMNN searches for a distance that brings each sample as close as
possible to a predefined set of same-class target neighbors while keeping data from other
classes out of a large margin defined by the target neighbors. This distance can be obtained
by optimizing the following objective function, defined for a positive semidefinite matrix𝑀:

𝑓𝐿(𝑀) = 𝛼 tr(𝑀) + ∑
(𝑖,𝑗,𝑙)∈𝑅1

𝜉𝑖𝑗𝑙

𝑠.𝑡. ∶ 𝑑2𝑀(𝑥𝑖, 𝑥𝑙) − 𝑑2𝑀(𝑥𝑖, 𝑥𝑗) ≥ 1 − 𝜉𝑖𝑗𝑙
𝜉𝑖𝑗𝑙 ≥ 0
𝑀 ≥ 0.

In this function, the first term is a regularization term and 𝜉𝑖𝑗𝑙 slack variables that measure
to what degree the margins have been violated. The set 𝑅1 is the set of triplets (𝑖, 𝑗, 𝑙) such as
𝑥𝑗 is a target neighbor of 𝑥𝑖 and 𝑥𝑙 is a sample with a different class to 𝑥𝑖. The first constraint
is the large margin constraint, which enforces that, for each triplet (𝑖, 𝑗, 𝑙) ∈ 𝑅1, 𝑥𝑖 and 𝑥𝑗
are close, and 𝑥𝑙 does not invade the large margin defined by 𝑥𝑗 around 𝑥𝑖, as long as it is
feasible.

1Observe that, although this penalty function is considering the differences between the labels, their numer-
ical values do not influence the final value of the aggregation function. In fact, the median or weighted-median
resulting from the aggregation does not depend on the differences between the labels, but depends only on the
weights𝑤𝑗 and the relative positions between the labels of the 𝑘-nearest neighbors.
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The extension to the ordinal case that LODML performs is done by replacing the set of
triplets 𝑅1 with a new set 𝑅 = 𝑅1 ∪ 𝑅2 ∪ 𝑅3, where 𝑅1 is the previous set of triplets, and
𝑅2 and 𝑅3 include triplets (𝑖, 𝑗, 𝑙) so that 𝑦𝑙 < 𝑦𝑗 < 𝑦𝑖 or 𝑦𝑖 < 𝑦𝑗 < 𝑦𝑙, respectively, thus
forcing the large margin criterion to also be applied with all the possible combinations of
ordered classes. The algorithm can be extended to non-linear metric learning using ker-
nel functions. The kernel version is referred to as kernel ordinal distance metric learning
(KODML).

3 Chain Maximizing Ordinal Metric Learning

In this section we will describe the CMOML algorithm. This algorithm looks for a distance
for which the dataset has a high number of chains. As such, it achieves an optimal config-
uration for the data, since close samples according to the distance obtained will also have
close labels.
First, we will explain in detail the concepts needed to understand the algorithm, Then, we
will show the objective function and how to proceed with its calculation. Afterwards, we
will demonstrate how to extend the algorithm to high dimensional spaces using kernels.
We will conclude the section by performing a complexity analysis of the proposed methods.

3.1 Preliminary Definitions

Suppose that our training set is given by 𝒳 = {𝑥1,… , 𝑥𝑁} ⊂ ℝ𝑑, with corresponding labels
𝑦1,… , 𝑦𝑁 ∈ 𝒴 = {1,… , 𝐶}. As already mentioned, given 𝑥𝑖 ∈ 𝒳, the goal of our algorithm
is to increase the difference between the labels as wemove away from 𝑥𝑖 in any direction, for
each 𝑥𝑖 ∈ 𝒳. To do this we introduce several concepts. First, we will work with the distance
defined by a linear map 𝐿∶ ℝ𝑑 → ℝ𝑑′ , with 𝑑′ ≤ 𝑑. The value of 𝑑′ is the desired dimension
of our dataset in the transformed space, sowe are able to perform a dimensionality reduction
with this setup. The associated matrix, which we will also refer to as 𝐿, is of dimension
𝑑′ × 𝑑. A common value for 𝑑′ is to use 𝑑′ = 𝑑, so that the transformed data remains in
the input space. If the transformation learned in this way is not full-rank, that is, all the
elements inℝ𝑑 are mapped to a subspace of dimension lower than 𝑑, this dimension can be
used as a new value for 𝑑′ to ensure that no information from the full-rank method is lost.
Another possibility is to estimate𝑑′ from specialized dimensionality reductionmethods. For
example, to set 𝑑′ according to the reconstruction errors provided by principal components
analysis [40], up to the amount of reconstruction error we are willing to admit for our data.
Then, for each 𝑥𝑖 ∈ 𝒳 we define a neighborhood 𝒰𝐿(𝑥𝑖), which consists of the 𝐾𝑖 nearest
neighbors of𝑥𝑖 (including𝑥𝑖), according to the distance determined by𝐿. 𝐾𝑖 ∈ ℕ denotes the
size of the neighborhood around 𝑥𝑖, and can be either a fixed value for every 𝑖 ∈ {1,… ,𝑁}, a
value estimated tomake equal-radius neighborhoods that better adapts to the data densities,
or any value that can be established with any kind of prior information. We will consider
these neighbors as already projected onto the transformed space, that is, the elements of
𝒰𝐿(𝑥𝑖) will be of the form 𝐿𝑥𝑗 , with 𝑗 ∈ {1,… ,𝑁}. We also fix 𝜅 ∈ ℕ, which will be the
length of the sequences that we define below.
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Definition. Let 𝜎 be an injective mapping from the set {1,… , 𝜅} to the set of the indices of
the samples that belong to 𝑈𝐿(𝑥𝑖). A sequence (of samples) around 𝑥𝑖 ∈ 𝒳 (with respect
to 𝐿) is a 𝜅-tuple (𝐿𝑥𝜎(1),… , 𝐿𝑥𝜎(𝑘)), with 𝐿𝑥𝜎(1),… , 𝐿𝑥𝜎(𝜅) ∈ 𝒰𝐿(𝑥𝑖). We refer to the tuple
(𝑦𝜎(1),… , 𝑦𝜎(𝜅)) as the corresponding sequence of labels.

In other words, sequences of samples are successions of 𝜅 items taken from 𝑈𝐿(𝑥𝑖) without
replacement, and their labels in the same order of choice form the corresponding sequence
of labels. Since we are working on an ordinal regression problem, there is a natural order
relation among the labels. We will say that a sequence of labels (𝑦𝜎(1),… , 𝑦𝜎(𝜅)) around 𝑥𝑖
is ordered if either 𝑦𝑖 ≤ 𝑦𝜎(1) ≤ … ≤ 𝑦𝜎(𝜅) or 𝑦𝑖 ≥ 𝑦𝜎(1) ≥ …𝑦𝜎(𝜅).
The next step is to establish a relation on the sequences of samples so that they can be paired
with the corresponding order in the sequences of labels. As we are interested in increasing
the difference between the labels while we are moving away from 𝑥𝑖, we define this (pre-
)order relation as follows.
Definition. An ordered sequence of samples around 𝑥𝑖 ∈ 𝒳 (with respect to 𝐿) is a sequence
of samples (𝐿𝑥𝜎(1),… , 𝐿𝑥𝜎(𝜅)) verifying that

‖𝐿𝑥𝜎(1) − 𝐿𝑥𝑖‖ ≤ ‖𝐿𝑥𝜎(2) − 𝐿𝑥𝑖‖ ≤ … ≤ ‖𝐿𝑥𝜎(𝜅) − 𝐿𝑥𝑖‖.

Definition. A chain around 𝑥𝑖 ∈ 𝒳 (with respect to 𝐿) is an ordered sequence of labels
(𝑦𝜎(1),… , 𝑦𝜎(𝜅)) associated with an ordered sequence of samples (𝐿𝑥𝜎(1),… , 𝐿𝑥𝜎(𝜅)). We de-
note the total number of chains around 𝑥𝑖 (with respect to 𝐿) as 𝑆𝐿(𝑥𝑖).

In short, chains represent sequences that are ordered in both the label space and the sample
space. Observe that, if we assume that there are no points in 𝑈𝐿(𝑥𝑖) at the exactly same
distance from 𝑥𝑖 we have that

𝑆𝐿(𝑥𝑖) ≤ (𝐾𝑖𝜅 ), (1)

since, as there is a unique ordering of the samples under this assumption, the total number
of ordered sequences of samples is the total number of non-repeating combinations of 𝜅
items taken from 𝑈𝐿(𝑥𝑖), and 𝑆𝐿(𝑥𝑖) attains its maximum when every ordered sequence of
samples is a chain. The case with equal distances will be discussed later on. Let us illustrate
these concepts with an example.
Example. Suppose that we set 𝐾0 = 7, 𝜅 = 3, and, for a linear map 𝐿∶ ℝ𝑑 → ℝ2, we have
a snapshot of a 2D ordinal dataset around the point 𝐿𝑥0 as in Figure 2. Under these assump-
tions we have that 𝑈𝐿(𝑥) = {𝐿𝑥0, 𝐿𝑥1, 𝐿𝑥2, 𝐿𝑥3, 𝐿𝑥4, 𝐿𝑥5, 𝐿𝑥6}, and the distance orders in the
neighborhood verify that ‖𝐿𝑥𝑗 −𝐿𝑥‖ < ‖𝐿𝑥𝑗+1−𝐿𝑥‖ for 𝑗 = 0,… , 6. The labels corresponding
to each of the samples in 𝑈𝐿(𝑥0) are: 𝑦0 = , 𝑦1 = , 𝑦2 = , 𝑦3 = , 𝑦4 = , 𝑦5 = and
𝑦6 = . We have that:

• The sequences of samples are any 𝜅 different items taken from 𝑈𝐿(𝑥) in any order.
For example, (𝐿𝑥5, 𝐿𝑥0, 𝐿𝑥3) (the gray dotted arrows). This sequence is not ordered,
since 𝐿𝑥0 and 𝐿𝑥3 are closer to 𝐿𝑥0 than the first element of the sequence, 𝐿𝑥5. Its
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Figure 2: A neighborhood of the sample 𝐿𝑥0, for 𝐿 of length 𝐾0 = 7, with sequences of
samples and labels (gray dotted arrows), ordered sequences of samples (red dashed arrows),
ordered sequences of labels (blue dashed arrows) and chains (golden solid arrows) of length
𝜅 = 3.

corresponding sequence of labels is (𝑦5, 𝑦0, 𝑦3) = ( , , ), which is also not ordered,
since neither 𝑦5 ≤ 𝑦0 ≤ 𝑦3 nor 𝑦5 ≥ 𝑦0 ≥ 𝑦3.

• The sequence of samples (𝐿𝑥0, 𝐿𝑥2, 𝐿𝑥6) (the red dashed arrows) is ordered, since each
term in the sequence is further away from 𝐿𝑥0 than the previous one. However, it is not
a chain, since its corresponding sequence of samples is (𝑦0, 𝑦2, 𝑦6) = ( , , ), and this
sequence is not ordered.

• The sequence of labels (𝑦6, 𝑦3, 𝑦5) = ( , , ) (the blue dashed arrows) is ordered, since
it is decreasing ( ≥ ≥ ) and all the elements in the sequence are lower than or
equal to the label of the central sample of the neighborhood, 𝑦0 = . However, it is not
associated with an ordered sequence of samples, because in (𝐿𝑥6, 𝐿𝑥3, 𝐿𝑥5), the second
item is closer to 𝐿𝑥0 than the first one. Therefore, this sequence is not a chain.

• The sequences of samples (𝐿𝑥0, 𝐿𝑥1, 𝐿𝑥2) and (𝐿𝑥3, 𝐿𝑥4, 𝐿𝑥5) are chains, since they are
ordered sequences of samples, and their corresponding sequences of labels are, respec-
tively, ( , , ) and ( , , ), which are also ordered.

• Observe that the central point, 𝐿𝑥0, may or may not belong to a chain. But when 𝐿𝑥0
does not belong to a chain candidate the label 𝑦0 is still used to compute if the sequence
of labels is ordered. For example, although the sequence (𝐿𝑥2, 𝐿𝑥4, 𝐿𝑥5) is an ordered
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sequence of samples and its corresponding sequence of labels, (𝑦2, 𝑦4, 𝑦5) = ( , , ),
is decreasing, it is not an ordered sequence of labels under our definition, since 𝑦0 ≱
𝑦2 ≥ 𝑦4 ≥ 𝑦5. Therefore, this sequence is not a chain.
The reason why we do not consider this last sequence a chain under our definition is
because, from the point of view of distance-based ordinal regression, this chain does not
move away from the base class of the neighborhood, 𝑦0, gradually. The first element, 𝑦2,
is higher than 𝑦0, while the second, 𝑦4, is lower than 𝑦0. Since in an ordinal regression
problem the true distances between the class labels are unknown, to consider a sequence
as a chain we are only interested in whether it ascends or descends from the base class
of the neighborhood, 𝑦0 in this case. Therefore, even though 𝑦0 does not belong to the
sequence, we impose this restriction to the definition of chain.

3.2 Optimization

Once the concept of chain has been defined, the problem that CMOML optimizes is

max
𝐿∈ℝ𝑑′×𝑑

𝑁
∑
𝑖=1

𝑆𝐿(𝑥𝑖). (2)

Observe that the objective function only takes integer values and therefore, it is not dif-
ferentiable or even continuous. As a result, it is necessary to make use of black-box non-
differentiable optimization methods in order to maximize Eq. 2. We will discuss the opti-
mization method used in our experimental analysis in Section 4.2.
In order to avoid the brute force counting of 𝑆𝐿(𝑥𝑖), which would be computationally ex-
pensive according to the inequality in Eq. 1, it is possible to obtain the value of 𝑆𝐿(𝑥𝑖) using
a dynamic programming approach. We will assume that there are no points in 𝑈𝐿(𝑥𝑖) at
the exactly same distance from 𝑥𝑖. If this is not the case, the uniqueness in the order of
the sequences of samples, which is needed for the dynamic programming approach, is lost.
However, we will show at the end of the section that when we find several samples at the
same distance from 𝑥𝑖 we can still apply this algorithm by following a pessimistic optimiza-
tion approach.
First, let us consider the sequence of all the labels associated with all the samples in𝒰𝐿(𝑥𝑖),
ordered by the distances of the corresponding samples to 𝑥𝑖; in other words, the sequence of
length 𝐾𝑖, 𝑢 = (𝑦𝜏(1),… , 𝑦𝜏(𝐾𝑖)) so that 𝒰𝐿(𝑥𝑖) = {𝐿𝑥𝜏(1),… , 𝐿𝑥𝜏(𝐾𝑖)} and

‖𝐿𝑥𝜏(1) − 𝐿𝑥𝑖‖ < ‖𝐿𝑥𝜏(2) − 𝐿𝑥𝑖‖ < ⋯ < ‖𝐿𝑥𝜏(𝐾𝑖) − 𝐿𝑥𝑖‖.

Observe that the inequality above holds when using the strict order (<) thanks to the as-
sumption of unequal distances around 𝑥𝑖. We will focus on counting the ascending chains
around 𝑥𝑖. The process for counting descending chains is similar. From the sequence 𝑢 we
construct a subsequence 𝑣 containing only the items in 𝑢 that are greater than 𝑦𝑖, that is,

𝑣 = (𝑦𝜏𝛿(1),… , 𝑦𝜏𝛿(𝑅)),
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where 𝑅 ≤ 𝐾𝑖 and 𝛿 ∶ {1,… , 𝑅} → {1,… , 𝐾𝑖} is a strictly increasing map so that 𝑦𝜏𝛿(𝑗) ≥ 𝑦𝑖
for every 𝑗 ∈ {1,… , 𝑅}, and 𝛿 is also surjective over the set {𝑗 ∈ {1,… , 𝐾𝑖}∶ 𝑦𝜏(𝑗) ≥ 𝑦𝑖}
Now, the problem of counting the ascending chains around 𝑥𝑖 is reduced to finding all the
increasing subsequences of length 𝜅 inside 𝑣, since 𝑣 contains all the labels in the neighbor-
hood of 𝑥𝑖 which are greater than 𝑦𝑖, ordered by the distances to 𝑥𝑖. This new problem can
be easily solved using dynamic programming, by iteratively filling a 𝜅×𝑅matrix, where the
(𝑙, 𝑚) entry represents the number of sequences of length 𝑙 which end at the𝑚-th item in 𝑣,
and can be recovered from the entries in the row 𝑙 − 1. This process can be done in 𝑂(𝜅𝑅2).
The process of counting descending chains is done by constructing 𝑣 with the elements of
𝑢 that are lower than 𝑦𝑖, and counting the decreasing sequences in the new 𝑣. Observe that
the constant chains are counted twice, since they appear in both ascending and descending
chains. So, to obtain the final number of chains 𝑆𝐿(𝑥𝑖), we have to add the increasing chains
and decreasing chains, and subtract the number of constant chains, which can be easily
obtained as (𝐻

𝜅
), where 𝐻 = |{𝑗 ∈ {1,… , 𝐾𝑖}∶ 𝑦𝜏(𝑗) = 𝑦𝑖}|.

Example. We return to the dataset of Example 3.1 to show how to construct the sequence
needed for the dynamic programming algorithm. To facilitate the calculations, we will identify
the classes in the dataset with integer numbers: = 0, = 1, = 2, = 3, = 4. Since the
samples in𝑈𝐿(𝑥) verify that ‖𝐿𝑥𝑗−𝐿𝑥‖ < ‖𝐿𝑥𝑗+1−𝐿𝑥‖ for 𝑗 = 1,… , 5, we obtain the sequence𝑢
by adding the labels from 𝑦0 to 𝑦6, that is, 𝑢 = (2, 3, 4, 1, 1, 0, 2). To count the ascending chains,
we compute 𝑣 by removing the elements that are lower than 𝑦0 from 𝑢, obtaining 𝑣 = (2, 3, 4, 2).
Now we can apply the dynamic programming algorithm, obtaining one single chain: (2, 3, 4),
associated with the samples (𝐿𝑥0, 𝐿𝑥1, 𝐿𝑥2) (the ascending chain obtained in Example 3.1). To
count the descending chains we follow a similar process, removing the labels greater than 𝑦0
from 𝑢, and obtaining 𝑣 = (2, 1, 1, 0, 2). Now we apply the dynamic programming algorithm,
obtaining three descending chains: (2, 1, 1), (2, 1, 0) and (1, 1, 0). The last one is the descending
chain shown in Example 3.1.

Finally, let us explain how to handle the case where there are examples at the same distance
from 𝑥𝑖. Observe that, if the points that are at the same distance from 𝑥𝑖 share the same label,
they can be swapped in 𝑢 without affecting the final value of 𝑆𝐿(𝑥𝑖), so it does not matter in
what order they are added to 𝑢, since both positions will have the same class label.
For the general case, let us note, first of all, that this situation is dependent on 𝐿, and we can
apply a small disturbance to it that would break this equality (unless the samples at the same
distance to 𝑥𝑖 and 𝑥𝑖 are aligned)2. This means that when we have two different samples
being mapped by 𝐿 to points at the same distance to 𝑥𝑖, it is easy to find another map in an

2If 𝑥𝑞, 𝑥𝑟 verify that ‖𝐿𝑥𝑞−𝐿𝑥𝑖‖ = ‖𝐿𝑥𝑟−𝐿𝑥𝑖‖ and 𝑥𝑖, 𝑥𝑞, 𝑥𝑟 are not aligned, then 𝑥𝑞−𝑥𝑖 and 𝑥𝑟−𝑥𝑖 are
linearly independent, and therefore we can define a linear transformation that maps them to different length
vectors, resulting in different distances to 𝑥𝑖 . This transformation can be arbitrarily close to 𝐿, since we could
construct such a transformation by defining the image of 𝑥𝑞 − 𝑥𝑖 and 𝑥𝑟 − 𝑥𝑖 as 𝜆𝐿(𝑥𝑞 − 𝑥𝑖) and 𝐿(𝑥𝑟 − 𝑥𝑖),
respectively, with 1 − 𝜀 < 𝜆 < 1, for any 𝜀 > 0.
If 𝑥𝑖, 𝑥𝑞 and 𝑥𝑟 are aligned and verifying ‖𝐿𝑥𝑞−𝐿𝑥𝑖‖ = ‖𝐿𝑥𝑟−𝐿𝑥𝑖‖, then 𝑥𝑞 = 𝑥𝑟 or 𝑥𝑖 is the middle point

between 𝑥𝑞 and 𝑥𝑟. The first case may be caused by class noise, and is discussed in the text. For the second case,
the pessimistic approach described in the text will cause the objective function not to count chains that contain
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arbitrarily small neighborhood of 𝐿 that sends them to different points at different distances
to 𝑥𝑖.
Moreover, having two different samples from different classes mapped to points at the same
distance to 𝑥𝑖 is not a positive thing from the point of view of a distance-based classification.
For example, consider a sample𝑥1, of class 1, forwhich its nearest neighbors (for the distance
provided by 𝐿) are 𝑥2 and 𝑥3, with classes 2 and 3, respectively, and 𝑥2 and 𝑥3 are at the same
distance to𝑥1. To classify𝑥1 using the information from𝑥2 and𝑥3, a distance-based classifier
would consider that 𝑥1 has the same probability to belong to classes 2 and 3. However, in an
ordinal regression problem we would expect that class 2 had a greater probability, since it is
closer to the real class of 𝑥1 than class 3.
Since we are using a black-box optimizer we propose a pessimistic approach, in which in
case of equality, the vector 𝑢 is constructed by adding the farther classes first. Thus, the
number of chains obtained by the optimizer will be lower than the real one, and therefore
we will be forcing the optimizer to search for a distance that breaks the equality in the most
suitable way. In the previous example, with 𝑥2 and 𝑥3 at the same distance to 𝑥1, we would
add to 𝑢 the class 3 before the class 2. In this way, the objective function for 𝐿will get a lower
number of chains than the objective function for the disturbances of 𝐿 for which 𝑥2 is closer
to 𝑥1 than 𝑥3 (which will add to 𝑢 the class 2 before the class 3). Therefore the optimizer
will be guided to find distances in this second scenario, which is more appropriate for a
distance-based ordinal regression.
In any case, the occurrence of equal distances in a dense space likeℝ𝑑 is a very unlikely case,
even assuming the finite precision of the floating point variables. Note that the pessimistic
approach also covers the case of duplicate samples with different labels, for which this ap-
proach also allows a unique ordering to be established when constructing 𝑢, although in
this case the duplicates will always be mapped to equal points. In this case, preprocessing
techniques to reduce label noisemay be useful before the execution of the algorithm [41, 42].
To sum up, the core of CMOML consists in counting the number of chains for a given linear
map matrix 𝐿, which can be done using the procedure described above. This evaluation
will be repeated for different matrices by a black-box optimizer in order to find an optimum
value of chains. The optimizer we have used in our experimental analysis will be discussed
in Section 4.2.

3.3 Non-linear CMOML

Since learning a Mahalanobis distance is equivalent to learning a linear transformation,
there are many problems where the inherent non-linearity of the data cannot be properly
handled by these distances. To solve this problem, we can use kernel functions in order
to be able to learn a linear transformation in a higher dimensional feature space generated
by a non-linear mapping. This idea has been successfully applied to other distance metric
learning algorithms [43, 44], as well as being a fundamental piece in the success of an algo-
opposing elements within the neighborhood. This is also desirable, since those opposing samples cannot be
modified by a linear transformation.
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rithm of the relevance of the support vector machines [45]. We can apply the kernel trick to
CMOML to obtain its kernel version, KCMOML.
We consider a non-linear mapping 𝜙∶ ℝ𝑑 → ℱ, where ℱ is a Hilbert space of high dimen-
sion (or even infinite), denoted as the feature space. To learn a distance given by 𝐿∶ ℱ → ℝ𝑑

using CMOML in the feature space we only need to compute the distances between the
data after sending them to ℱ. Then the ordered sequences can be obtained in the same
way as in the linear case once the distances are known. Assuming that a kernel function
𝒦∶ ℝ𝑑 × ℝ𝑑 → ℝ associated with 𝜙 is known, if we search for the components of 𝐿 in the
span of {𝜙(𝑥1),… , 𝜙(𝑥𝑁)}, we can express 𝐿 in terms of𝒦 and a newmatrix 𝐴, of dimension
𝑑′ × 𝑁 [21] as

𝐿𝜙(𝑥) = 𝐴(
𝒦(𝑥, 𝑥1)

…
𝒦(𝑥, 𝑥𝑁)

) .

From this identity, we can compute the distances ‖𝐿𝜙(𝑥𝑖) − 𝐿𝜙(𝑥𝑗)‖, as well as applying 𝐿
to any point in ℱ. Therefore, by optimizing the matrix 𝐴 in order to find the maximum
number of chains in the feature space, using again a black-box non-differentiable optimiza-
tion method (which will be discussed in Section 4.2) we obtain the kernelized version of
CMOML.

3.4 Complexity Analysis of CMOML and Comparison with LODML

In this sectionwewill compare the computational time complexity required by the CMOML
and LODML methods and their kernel versions.
The parameters that determine the time complexity of LODML are: the number of samples
𝑁, the number of features 𝑑, the number of target neighbors 𝑘, the neighborhood size 𝜈, and
the size of the set of triplets𝑚 = |𝑅| [26]. Both the target neighbors and the neighborhoods
can be built at the first stage of the algorithm using a linear nearest neighbors search, which
can be performed in 𝒪(𝑘𝑁2 + 𝑑𝑁2) and 𝒪(𝜈𝑁2 + 𝑑𝑁2), respectively. The second stage of
the algorithm is the optimization procedure, which is an iterative projected gradient descent
method consisting of two parts: the gradient computation and its projection onto the posi-
tive semidefinite cone. The gradient computation requires the calculation of outer products
involving all the constraints in 𝑅, which, in the worst case, can be performed in 𝒪(𝑚𝑑2).
However, in practice, only a few outer products are required to be computed, which are
those corresponding to the constraints that switched their activation state between consec-
utive iterations of the gradient update. Finally, the projection of the obtained gradient onto
the positive semidefinite cone is performed in 𝒪(𝑑3) and the metric update is performed in
𝒪(𝑑2), thus the overall time complexity of LODML is 𝒪(𝑑3 +𝑚𝑑2) per iteration [26].
In the case of CMOML, the parameters that determine its complexity are: the number of
samples 𝑁, the number of features 𝑑, the sizes of the neighborhoods {𝐾𝑖 ∶ 𝑖 = 1,… ,𝑁}, the
sequence length 𝜅 and the output dimension 𝑑′. For theworst case estimation, let us assume
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that 𝑑′ = 𝑑 and 𝐾 = max{𝐾𝑖 ∶ 𝑖 = 1,… ,𝑁}. The objective function of CMOML requires
transforming the dataset using 𝐿, which can be performed in 𝒪(𝑁𝑑2), and the computation
of the pairwise distances for the transformed dataset, which can be performed in 𝒪(𝑁2𝑑).
Then, computing the number of chains in each neighborhood requires first the neighbor-
hood calculation, which can be performed in 𝒪(𝐾𝑁) since all the pairwise distances in the
transformed data were already computed. Then, the sequences 𝑢 and 𝑣 can be built in 𝑂(𝐾)
as shown in Section 3.2, and finally the counting operation can be performed in 𝒪(𝑘𝐾2)
(also shown in Section 3.2 and using that 𝑅 ≤ 𝐾 in any neighborhood). This is done for
each 𝑥𝑖 ∈ 𝒳, resulting in an overall time complexity of the objective function of

𝒪(𝑁𝑑2 + 𝑁2𝑑 + 𝑁(𝐾𝑁 + 𝐾 + 𝜅𝐾2)) = 𝒪(𝑁(𝑑2 + 𝜅𝐾2) + 𝑁2(𝑑 + 𝐾)).

To the objective function cost of CMOML we have to add the overhead of the differential
evolution steps, which consists of𝒪(𝑃𝑑2) after every 𝑃 evaluations of the objective function
[46], where 𝑃 is the population size.
With respect to the kernel versions, both methods include an initial kernel matrix computa-
tion, of size 𝑁 ×𝑁, which can be performed in𝒪(𝑁2𝑑). Then, all the dimension-dependent
(𝑑) complexities in LODML scale to samples-dependent (𝑁) complexities in KODML due
to the kernel trick, resulting in an overall complexity of 𝒪(𝑁3 + 𝑚𝑁3) for the gradient iter-
ations of KODML. For KCMOML, since we still count the chains after applying the trans-
formation, the output dimension 𝑑 remains in this stage and only the transformation oper-
ation and the differential evolution overhead scale to 𝑁, resulting in an overall complexity
of 𝒪(𝑁(𝑁𝑑 + 𝜅𝐾2) + 𝑁2(𝑑 + 𝐾)) for the objective function, and 𝒪(𝑃𝑁2) for the differential
evolution overhead.
In summary, we see that both methods run in cubic orders of complexity with respect to
(𝑁, 𝑑), which is common inmost metric learningmethods, since at aminimum they usually
require operations such as matrix products or decompositions.
Within the cubic order, LODML seems to be a lighter algorithm, and its gradient computa-
tion depends only on 𝑑. However, CMOML has the advantage that the evaluations of the
objective function can be highly parallelized, and a whole generation can be evaluated si-
multaneously. In contrast, LODML is inevitably iterative as every iteration depends on the
completion of the previous one. Finally, KCMOML scales somewhat better than KODML
since it still depends on 𝑑 in many terms of its overall complexity, rather than 𝑁.

4 Experiments

In this section we describe the experiments we have developed with CMOML and KC-
MOML, and the results we have obtained. The results obtained show a high performance of
CMOML with respect to the compared algorithms.
First we describe the experiments, datasets and parameters we have used to evaluate the per-
formance of CMOML. Then, we perform a distance metric learning comparison framework
that involves CMOML, the Euclidean distance and the state-of-the-art of distance metric
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learning for ordinal regression. We compare these algorithms using always the same near-
est neighbors classifier. We do this for the linear case and for the kernelized versions of the
algorithms. We show the results and verify them using Bayesian statistical analysis. Finally,
we show the position of CMOML with respect to the state-of-the-art for ordinal regression,
beyond distance metric learning and nearest neighbors classifiers.

4.1 Experimental Framework

We have evaluated the distance learned by CMOML using a distance-based classifier. Since
wewill consider ordinal datasets in the experiments, the classifier used in the experiments is
themedian-vote 𝑘-neighbors classifier [39], which is the natural adaptation for the common
majority-vote 𝑘-neighbors classifier to ordinal regression, as discussed in Section 2.2. We
have used a number of neighbors 𝑘 = 7. This number of neighbors was chosen due to
the fact that starting from this value the median and the mode of the neighbor labels begin
to differ significantly. For smaller values they will be very similar in most cases. We have
compared our algorithm with the results that the same classifier obtains when using the
Euclidean distance, and the distance learned by LODML.
The different distances used by the classifier will be evaluated by a stratified 5-fold cross
validation, that is, a cross validation that preserves the original class proportions in each
fold. We have used 36 datasets, 23 of them being real-world ordinal regression datasets.
The list of datasets has been completed by adding equal-frequency discretized regression
datasets. All these datasets are numeric, without missing values, and have been min-max
normalized to the interval [0, 1] prior to the execution of the experiments. The datasets, their
dimensions and the sources from which they have been gathered are shown in Table 1.
Let ℎ∶ ℝ𝑑 → 𝒴 be the hypothesis obtained by the classifier. To evaluate it, we have used the
concordance index (C-Index), which is one of themost popularmetrics for ordinal regression
[49, 50]. C-Indexmeasures the ratio between the number of ordered pairs in both true labels
and predictions and the number of all comparable pairs, that is

𝐶 =
∑

𝑖,𝑗 ∶ 𝑦𝑖<𝑦𝑗
([[ℎ(𝑥𝑖) < ℎ(𝑥𝑗)]] +

1
2
[[ℎ(𝑥𝑖) = ℎ(𝑥𝑗)]])

#{𝑦𝑖, 𝑦𝑗 ∶ 𝑦𝑖 < 𝑦𝑗}

where [[⋅]] denotes the indicator function, that takes the value 1 if the condition inside is
satisfied and 0 otherwise. C-Index is not influenced by the numerical representation of the
class labels and can be understood as a generalization of the area under the ROC curve [51]
for the ordinal case.
To the results on the different datasets we add the average score obtained for each metric,
and an average ranking that has been calculated by assigning integer values starting from 1,
according to the relative quality of the different algorithms for each dataset.
For CMOML and KCMOML we have used a fixed neighborhood size 𝐾𝑖 = 20 for every
sample in the dataset, a sequence length 𝜅 = 7, an output dimension 𝑑′ = 𝑑 and a differen-
tial evolution optimizer that is described in detail in Section 4.2. For LODML and KODML
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Dataset # Samples # Features # Classes Source
affairs 265 17 6 [47]
automobile 202 71 5 [10]
autoMPG8 392 7 5 [48]
auto-riskness 157 15 5 [47]
balance 625 4 3 [48]
boston-housing 506 13 5 [47]
car 1728 6 4 [48]
cement-strength 998 8 5 [47]
cleveland 297 13 5 [48]
conctact-lenses 25 6 3 [10]
eucalyptus 736 91 5 [10]
glass 213 9 6 [47]
newthyroid 215 5 3 [48]
pasture 36 25 3 [10]
squash-stored 52 26 3 [10]
squash-unstored 52 25 3 [10]
tae 151 54 3 [48]
winequality-red 1359 11 6 [10]
winsconsin-breast-ord 194 32 5 [47]
ERA 1000 4 9 [10]
ESL 482 4 7 [10]
LEV 1000 4 5 [10]
SWD 1000 10 4 [10]
baseball [Discretized] 337 16 5 [48]
dee [Discretized] 365 6 5 [48]
ele-1 [Discretized] 495 2 5 [48]
forestFires [Discretized] 517 12 5 [48]
machineCPU [Discretized] 209 6 5 [48]
pyrim [Discretized] 74 26 5 [10]
stock [Discretized] 950 9 5 [10]
abalone [Discretized] 4177 11 5 [10]
bank1 [Discretized] 8192 8 5 [10]
bank2 [Discretized] 8192 32 5 [10]
computer1 [Discretized] 8192 12 5 [10]
computer2 [Discretized] 8192 21 5 [10]
calhousing [Discretized] 20640 8 5 [10]

Table 1: Datasets used in the experiments.
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we have used a number of 7 target neighbors. Target neighbors are set, for each sample,
as the nearest same-class neighbors to the sample for the Euclidean distance. Both the se-
quence length in CMOML and KCMOML and the number of target neighbors in LODML
and KODML are set in order to match the number of nearest neighbors used in the subse-
quent 𝑘-NN classification.
Given that the purpose of this study is to draw a fair comparison between the algorithms
and assess their robustness in a common environment with multiple datasets, we have not
included a tuning step to maximize any particular performance metric.
The implementations of LODML, CMOML and their kernel versions used in this experi-
mental analysis can be found in our Python library, pydml [52].

4.2 Black-box optimizer in CMOML and KCMOML

In order to run the CMOML andKCMOML algorithms it is necessary to establish some kind
of black-box optimizer that can evaluate its objective function. In this experimental analysis
we have used a differential evolution [53] algorithm. This evolutionary model is updated by
taking differences between individuals in order to find a global optimum. Since the function
to be optimized is not of high complexity, we have opted for this standard model of differ-
ential evolution, in both CMOML and KCMOML. The linear map matrices that define the
distances are codified as a real vector of dimension 𝑑′×𝑑 that contains all the entries in the
matrix added by rows (in the kernel version the matrix 𝐴 is codified in the same way, but in
this casewe obtain a 𝑑′×𝑁 vector). Wehave taken the differential evolution implementation
available in Scikit-Learn3 and the parameters we have used are:

• A population size of 100, initialized using the latin hypercube strategy, in order to
maximize the coverage of the parameter space [54].

• The algorithm has been executed during 150 generations.

• The strategy used to generate new candidates has been best1bin, in which the best
solution is updated, depending on the recombination probability, with the difference
of a pair of individuals taken randomly.

• The decision of updating each of the parameters is made using a binomial distribu-
tionwith a recombination probability of 0.7. The differential weight that determines
how much a parameter is updated in case of recombination is taken randomly, for
each generation, from the interval [0.5, 1[. When the new individual is constructed,
its fitness is calculated using Eq. 2 (after rewriting it as a matrix) and it replaces the
original individual if the new fitness is higher.

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_
evolution.html
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4.3 Results for the Linear Case

Table 2 shows the C-Index results obtained by the algorithms. According to these results,
we see a clear dominance of CMOML over the other algorithms. This shows once again the
main ability of our algorithm, since a high C-Index indicates that the data are ordered in
both the input and the output space.
In order to evaluate to what extent CMOML outperforms the compared algorithms and vice-
versa, we have conducted a series of Bayesian statistical tests. We have prepared several
Bayesian sign tests [55] that compare CMOML with each of the other algorithms. These
tests take into account the differences between the C-Index scores obtained from the two
algorithms being compared, assuming that their prior distribution is aDirichlet Process [56],
defined by a prior strength 𝑠 = 1 and a prior pseudo-observation 𝑧0 = 0. After reading
the score observations obtained for each dataset, the tests produce a posterior distribution.
This distribution provides us with the probabilities that each of the compared algorithms
will outperform the other. The tests also introduce a region of practically equivalent (rope)
performance, where it is assumed that neither of the algorithms is better than the other. We
have designated the rope region as the one where the score differences are in the interval
[−0.01, 0.01]. In summary, from the posterior distribution we obtain three probabilities:
the probability that the first algorithm will outperform the second, the probability that the
second algorithm will outperform the first, and the probability that both algorithms will
have an equivalent performance. The distribution can be displayed in a simplex plot for a
sample of the posterior distribution, where a greater tendency of the points towards one of
the regions will represent a greater probability.
To carry out the Bayesian sign tests we have used the R package rNPBST [57]. Figure 3 shows
the results of the comparisons using the C-Index metric.
By examining the results of the tables and the corresponding Bayesian analyses, we can draw
several conclusions. The Bayesian analysis shows us that there is a very low probability that
Euclidean distancewill outperformCMOML,while CMOMLhas a greater chance of outper-
forming Euclidean distance, although there is also a remarkable probability that both dis-
tances have an equivalent performance. In the comparison between LODML and CMOML
we observe again that CMOML has a very high probability of outperforming LODML, with
low probabilities for the reciprocal and rope cases.
In general, according to the results observed with this ordinal regression metric, we can
conclude that CMOML could be an interesting alternative when looking for distances aimed
at ordinal regression problems.

4.4 Results for the Non-Linear Case

Finally, we will show the results of the experiments with the kernelized versions of CMOML
and LODML. We have evaluated KCMOML and KODML over the datasets previously de-
scribed in Table 1, using the same classifier, validation strategies, parameters and metrics.
Since both kernel versions learn linear transformations that scale quadratically with the
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Euclidean LODML CMOML
affairs 0.569363 0.565897 0.554959
automobile 0.808623 0.880245 0.815365
autoMPG8 0.927234 0.895400 0.917576
auto-riskness 0.614520 0.627593 0.651275
balance 0.925787 0.960857 0.976474
boston-housing 0.795998 0.825344 0.846487
car 0.972751 0.980798 0.978543
cement-strength 0.738981 0.734096 0.844991
cleveland 0.783723 0.788992 0.767258
contact-lenses 0.700000 0.700000 0.828571
eucalyptus 0.823725 0.881438 0.804636
glass 0.774106 0.752447 0.794482
newthyroid 0.889352 0.945833 0.943981
pasture 0.867593 0.801852 0.845370
squash-stored 0.665731 0.721389 0.773538
squash-unstored 0.721429 0.772857 0.803571
tae 0.686458 0.636642 0.677773
winequality-red 0.701366 0.649910 0.703374
wisconsin-breast-ord 0.651560 0.621095 0.589265
ERA 0.689033 0.693902 0.680311
ESL 0.912828 0.906105 0.917878
LEV 0.808138 0.792477 0.810350
SWD 0.744839 0.749787 0.748572
baseball 0.863565 0.766930 0.877246
dee 0.875449 0.846101 0.879377
ele-1 0.878193 0.855523 0.877938
forestFires 0.519372 0.519587 0.540831
machineCPU 0.854202 0.860928 0.871658
pyrim 0.764274 0.805812 0.800085
stock 0.962147 0.688421 0.962486
abalone 0.802877 0.724529 0.805626
bank1 0.773963 0.942145 0.949363
bank2 0.587407 0.770863 0.784161
computer1 0.903586 0.784361 0.910165
computer2 0.906698 0.855022 0.909880
calhousing 0.866630 0.778105 0.910898
AVG SCORE 0.786986 0.780091 0.815398
AVG RANK 2.229730 2.256757 1.513514

Table 2: C-Index score for the linear version of the algorithms in each dataset.
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Figure 3: Bayesian sign test results for the comparison betweenCMOMLwith Euclidean dis-
tance and LODML using C-Index. Simplex diagrams and posterior distributions are shown.

number of samples, which can be computationally expensive for large datasets [26], we have
set a time limit of one week for the kernel experiments. We have evaluated both algorithms
using two of the most popular kernels, namely:

• The polynomial kernel, 𝒦(𝑥, 𝑥′) = 𝛾⟨𝑥, 𝑥′⟩𝑝. We have used 𝑝 = 2, thus we have
obtained a quadratic transformation of the data.

• The radial basis function kernel, or RBF. It is defined as 𝒦(𝑥, 𝑥′) = exp(−𝛾‖𝑥 −
𝑥′‖2). The image of the non-linearmapping associatedwith this kernel is an infinite-
dimensional space.

The value 𝛾 in both kernels has been tuned by cross-validation using the set of values
{10−3, 10−2, 10−1, 1, 10, 100, 1000}.
The results of the kernelized versions using the C-Index score are shown in Table 3. The
symbol (-) in a cell of the table indicates that the corresponding algorithm has exceeded the
established time limit. Observing these results we can see that the kernel versions are able
to obtain better results than the linear versions in most of the datasets. The improvement
observed for KODMLwith respect to LODML is higher than the improvement of KCMOML
with respect to CMOML, but KCMOML still obtains better average results, with the RBF
kernel obtaining the best average scores and the polynomial kernel obtaining the best aver-
age rankings. Analyzing the results of the Bayesian tests4 from Figure 4 we can see there
is pretty level playing field between the two algorithms when using the polynomial kernel,
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with a very high probability that the algorithms will have equivalent performances, while
with the RBF kernel the probability distribution in the three regions is very even, although
slightly biased towardsKCMOML.This tells us thatKCMOMLhas a slightly higher probabil-
ity of performing better than KODML, although a similar probability for the KODML region
implies that the algorithms are able to complement each other well for different datasets. It
is also interesting to observe that KCMOML with the RBF kernel outstands in most of the
real-world ordinal regression datasets, while its performance on the discretized regression
datasets slightly worsens. Finally, it should be noted that KCMOML only times out in 2 of
the large datasets used in the experiments, while KODML times out in 5 of them. This con-
firms what the complexity analysis showed about KCMOML scaling better than KODML
with respect to the number of samples.

With polynomial kernel With RBF kernel

Figure 4: Bayesian sign test results for the comparison between KCMOML and KODML,
with polynomial and RBF kernels, using C-Index. Simplex diagrams and posterior distribu-
tions are shown.

4.5 Comparison with State-of-the-art Methods for Ordinal Regression

Since CMOML has proven to be an outstanding algorithm within the family of distance
metric learning algorithms for ordinal regression, in this section we compare the proposed
algorithm to other state-of-the-art algorithms for ordinal regression. The experiments were

4In order to conduct a fair comparison between the two methods, the average score, the average ranking
and the Bayesian test results exclude the datasets bank1, bank2, computer1, computer2 and calhousing in the
kernel experiments.
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KODML KCMOML
POLY-2 RBF POLY-2 RBF

affairs 0.586422 0.545643 0.567910 0.601115
automobile 0.814357 0.802392 0.862178 0.851728
autoMPG8 0.927905 0.908938 0.921637 0.928632
auto-riskness 0.664561 0.708308 0.660411 0.671843
balance 0.965443 0.986929 0.993742 0.991133
boston-housing 0.834244 0.814329 0.814222 0.807763
car 0.978700 0.973873 0.984611 0.985772
cement-strength 0.784070 0.760296 0.818427 0.806169
cleveland 0.797910 0.814295 0.778811 0.785053
contact-lenses 0.857143 0.857143 0.871429 0.885714
eucalyptus 0.874315 0.851291 0.827302 0.793716
glass 0.774331 0.774331 0.797583 0.802359
newthyroid 0.948843 0.949769 0.943981 0.966435
pasture 0.861111 0.846296 0.867593 0.831481
squash-stored 0.753582 0.718582 0.771637 0.858450
squash-unstored 0.780714 0.815000 0.757857 0.815000
tae 0.700905 0.725865 0.675628 0.700214
winequality-red 0.703518 0.681436 0.705966 0.702759
wisconsin-breast-ord 0.656351 0.659343 0.616383 0.603888
ERA 0.702709 0.703945 0.706104 0.702813
ESL 0.923134 0.920086 0.926032 0.920399
LEV 0.813103 0.808132 0.813145 0.810783
SWD 0.755780 0.757707 0.752039 0.756966
baseball 0.863850 0.805774 0.866594 0.865433
dee 0.882748 0.861711 0.889650 0.888016
ele-1 0.881161 0.877794 0.879256 0.870785
forestFires 0.538324 0.541348 0.520120 0.517618
machineCPU 0.877991 0.864206 0.872821 0.854135
pyrim 0.779829 0.815556 0.837949 0.782308
stock 0.963650 0.955048 0.958975 0.961427
abalone 0.731883 0.736535 0.768793 0.756074
bank1 - - 0.844700 0.884079
bank2 - - - -
computer1 - - 0.888985 0.899613
computer2 - - 0.865846 0.913115
calhousing - - - -
AVG SCORE4 0.805760 0.801351 0.807379 0.808903
AVG RANK4 2.532778 2.859521 2.217482 2.390218

Table 3: C-Index score for the kernel version of the algorithms in each dataset.
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performed using the two methods that obtained the best results in the experimental analy-
sis of [10], namely, SVOREX [13] and REDSVM [32]. These two algorithms are adaptations
of support vector machines for ordinal regression. The first adds explicit constraints con-
cerning adjacent classes for threshold determination, while the second reduces the ordinal
regression problem to be applied to binary SVM classifiers.
In addition to these SVM variants we have included two more recent proposals for ordinal
regression in our comparison. The first is an adaptation of the extreme learning machines,
kernel extreme learning machine for ordinal regression (KELMOR) [16]. The second is an ex-
tension of the Bayesian network classifiers [17]. This extension learns a Bayesian network
that jointly maximizes accuracy and mutual information, in order to better adapt to imbal-
anced and ordinal problems. We will refer to this algorithm as EBNC (extended Bayesian
network classifier).
Both SVMs and KELMOR have been used with a Gaussian kernel and an adjusting parame-
ter 𝐶 = 10. For the Bayesian network classifier, the features were discretized to a maximum
of ten values per attribute, using equal-length bins, so that they could be handled by the
network. CMOML has been used with the same settings as in Section 4.3. As in the previ-
ous experiments, we have carried out a stratified 5-fold cross validation. We have taken the
implementations of the SVMs from [58] and the code of EBNCprovided by [17]. We also pro-
vide an implementation of KELMOR5. The C-Index scores obtained by CMOML and each
of the state-of-the-art classifiers are shown in Table 4.
Looking at the results, we can observe that CMOML is slightly behind the SVMs in terms
of rankings. However, although CMOML only ranks first in 6 of the datasets in C-Index,
it achieves outstanding wins in datasets such as newthyroid, glass or calhousing, with con-
vincing wins in the rest of its top positions as well. Moreover, in most of the cases where
CMOML performs worse than the other algorithms, its results are still competitive with the
results of the rest of algorithms. This translates into the best average C-Index.
In summary, CMOML has the ability to excel in several ordinal datasets where other state-
of-the-art methods do not perform well, in addition to having decent overall performance.
Finally, aswewill see in the next section, CMOML stands out from the comparedmethods in
terms of explainability, regarding case-based reasoning, dimensionality reduction and visu-
alization. Both support vector machines and extreme learning machines are considered by
design complex black-box learning algorithms [19, 59]. Their opaque structure turns them
into undesirable algorithms for high-risk automated tasks. In contrast, the transparency
of the nearest neighbors-based algorithms and the information provided by the neighbors
themselves make themmuchmore useful in these tasks [30]. We will see in the next section
that the distance learned by CMOML, besides considerably improving the performance of
the 𝑘-NN, makes the interpretable information produced by the classifier much more intu-
itive.

5https://github.com/jlsuarezdiaz/KELMOR
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REDSVM SVOREX EBNC KELMOR CMOML
affairs 0.543764 0.479077 0.544441 0.570416 0.554959
automobile 0.853380 0.759912 0.776466 0.838471 0.815365
autoMPG8 0.921465 0.933516 0.915756 0.918324 0.917576
auto-riskness 0.696078 0.763215 0.740496 0.696718 0.651275
balance 0.988387 0.994224 0.930498 0.949678 0.976474
boston-housing 0.838319 0.838910 0.763829 0.851915 0.846487
car 0.956863 0.982058 0.974778 0.952840 0.978543
cement-strength 0.836725 0.864907 0.702598 0.799276 0.844991
cleveland 0.820070 0.794660 0.733414 0.835190 0.767258
contact-lenses 0.700000 0.685714 0.614286 0.885714 0.828571
eucalyptus 0.882360 0.854718 0.853683 0.868132 0.804636
glass 0.717674 0.773195 0.642967 0.734655 0.794482
newthyroid 0.750463 0.857407 0.833796 0.776157 0.943981
pasture 0.827778 0.757407 0.846296 0.854630 0.845370
squash-stored 0.777310 0.811784 0.830044 0.766608 0.773538
squash-unstored 0.761429 0.775000 0.710000 0.775714 0.803571
tae 0.604379 0.684285 0.636560 0.594199 0.677773
winequality-red 0.723094 0.730985 0.726721 0.720977 0.703374
wisconsin-breast-ord 0.615969 0.599485 0.516718 0.604256 0.589265
ERA 0.710939 0.680576 0.692489 0.720854 0.680311
ESL 0.929687 0.932802 0.908091 0.929938 0.917878
LEV 0.811428 0.822995 0.801398 0.809583 0.810350
SWD 0.744378 0.761199 0.780408 0.735707 0.748572
baseball 0.881180 0.856130 0.830042 0.875346 0.877246
dee 0.900075 0.894234 0.868829 0.889131 0.879377
ele-1 0.885381 0.884788 0.848548 0.870766 0.877938
forestFires 0.515009 0.512263 0.499984 0.523941 0.540831
machineCPU 0.885147 0.882376 0.777610 0.865265 0.871658
pyrim 0.852821 0.732393 0.729316 0.792393 0.800085
stock 0.922424 0.959384 0.940706 0.924979 0.962486
abalone 0.813377 0.823557 0.769140 0.813790 0.805626
bank1 0.953372 0.952471 0.714695 0.923420 0.949363
bank2 0.824870 0.773617 0.708871 0.801277 0.784161
computer1 0.899223 0.910422 0.808520 0.899727 0.910165
computer2 0.910846 0.927012 0.880130 0.914840 0.909880
calhousing 0.862286 0.874078 0.801631 0.857212 0.910898
AVG SCORE 0.808832 0.808910 0.768160 0.809501 0.815398
AVG RANK 2.729730 2.405405 4.162162 2.891892 2.810811

Table 4: C-Index score for the state-of-the-art methods and CMOML in each dataset.
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5 Nearest Neighbors andMetric Learning for an Explainable Learning
Process

In this section we will explore the explainability possibilities offered by CMOML when it
is applied together with the nearest neighbors classifier. Explainable artificial intelligence
(XAI) [19, 20] has recently gained new relevance as a research topic as a consequence of
the growing need for transparency and interpretability in the large amount of highly com-
plex models, such as ensembles or deep neural networks, that currently dominate machine
learning.
We saw in the previous section that CMOML obtains results close to those of the state-of-
the-art for ordinal regression. The purpose of this section is to show that, in addition to the
foregoing, CMOML has the advantage over the state-of-the-art algorithms in that, since it
can be used in combination with a distance-based algorithm such as the nearest neighbors
classifier, it can benefit from the strengths that 𝑘-NN provides in terms of explainability, and
even polish them in several ways, as we will see throughout the section.
The nearest neighbors classifier, like most similarity-based classifiers, can be interpreted in
terms of case-based reasoning [30]. The 𝑘-NN makes its decisions based on the similarity
with previous experiences (the 𝑘 nearest neighbors in the learned training set). Therefore,
it is possible to analyze these experiences to decide to what extent the decision made by
the algorithm can be trusted. This is very similar to human decision making, which often
relies on previous experiences. In addition, when our data is low-dimensional it is possible
to visualize why the 𝑘-NN has decided to make a certain choice, thanks to the simplicity of
the “nearest neighbor” concept.
If we want to classify a new sample using the 𝑘-NN and we fit an appropriate distance to our
training data, the nearest neighbors of the sample may change and become even more sim-
ilar to the sample. In this way, these neighbors will be more informative when interpreting
a decision. This is possible with distance metric learning. In particular, while the CMOML
optimization algorithm improves the layout of the data to perform better under ordinal re-
gression metrics, it also modifies nearby instances to be more related to the sample to be
predicted. In addition, we can pick the dimension to which we want CMOML to project the
data.
Therefore, in terms of explainability, CMOML improves the traditional 𝑘-NN in two aspects:

• Comprehensibility. The knowledge the 𝑘-NN with CMOML learns can be repre-
sented by the nearest neighbors, and these neighbors will bemuchmore informative
than the neighbors the Euclidean distance would obtain.

• Understandability. The ability to reduce the dimensionality of CMOML allows
data to be represented in spaces of lower complexity where it is easier to understand
why the classifier makes a certain decision.

Wewill test these CMOML capabilities in two different datasets: balance and newthyroid. In
these datasets, CMOML outperforms the Euclidean distance and also obtains good results
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compared to the state-of-the-art algorithms, as shown in Table 4. CMOML clearly outper-
forms all the algorithms in newthyroid and it is very close to the SVMs in balance. In this last
case, the gains in interpretability that we are going to show may compensate the minimal
loss in the ordinal metrics.

5.1 Knowledge representation with CMOML

Here we will analyze how the distance learned by CMOML improves knowledge represen-
tation for a case-based reasoning, with the neighbors obtained by the 𝑘-NN. To do this, we
follow the outline in Figure 5. In short, once the distance is learned, we use it to trans-
form the new sample that is to be classified. In the transformed space we retrieve its nearest
neighbors. With them, on the one hand, the classifier makes its prediction, aggregating the
classes of the neighbors (for the ordinal case, we use the median class here again). On the
other hand, we retrieve the neighbors in the original space and visualize them together with
the case to be predicted.

Figure 5: A case-based reasoning approach with nearest neighbors and CMOML.

Below we perform this procedure with several examples in balance and newthyroid.

5.1.1 Balance dataset analysis

Balance is a dataset whose examples represent two objects placed at the sides of a scale.
Its attributes consist of the weight and the position of the left item and the weight and the

27



156 Chapter II. Publications

Figure 6: Nearest neighbors of some test samples in balance using CMOML and Euclidean
distance.

position of the right item. The goal is to predict whether the scale tilts to one side (right or
left) or whether it stays in balance. Due to the continuity of the scale movement it is logical
to assume the relation of order in the output variable 𝑙𝑒𝑓𝑡 < 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 < 𝑟𝑖𝑔ℎ𝑡. This dataset is
very useful to help visualize how CMOML improves the neighbors that the 𝑘-NN retrieves.
Indeed, we will see that these neighbors are very similar to what a human being would
consider, if prompted to decide how the scale will move based on previous experiences.
We train CMOML with 80 % of the dataset and use the rest for testing. For the test data,
we retrieve the 3 nearest neighbors obtained by CMOML, and we also retrieve the nearest
neighbors that the Euclidean distance would obtain. Figure 6 shows the results for some of
the test samples.
From the results obtained we can draw several conclusions. On the one hand, for the test
data that are not in balance, the neighbors that the two distances obtain are often same-
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class neighbors, especially for CMOML. This is reasonable due to the geometric properties
of the dataset. Observe that the true labels are determined by the sign of left_weight
* left_distance - right_weight * right_distance, so the left and right classes are
determined by half-spaces. Even so, we can see that the neighbors obtained by CMOML are
more intuitive than those obtained by the Euclidean distance. For example, we can see, for
the test sample 1, that the neighbors that CMOML obtains are always objects of the same
weight, which also keep ratios between the distances to the center of the scale. Presumably,
if we, as humans, had to decide where the scale would tilt to based on the same previous
experiences, wewould have chosen those very same neighbors. With the Euclidean distance
this does not happen so clearly.
On the other hand, for the test data that are in balance, the Euclidean distance often tends to
choose neighbors that tilt to one of the sides. This is due to the fact that this distance is not
optimized and the balance class is a hyperplane between the other two classes, so as soon as
a training sample of the left or right class is close to this border it can easily interfere with the
neighbors. Instead, the neighbors that CMOML obtains are mostly in the balance position.
And not only that, but again they are much more intuitive. Some of the clearest cases are
the test samples 3 and 4. There, both objects weigh the same and are at the same distance
from the center of the scale. All their neighbors share this property. Therefore, the answer
is clear when analyzing why these neighbors have been chosen.

5.1.2 Newthyroid dataset analysis

Newthyroid is a dataset whose input variables are the measurements of certain hormones
in the human body: T3 resin, thyroxin, triiodothyronine, thyroidstimulating and
TSH. The goal is to predict, with these measures, whether the individual being evaluated
suffers from hyperthyroidism, hypothyroidism or is healthy. As both disorders can be
considered opposed, it is assumed that the ordinal relationship of the output variable is
ℎ𝑦𝑝𝑜𝑡ℎ𝑦𝑟𝑜𝑖𝑑𝑖𝑠𝑚 < 𝑛𝑜𝑟𝑚𝑎𝑙 < ℎ𝑦𝑝𝑒𝑟𝑡ℎ𝑦𝑟𝑜𝑖𝑑𝑖𝑠𝑚.
Once again, we train CMOML with 80 % of the dataset, use the rest for testing, and retrieve
the 3 nearest neighbors obtained by CMOML and by the Euclidean distance for the test data.
In Figure 7 we show the neighbors obtained for some of the most remarkable cases. Here,
we represent an instance by a heatmap, where each cell is each of the input variables in the
data set, in the same order as described above. These cells range from the lowest possible
value for the attribute (green) to its highest possible value (red). We also highlight the border
of the heatmaps to specify the true labels of each instance. Blue borders represent instances
of class hypothyroidism, green borders represent instances of class normal and red borders
represent instances of class hyperthyroidism.
From the properties we have observed we can conclude several facts. First of all, it is very
common to always find neighbors of the class normal for the test samples in the normal
class. This is reasonable, since the normal class is the most frequent and quite dense, as
we will see in the next section. It is also the least important class of the problem, since, as
with most medical-related problems, false positives in disease diagnosis are not as serious
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Figure 7: Nearest neighbors of some test samples in newthyroid using CMOML and Eu-
clidean distance.

as false negatives. That is why in Figure 7 we choose to focus on the possible positives (both
hypothyroidism and hyperthyroidism) to perform a case-based reasoning, taking only the
samples 9 and 10 from the normal class.
Focusing now on the samples with hyperthyroidism (samples 1-4) and hypothyroidism (sam-
ples 5-8), we can see that the neighbors obtained by CMOML are much more label-accurate
than the neighbors obtained by the Euclidean distance. In fact, in some cases like test sam-
ples 3 and 6, the 𝑘-NN with the Euclidean distance would misclassify the samples, since
the median class in these cases would be normal. CMOML can still classify these samples
correctly because most of the neighbors it obtains are from the correct class.
Finally, we analyze how the distance learned by CMOML influences the values of the fea-
tures of the nearest neighbors. We can observe that, while the Euclidean distance has the
limitation of only providing neighbors whose features are all very similar one-by-one to the
features of the test sample, CMOML can go a step further and provide neighbors with more
distinguishing properties. For example, it is known that low values of thyroxin combined
with very low or high values of TSH are usually a symptom of hypothyroidism. For the test
sample 6 we observe a low value of TSH and a medium-low value of thyroxin. The neigh-
bors obtained by the Euclidean distance show thyroxin values that are not low enough and,
additionally, they are tagged as normal. However, CMOML provides neighbors with lower
values of thyroxin, and values of TSH that are both low and high. That is, the algorithm is
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discovering that both low and high values of TSH influence hypothyroidism, and finds a new
similarity between the data that the Euclidean distance overlooks.

5.2 Dimensionality reduction and visualization

To conclude, we will analyze how the dimensionality reduction applied by CMOML allows
for the visualization of the transformed data, so that the decisionmade by the nearest neigh-
bors classifier can be understood. To do this, we learn a distance with CMOML for each
dataset and impose a dimension of 3 and 2 in the transformed space. In this way, the algo-
rithm will obtain a projection of the data in the three- and bi-dimensional spaces that will
be adequate from an ordinal perspective, as shown throughout the paper. With this dimen-
sionality reduction, the results of the cross validation over balance decrease by less than a
hundredth for the 3D projection, using C-Index, and two hundredths more in the 2D pro-
jection. In newthyroid the projections maintain the same results as at maximum dimension,
as it is shown in Table 5. Therefore, we can conclude that the reduction does not signifi-
cantly affect the quality of the data, and thus the transformed data can be used to extract
human-understandable information.

C-INDEX
Dimension balance newthyroid

MAX 0.976474 0.943981
3 0.973122 0.943981
2 0.970433 0.943981

Table 5: C-Index scores with CMOML in balance and newthyroid after applying a dimen-
sionality reduction

In Figures 8 and 9 we show how the data from balance and newthyroid, respectively, look
like when projected on three and two dimensions. In the 2D-projection we also include the
test samples from Figures 6 and 7, to facilitate the understanding of the choices the classifier
makes. The test samples are marked with red numbers. Each number corresponds to the
sample number they had in the aforementioned figures.
By analyzing the 3D and 2D projections of balance we can see why the left and right classes
are so easy to classify andwhy the balance class presents amajor difficulty. Indeed, the latter
class acts as a hyperplane that separates the other classes. Therefore, if the training set is not
very populated in this class, it is easy for neighbors of the left and right classes to decrease the
quality of the classification of true balance instances. In any case, the projections learned by
CMOML, especially at maximum dimension and to the 3D-space, have proven to be good
enough on the central class. Moreover, on the 2D projection we can observe that, indeed,
the test samples of Figure 6 of the class balance always fall on training samples of the class
balance.
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Figure 8: 3D and 2D projections of balance learned by CMOML. The 2D projection shows
the position of the transformed test samples in Figure 6.

Figure 9: 3D and 2D projections of newthyroid learned by CMOML. The 2D projection
shows the position of the transformed test samples in Figure 7.

If we now analyze the projections of newthyroid, we see that the normal class stands in the
center between the two disorders, while the points of the other classes usually take values
that shoot up in some dimension. In general, there is a fairly clear separation among the
classes, with the exception of certain border points for which some doubts may arise when
it comes to classification. This can be corroborated with the test samples from Figure 7 that
are plotted in the 2D-projection: it is clear that most of them can be correctly classified using
the scatter plot, while the test samples 1 and 3 can cause some more confusion, as can be
seen in Figure 7.
It should be noted that the projections respect the ordinal principle by which CMOML is
guided: that, as we move farther away from any sample, the classes will gradually become
more different. This happens with the two datasets analyzed. Finally, we have to mention
that 2D or 3D projections are not always possible with CMOML without a significant loss
of information. In any case, a dimensionality reduction even to dimensions greater than 2
and 3 can be beneficial in terms of efficiency and noise reduction. In addition, it is always
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possible to use other visualization methods in larger dimensions [60], which can perform
better if we first apply CMOML properly.

6 Conclusions

In this paper we have developed a new distance metric learning algorithm for ordinal re-
gression, following a new approach based on the optimization of ordered sequences. This
approach is purely ordinal, since it makes an extensive use of the relative positions among
the labels and it has proven to be effective in situations where other proposals on the same
topic cannot operate properly.
According to how the proposal has been developed and how the results have supported it,
we can conclude that CMOML is a promising algorithm with strong capabilities in numer-
ous ordinal regression problems. The sequence based approach provides CMOML with a
different and effective way of handling the ordinal regression problems, compared to the
previous distance metric learning proposals in the subject. In the general context of ordi-
nal regression, CMOML has also proven to be competitive and more explainable that the
best performing methods, and it improves significantly the explainablity provided by the
traditional Euclidean nearest neighbors, with additional advantages such as dimensionality
reduction and understandability-focused visualization.
As future work we plan to further investigate the CMOML optimization method, in order
to handle even larger datasets than those used in this work. In particular, image datasets
for ordinal regression are the order of the day [61, 62], and dealing with them at the pixel
level using Mahalanobis distances is computationally challenging. In this situation it may
be interesting to explore the behaviour of the algorithm when it receives the feature maps
extracted by a convolutional network [63]. For the purpose of improving the optimization
method, we will also explore both the use of optimizers with higher convergence speed and
programming paradigms and architectures that maximize the parallel evaluation of the al-
gorithm [64].
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Abstract
This paper presents, for the first time, a distance metric learning algorithm
for monotonic classification. Monotonic datasets arise in many real-world
applications, where there exist order relations in the input and output vari-
ables, and the outputs corresponding to ordered pairs of inputs are also ex-
pected to be ordered. Monotonic classification can be addressed through
several distance-based classifiers that are able to respect the monotonicity
constraints of the data. The performance of distance-based classifiers can be
improvedwith the use of distancemetric learning algorithms, which are able
to find the distances that best represent the similarities among each pair of
data samples. However, learning a distance for monotonic data has an addi-
tional drawback: the learned distancemay negatively impact themonotonic
constraints of the data. In our work, we propose a new model for learning
distances that does not corrupt these constraints. This methodology will
also be useful in identifying and discarding non-monotonic pairs of sam-
ples that may be present in the data due to noise. The experimental analysis
conducted, supported by a Bayesian statistical testing, demonstrates that the
distances obtained by the proposedmethod can enhance the performance of
several distance-based classifiers in monotonic problems.
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1 Introduction

Monotonic constraints [1] are common in real-world prediction problems where the vari-
ables to be predicted are ordinal and their order depends on the input data. For example,
when predicting house prices, it is expected that—all other things being equal—a bigger
house in the same area will have a higher price. Similarly, in predicting students’ final
grades, students with consistently higher grades during a course are also expected to have a
higher final grade. These problems are known asmonotonic classification problems [2], and
are relevant in fields such as credit risk modeling [3] and lecturer evaluation [4]. Monotonic
problems are prevalent in many heavily-regulated industries, and incorporating reasonable
expectations about consistent application of selection constraints into automated decision-
making systems [5] is crucial [6, 7].
When dealing with these problems, accuracy is not the sole factor to consider. It is equally
crucial that the predictions closely follow the monotonic constraints present in the data.
Furthermore, the cost of an incorrect prediction should increase as the prediction deviates
further away from its actual value. Consequently, there is a need for classifiers that can
handle these constraints and factor them in while making predictions.
Ordinal regression methods [8] are commonly used in classification problems where the
labels possess an inherent ordering. These methods, which continue to be widely popular
today [9, 10, 11], can be particularly useful for monotonic data as the labels in such data also
have an inherent ordering. However, ordinal regressionmethods are not designed to handle
monotonic constraints unless they are tailored to that purpose. Despite the significance
of monotonicity in several real-world applications, only a few ordinal regression methods
specifically address this property. Therefore, further research is necessary to develop more
effective and efficientmethods formonotonic classification. In recent years, there has been a
growing effort to develop newmethods for monotonic classification by adapting prominent
algorithms from nominal classification, such as decision trees [12] or random forest [13],
while also striving to enhance the explainability of the models [14].
Similarity-based learning methods have been successful in monotonic classification prob-
lems [2]. This type of learning is inspired by the human ability to recognize objects by their
resemblance to other previously seen objects. This idea can be extended to fulfill mono-
tonicity constraints by restricting similar objects or instances to those that complywith these
constraints. Thewell-knownnearest neighbors rule for classification [15] has been extended
following this idea, so that the nearest neighbors are filtered in order to meet the monotonic
constraints [16]. Recently, a new proposal restated the previous idea using a fuzzy approach
[17] aiming to gain robustness against possible noise in the monotonicity constraints.
All of the above algorithms require a distance metric to function, and standard distances
such as the Euclidean distance have become the go-to choice. However, using a distance
metric that is better suited to the data can improve classifier performance. Distance metric
learning [18] accomplishes this task and has been successful in several advanced learning
problems, such as multi-output learning [19] or multi-dimensional classification [20], as
well as ordinal problems with no monotonic constraints [21, 22]. However, its application
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whenmonotonicity constraints are present adds a significant hurdle. Distance metrics have
the ability to transform the space [23] and, while this can reduce thenumber of instances that
may break the monotonicity of the dataset, it is difficult to ensure that no new false mono-
tonic constraints are introduced in the process—which may worsen the quality of the data.
Although preprocessing techniques such as feature selection methods [24, 25] are effective
in monotonic classification problems, the same cannot be said for preprocessing techniques
that have the potential to modify the interdependence among features. Consequently, the
application of distance metric learning algorithms becomes challenging, making it hard to
enhance distance-based classifiers.
Our research presents a novel distance metric learning algorithm for monotonic classifica-
tion. This algorithm aims to transform the input space in such away that no newmonotonic
constraints are introduced, thus resolving the earlier issue. We accomplish this objective
through monotonic matrices and M-matrices [26], which possess unique characteristics for
defining distances that are highly advantageous for monotonic datasets. As we proceed fur-
ther into this paper, we will delve deeper into these properties.
This paper represents an extension of our previous work on distance metric learning for
monotonic classification [27]. While our earlier paper focused on the development of the
basic algorithm and its initial evaluation, this paper presents a comprehensive analysis of
the method that includes an expanded description of the method, a further analysis of the
background and a theoretical justification of our approach. Our work also provides an ex-
tensive experimental evaluation of the method. Specifically, we have conducted a Bayesian
statistical analysis of the results and performed a hyperparameter analysis to explore the im-
pact of different parameter settings on the performance of the algorithm. We consider the
most relevantmetrics inmonotonic classification tomeasure classification performance and
test constraint fulfillment after applying our proposed transformations.
The paper is organized as follows. Section 2 describes the current state of distance metric
learning and monotonic classification from a similarity-based learning perspective. Section
3 outlines our proposal of distance metric learning for monotonic classification. Section 4
describes the experiments conducted to evaluate the performance of our algorithm, and the
results obtained, including the Bayesian statistical analysis and the hyperparameter discus-
sion. Finally, Section 5 ends with the concluding remarks.

2 Background

In this section we will discuss the main problems we have tackled in this paper: distance
metric learning, monotonic classification and how similarity-based methods are employed
to address monotonic classification nowadays.

2.1 Distance metric learning

Distance metric learning [18] arose with the purpose of improving similarity-based (or,
equivalently, distance-based) learning methods such as the 𝑘-nearest neighbors classifier,
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or 𝑘-NN. For this purpose, distance metric learning aims at learning distances that facilitate
the detection of hidden properties in the data that a standard distance, such as the Euclidean
distance, would fail to discover. Here, we will define distance as any map 𝑑∶ 𝒳 × 𝒳 → ℝ,
where 𝒳 is a non-empty set, satisfying the following conditions:

1. Coincidence: 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦, for every 𝑥, 𝑦 ∈ 𝒳.

2. Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), for every 𝑥, 𝑦 ∈ 𝒳.

3. Triangle inequality: 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧), for every 𝑥, 𝑦, 𝑧 ∈ 𝒳.

We will also consider as distances the so-called pseudo-distances, which are those maps that
verify (2) and (3), and where 𝑑(𝑥, 𝑥) = 0 instead of (1).
Linear distancemetric learning is themost common approach to learning distances between
numerical data. It consists in learning Mahalanobis distances, which are parameterized by
positive semidefinite matrices. Given a positive semidefinite matrix 𝑀 ∈ ℳ𝑑(ℝ)+0 , and
𝑥, 𝑦 ∈ ℝ𝑑, the Mahalanobis distance between 𝑥 and 𝑦 defined by M is given as

𝑑𝑀(𝑥, 𝑦) = √(𝑥 − 𝑦)𝑇𝑀(𝑥 − 𝑦).

Since every positive semidefinite matrix𝑀 can be decomposed as𝑀 = 𝐿𝑇𝐿with 𝐿 ∈ ℳ𝑑(ℝ)
it follows that

𝑑𝑀(𝑥, 𝑦)2 = (𝑥 − 𝑦)𝑇𝑀(𝑥− 𝑦) = (𝑥 − 𝑦)𝑇𝐿𝑇𝐿(𝑥 − 𝑦) = (𝐿(𝑥 − 𝑦))𝑇(𝐿(𝑥 − 𝑦)) = ‖𝐿(𝑥 − 𝑦)‖22.

Therefore, learning aMahalanobis distance is equivalent to learning a linearmap 𝐿 and then
measuring the Euclidean distance after applying that linear map. Thus, the linear distance
metric learning approach comes down to learning a positive semidefinite matrix (also called
metric matrix) 𝑀 or a linear map matrix 𝐿. Both approaches are equivalent. Learning 𝑀
usually facilitates convexity during the optimization, while learning 𝐿 facilitates other tasks
such as dimensionality reduction [28].

2.2 Monotonic classification

Monotonic classification [2] arises in certain types of problems of ordinal nature with two
particularities: firstly, there are order relations in both the input data (samples) and the
output data (labels); secondly, for any given pair of instances, their relative order is also ex-
pected to be present in the relative order of their class labels. This happens, for example,
when the data represent different measures or evaluations on a particular topic and the la-
bel represents a global expert assessment. It is to be expected that, if the measures of one
instance are better than the measures of another instance, the global assessment obtained
should also be better.
We now formally define what a monotonic dataset is. Let 𝑋 = {𝑥1,… , 𝑥𝑁} ⊂ ℝ𝑑 be a
numerical dataset. Let 𝑦1,… , 𝑦𝑁 ∈ {1,… , 𝐶} be the corresponding labels. The labels can
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be ordered using the ordinal relation ≤ among the natural numbers, since they take val-
ues between 1 and 𝐶. For each pair of samples in 𝑋 , we can also compare their features
element-wise. We may not be interested in making all the features comparable, since the
monotonic constraints affecting the data may not be present in all the attributes. Thus, let
𝑑1,… , 𝑑𝑚 ∈ {1,… , 𝑑} be the indices of all the features that have monotonicity constraints.
These constraints can be direct or inverse. Without loss of generality, we can assume all the
constraints are direct, and otherwise we can just flip the sign of the affected attribute.
Given two pairs of samples 𝑥𝑖, 𝑥𝑗 ∈ 𝑋 , we define an order relation between them as the
product order, considering only the features with monotonicity constraints, i. e.,

𝑥𝑖 ≤ 𝑥𝑗 ⟺ 𝑥𝑖𝑙 ≤ 𝑥𝑗𝑙, for every 𝑙 ∈ {𝑑1,… , 𝑑𝑚}.

Observe that this order is a partial order, that is, theremay be samples 𝑥𝑖, 𝑥𝑗 such that 𝑥𝑖 ≰ 𝑥𝑗
and 𝑥𝑖 ≱ 𝑥𝑗 simultaneously. The dataset𝐷 = {(𝑥1, 𝑦1),… , (𝑥𝑁 , 𝑦𝑁)}will bemonotonic if, for
every 𝑥𝑖, 𝑥𝑗 ∈ 𝑋 , then

𝑥𝑖 ≤ 𝑥𝑗 ⟺ 𝑦𝑖 ≤ 𝑦𝑗 .
In other words, the dataset 𝐷 is monotonic if, and only if, for every comparable pair of sam-
ples, it is simultaneously true that: (i) all the attributes with monotonic constraints of the
first instance are lower or equal than the attributes from the second instance; and (ii) the
label of the first instance is lower or equal than the label of the second instance.
It is important to remark that, in real scenarios, due to the subjective nature of the label-
ing process or to measurement errors, some datasets may not be fully monotonic and there
may be several pairs of instances for which monotonicity is broken. In any case, the goal
of monotonic classification is to provide algorithms that, when predicting new labels, are
able to respect the monotonicity constraints of the datasets, and that are also robust against
monotonicity clashes that may arise when the dataset is not fully monotonic.

2.3 Monotonic classification and similarity-based learning methods

Similarity-based learning can be seen as closely related to ordinal classification problems.
Typically, it is to be expected that if two samples are close their labels will also be close,
and the farther apart the samples are the more different their labels will be as well. The
𝑘-NN classifier can be easily adapted to this setup. A common approach to handle ordinal
labelswith this classifier is tomodify the aggregation vote function for the nearest neighbors,
using, for example, the median of the labels instead of the mode. This can also be extended
to handle situations where additional information beyond the labeled data is available [29].
In general, similarity-based algorithms are beneficial in other problems related to ordinal
data, including ranking [30].
When our data also have monotonic constraints, additional caution is necessary, since we
want the values predicted by the classifier to satisfy these constraints as far as possible. An
immediate extension of the nearest neighbors classifier tomonotonic classification problems
is the monotonic 𝑘-nearest neighbors classifier (Mon-𝑘-NN), which takes into account only
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the nearest neighbors whose labels lie on an interval that does not violate the monotonicity
constraints [16]. Given a sample 𝑥0 ∈ ℝ𝑑 we can consider the interval [𝑦min, 𝑦max], where

𝑦min = max{𝑦 ∈ {1,… , 𝐶}∶ (𝑥, 𝑦) ∈ 𝐷 and 𝑥 ≤ 𝑥0}
𝑦max = min{𝑦 ∈ {1,… , 𝐶}∶ (𝑥, 𝑦) ∈ 𝐷 and 𝑥0 ≤ 𝑥}

Two variants of Mon-𝑘-NN can be considered. The in-range (IR) variant considers the 𝑘-
nearest neighbors to 𝑥0 with labels in the interval [𝑦min, 𝑦max], while the out-range (OR)
variant considers the 𝑘-nearest neighbors in 𝐷 and then only those neighbors with labels
in [𝑦min, 𝑦max] are factored in for the vote (if no neighbors have labels in this range, then
a random label in the interval will be chosen). Observe that this algorithm will not work
properly if the dataset is not fully monotonic. In such a case, 𝑦min may be greater than
𝑦max. Therefore, it is necessary to apply a relabeling process that makes the dataset fully
monotonic while disturbing it as little as possible. A relabeling method that is applied on
the complement of the maximum independent set of the monotonicity violation graph is
proposed in [16].
A more recent proposal [17] relies on the fuzzy 𝑘-NN [31] in an effort to gain robustness
against monotonicity constraints. Themonotonic fuzzy 𝑘-nearest neighbors classifier (Mon-
F-𝑘-NN) first uses the in-range monotonic 𝑘-nearest neighbors to compute class member-
ship probabilities for each sample in the training set. For each 𝑥𝑖 ∈ 𝒳 and 𝑐 ∈ {1,… , 𝐶}, the
probability 𝑢(𝑥𝑖, 𝑐) that the class of 𝑥𝑖 will be 𝑐 is defined as

𝑢(𝑥𝑖, 𝑐) = {𝑅𝐶𝑟 + (𝑛𝑛𝑐/𝑘)(1 − 𝑅𝐶𝑟), if 𝑦𝑖 = 𝑐
(𝑛𝑛𝑐/𝑘)(1 − 𝑅𝐶𝑟),

where 𝑛𝑛𝑐 is the number of nearest neighbors of the class 𝑐 and 𝑅𝐶𝑟 is a real class relevance
estimation, between 0 and 1 (typically established as 0.5). From these memberships, each
sample is reassigned to a class whose probability is a median value within the list of mem-
bership probabilities for the sample. This class reassignment enhances the monotonicity
of the dataset. Finally, at the prediction stage, given the sample 𝑥, its 𝑘 monotonic nearest
neighbors 𝑥𝑖1 ,… , 𝑥𝑖𝑘 are found and used to compute the membership probabilities of 𝑥 as

𝑢(𝑥, 𝑙) =

𝑘
∑
𝑗=1

𝑢(𝑥𝑖𝑗 , 𝑙)
𝑝𝑂𝑅𝑗

‖𝑥−𝑥𝑖𝑗 ‖
𝑚−1

𝑘
∑
𝑗=1

𝑝𝑂𝑅𝑗
‖𝑥−𝑥𝑖𝑗 ‖

𝑚−1

.

Again, both in-range and out-range variants are available at the prediction stage. The out-
range variant considers all the neighbors, even if their labels are not in [𝑦min, 𝑦max]. If this
is the case, then 𝑝𝑂𝑅𝑗 is set to a previously fixed out-range penalty that decides how much
weight these neighbors will have in the computation of the membership. In any other case,
𝑝𝑂𝑅𝑗 = 1. The parameter 𝑚 determines the influence of the distances of the neighbors.
Lastly, the final class of 𝑥 is taken again using the class associated with the median mem-
bership probability in 𝑢(𝑥, ⋅).
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2.4 Monotonic classification and distance metric learning

Learning a Mahalanobis distance for a monotonic classification problem has several diffi-
culties to overcome. If we try to learn the distance using a metric matrix, the distance is
modified while the dataset is not, thus its monotonicity remains unchanged. This is not
entirely positive, since the potential of distance metric learning gets squandered and, there-
fore, also the possibility of reducing the non-monotonicity of the dataset if it exists. How-
ever, if we learn the distance using a linear transformation, there is no guarantee that new
false monotonic constraints are added. This may happen if we pick a distance defined by a
generic 𝐿 ∈ ℳ𝑑(ℝ). Consider, for example, the extreme case of a matrix 𝐿 defining a 90-
degree rotation inℝ2. If such a matrix transforms the dataset, all the monotonic constraints
of the original dataset are lost and, furthermore, all those pairs of instances that were not
comparable become false monotonic constraints with this rotation.
These drawbacks have so far prevented the development of distance metric learning algo-
rithms for monotonic classification. To the best of our knowledge, there are currently no
proposals in this area.

3 Algorithm Description

In this section we will describe our distance metric learning proposal for monotonic classi-
fication. First, we will introduce the concepts needed to apply the algorithm. Then, we will
describe the algorithm and, finally, we will show its optimization procedure. We named this
approach Large Margin Monotonic Metric Learning (𝐿𝑀3𝐿).

3.1 Preliminary definitions

We will focus on the case where all the features in the dataset are subject to direct mono-
tonicity constraints, so that the order relationship in the dataset coincides with the product
order inℝ𝑑. It’s important to note that if there are inverse monotonicity constraints present,
we can simply invert the sign of the corresponding features and apply the algorithm to the
resultant dataset. Additionally, we will discuss the situation involving non-monotonic fea-
tures at the end of the section.
Asmentioned above, one of the problems of learning a distance bymeans of a linear transfor-
mation is that this transformation disturbs the monotonic constraints and, therefore, some
new constraints that are not necessarily true could be added. However, this can be avoided
by restricting ourselves to the appropriate subset of matrices, such as the one defined below.
Definition. A linear transformation or square matrix 𝐿 ∈ ℳ𝑑(ℝ) is said to be monotone
[26] if for any real vector 𝑥 ∈ ℝ𝑑, we have that

𝐿𝑥 ≥ 0 ⟹ 𝑥 ≥ 0,

where 0 ∈ ℝ𝑑 is the vector with zeros in all its entries and ≥ is the product order in ℝ𝑑.
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Observe that, if 𝐿 is monotone, if we have two samples 𝑥𝑖, 𝑥𝑗 ∈ 𝒳 so that 𝐿𝑥𝑖 ≥ 𝐿𝑥𝑗 , then
𝐿(𝑥𝑖 − 𝑥𝑗) ≥ 0 and therefore 𝑥𝑖 ≥ 𝑥𝑗 . This means that any pair of samples that meets a
monotonicity constraint after applying 𝐿was alreadymeeting the constraint before applying
the transformation. So, when 𝐿 is monotone, no new monotonic constraints can be added
after the dataset is transformed. However, this property is not reciprocal: if 𝑥𝑖 ≥ 𝑥𝑗 , it does
not necessarily follow that 𝐿𝑥𝑖 ≥ 𝐿𝑥𝑗 . Consequently, some monotonic constraints may be
lost in this transformation. This will allow the algorithms that use this type of matrices to
select the constraints that may be more relevant in the dataset without ever adding new
incorrect monotonicity constraints after applying the transformation.
Monotone matrices are tough to use in optimization settings, since they cannot be ade-
quately parameterized for this purpose. When 𝐿 is invertible andmonotonic, 𝐿 is the inverse
of a positive matrix (that is, a matrix with all its entries greater than or equal to zero). This
may facilitate its parameterization, but the computation of the inverse matrix would make
the optimization procedure very expensive. However, there is a subset of monotone matri-
ces with much more suitable properties for use in differential optimization. We describe
them below.

Definition. A linear transformation or square matrix 𝐿 ∈ ℳ𝑑(ℝ) is anM-Matrix [26] if it
can be expressed as 𝐿 = 𝑠𝐼 − 𝐵, where 𝐼 is the identity matrix of dimension 𝑑, 𝐵 ∈ ℳ𝑑(ℝ) is a
positive matrix, and 𝑠 ∈ ℝ verifies that 𝑠 ≥ 𝜌(𝐵), where 𝜌(𝐵) is the spectral radius of the matrix
𝐵.

M-matrices are monotone [26] and, since they depend on the real value 𝑠 and the positive
matrix 𝐵, they can be easily and efficiently used to optimize a differentiable objective func-
tion.

3.2 Objective function and optimization

After establishing the linear applications that enable us to regulate the monotonicity of the
dataset, the next step is to define the function to be optimized. Since the linear application
already controls the monotonicity implicitly, the focus of the objective function will be on
assessing a goodness-of-classificationmetric. Thismetric should consider the ordinal nature
of the dataset, in that the prediction penalty should increase as the actual labelmoves farther
away from the predicted label.
Drawing inspiration from the large margin proposals for distance metric learning in other
classification tasks [22, 32], we present a triplet-based objective function. For each anchor
sample 𝑥𝑖 in the dataset, we consider a positive sample 𝑥𝑗 and a negative sample 𝑥𝑙 such
that 𝑦𝑖 ≤ 𝑦𝑗 < 𝑦𝑙 or 𝑦𝑖 ≥ 𝑦𝑗 > 𝑦𝑙. The aim is to minimize the distance from 𝑥𝑖 to 𝑥𝑗
while simultaneously maximizing the distance from 𝑥𝑖 to 𝑥𝑙. The objective function and the
associated constrained optimization problem are defined as follows:

8
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min
𝐿∈ℳ𝑑(ℝ)

𝑓(𝐿) = ∑
𝑥𝑖∈𝒳

∑
𝑥𝑗 ,𝑥𝑙∈𝒰(𝑥𝑖)
𝑦𝑖≤𝑦𝑗<𝑦𝑙

or
𝑦𝑖≥𝑦𝑗>𝑦𝑙

[‖𝐿(𝑥𝑖 − 𝑥𝑗)‖2 − ‖𝐿(𝑥𝑖 − 𝑥𝑙)‖2 + 𝜆]+

s. t. :𝐿 = 𝑠𝐼 − 𝐵
𝐵𝑖𝑗 ≥ 0, (𝑖, 𝑗 = 1,… , 𝑑)
𝑠 ≥ 𝜌(𝐵).

(1)

In the aforementioned optimization problem, the notation [𝑧]+ = max{𝑧, 0} is used, where
𝜆 denotes a margin constant. The aim is to ensure that the distance from the negative sam-
ple to the anchor sample is not smaller than the distance from the positive sample to the
anchor sample plus the margin constant. Moreover, for each 𝑥𝑖 ∈ 𝒳, 𝒰(𝑥𝑖) represents a
neighborhood that includes the 𝐾 nearest neighbors to 𝑥𝑖 for the Euclidean distance. This
neighborhood is computed prior to the optimization process and serves to filter the instances
that are initially farther away, giving a local character to the method and reducing the com-
putational cost. This draws inspiration from the metric learning method for ordinal regres-
sion proposed in [22]. The parameter 𝐾 represents a hyperparameter that can be adjusted
to enhance algorithm performance. It is suggested to set 𝐾 to a sufficiently large value to
ensure representative neighborhoods. This is further discussed in Section 4.5. The choice of
the Euclidean distance stems from its suitability as an a priori distance measure before the
algorithm learns from the data [32, 33, 34, 35]. However, alternative precomputed distance
measures can also be considered.
The constraints specified in the optimization problem of Eq. 1 guarantee that no additional
monotonic constraints are introduced when the dataset is transformed. On the other hand,
the objective function aims to bring data from nearby classes closer while pushing data from
distant classes farther apart. By minimizing Eq. 1, the transformed dataset that we ob-
tain has optimal ordinality and monotonicity properties, which can then be learned by a
similarity-based classifier.
To optimize Eq. 1, we propose a stochastic projected gradient descent method. Since 𝐿 is
fully parameterized by 𝑠 and 𝐵, the optimization problem can be rewritten as

min
𝑠∈ℝ,𝐵∈ℳ𝑑(ℝ)

𝑠≥𝜌(𝐵)
𝐵𝑖𝑗≥0 ∀𝑖,𝑗

𝑓(𝐿) = ∑
𝑥𝑖∈𝒳

∑
𝑥𝑗 ,𝑥𝑙∈𝒰(𝑥𝑖)
𝑦𝑖≤𝑦𝑗<𝑦𝑙

or
𝑦𝑖≥𝑦𝑗>𝑦𝑙

[‖(𝑠𝐼 − 𝐵)(𝑥𝑖 − 𝑥𝑗)‖2

− ‖(𝑠𝐼 − 𝐵)(𝑥𝑖 − 𝑥𝑙)‖2 + 𝜆]+ .

(2)
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At each gradient step we can update the pair (𝑠, 𝐵) using the partial derivatives. We know
that [36]

𝜕𝑓
𝜕𝑠 (𝑠, 𝐵) = ∑

𝑥𝑖∈𝒳
∑

𝑥𝑗 ,𝑥𝑙∈𝒜𝐿(𝑥𝑖)
𝑑𝑇𝑖𝑗[2𝑠𝐼 − (𝐵 + 𝐵𝑇)]𝑑𝑖𝑗 − 𝑑𝑇𝑖𝑙 [2𝑠𝐼 − (𝐵 + 𝐵𝑇)]𝑑𝑖𝑙, (3)

𝜕𝑓
𝜕𝐵 (𝑠, 𝐵) = ∑

𝑥𝑖∈𝒳
∑

𝑥𝑗 ,𝑥𝑙∈𝒜𝐿(𝑥𝑖)
2(𝐵 − 𝑠𝐼)(𝑂𝑖𝑗 − 𝑂𝑖𝑙), (4)

where 𝑑𝑖𝑗 = 𝑥𝑖 −𝑥𝑗 , 𝑂𝑖𝑗 = 𝑑𝑖𝑗𝑑𝑇𝑖𝑗 , and𝒜𝐿(𝑥𝑖) is the set of active (positive, negative) 2-tuples
associated with the anchor sample 𝑥𝑖 and 𝐿 = 𝑠𝐼 − 𝐵, that is:

𝒜𝐿(𝑥𝑖) ={(𝑥𝑗 , 𝑥𝑙)∶ 𝑥𝑗 , 𝑥𝑙 ∈ 𝒰(𝑥𝑖), [(𝑦𝑖 ≤ 𝑦𝑗 < 𝑦𝑙) or (𝑦𝑖 ≥ 𝑦𝑗 > 𝑦𝑙)] and
‖𝐿(𝑥𝑖 − 𝑥𝑗)‖2 − ‖𝐿(𝑥𝑖 − 𝑥𝑙)‖2 + 𝜆 > 0}.

From this, in the stochastic gradient descent process, we choose at each step a random sam-
ple 𝑥𝑖 ∈ 𝒳 and update 𝑠 and 𝐵 with the following rules:

𝑠𝑛𝑒𝑤 = 𝑠𝑜𝑙𝑑 − 𝜂 ∑
𝑥𝑗 ,𝑥𝑙∈𝒜(𝑥𝑖)

𝑑𝑇𝑖𝑗[2𝑠𝐼 − (𝐵 + 𝐵𝑇)]𝑑𝑖𝑗 − 𝑑𝑇𝑖𝑙 [2𝑠𝐼 − (𝐵 + 𝐵𝑇)]𝑑𝑖𝑙, (5)

𝐵𝑛𝑒𝑤 = 𝐵𝑜𝑙𝑑 − 𝜂 ∑
𝑥𝑗 ,𝑥𝑙∈𝒜(𝑥𝑖)

2(𝐵 − 𝑠𝐼)(𝑂𝑖𝑗 − 𝑂𝑖𝑙), (6)

where 𝜂 is a pre-established learning rate. Since the above update rules do not ensure that 𝑠
and 𝐵meet the constraints to which they are subject, it is necessary to project them into the
constrained set. Therefore, after applying the update rules, we convert the negative entries
of 𝐵 to zero and, if 𝑠 is smaller than 𝜌(𝐵), we make it equal to 𝜌(𝐵):

𝜋(𝐵) = ( ̃𝐵𝑖𝑗), where ̃𝐵𝑖𝑗 = max{𝐵𝑖𝑗 , 0}, for each 𝑖, 𝑗 = 1,… , 𝑑. (7)
𝜋(𝑠) = max{𝑠, 𝜌(𝐵)}. (8)

This concludes the optimization process of 𝐿𝑀3𝐿. In short, at each epoch the samples 𝑥𝑖 ∈
𝒳 are chosen randomly. With each of the samples, 𝑠 and 𝐵 are updated using the rules from
Eqs. 5 and 6 and then projected into valid values with Eqs. 7 and 8. The process is repeated
until a maximum of epochs is reached or the algorithm converges. With the final values of
𝑠 and 𝐵, the obtained distance is retrieved by means of the linear transformation 𝐿 = 𝑠𝐼 −𝐵.

3.3 Benefits of the Method

Our distance metric learning algorithm for monotonic classification offers several advan-
tages from a theoretical perspective. Firstly, it can find new transformed variables in the
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latent space that may better capture the monotonicity of the dataset. By learning a distance
metric that is specifically tailored to the problem of monotonic classification, without intro-
ducing any new fakemonotonic constraints, the algorithm can identify new features that are
better suited for capturing the underlying monotonic structure of the data. This can lead to
better classification performance and a deeper understanding of the relationships between
the variables.
Secondly, since no new monotonic constraints can be added but some of them may be re-
moved, our algorithm can help us to filter the dataset and to discover different ways of in-
teraction in the latent space. By removing constraints that are not relevant, the algorithm
can provide insight into the structure of the data and help us to discover new relation-
ships among the variables. This can be particularly useful in cases where the data is high-
dimensional or complex, andwhere traditionalmethodsmay struggle to identifymeaningful
patterns [37].
Finally, the new variables in the latent space can contribute further information on how the
variables are related and their impact on themonotonicity of the dataset, which can assist in
making interpretable and explainable decisions about the data. By providing a more com-
plete picture of the underlying structure of the data, the algorithm can help us to identify
important features and relationships that may not be immediately apparent from the raw
data. This can be particularly useful in cases where the data is being used to make criti-
cal decisions, such as in finance or healthcare, where interpretability and transparency are
essential.
In summary, our distance metric learning algorithm offers several major benefits from a
theoretical perspective, including the ability to identify new transformed variables in the
latent space, the ability to filter and discover new ways of interaction in the data, and the
ability to facilitate interpretable and explainable decisions about the data. These benefits
make it a powerful tool for researchers and practitioners working in a variety of fields and
applications where monotonicity is a key consideration.

3.4 𝐿𝑀3𝐿 and non-monotonic features

In the previous sections we have assumed that all the features in the dataset are subject
to monotonic constraints. However, this assumption may not hold in real-world scenar-
ios. In the context of distance-based classification, both the majority andmedian-vote 𝑘-NN
classifiers do not consider the monotonic constraints in any sense. On the other hand, the
monotonic and monotonic-fuzzy variants assume the monotonicity across all the features
[16, 17]. Since our algorithm is designed to learn a distance that respects the dataset’s mono-
tonic constraints, it is essential to address how to handle non-monotonic features and how
the later classification stage will be affected by them.
𝐿𝑀3𝐿 can be adapted or combined with other algorithms in order to handle non-monotonic
features. One approach is to apply 𝐿𝑀3𝐿 locally to the monotonic attributes and then em-
ploy another distance metric learning algorithm for standard classification [32, 23] locally
to the non-monotonic features. Concatenating the obtained maps, represented as a matrix
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containing the two locally learned distance matrices as blocks, will yield a global distance
metric for use in the classification stage. This method treats the two types of features sepa-
rately, thus not capturing interactions between monotonic and non-monotonic features.
An alternative approach that does capture the interactions between monotonic and non-
monotonic features is to introduce an unconstrained matrix 𝐿0 to the optimization problem
of Eq. 1 for the non-monotonic attributes. This introduces the constraint 𝐿 = 𝑠𝐼 − 𝐵 + 𝐿0,
where 𝐿0 only contains non-zero rows in the positions corresponding to the non-monotonic
features. Consequently, the monotonic constraints remain effective for monotonic features,
while 𝐿0 removes limitations on exploring the search space for non-monotonic features.
In applying subsequent distance-based classification methods, since monotonic nearest
neighbors approaches assume all features are monotonic, it’s advisable to rely on standard
majority-vote or median-vote classifiers. These classifiers do not assume monotonicity in
the data, as those assumptions are already considered during the distance learning stage.

4 Experiments

In this section we describe the experiments we have developed with our algorithm and the
results we have obtained.

4.1 Experimental framework

We have assessed the distance metric learned by 𝐿𝑀3𝐿 through various distance-based clas-
sifiers. All of them are variations of the nearest neighbors classifier, which include: the orig-
inal 𝑘-NN (majority-vote), the median-vote 𝑘-NN, the monotonic 𝑘-NN (both the in-range
and out-range versions), and the monotonic fuzzy 𝑘-NN (both the in-range and out-range
versions). The standard 𝑘-NN is commonly applied in non-ordinal classification problems,
while the median-vote 𝑘-NN is the natural adaptation for 𝑘-NN in ordinal regression, with-
out taking into consideration any monotonic constraints. The remaining 𝑘-NN versions
refer to the monotonic nearest neighbors approaches discussed in Section 2.3.
The goal of these experiments is to evaluate whether the distance metric learned by 𝐿𝑀3𝐿
can improve the performance of 𝑘-NN in two ways: (1) classification accuracy when dealing
with new data and (2) adherence to the monotonic constraints of the dataset. To achieve
this goal, we will compare various versions of 𝑘-NN using both the Euclidean distance and
the distance learned by 𝐿𝑀3𝐿.
The experiments were conducted using a fixed number of neighbors 𝑘 = 9 for all the 𝑘-NN
classifiers. The distances computed using each classifier were evaluated through a stratified
5-fold cross validation, which preserves the original class proportions in each fold. Ten dif-
ferent numerical datasets withmonotonic constraints from various sources were used in the
experiments [38, 39, 8]. To prepare the data for the experiments, any features with inverse
monotonic constraints were sign-switched, and a min-max normalization to the interval
[0, 1] was applied. It is worth noting that some datasets were not completely monotonic,
and contained pairs of samples that violated the monotonicity constraints. The datasets se-
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Table 1: Datasets used in the experiments.

Dataset # Samples # Features # Classes Attribute directions Non-Monotonic pairs
/ Comparable pairs
(%)

autoMPG8 392 7 5 (-,-,-,-,+,+,+) 0.044 / 36.14
car 1728 6 4 All direct (+) 0.246 / 39.67
ERA 1000 4 9 All direct (+) 3.349 / 16.77
ESL 482 4 7 All direct (+) 0.585 / 59.81
LEV 1000 4 5 All direct (+) 1.330 / 24.08
machineCPU 209 6 5 (-,+,+,+,+,+) 1.196 / 46.24
pima 768 8 2 All direct (+) 0.151 / 6.576
SWD 1000 10 4 All direct (+) 0.949 / 12.62
balance 625 4 3 (-,-,+,+) 0.000 / 25.64
boston-housing 506 13 5 (-,+,-,+,-,+,-,+,-,-,-,+,-) 0.299 / 14.60

lected for the experiments, along with their dimensions and monotonicity properties, are
presented in Table 1.

4.2 Metrics and results

To evaluate the classification performance of the distances with each classifier, we have
used two metrics: themean absolute error (MAE) [8], which penalizes the classification er-
ror according to the distances between the labels, and the concordance index (C-INDEX)
[40], which measures the ratio between the number of ordered pairs in both true labels and
predictions and the number of all comparable pairs.
For the execution of these experiments, the parameters suggested for 𝐿𝑀3𝐿 are as follows:
a fixed neighborhood size of 50 for the anchor samples, a maximum of 300 optimization
epochs, a neighborhoodmargin 𝜆 of 0.1, and an adaptive learning rate 𝜂. The adaptive learn-
ing rate starts at 10−6 and, at each epoch, it is either increased by 1 % if the objective function
improves, or halved if it does not, following the adaptive approach in [32]. These parameters
were chosen based on the guidelines of the algorithms that inspired this method, as well as
a preliminary hyperparameter analysis presented in Section 4.5. The code of 𝐿𝑀3𝐿 used for
these experiments is available in pyDML [41], which is a Python library containing various
distance metric learning algorithms.
Table 2 shows the results of the classification performance. This table also includes, for
each combination of distance and classifier, its average ranking over all the combinations
of distance and classifiers (AVG RANK [ALL]) and its average ranking within the distances
that use the same classifier (AVG RANK [IN]).
To evaluate the fulfillment of the monotonic constraints we rely on the nonmonotonicity in-
dex (NMI). This metric is a normalizedmeasure of howmany samples do not fulfill a mono-
tonic constraint. This can be used to evaluate both the monotonicity of the transformed
training dataset after applying 𝐿𝑀3𝐿 and the monotonicity of the predicted samples with
respect the training dataset. For a training set𝒳 and a labeled point (𝑥, 𝑦) ∈ ℝ𝑑 × {1,… , 𝐶}
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Table 2: MAE and C-INDEX of the distance and classifiers on each dataset.
Dataset 𝑘-NN Med-𝑘-NN Mon-𝑘-NN (IR) Mon-𝑘-NN (OR) Mon-F-𝑘-NN (IR) Mon-F-𝑘-NN (OR)

Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿
C-INDEX

autoMPG8 0.918457 0.920312 0.920898 0.925040 0.920753 0.925040 0.919799 0.925040 0.919230 0.911326 0.918868 0.912257
car 0.963044 0.972001 0.962430 0.974398 0.971015 0.974398 0.970817 0.974398 0.964425 0.736149 0.942335 0.718687
ERA 0.692304 0.683062 0.696339 0.692771 0.675817 0.662343 0.675817 0.662343 0.702484 0.698284 0.700877 0.701683
ESL 0.911469 0.914401 0.917153 0.918642 0.912686 0.901638 0.911558 0.902055 0.917847 0.915939 0.918671 0.916644
LEV 0.803299 0.816627 0.804052 0.819050 0.768287 0.736397 0.768287 0.736397 0.818089 0.815131 0.822355 0.821664
machineCPU 0.857039 0.854280 0.860909 0.867868 0.880012 0.877510 0.873755 0.874879 0.863247 0.869615 0.855029 0.870145
pima 0.705144 0.712881 0.705144 0.712881 0.706292 0.706473 0.709292 0.706473 0.719280 0.667439 0.685984 0.665552
SWD 0.742335 0.743421 0.749917 0.752555 0.685411 0.674434 0.689080 0.674434 0.759628 0.757493 0.761008 0.754048
balance 0.903139 0.898828 0.933961 0.940843 0.946904 0.948984 0.946882 0.948657 0.948366 0.951353 0.944890 0.944437
boston-housing 0.780491 0.848367 0.795450 0.853051 0.803741 0.853051 0.799271 0.853051 0.819694 0.810555 0.773578 0.810751
AVG SCORE 0.827672 0.836418 0.834625 0.845710 0.827092 0.826027 0.826456 0.825773 0.843229 0.813328 0.832360 0.811587
AVG RANK [ALL] 8.863636 6.409091 6.954545 3.772727 6.818182 6.454545 7.363636 6.636364 4.090909 7.090909 6.363636 7.181818
AVG RANK [IN] 1.666667 1.333333 1.833333 1.166667 1.416667 1.583333 1.416667 1.583333 1.250000 1.750000 1.333333 1.666667

MAE
autoMPG8 0.342740 0.322085 0.332608 0.306889 0.334720 0.306889 0.337281 0.306889 0.329528 0.359831 0.331758 0.360091
car 0.052658 0.050339 0.054392 0.049193 0.030085 0.049193 0.031826 0.049193 0.056113 0.256990 0.090264 0.270272
ERA 1.411089 1.465980 1.300229 1.310030 1.527210 1.556053 1.527210 1.556053 1.291049 1.300199 1.293127 1.292118
ESL 0.331710 0.327648 0.321226 0.317207 0.352483 0.396309 0.356799 0.396309 0.342489 0.346530 0.335982 0.338046
LEV 0.438115 0.415123 0.421073 0.405062 0.496170 0.544144 0.496170 0.544144 0.398021 0.407012 0.384050 0.389021
machineCPU 0.613086 0.612891 0.574255 0.560191 0.489040 0.513241 0.508696 0.527438 0.549397 0.527777 0.572187 0.543366
pima 0.247441 0.247432 0.247441 0.247432 0.244826 0.251328 0.240905 0.251328 0.244835 0.259138 0.247449 0.260453
SWD 0.479069 0.482130 0.448037 0.450157 0.503911 0.536098 0.499966 0.536098 0.442002 0.447038 0.440997 0.450057
balance 0.148918 0.158031 0.147267 0.134311 0.083351 0.087984 0.083351 0.091236 0.092991 0.092927 0.129795 0.129666
boston-housing 0.588659 0.422635 0.549184 0.406773 0.499192 0.406773 0.517014 0.406773 0.672612 0.473747 0.570193 0.477609
AVG SCORE 0.465349 0.450429 0.439571 0.418725 0.456099 0.464801 0.459922 0.466546 0.441904 0.447119 0.439580 0.451070
AVG RANK [ALL] 8.590909 6.590909 6.409091 4.318182 6.000000 7.227273 6.454545 7.590909 5.363636 6.636364 5.818182 7.000000
AVG RANK [IN] 1.750000 1.250000 1.833333 1.166667 1.166667 1.833333 1.166667 1.833333 1.250000 1.750000 1.333333 1.666667

we define

𝑁𝐶𝑙𝑎𝑠ℎ𝒳(𝑥) = |{𝑥𝑖 ∈ 𝒳∶ (𝑥𝑖 < 𝑥 and 𝑦𝑖 > 𝑦) or (𝑥𝑖 > 𝑥 and 𝑦𝑖 < 𝑦)}|.

Then, the NMI of the labeled dataset 𝒳 with respect to the labeled dataset 𝒴 is defined as

𝑁𝑀𝐼(𝒳, 𝒴) = 1
|𝒳||𝒴| − |𝒳 ∩ 𝒴| ∑𝑥∈𝒴

𝑁𝐶𝑙𝑎𝑠ℎ𝒳(𝑥).

We can use the NMI in different ways. If we want to measure the monotonicity of the orig-
inal training set 𝒳, we can use 𝑁𝑀𝐼(𝒳,𝒳). If we want to measure the monotonicity of the
training set after being transformed by a linear map 𝐿 ∈ ℳ𝑑(ℝ), we can use 𝑁𝑀𝐼(𝐿𝒳, 𝐿𝒳).
Finally, if wewant tomeasure themonotonicity of a set of test samples and their predictions,
𝒳𝑡, with respect to the training set, we can use 𝑁𝑀𝐼(𝐿𝒳,𝒳𝑡). Table 3 shows the results re-
garding the fulfillment of the monotonic constraints. In this table, the metric NMI-TRAIN
represents the NMI for the training sets, for the Euclidean distance (that is, with no transfor-
mations applied) and for the transformed dataset using the distance learned by 𝐿𝑀3𝐿. The
NMI-TEST metric represents each of the NMIs of the training sets for each distance, with
respect to the sets of predicted values by each of the classifiers for the test set. We also show
the total of comparable pairs in the training set (CP-TRAIN), and between the training and
test sets (CP-TEST), for each of the distances.
Finally, we also include in Table 5 the time required for 𝐿𝑀3𝐿 to learn the distance within
each dataset. It is important to note that these times are independent of the classifier em-
ployed, as the distance is learned independently of the classification stage. In addition, there
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Table 3: Results of the monotonicity analysis on each dataset. The (C.I.) column title states
that the metrics do not depend on the classifier used, only on the distance.
Metric NMI-TRAIN CP-TRAIN NMI-TEST
Classifier (C.I.) (C.I.) 𝑘-NN Med-𝑘-NN Mon-𝑘-NN (IR)
Distance Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿
autoMPG8 0.002558 0.000000 0.401125 0.000539 0.001534 0.000000 0.001390 0.000000 0.000834 0.000000
car 0.000058 0.000000 0.143672 0.003914 0.000126 0.000000 0.000116 0.000000 0.000028 0.000000
ERA 0.033560 0.021917 0.167776 0.075397 0.026396 0.018346 0.025813 0.017834 0.027845 0.020012
ESL 0.009530 0.003307 0.703749 0.348972 0.006029 0.002217 0.005926 0.002212 0.007266 0.002425
LEV 0.013335 0.005879 0.240869 0.048001 0.008462 0.003953 0.008401 0.003911 0.010639 0.005150
machineCPU 0.013873 0.003957 0.497229 0.289424 0.011322 0.002963 0.011395 0.002906 0.006639 0.001817
pima 0.001640 0.000045 0.073187 0.001316 0.000896 0.000015 0.000896 0.000015 0.000396 0.000002
SWD 0.009505 0.004307 0.126258 0.008387 0.005609 0.003078 0.005274 0.003100 0.007336 0.003595
balance 0.000000 0.000000 0.256326 0.209876 0.000051 0.000041 0.000038 0.000016 0.000000 0.000000
boston-housing 0.002775 0.000000 0.149025 0.000000 0.001934 0.000000 0.001731 0.000000 0.001443 0.000000
AVG SCORE 0.008683 0.003941 0.275922 0.098583 0.006236 0.003061 0.006098 0.002999 0.006243 0.003300
AVG RANK 1.954545 1.045455 1.000000 2.000000 10.681818 4.636364 9.772727 4.090909 9.500000 4.318182

Metric NMI-TEST CP-TEST
Classifier Mon-𝑘-NN (OR) Mon-F-𝑘-NN (IR) Mon-F-𝑘-NN (OR) (C.I.)
Distance Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿
autoMPG8 0.000762 0.000000 0.000747 0.000000 0.001657 0.000000 0.400190 0.000507
car 0.000028 0.000000 0.000085 0.000005 0.000222 4.18e-07 0.143342 0.003887
ERA 0.027845 0.020012 0.024477 0.017358 0.024352 0.017335 0.167337 0.075719
ESL 0.007138 0.002404 0.006103 0.001991 0.006096 0.001914 0.703130 0.351790
LEV 0.010639 0.005150 0.007547 0.003831 0.007555 0.003815 0.240689 0.047908
machineCPU 0.006346 0.001614 0.008060 0.001277 0.011200 0.002779 0.489219 0.286028
pima 0.000411 0.000002 0.000231 0.000000 0.000744 0.000012 0.073161 0.001432
SWD 0.006880 0.003595 0.005230 0.002951 0.005212 0.002945 0.125906 0.008363
balance 0.000000 0.000000 0.000000 0.000000 0.000003 0.000000 0.256840 0.211008
boston-housing 0.001438 0.000000 0.000441 0.000000 0.001719 0.000000 0.147432 0.000000
AVG SCORE 0.006149 0.003278 0.005292 0.002741 0.005876 0.002880 0.274725 0.098664
AVG RANK 8.954545 4.045455 7.545455 2.545455 9.181818 2.727273 1.000000 2.000000

Table 4: Non-monotonicity index over the comparable pairs in both train and test datasets.
Metric NMI on CP [TRAIN] NMI on CP [TEST]
Classifier (C.I.) 𝑘-NN Med-𝑘-NN Mon-𝑘-NN (IR) Mon-𝑘-NN (OR) Mon-F-𝑘-NN (IR) Mon-F-𝑘-NN (OR)
Distance Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿 Euclidean 𝐿𝑀3𝐿
autoMPG8 0.006381 0.000000 0.003834 0.000000 0.003473 0.000000 0.002084 0.000000 0.001904 0.000000 0.001870 0.000000 0.004162 0.000000
car 0.000402 0.000000 0.000881 0.000000 0.000812 0.000000 0.000190 0.000000 0.000190 0.000000 0.000589 0.001088 0.001530 0.000135
ERA 0.200070 0.291700 0.158011 0.243392 0.154546 0.236284 0.166521 0.264883 0.166521 0.264883 0.146549 0.229999 0.145805 0.229653
ESL 0.013542 0.009365 0.008573 0.006386 0.008426 0.006376 0.010339 0.006775 0.010157 0.006734 0.008683 0.005616 0.008672 0.005460
LEV 0.055372 0.122519 0.035194 0.082691 0.034919 0.081782 0.044228 0.107630 0.044228 0.107630 0.031383 0.080121 0.031412 0.079804
machineCPU 0.027944 0.013879 0.023643 0.011360 0.023905 0.011158 0.013765 0.007022 0.013158 0.006294 0.016674 0.004882 0.023268 0.010723
pima 0.022528 0.044904 0.012296 0.036612 0.012296 0.036612 0.005440 0.000465 0.005628 0.000465 0.003171 0.000000 0.010213 0.036147
SWD 0.075348 0.051356 0.044585 0.036811 0.041939 0.037076 0.058386 0.042992 0.054865 0.042992 0.041572 0.035292 0.041459 0.035218
balance 0.000000 0.000000 0.000200 0.000257 0.000149 0.000083 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000012 0.000000
boston-housing 0.018065 - 0.013812 - 0.012271 - 0.010734 - 0.010695 - 0.003323 - 0.012661 -
AVG SCORE 0.038232 0.053438 0.027446 0.041861 0.026692 0.041047 0.028361 0.042976 0.027966 0.042900 0.023074 0.035700 0.025394 0.039774
AVG RANK 1.650000 1.350000 8.083333 7.636363 7.166666 7.000000 6.916666 6.136363 6.500000 5.863636 4.625000 4.545454 6.500000 5.318181

is no comparison with the Euclidean distance, opposed as it was done in Table 2. Onemight
assume that the Euclidean distance requires zero time, but in reality, no distance learning
process occurs in that scenario. The provided timings illustrate that the algorithm scales ef-
fectively in response to the growing number of samples in the datasets. This can be primarily
attributed to the local nature provided by the neighborhood filter during triplet generation.
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Table 5: Time (in seconds) required for 𝐿𝑀3𝐿 to learn the distance within each dataset.

TIME
autoMPG8 3053.281696
car 9943.930562
ERA 8204.803218
ESL 2991.658279
LEV 7656.171229
machineCPU 1502.185281
pima 5180.773168
SWD 7346.903710
balance 1818.846962
boston-housing 4512.102694

4.3 Analysis of results

Based on the results presented in Tables 2 and 3, we can make the following observations.
Firstly, we can conclude that the performance of the Med-𝑘-NN classifier improves signifi-
cantly when combined with 𝐿𝑀3𝐿 in terms of both MAE and C-INDEX. In fact, the combi-
nation of 𝐿𝑀3𝐿 and Med-𝑘-NN is the most successful one in the experiments. In contrast,
the combination of 𝐿𝑀3𝐿 with monotonic classifiers yielded less competitive results com-
pared to non-monotonic classifiers, often performing worse than the Euclidean distance in
those particular cases. Thus, we can say that the distance learned by 𝐿𝑀3𝐿 is capable of
achieving superior classification performance compared to the Euclidean distance, but only
when used in combination with the more traditional 𝑘-NN and Med-𝑘-NN classifiers. This
could be attributed to the fact that the monotonic classifiers already heavily focus on opti-
mizing the constraint aspect, which may render their combination with 𝐿𝑀3𝐿 counterpro-
ductive. In any case, combining 𝐿𝑀3𝐿 with a non-monotonic classifier is not a drawback,
since monotonic constraints are already taken into account in the distance learning process
itself.
Finally, by looking at the monotonicity results, it becomes evident that the transformation
learned by our algorithm significantly reduces the number of non-monotonic pairs of sam-
ples after transforming the training set. The observedmonotonicity of the predicted samples
with respect to the training set confirms that 𝐿𝑀3𝐿 is successful in decreasing the number
of predictions that violate a monotonic constraint, for all classifiers. This highlights the
capability of our method to avoid introducing new incorrect monotonic constraints when
transforming the dataset, owing to the utilization ofM-matrices in the optimization process.
However, it is worth noting that the reduction in NMI comes at the expense of diminishing
the number of comparable instances in the dataset, as is apparent in Table 3; the number
of comparable pairs is consistently higher in the untransformed dataset. Nevertheless, this
reduction can assist in identifying instances that are inaccurately linked in monotonic con-
straints due to noise or lack of accuracy. The results presented in Table 4 demonstrate the
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performance of the NMI metric when considering only the comparable pairs in both the
training and test sets. The average NMI values for Euclidean and 𝐿𝑀3𝐿 distances are simi-
lar, but 𝐿𝑀3𝐿 outperforms Euclidean distance in terms of ranking. These findings suggest
that, despite the reduction in the number of comparable pairs, the NMI metric normalized
by the number of comparable pairs remains competitive when 𝐿𝑀3𝐿 is employed.

4.4 Bayesian non-parametric statistical analysis

In order to assess the extent to which the bestmodels obtained outperform the othermodels,
and to compare the distances learned on the same classifier, we have performed a series of
Bayesian statistical tests. We have prepared several pairwise Bayesian sign tests [42] to per-
form these comparisons. The tests take into account the differences between the C-Index
and MAE scores obtained by each pair of compared algorithms, assuming that their prior
distribution is a Dirichlet process [43], defined by a prior strength 𝑠 = 1 and a prior pseudo-
observation 𝑧0 = 0. After perceiving the score obtained for each dataset, the tests produce
a posterior distribution that gives us the probabilities that either one of the compared algo-
rithms outperforms the other, or that they are practically equivalent. The region of practical
equivalence has been established as the regionwhere the score differences are in the interval
[−0.01, 0.01]. In summary, from the posterior distribution we obtain three probabilities: the
probability that the first algorithm outperforms the second, the probability that the second
algorithm outperforms the first, and the probability that the two algorithms are practically
equivalent. The distribution can be plotted as a ternary simplex plot for a sample of the pos-
terior distribution, where a greater skew of the points towards on of the regions represent a
higher probability.
To carry out the Bayesian sign tests we have used the R package rNPBST [44]. In Figures 1
and 2 we show all the pairwise comparisons among every ¡combination of distance and clas-
sifier. This comparison is displayed as a heatmap, with the lower half showing the posterior
probability for the algorithmwith the highest likelihood of outperformance against its com-
petitor. The color of the heatmap in this half indicates which algorithm is the winner via an
increase in color intensity with higher probability of outperformance. The upper half shows
the posterior probabilities that the compared pairs of algorithms are practically equivalent
(the rope region probability). Again, the intensity of the color refers to a higher probability,
while the two colors indicate how high the rope probability is: whether the algorithms are
more likely to perform equivalently or the better algorithm in the lower half clearly wins.
In the comparisons of Figures 1 and 2, we can confirm that Med-𝑘-NN with the distance
learned by 𝐿𝑀3𝐿 is the algorithm that stands out the most, since, when compared to the
other algorithms, its probability of winning always exceeds the probability of the other algo-
rithm winning. Looking at the C-Index, we observe that the rope probabilities are high in
general, which indicates that it is also likely that Med-𝑘-NN with 𝐿𝑀3𝐿 has an equivalent
performance, in terms of the C-Index, to the other algorithms. In any case, the probability
that this algorithm will be significantly outperformed by any of the compared algorithms is
always lower. As for MAE, we see that the rope probabilities are no longer as high. There-
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Figure 1: Pairwise Bayesian comparisons of the C-Index scores obtained by the different
algorithms.

fore, the probability that𝑀𝑒𝑑−k−𝑁𝑁 with 𝐿𝑀3𝐿 significantly outperforms any of the com-
pared algorithms, with respect to MAE, is clearly dominant.
The above heatmaps offer a general overview of the Bayesian test results. To have a more
specific view we focus now on two main comparisons: one for the best algorithm obtained
against the rest of the algorithms, and another one for the Euclidean distances against the
distances learned by 𝐿𝑀3𝐿 within the same classifier, for each of the classifiers analyzed in
this study. For this purpose, wehave obtained the ternary simplex plots and the posterior dis-
tribution barplots for each of the pairwise comparisons, which are available in Appendix A.
The first comparison with Bayesian tests puts the classification model with Med-𝑘-NN and
the distance learned by 𝐿𝑀3𝐿, which is the best performer according to the tables, against
the rest of the classifiers and distances. Figures 11-14 show the relevant Bayesian plots.
This comparison confirms what we had already observed in the heatmaps: in all the algo-
rithms there is a clear trend towards the regions associated with Med-𝑘-NN with 𝐿𝑀3𝐿 and
the rope. In the case of C-Index there is a greater bias towards the rope, while for the MAE
it becomes strongly apparent that the distributions are concentrated in the region of Med-𝑘-
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Figure 2: Pairwise Bayesian comparisons of the MAE scores obtained by the different algo-
rithms.

NN with 𝐿𝑀3𝐿, thus showing that this algorithm is most likely significantly outperforming
the rest under this metric.
The second analysis with Bayesian tests compares, within the same classifier, the Euclidean
distance and the distance learned by 𝐿𝑀3𝐿. Figures 15-16 show the Bayesian plots obtained
for this analysis. We can confirm, as already seen in the Tables, that 𝐿𝑀3𝐿 is able to out-
perform the Euclidean distance when using the non-monotonic majority-vote and median-
vote nearest neighbor classifiers, although it is not significantly better than the Euclidean
distance when comparing within each of the monotonic classifiers. According to the met-
rics, the MAE shows more bias towards the winner algorithm region, for each case, and the
C-Index is more dominated by the rope. In any case, these diagrams show how dominant
Med-𝑘-NN with 𝐿𝑀3𝐿 is with respect to the Euclidean Med-𝑘-NN. Together with the above
comparison, 𝐿𝑀3𝐿 is still validated as the best alternative when used in conjunction with
the median-vote nearest neighbors.
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4.5 Analysis of hyperparameters

In this section, we analyze the hyperparameters of the proposed algorithm on some of the
datasets used in the experiments above. The main parameters of 𝐿𝑀3𝐿 are:

• The initial learning rate for the gradient optimization 𝜂0.

• The large margin 𝜆 in the objective function.

• The neighborhood size 𝐾.

• The maximum number of iterations of the gradient optimization.

We evaluate these hyperparameters in the datasets autoMPG8 and boston-housing, which
are both inspired by realworldmonotonic problems. Weuse𝐿𝑀3𝐿with the sameMed-9-NN
classifier used in the experiments.

4.5.1 Influence of the initial learning rate

In what follows, we analyze the impact of the initial learning rate on the above-mentioned
datasets. With the rest of the parameters fixed as in the initial experimentation, we vary
𝜂0 according to the set of values {10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1}. The results are
shown in Figures 3 and 4.

Figure 3: Effect of 𝜂0 on C-Index and MAE in autoMPG8.

In the graphics we can see that, when 𝜂0 ranges from 10−6 to 10−3, the adaptive update of the
learning rate is enough to lead to competitive results. In contrast, when 𝑒𝑡𝑎0 is too low or too
high, it negatively influences the optimization process and the final metrics are suboptimal,
despite the adaptability of 𝜂 during the gradient optimization.
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Figure 4: Effect of 𝜂0 on C-Index and MAE in boston-housing.

4.5.2 Influence of the margin

The margin 𝜆 determines the degree to which the most distant class is kept away in the
triplets that are used during the optimization process. When the margin is low, the three
ordered elements in the triplet are closer than when the margin is high. We analyze the
impact of 𝜆 for the set of values

{0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0}

with the other parameters fixed, in Figures 5 and 6.

Figure 5: Effect of 𝜆 on C-Index and MAE in autoMPG8.

Here, it is readily visible that the highest levels of performance are achieved when the mar-
gins are below 1, which tells us that it is interesting to keep the elements of the triplets close
together (as long as they are correctly ordered). The amplitude of the optimal margin range
seems to be small as well, so it is crucial to specify this margin adequately to achieve optimal
performance.
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Figure 6: Effect of 𝜆 on C-Index and MAE in boston-housing.

4.5.3 Influence of neighborhood size

The neighborhood size 𝐾 determines how many neighbors are considered to compute the
triplets around each anchor sample in the dataset. This parameter gives a local character to
the algorithm, as only nearby samples will be considered for each element. If𝐾 is low, only a
few nearest neighbors will be used to compute the triplets. If 𝐾 is high, the triplets will take
into account most of the dataset. A lower value of 𝐾 also translates into higher efficiency.
We analyze the impact of the neighborhood size usedwith the set of values in the range from
10 to 100 with a step of 5. Figures 7 and 8 show the effect of the neighborhood size on the
C-Index and MAE.

Figure 7: Effect of 𝐾 on C-Index and MAE in autoMPG8.

In the figures we can observe that a good performance of the algorithm is usually achieved
when the neighborhood size is 50 or higher. The optimal value may vary but, in general, a
higher quality is obtained when the neighborhood size is in this range.
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Figure 8: Effect of 𝐾 on C-Index and MAE in boston-housing.

4.5.4 Influence of the number of iterations.

Lastly, we study how the number of iterations of the gradient optimization affects the con-
vergence of the algorithm. Figures 9 and 10 show the effect of the number of iterations on
the C-Index and MAE, in a range from 10 to 500 with a step of 10.

Figure 9: Effect of the number of iterations on C-Index and MAE in autoMPG8.

From the graphics we can conclude that the algorithm seems to converge with a number
of iterations around 300, and there does not seem to be overfitting, as a higher number of
iterations does not imply a worsening in the values of the metrics in this case.

5 Conclusion

In this paper, we have presented a newdistancemetric learning algorithmdeveloped specifi-
cally formonotonic classification that, for the first time, exploits the potential of linear trans-
formations to reduce the non-monotonicity of the dataset, thanks to the use of M-matrices.
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Figure 10: Effect of number of iterations on C-Index and MAE in boston-housing.

In addition, the distances learned allow us to improve the classification performance of the
classifiers analyzed.
The results, supported by a Bayesian analysis, have shown that 𝐿𝑀3𝐿 combined with the
median vote nearest neighbors classifier can outperform even themonotonic distance-based
classifiers. In addition, the transformation of the space performed by 𝐿𝑀3𝐿 allows the num-
ber of non-monotonic pairs in the dataset to be reduced without introducing any false new
monotonic constraints. 𝐿𝑀3𝐿 is thus presented as an alternative to consider in monotonic
classification problems based on distances or similarities.

Acknowledgements

Our work has been supported by the research projects PID2020-119478GB-I00 and A-TIC-
434-UGR20, and by a research scholarship (FPU18/05989), given to the author Juan Luis
Suárez by the Spanish Ministry of Science, Innovation and Universities.

Authorship contribution statement

Juan Luis Suárez: Conceptualization, Methodology, Software, Investigation, Writing - re-
view & editing, Validation. Germán González-Almagro: Conceptualization, Methodol-
ogy, Writing - review & editing. Salvador García: Conceptualization, Methodology, Writ-
ing - review&editing, Investigation, Funding acquisition, Supervision. FranciscoHerrera:
Funding acquisition, Project administration, Supervision.

Compliance with ethical standards

The study was conducted in compliance with ethical standards, including obtaining in-
formed consent fromall participants and ensuring the confidentiality and anonymity of their
data.

24



Pub. 4 - 𝐿𝑀3𝐿 193

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal re-
lationships that could have appeared to influence the work reported in this paper.

Ethical and informed consent for data used

The data used in this study were publicly available datasets. No ethical approval was re-
quired for the use of these datasets. We adhered to best practices for data management,
including ensuring the quality and reliability of the data and properly citing the source of
the data.

Data availability and access

The datasets used in this work are publicly available in the KEEL [38] repository
(https://sci2s.ugr.es/keel/datasets.php) and in the ORCA [8] repository (https:
//github.com/ayrna/orca), as a download link (http://www.uco.es/grupos/ayrna/
ucobigfiles/datasets-orreview.zip). Any of the specific folds used in the experimen-
tation can be requested to the corresponding author on request.

A Bayesian test simplex plots and posterior distributions

This Appendix shows the pairwise Bayesian diagrams for the two comparisons described in
Section 4.4. The simplex plots are ternary plots displaying a sample of the posterior distri-
bution. There are three regions that correspond to either algorithm having a performance
advantage and to the rope (practical equivalence); each region is centered at one different
vertex of the simplex, so that a greater tendency of the points towards a region represents
a greater probability for that option. The posterior distributions are also shown as barplots
where the bars represent the probabilities of each of the algorithms being better than the
other, or the probability that they are practically equivalent. These plots are shown for the
two metrics considered in the experiments: MAE and C-Index.

A.1 Comparison of the best model obtained with the rest of the algorithms

This section shows the results of the Bayesian tests that compare Med-𝑘-NN with each of
the other algorithms. The results are displayed in Figures 11-14. The simplex diagrams and
posterior distribution barplots are shown for both MAE and C-Index metrics.

A.2 Comparison of distances within the same algorithm

This section shows the results of the Bayesian tests that compare both Euclidean distance
and the distance learned by 𝐿𝑀3𝐿 for each of the classifiers used in the experiments. The
results are shown in Figures 15-16. The simplex diagrams and posterior distribution barplots
are shown for both MAE and C-Index metrics.
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Figure 11: Posterior distributions using C-Index for the Bayesian comparison between the
best model and the rest of the classifiers and distances.
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Figure 12: Posterior distributions using MAE for the Bayesian comparison between the best
model and the rest of the classifiers and distances.
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Figure 13: Simplex plots using C-Index for the Bayesian comparison between the best model
and the rest of the classifiers and distances.
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Figure 14: Simplex plots using MAE for the Bayesian comparison between the best model
and the rest of the classifiers and distances.
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Figure 15: Simplex plots and posterior distributions using C-Index for the Bayesian compar-
ison between 𝐿𝑀3𝐿 and the Euclidean distance for each classifier.
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Figure 16: Simplex plots and posterior distributions usingMAE for the Bayesian comparison
between 𝐿𝑀3𝐿 and the Euclidean distance for each classifier.
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Capítulo III

Trabajo en progreso:
Aprendizaje de distancias profundo
con datos escasos aplicado al
procesamiento del lenguaje natural

«𝑒𝑖𝜋 + 1 = 0».
– Leonhard Euler.
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1 Introducción

En este capítulo se abordará el trabajo en progreso que se está realizando actualmente. Este
trabajo aborda, dentro del procesamiento del lenguaje natural, la tarea de la extracción de
relaciones. En particular, se considera esta tarea en un escenario de few-shot learning, en el
que se dispone de escasos ejemplos para entrenar. Para afrontar este problema, se propone el
uso de técnicas del aprendizaje de distancias profundo. El trabajo cubre así los objetivos de
la tesis relacionados con el desarrollo de técnicas de aprendizaje profundo para problemas
complejos y con la aplicación de los modelos desarrollados a problemas reales.

Este trabajo se estructura de la siguiente manera: a continuación, la Sección 1.1 introdu-
ce ymotiva los problemas y herramientas con los que se trabajará en el resto de secciones. En
la en la Sección 2 se proporciona la base necesaria para comprender el trabajo realizado. La
Sección 3 describe con detalle la propuesta elaborada en este trabajo. En la Sección 4 se pre-
sentan los experimentos realizados y los resultados obtenidos. Finalmente, en la Sección 5
se exponen las conclusiones extraídas y las líneas futuras de investigación.

1.1 Motivación

La extracción de relaciones, una tarea fundamental en el procesamiento del lenguaje natural
(PLN), desempeña un papel crucial en tareas como la extracción de información [SCYZ22],
la población de bases de conocimiento [CYL+23] y los sistemas de preguntas y respues-
tas [CGZJ23]. Si bien se ha logrado un progreso significativo en la extracción de relaciones
supervisada, el desafío de la extracción de relaciones few-shot (FSRE) sigue siendo una barre-
ra. La FSRE implica identificar y clasificar relaciones entre entidades en un texto, incluso
cuando el modelo tiene acceso a un número limitado de ejemplos de entrenamiento para
cada relación. Los métodos tradicionales supervisados a menudo tienen dificultades en este
escenario, ya que dependen en gran medida de la disponibilidad de datos etiquetados exten-
sos.

En este contexto, el aprendizaje de distancias profundo [KB19] se ha destacado comouna
técnica prometedora para abordar el problema de FSRE. El aprendizaje de distancias profun-
do se centra en aprender representaciones que reflejen la estructura subyacente de similitud
en los datos. La capacidad discriminativa de este enfoque destaca frente a los modelos tradi-
cionales del aprendizaje profundo, erigiéndose el aprendizaje de distancias profundo como
una herramienta poderosa cuando se disponen de pocos datos de entrenamiento.

Los modelos de lenguaje como BERT [DCLT18] y sus variantes han demostrado capaci-
dades notables para comprender información contextual y mejorar tareas de PLN. Al inte-
grar estrategias de aprendizaje de distancias profundo en estos modelos, se exploran enfo-
ques que fomentan la similitud entre ejemplos con la misma relación y minimizan la simi-
litud entre ejemplos de diferentes relaciones. En particular, el pre-entrenamiento contras-
tivo [PGH+20] en BERT junto con un aprendizaje final basado también en aprendizaje de
distancias profundo, como es el caso de las redes de prototipos, ofrecen un camino promete-
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dor para superar las limitaciones de la FSRE.
El modelo de aprendizaje para FSRE descrito anteriormente aún dispone de margen de

mejora enmuchos aspectos. En este trabajo, nos centramos en la perspectiva del aprendizaje
de distancias, perfeccionando el modelo de dos formas diferentes:

• Función de pérdida espejo. En adición a la pérdida contrastiva base, se propone un
nuevo término en la función de pérdida. Este término autosupervisado genera mues-
tras sintéticas en las que se ignoran partes del texto. La finalidad es evitar que elmodelo
se focalice demasiado en partes del texto irrelevantes, para aumentar la capacidad de
generalización.

• Minería de muestreo robusta. Se propone una nueva estrategia para muestrear los
ejemplos con los que se pre-entrena el modelo. Puesto que esta supervisión distante
puede contener ruido, se identifican y seleccionan ejemplos más fiables para el apren-
dizaje para tratar de disminuir el impacto del ruido. Esta identificación de ejemplos
fiables se realiza iterativamente conforme avanza el pre-entrenamiento, y se basa en
la calidad de los vecinos más cercanos de cada ejemplo.

El modelo desarrollado se evalua en el dataset FewRel [HZY+18, GHZ+19], un bench-
mark desarrollado específicamente para FSRE que contempla diferentes tareas de aprendi-
zaje few-shot. En particular, nuestromodelo se prueba tanto en la tarea de few-shot demismo
dominio como en la few-shot con adaptación de dominio. Los resultadosmuestran que la pro-
puesta mejora el rendimiento del modelo base en ambas tareas, lo que demuestra la eficacia
de las mejoras propuestas.
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2 Antecedentes y trabajo relacionado

En esta sección se describen los antecedentes necesarios para comprender el ámbito que
abarca este trabajo, así como el trabajo relacionado que sirve de base para la propuesta rea-
lizada. Las Secciones 2.1, 2.2 y 2.3 describen los conceptos fundamentales de few-shot lear-
ning, extracción de relaciones y aprendizaje de distancias profundo, respectivamente. La
Sección 2.4 describe el modelo de pre-entrenamiento contrastivo en BERT y el modelo de
few-shot learning en el que se inspira la propuesta realizada.

2.1 Few-shot learning

Few-Shot Learning (FSL) [WYKN20] es un paradigma de aprendizaje automático que se
centra en el aprendizaje de tareas con un número limitado de ejemplos de entrenamiento.
Uno de los principales problemas en los modelos de aprendizaje tradicionales y de apren-
dizaje profundo en particular es que los modelos a menudo requieren grandes cantidades
de datos para un aprendizaje efectivo, lo cual no es siempre factible en la práctica. En es-
te contexto, el FSL se ha convertido en un área de investigación activa en los últimos años,
con el objetivo de desarrollar modelos que puedan aprender de manera efectiva con pocos
ejemplos de entrenamiento.

Formalmente, la descripción del problema de FSL asume la existencia de dos datasets: el
dataset base, 𝔻base, un dataset auxiliar que no tiene que estar estrictamente relacionado con
el problema con el que se desea trabajar, y el dataset novedoso,𝔻novel, que suele ser pequeño
y contiene los datos reales de nuestro problema. La estrategia suele ser utilizar 𝔻base para
aprender una representación general de los datos que sirva de punto de partida, y luego
particularizar dicha representación con los datos de entrenamiento de 𝔻novel.

Del conjunto 𝔻novel se extraen las tareas few-shot que se desean predecir. Se dice que
una tarea es 𝐶-way 𝑘-shot si el conjunto de entrenamiento (denominado conjunto soporte)
dispone de 𝐶 clases y 𝑘 ejemplos para cada clase. Dado un conjunto soporte, el objetivo
es predecir con la mayor fiabilidad posible las clases de los ejemplos del conjunto de test
(denominado conjunto consulta).

2.2 Extracción de relaciones

La extracción de relaciones (relation extraction, RE) [NJM21] es una tarea de PLN que
consiste en extraer relaciones entre entidades en un texto. Por ejemplo, dada la oración “París
es la capital de Francia” y las entidades “París” y “Francia”, el objetivo es identificar que
“París” y “Francia” están relacionados por la relación “capital”.
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Los sistemas de extracción de relaciones utilizan enfoques de procesamiento de lenguaje
natural y aprendizaje automático para analizar grandes cantidades de texto y extraer infor-
mación estructurada que puede ser utilizada en una amplia gama de aplicaciones. La pre-
cisión y el rendimiento de estos sistemas han mejorado significativamente en los últimos
años gracias a avances en técnicas de aprendizaje profundo y el acceso a grandes conjuntos
de datos anotados.

En particular, el enfoque de extracción de relaciones few-shot (FSRE) [QGXT20], ha gana-
do popularidad en los últimos años. Esta variante es especialmente útil cuando nos enfrenta-
mos a relaciones poco frecuentes o nuevas, para las que no se dispone de muchos ejemplos
de entrenamiento. Esto es habitual en dominios como el biomédico. En este contexto, se
hace necesario unificar los conocimientos de las disciplinas de FSL y RE para desarrollar
modelos que puedan aprender de manera efectiva a extraer relaciones con ejemplos de en-
trenamiento limitados.

2.3 Aprendizaje de distancias profundo

El aprendizaje de distancias profundo [KB19] engloba a un conjunto de modelos del
aprendizaje profundo que se centran en aprender representaciones de los datos que permi-
tan reflejar las similitudes entre datos de forma óptima, para poder realizar tareas de apren-
dizaje posteriores con mayor eficacia. Las técnicas de aprendizaje de distancias profundo
presentan un mayor poder discriminativo que los modelos tradicionales de aprendizaje pro-
fundo, lo que las hace más apropiadas para tareas con pocos datos de entrenamiento, en las
que los otros modelos suelen tener dificultades [LYMX23].

En los últimos años el aprendizaje de distancias profundo ha experimentado una evolu-
ción considerable, con la aparición de numerosos modelos. En particular, en este trabajo se
consideran los dos siguientes modelos de interés:

• Redes siamesas y pérdida contrastiva. Las redes siamesas [KZS+15] fueron uno de
los primeros modelos de aprendizaje de distancias profundo desarrollados. Original-
mente, este modelo se concibe como una red neuronal con dos subredes idénticas que
comparten losmismos parámetros. La red se alimenta conpares de ejemplos. Los pares
positivos corresponden a ejemplos asociados a una misma clase, y los pares negativos
corresponden a ejemplos de clases diferentes. La función de pérdida, denominada pér-
dida contrastiva, penaliza la distancia entre los pares positivos y bonifica la distancia
entre los pares negativos [LKHS20]. De esta forma, la red aprende a generar represen-
taciones que maximizan la similitud entre ejemplos de la misma clase y minimizan la
similitud entre ejemplos de clases diferentes.

• Redes de prototipos. Las redes de prototipos [SSZ17] son modelos de aprendizaje de
distancias profundo que aprenden prototipos para cada clase en el conjunto de entre-
namiento. Estos prototipos se calculan a partir de las representaciones del conjunto
de entrenamiento. Son un modelo especialmente útil en FSL, y utilizan una estrate-
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gia de entrenamiento episódica [VBL+16] en la que, en cada episodio, se muestrea un
problema diferente de 𝐶-way 𝑘-shot y un ejemplo de consulta en las condiciones del
problema que se desea tratar. La función de pérdida se computa a partir de la probabi-
lidad de que el ejemplo de consulta pertenezca a cada una de las 𝐶 clases, para lo que
se tiene en cuenta la similtud con respecto a cada prototipo.

2.4 Pre-entrenamiento contrastivo

El pre-entrenamiento contrastivo [RA23] se ha convertido en una función objetivo po-
pular en muchas tareas del PLN, ya que permite capturar con mayor calidad las relaciones
entre palabras, oraciones o entidades. La pérdida contrastiva fuerza a losmodelos a aprender
representaciones que colocan a los datos similares cerca en el espacio de atributos, mientras
que los datos diferentes se colocan lejos. Esto conduce a representaciones semánticamente
ricas, que capturan mejor la estructura subyacente y las relaciones entre los datos, y que
proporcionan un punto de partida más sólido para las tareas de aprendizaje posteriores.

En los últimos años, el desarrollo de codificadores como BERT [DCLT18] ha supuesto un
gran avance en el PLN. Estos modelos han demostrado una gran capacidad para entender el
contexto, gracias a su entrenamiento bidireccional, lo que ha revolucionado la forma en que
las máquinas comprenden el lenguaje humano. La versatilidad de estos modelos y su capaci-
dad para transferir el conocimiento a multitud de tareas a través del pre-entrenamiento los
convierten en una de las herramientas más poderosas de PLN en la actualidad.

En el problema de extracción de relaciones, el pre-entrenamiento contrastivo en BERT
se ha utilizado con éxito para mejorar el rendimiento de los modelos de extracción de rela-
ciones. Peng et al. [PGH+20] proponen por primera vez el pre-entrenamiento contrastivo
para extracción de relaciones (CP) como se describe a continuación. Utilizando la misma
estructura de transformer que BERT, se consideran dos funciones objetivo diferentes. Por
un lado, se utiliza la misma pérdida de modelado de lenguaje enmascarado que BERT, que
selecciona aleatoriamente tokens de entrada y los enmascara, y el modelo debe predecirlos.
Denotaremos esta pérdida como ℒMLM.

Por otro lado, la pérdida contrastiva,ℒCP, seleccionará pares de oraciones de entrada y los
acercará si hacen referencia a la misma relación, y los alejará si no. Dada una oración de en-
trada junto con las dos entidades a relacionar, que denominaremos respectivamente cabeza
y cola, se utilizan los marcadores especiales [E1]-[/E1] y [E2]-[/E2] para rodear dichas
entidades (p.e.: “[CLS] [E1] París [/E1] es la capital de [E2] Francia [/E2] . [SEP]”). Esta
entrada se pasa por el codificador para obtener una representación de la oración. La repre-
sentación de la cabeza y la cola se obtienen tomando la representación del token [E1] y [E2],
respectivamente. Finalmente, consideramos la representación concatenada de las entidades
cabeza y cola, que se utilizará en la función de pérdida.

Dadas la representación positiva (x, x+) asociada a dos oraciones cuyas entidades tienen
asociada la misma relación y las representaciones negativas (x, x−i ), con 𝑖 = 1,… ,𝑁, asocia-



212

das a oraciones cuyas entidades tienen asociadas relaciones diferentes, la pérdida contrastiva
para el problema de RE se define como:

ℒ𝐶𝑃 = − log exp(x ⋅ x+)
exp(x ⋅ x+) + ∑𝑁

𝑖=1 exp(x ⋅ x−i )
. (1)

Para evitar la memorización de entidades por parte del modelo, aleatoriamente se reem-
plazan las entidades de la oración por el marcador especial [BLANK], con una probabilidad
𝑃blank = 0,7. El modelo y la función de pérdida anterior se aplican igualmente con las oracio-
nes enmascaradas. Finalmente, la función de pérdida final delmodelo de pre-entrenamiento
se define como:

ℒ = ℒMLM + ℒCP. (2)

El conjunto 𝔻base de pre-entrenamiento utilizado consiste en un corpus de oraciones de
Wikipedia en las que se mencionan pares de entidades que tienen una relación asociada en
la base de conocimiento de Wikidata [VV19].

La aplicación al problema de extracción de relaciones few-shot se completa con un en-
trenamiento final, consistente en una red de prototipos, que se entrena por episodios con
el dataset novedoso. La red de prototipos propuesta se diferencia de la red de prototipos ge-
nérica en que utiliza como representaciones la concatenación de las representaciones de las
entidades descrita anteriormente, y el producto escalar en lugar de la distancia euclídea para
medir la similitud entre los datos.
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3 Propuesta

En esta sección se describe la propuesta elaborada actualmente para mejorar el modelo
de pre-entrenamiento contrastivo en el problema de FSRE. Se desglosan las dos mejoras
introducidas sobre el modelo base descrito anteriormente. La Sección 3.1 describe la nueva
componente de la función de pérdida elaborada, y la Sección 3.2 describe la nueva estrategia
de muestreo para la red durante el pre-entrenamiento.

3.1 Función de pérdida espejo

Aunque la pérdida contrastiva ha demostrado ser una estrategia exitosa para perfeccionar
los pesos de BERT de cara a la extracción de relaciones, tiene algunos inconvenientes que
merece la pena resaltar. Por un lado, al ser supervisada, el entrenamiento está limitado a las
relaciones que estén presentes en la base de conocimiento, Wikidata, en este caso. Por otro
lado, la supervisión distante puede contener ruido y en consecuencia hacer que la pérdida
contrastiva acerque ejemplos que no deberían estar relacionados.

Para solventar estos problemas, siguiendo la estrategia auto-supervisada propuesta en
otros problemas de PLN, como el de la representación palabras en contexto [LLC+21], se
propone una nueva componente en la función de pérdida que genera muestras sintéticas en
las que se ignoran partes del texto. De esta forma, se añaden nuevos ejemplos positivos no
supervisados que no necesitan unirse mediante una relación existente en la base de conoci-
miento, y al ignorar partes del texto se evita que el modelo pueda sobreajustarse a partes del
texto irrelevantes para extraer la relación.

El mecanismo de la función de pérdida propuesta, que denominaremos pérdida espejo,
es análogo a la pérdida contrastiva supervisada, teniendo como principal diferencia el cómo
se seleccionan los ejemplos positivos. Dado un batch de entrada para el modelo, para cada
elemento del batch se decide aleatoriamente si enmascarar alguna parte del texto o no. Asu-
miendo que habitualmente la parte más informativa de la oración a la hora de identificar
la relación se encuentra entre las dos entidades, se da mayor probabilidad a enmascarar las
palabras que se encuentran antes de la primera entidad y después de la segunda. En caso
de que se decida enmascarar alguna parte del texto, se sustituye por el marcador especial
[MASK]. Los pares positivos se forman con las oraciones originales y su correspondiente ver-
sión enmascarada, mientras que los negativos engloban a una oración y el resto de oraciones
no generadas a partir de ella en el batch. Dado una oración cuya representación asociada de-
notamos por x, si llamamos xM a la representación de la oración enmascarada u oración
espejo, la pérdida espejo se define análogamente a la pérdida contrastiva supervisada como:

ℒmirror = − log exp(x ⋅ xM)
∑x′≠x exp(x ⋅ x′)

. (3)
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Y, finalmente, la función de pérdida final del modelo pre-entrenado se define como:

ℒ = ℒMLM + ℒCP + ℒmirror. (4)

3.2 Muestreo robusto: identificando ejemplos fiables

Los métodos del aprendizaje profundo basados en tuplas, como es el caso de la pérdi-
da contrastiva, dependen en gran medida de cómo se realice el muestreo de datos con los
que se alimente a la red neuronal [XSP20]. Puesto que al considerar tuplas el número de
posibilidades crece a números difíciles de manejar, es importante seleccionar las tuplas que
puedan ser más relevantes para el aprendizaje, bien acelerando el proceso de aprendizaje o
bien contribuyendo en mayor medida al aumento de la calidad del modelo.

En el caso del pre-entrenamiento contrastivo, el muestreo se realiza de forma aleatoria.
Puesto que estos datos vienen de la supervisión distante del corpus de Wikipedia y la base
de conocimiento de Wikidata, es bastante común que se incluyan ejemplos ruidosos o irre-
levantes para el aprendizaje. En particular, hemos detectado tres situaciones que pueden
darse con frecuencia:

• Ejemplos cuyo vecindario está poblado con ejemplos referenciando a las mis-
mas entidades. Estos ejemplos pueden ser problemáticos por varios motivos. Por un
lado, un vecindario así resulta poco informativo para el aprendizaje, puesto que está
más enfocado a las entidades en sí que al contexto de la oración. Por otro lado, es más
probable que entre tantas oraciones compartiendo entidades, haya vecinos que no es-
tén haciendo referencia a la relación presente en el ejemplo, lo que puede tergiversar
las similitudes que elmodelo intenta aprender. Además, el muestreo de estos ejemplos
quita opciones de ser muestreados a ejemplos con mayor calidad.

• Ejemplos cuyo vecindario tiene pocos ejemplos referenciando a la relación.
Estos ejemplos no son convenientes ya que hay una probabilidad alta de que sean
ruidosos. Por tanto, la función de pérdida contrastiva va a intentar acercarlo a ejemplos
de la misma relación cuando sea muestreado, lo cual puede no ser beneficioso para el
aprendizaje.

• Ejemplos cuyo vecindario tiene lamisma estructura de oración. Estos ejemplos
pueden constituir una cantidad abundante de los datos. Ejemplos de estos vecinda-
rios pueden formarse debido a ejemplos que aparezcan repetidos en el conjunto de
datos, o también formarse con oraciones del tipo: “X es el Y-ésimo pico más alto de Z”,
que forman grupos de oraciones poco habituales y que hacen referencia a contextos
muy concretos. Estos ejemplos no son ruidosos en general, pero tampoco llegan a ser
informativos por la poca variabilidad que presentan. Para identificar estos ejemplos,
utilizamos el solapamiento de 𝑛-gramas normalizado promedio entre las oraciones del
vecindario, para 𝑛 = 1, 2.
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De esta forma, se propone una nueva minería para muestrear los ejemplos con los que
se pre-entrena el modelo. Dichos ejemplos, que llamaremos ejemplos fiables, serán aquellos
que no verifiquen ninguna de las tres situaciones descritas anteriormente, fijados ciertos
umbrales y tamaños de vecindario. Puesto que los vecindarios dependen de la distancia y de
las representaciones de los datos, se propone ir seleccionando iterativamente los ejemplos
fiables conforme avanza el pre-entrenamiento. Concretamente, cada 5 épocas de entrena-
miento, se recalculan dichos ejemplos. También, para no perder toda la información presen-
te en el resto de los datos, se muestrean también ejemplos del resto del conjunto, pero dando
mayor peso al muestreo de los ejemplos fiables.
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4 Experimentos

En esta sección se describen los experimentos realizados para evaluar la propuesta ela-
borada. En la Sección 4.1 se describe el setup experimental utilizado, y en la Sección 4.2 se
presentan los resultados obtenidos.

4.1 Setup experimental

Para evaluar la propuesta elaborada, se utiliza el dataset FewRel [HZY+18, GHZ+19],
un benchmark desarrollado específicamente para FSRE que contempla diferentes tareas de
aprendizaje few-shot. El dataset está compuesto por varios subconjuntos. Por un lado, un sub-
conjunto público, que es utilizado para entrenamiento y validación de los modelos. Por otro
lado, un subconjunto privado, del que no se conocen las etiquetas, que es el que se utilizará
para evaluar los modelos. Este subconjunto privado se presenta a modo de competición en
la plataforma Codalab12, donde se han de subir las predicciones para obtener los resultados
finales.

El dataset público se construye alineando oraciones deWikipedia con las relaciones en la
base de conocimiento deWikidata. Los oraciones y relaciones escogidas están seleccionadas
de tal forma que no haya solapamiento entre FewRel y el entrenamiento distante seguido en
el pre-entrenamiento contrastivo descrito anteriormente. El proceso de construcción del da-
taset pasa posteriormente por una anotación humana experta, en la que se filtran oraciones
en las que no se puede deducir la relación entre las entidades elegidas.

El dataset público consta de ejemplos de 64 relaciones diferentes para entrenamiento y
16 para validación, con 100 instancias por cada relación. Los datasets privados disponen de
relaciones diferentes cada uno, también con 100 instancias por relación. Del dataset privado
se extraen 10000 problemas diferentes de 𝐶-way 𝑘-shot, cada uno con su conjunto soporte y
con una instancia de consulta, con 𝐶 ∈ {5, 10} y 𝑘 ∈ {1, 5}. El rendimiento de los modelos
se mide según la tasa de acierto promedio sobre la relación de la instancia de consulta, para
cada uno de los 10000 problemas privados del conjunto. Cada dataset privado cubre una
tarea diferente. Dichos datasets y tareas se describen a continuación:

• FewRel 1.0 [HZY+18]. Este dataset contiene 20 relaciones diferentes de la misma
naturaleza que las presentes en el conjunto de entrenamiento y validación de FewRel.

• FewRel 2.0 (adaptación de dominio) [GHZ+19]. Este dataset contiene 25 relacio-
nes diferentes de naturaleza diferente a las presentes en el conjunto de entrenamiento
y validación de FewRel. Concretamente, estos datos provienen del dominio biomédico,

1https://codalab.lisn.upsaclay.fr/competitions/7395
2https://codalab.lisn.upsaclay.fr/competitions/7397
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y son obtenidas de la base de datos médica PubMed3 y el grafo de conocimiento biomé-
dico UMLS4. Este problema se convierte en mucho más desafiante que el de FewRel
1.0, puesto que durante el entrenamiento no se han visto datos similares.

• FewRel 2.0 (ninguno-de-los-anteriores) [GHZ+19].Este dataset extiende aFewRel
1.0 incluyendo la posibilidad de que el ejemplo de consulta no tenga ninguna de las
relaciones del conjunto soporte. En este caso, el modelo debe ser capaz de predecir la
relación como la etiqueta adicional “ninguno-de-los-anteriores”. Se proporcionan dife-
rentes problemas a evaluar, según la tasa de ejemplos de consulta que no pertenezcan
a ninguna de las relaciones del conjunto soporte.

El modelo desarrollado, que denominaremos CP-M-R (CP with Mirror loss and Reliable
mining) se ha comparado con el modelo base CP en los problemas FewRel 1.0 y FewRel 2.0
con adaptación de dominio. Ambos han sido pre-entrenados usando el corpus deWikipedia
y la base de conocimiento de Wikidata descritos en la Sección 2.4. Aunque la función de
pérdida espejo de CP-M-R permite ampliar la cantidad de ejemplos de entrenamiento al no
tener que depender de relaciones existentes en Wikidata, para realizar una comparación
justa entre ambos modelos se ha optado por mantener el dataset en las mismas condiciones
en ambos casos.Amboshan sido entrenados posteriormente con el dataset de entrenamiento
de FewRel usando la red de prototipos. Ambos modelos se han entrenado durante 20 épocas.

EnCP-M-R, para la función de pérdida espejo se ha utilizado una probabilidad de enmas-
carar 𝑃before = 𝑃after = 0,3 a las palabras de la oración tanto antes de la primera entidad como
después de la segunda, y una probabilidad 𝑃middle = 0,15 para enmascarar el texto entre am-
bas entidades. La actualización de ejemplos fiables se ha realizado 4 veces, cada 5 épocas de
ejecución en el modelo. La proporción entre ejemplos fiables y ejemplos normales escogida
ha sido de un par de ejemplos fiable por cada dos pares de ejemplos normales. Se ha escogido
un tamaño de vecindario de 20 ejemplos, para identificar a los ejemplos fiables. Dentro del
vecindario, se han elegido unos umbrales de 0.1, 0.5 y 0.9 para indicar si las entidades coin-
cidentes en el vecindario son suficientemente pocas, si el número de relaciones comunes es
lo suficiente alto o la proporción de oraciones con estructura similar es lo suficientemente
baja, respectivamente. Para un vecino particular, se considera que tiene estructura demasia-
do similar al ejemplo de referencia si su solapamiento de 𝑛-gramas normalizado es mayor
que 0.2. El resto de parámetros del modelo es común al del modelo CP [PGH+20].

4.2 Resultados

En las Tablas 1 y 2 se muestran los resultados obtenidos por los modelos CP y CP-M-
R en los problemas FewRel 1.0 y FewRel 2.0 con adaptación de dominio, respectivamente.
Se distinguen 4 escenarios de few-shot diferentes: 5-way 1-shot, 5-way 5-shot, 10-way 1-shot

3https://www.ncbi.nlm.nih.gov/pubmed/
4https://www.nlm.nih.gov/research/umls/
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y 10-way 5-shot. En cada escenario, se muestra la tasa de acierto promedio sobre los 10000
problemas del dataset privado de FewRel. Se muestra también el resultado promedio de cada
uno de los modelos.

Modelo 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot Promedio
CP 0.951 0.971 0.912 0.947 0.9452
CP-M-R 0.961 0.975 0.926 0.964 0.956

Cuadro 1: Resultados en FewRel 1.0

Modelo 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot Promedio
CP 0.797 0.849 0.681 0.798 0.781
CP-M-R 0.799 0.894 0.664 0.805 0.790

Cuadro 2: Resultados en FewRel 2.0 (adaptación de dominio)

En los resultados se puede observar que CP-M-R se impone en la mayoría de escenarios
al modelo base CP, lo que demuestra la efectividad de las mejoras propuestas en este trabajo.
En el problema FewRel 1.0, CP-M-R es capaz de imponerse en los 4 problemas. En FewRel
2.0 con adaptación de dominio, se impone en 3 de los 4 problemas, destacando el escenario
5-way 5-shot, en el que CP-M-Rmejora en un 4.5% al modelo base y roza el 90% de acierto
promedio.
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5 Conclusiones

En este trabajo, se ha propuesto una estrategia de mejora para un modelo de few-shot
learning de extracción de relaciones basado en pre-entrenamiento contrastivo. La estrategia
propuesta, denominada CP-M-R, combina la pérdida espejo y la minería de ejemplos fiables
para mejorar el rendimiento del modelo en tareas de extracción de relaciones few-shot, en
particular en el escenario de adaptación de dominio.

Como futuras líneas de investigación, es interesante destacar el hecho de que el espacio
de atributos resultante tras el pre-entrenamiento contrastivo puede no ser ideal para la tarea
de estracción de relaciones, al poder quedar las relaciones separadas en múltiples clusters.
Por ello, se propone como continuación de este trabajo la exploración de la distribución es-
pacial de dichas representaciones, y el estudio particularizado de las representaciones de los
ejemplos fiables. Y, si fuera necesario, la aplicación de técnicas de aprendizaje de distancias,
tanto profundo como clásico [SGH21], tras el pre-entrenamiento sobre los ejemplos fiables
para obtener un espacio de atributos más adecuado para el entrenamiento posterior.





Bibliography 223

Bibliography

[A+15] Aggarwal C. C. et al. (2015) Data mining: the textbook, volumen 1. Springer.

[AAES+23] Ali S., Abuhmed T., El-Sappagh S., Muhammad K., Alonso-Moral J. M., Con-
falonieri R., Guidotti R., Del Ser J., Díaz-Rodríguez N., and Herrera F. (2023)
Explainable artificial intelligence (xai): What we know and what is left to
attain trustworthy artificial intelligence. Information Fusion 99: 101805.

[ADRDS+20] Arrieta A. B., Díaz-RodríguezN., Del Ser J., Bennetot A., Tabik S., BarbadoA.,
García S., Gil-López S., MolinaD., Benjamins R., et al. (2020) Explainable arti-
ficial intelligence (xai): Concepts, taxonomies, opportunities and challenges
toward responsible ai. Information fusion 58: 82–115.

[AFB23] Abnoosian K., Farnoosh R., and Behzadi M. H. (2023) Prediction of diabetes
disease using an ensemble of machine learningmulti-classifier models. BMC
bioinformatics 24(1): 1–24.

[AM18] Akhtar N. and Mian A. (2018) Threat of adversarial attacks on deep learning
in computer vision: A survey. Ieee Access 6: 14410–14430.

[AP88] Ashby F. G. and Perrin N. A. (1988) Toward a unified theory of similarity and
recognition. Psychological review 95(1): 124.

[AP94] Aamodt A. and Plaza E. (1994) Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AI communications 7(1):
39–59.

[BB07] Bach N. and Badaskar S. (2007) A review of relation extraction. Literature
review for Language and Statistics II 2: 1–15.

[BCDZ17] Benavoli A., Corani G., Demšar J., and Zaffalon M. (2017) Time for a change:
a tutorial for comparing multiple classifiers through bayesian analysis. The
Journal of Machine Learning Research 18(1): 2653–2688.

[BHS15] Bellet A., Habrard A., and SebbanM. (2015)Metric learning. Springer Nature.



224 Bibliography

[BKG23] Bank D., Koenigstein N., and Giryes R. (2023) Autoencoders. Machine Learn-
ing for Data Science Handbook: Data Mining and Knowledge Discovery Hand-
book pp. 353–374.

[Bur98] Burges C. J. (1998) A tutorial on support vector machines for pattern recog-
nition. Data mining and knowledge discovery 2(2): 121–167.

[CBHK02] Chawla N. V., Bowyer K. W., Hall L. O., and Kegelmeyer W. P. (2002) Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence
research 16: 321–357.

[CGK+19] Cano J.-R., Gutiérrez P. A., Krawczyk B., Woźniak M., and García S. (2019)
Monotonic classification: An overview on algorithms, performance mea-
sures and data sets. Neurocomputing 341: 168–182.

[CGZJ23] Calle Gallego J. M. and Zapata Jaramillo C. M. (2023) Quare: towards a
question-answering model for requirements elicitation. Automated Software
Engineering 30(2): 25.

[CH67] Cover T. and Hart P. (1967) Nearest neighbor pattern classification. IEEE
transactions on information theory 13(1): 21–27.

[Cho17] Chouldechova A. (2017) Fair prediction with disparate impact: A study of
bias in recidivism prediction instruments. Big data 5(2): 153–163.

[CK05] Chu W. and Keerthi S. S. (2005) New approaches to support vector ordinal
regression. In Proceedings of the 22nd international conference on Machine
learning, pp. 145–152.

[CK07] Chu W. and Keerthi S. S. (2007) Support vector ordinal regression. Neural
computation 19(3): 792–815.

[CL14] Chen C.-C. and Li S.-T. (2014) Credit rating with a monotonicity-constrained
support vector machine model. Expert Systems with Applications 41(16):
7235–7247.

[CMPT+17] Caelles S., Maninis K.-K., Pont-Tuset J., Leal-Taixé L., Cremers D., and
Van Gool L. (2017) One-shot video object segmentation. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 221–230.

[CYL+23] Chen Q., Yao H., Li S., Li X., Kang X., Lai W., and Kuang J. (2023) Fact-
condition statements and super relation extraction for geothermic knowledge
graphs construction. Geoscience Frontiers 14(5): 101412.

[DCLT18] Devlin J., ChangM.-W., Lee K., and Toutanova K. (2018) Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 .



Bibliography 225

[DCLT19] Devlin J., Chang M.-W., Lee K., and Toutanova K. (Junio 2019) BERT: Pre-
training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019Conference of theNorthAmericanChapter of theAssoci-
ation for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pp. 4171–4186. Association for Computational Lin-
guistics, Minneapolis, Minnesota.

[DF08] Duivesteijn W. and Feelders A. (2008) Nearest neighbour classification with
monotonicity constraints. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2008, Antwerp, Belgium,
September 15-19, 2008, Proceedings, Part I 19, pp. 301–316. Springer.

[DH+06] Duda R. O., Hart P. E., et al. (2006) Pattern classification. John Wiley & Sons.

[DKJ+07] Davis J. V., Kulis B., Jain P., Sra S., and Dhillon I. S. (2007) Information-
theoretic metric learning. In Proceedings of the 24th International Conference
on Machine learning, pp. 209–216. ACM.

[DRDSC+23] Díaz-Rodríguez N., Del Ser J., Coeckelbergh M., de Prado M. L., Herrera-
ViedmaE., andHerrera F. (2023) Connecting the dots in trustworthy artificial
intelligence: From ai principles, ethics, and key requirements to responsible
ai systems and regulation. Information Fusion page 101896.

[DS98] Draper N. R. and Smith H. (1998) Applied regression analysis, volumen 326.
John Wiley & Sons.

[Dwo06] Dwork C. (2006) Differential privacy. In International colloquium on au-
tomata, languages, and programming, pp. 1–12. Springer.

[EFS23] Ehyaei A.-R., Farnadi G., and Samadi S. (2023) Causal fair metric: Bridg-
ing causality, individual fairness, and adversarial robustness. arXiv preprint
arXiv:2310.19391 .

[FDA23] Firdous N., Din N. M. U., and Assad A. (2023) An imbalanced classification
approach for establishment of cause-effect relationship between heart-failure
and pulmonary embolism using deep reinforcement learning. Engineering
Applications of Artificial Intelligence 126: 107004.

[FGG+18] Fernández A., García S., Galar M., Prati R. C., Krawczyk B., and Herrera F.
(2018) Learning from imbalanced data sets, volumen 10. Springer.

[GAPDP+23] González-Almagro G., Peralta D., De Poorter E., Cano J.-R., and Gar-
cía S. (2023) Semi-supervised constrained clustering: An in-depth
overview, ranked taxonomy and future research directions. arXiv preprint
arXiv:2303.00522 .

[GBC17] Goodfellow I., Bengio Y., and Courville A. (2017) Deep learning. adaptive
computation and machine learning. Massachusetts, USA .



226 Bibliography

[GGKC22] Ghojogh B., Ghodsi A., Karray F., and Crowley M. (2022) Spectral, prob-
abilistic, and deep metric learning: Tutorial and survey. arXiv preprint
arXiv:2201.09267 .

[GGL+21] González S., García S., Li S.-T., JohnR., andHerrera F. (2021) Fuzzy k-nearest
neighbors with monotonicity constraints: Moving towards the robustness of
monotonic noise. Neurocomputing 439: 106–121.

[GHRS05] Goldberger J., Hinton G. E., Roweis S. T., and Salakhutdinov R. R. (2005)
Neighbourhood components analysis. InAdvances inNeural InformationPro-
cessing Systems, pp. 513–520.

[GHZ+19] Gao T., Han X., Zhu H., Liu Z., Li P., Sun M., and Zhou J. (Noviembre 2019)
FewRel 2.0: Towards more challenging few-shot relation classification. In
Proceedings of the 2019Conference onEmpiricalMethods inNatural Language
Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 6250–6255. Association for Computational
Linguistics, Hong Kong, China.

[GLH15] García S., Luengo J., and Herrera F. (2015)Data preprocessing in data mining.
Springer.

[GPOSM+16] Gutierrez P. A., Perez-Ortiz M., Sanchez-Monedero J., Fernandez-Navarro F.,
and Hervas-Martinez C. (2016) Ordinal regression methods: survey and ex-
perimental study. IEEE Transactions on Knowledge and Data Engineering
28(1): 127–146.

[HA15] Hoffer E. and Ailon N. (2015) Deep metric learning using triplet network. In
Similarity-BasedPatternRecognition: Third InternationalWorkshop, SIMBAD
2015, Copenhagen, Denmark, October 12-14, 2015. Proceedings 3, pp. 84–92.
Springer.

[Har68] Hart P. (1968) The condensed nearest neighbor rule (corresp.). IEEE transac-
tions on information theory 14(3): 515–516.

[HK06] Han J. and Kamber M. (2006) Data mining: Concepts and techniques, 2nd
editionmorgan kaufmann publishers. San Francisco, CA, USA .

[HLS22] Hogan W., Li J., and Shang J. (Diciembre 2022) Fine-grained contrastive
learning for relation extraction. In Proceedings of the 2022 Conference on Em-
pirical Methods in Natural Language Processing, pp. 1083–1095. Association
for Computational Linguistics, Abu Dhabi, United Arab Emirates.

[HLW+16] Han L., Luo S., Wang H., Pan L., Ma X., and Zhang T. (2016) An intelligi-
ble risk stratification model based on pairwise and size constrained kmeans.
IEEE journal of biomedical and health informatics 21(5): 1288–1296.



Bibliography 227

[HWL20] Halbersberg D., Wienreb M., and Lerner B. (2020) Joint maximization of ac-
curacy and information for learning the structure of a bayesian network clas-
sifier. Machine Learning 109: 1039–1099.

[HWM+20] Huai M., Wang D., Miao C., Xu J., and Zhang A. (2020) Pairwise learning
with differential privacy guarantees. In Proceedings of the AAAI Conference
on Artificial Intelligence, volumen 34, pp. 694–701.

[HZY+18] Han X., Zhu H., Yu P., Wang Z., Yao Y., Liu Z., and Sun M. (Octubre-
Noviembre 2018) FewRel: A large-scale supervised few-shot relation classi-
fication dataset with state-of-the-art evaluation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 4803–
4809. Association for Computational Linguistics, Brussels, Belgium.

[Jol02] Jolliffe I. (2002) Principal Component Analysis. Springer Series in Statistics.
Springer.

[KB19] Kaya M. and Bilge H. Ş. (2019) Deep metric learning: A survey. Symmetry
11(9): 1066.

[KLM96] Kaelbling L. P., Littman M. L., and Moore A. W. (1996) Reinforcement learn-
ing: A survey. Journal of artificial intelligence research 4: 237–285.

[KSVK23] Kennedy R. K., Salekshahrezaee Z., Villanustre F., and Khoshgoftaar T. M.
(2023) Iterative cleaning and learning of big highly-imbalanced fraud data
using unsupervised learning. Journal of Big Data 10(1): 106.

[KZS+15] Koch G., Zemel R., Salakhutdinov R., et al. (2015) Siamese neural networks
for one-shot image recognition. In ICML deep learning workshop, volumen 2.
Lille.

[LGGRG+20] Luengo J., García-Gil D., Ramírez-Gallego S., García S., and Herrera F. (2020)
Big data preprocessing. Cham: Springer .

[LKHS20] Le-Khac P. H., Healy G., and Smeaton A. F. (2020) Contrastive representation
learning: A framework and review. Ieee Access 8: 193907–193934.

[LL12] Lin H.-T. and Li L. (2012) Reduction from cost-sensitive ordinal ranking to
weighted binary classification. Neural Computation 24(5): 1329–1367.

[LLC+21] Liu Q., Liu F., Collier N., Korhonen A., and Vulić I. (Noviembre 2021) Mirror-
WiC: On eliciting word-in-context representations from pretrained language
models. In Proceedings of the 25th Conference on Computational Natural Lan-
guage Learning, pp. 562–574. Association for Computational Linguistics, On-
line.

[LLSD20] Li Y., Li X., Sun Q., and Dong Q. (2020) Sar image classification using cnn
embeddings andmetric learning. IEEEGeoscience andRemote Sensing Letters
19: 1–5.



228 Bibliography

[LLW02] LinY., Lee Y., andWahbaG. (2002) Support vectormachines for classification
in nonstandard situations. Machine learning 46: 191–202.

[LPC+23] Liu L., Pei Z., Chen P., Luo H., Gao Z., Feng K., and Gan Z. (2023) An effi-
cient gan-basedmulti-classification approach for financial time series volatil-
ity trend prediction. International Journal of Computational Intelligence Sys-
tems 16(1): 40.

[LSG+19] Lamy J.-B., Sekar B., Guezennec G., Bouaud J., and Séroussi B. (2019) Ex-
plainable artificial intelligence for breast cancer: A visual case-based reason-
ing approach. Artificial intelligence in medicine 94: 42–53.

[LYK+23] Lin Z., Yu S., Kuang Z., Pathak D., and Ramanan D. (2023) Multimodality
helps unimodality: Cross-modal few-shot learning with multimodal models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 19325–19337.

[LYMX23] Li X., Yang X., Ma Z., and Xue J.-H. (2023) Deep metric learning for few-shot
image classification: A review of recent developments. Pattern Recognition
page 109381.

[M+67] MacQueen J. et al. (1967) Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volumen 1, pp. 281–297.Oakland, CA,
USA.

[Mir12] Mirkin B. (2012) Clustering: a data recovery approach. CRC Press.

[MR05] Maimon O. and Rokach L. (2005) Introduction to knowledge discovery in
databases. In Data mining and knowledge discovery handbook, pp. 1–17.
Springer.

[MVPC13] Mensink T., Verbeek J., Perronnin F., and Csurka G. (2013) Distance-based
image classification: Generalizing to new classes at near-zero cost. IEEE
Transactions on Pattern Analysis andMachine Intelligence 35(11): 2624–2637.

[MZY+19] Mao C., Zhong Z., Yang J., Vondrick C., and Ray B. (2019) Metric learning for
adversarial robustness. Advances in neural information processing systems 32.

[NJM21] Nasar Z., Jaffry S. W., and Malik M. K. (2021) Named entity recognition and
relation extraction: State-of-the-art. ACM Computing Surveys (CSUR) 54(1):
1–39.

[NMDB17] Nguyen B., Morell C., and De Baets B. (2017) Supervised distance metric
learning throughmaximization of the jeffrey divergence. Pattern Recognition
64: 215–225.



Bibliography 229

[NMDB18] Nguyen B., Morell C., and De Baets B. (2018) Distance metric learning for
ordinal classification based on triplet constraints. Knowledge-Based Systems
142: 17–28.

[PF91] Piateski G. and Frawley W. (1991) Knowledge discovery in databases. MIT
press.

[PGH+20] Peng H., Gao T., Han X., Lin Y., Li P., Liu Z., Sun M., and Zhou J. (Noviem-
bre 2020) Learning from Context or Names? An Empirical Study on Neural
Relation Extraction. In Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 3661–3672. Association for
Computational Linguistics, Online.

[PHY21] Park H., Hosseini H., and Yun S. (2021) Federated learning with metric loss.
InWorkshop on Federated Learning for User Privacy and Data Confidentiality
in ICML21.

[Pri13] Price K. V. (2013) Differential evolution. In Handbook of optimization: From
classical to modern approach, pp. 187–214. Springer.

[PVG+11] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O.,
Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. (2011) Scikit-learn:
Machine learning in python. the Journal of machine Learning research 12:
2825–2830.

[QBL18] Qi H., Brown M., and Lowe D. G. (2018) Low-shot learning with imprinted
weights. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5822–5830.

[QGXT20] Qu M., Gao T., Xhonneux L.-P., and Tang J. (2020) Few-shot relation extrac-
tion via bayesian meta-learning on relation graphs. In International confer-
ence on machine learning, pp. 7867–7876. PMLR.

[QLT+21] Qin Y., Lin Y., Takanobu R., Liu Z., Li P., Ji H., Huang M., Sun M., and Zhou
J. (Agosto 2021) ERICA: Improving entity and relation understanding for
pre-trained language models via contrastive learning. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 3350–3363. Association for Computational Linguistics,
Online.

[RA23] Rethmeier N. and Augenstein I. (2023) A primer on contrastive pretraining
in language processing: Methods, lessons learned, and perspectives. ACM
Computing Surveys 55(10): 1–17.

[RL16] Ravi S. and Larochelle H. (2016) Optimization as a model for few-shot learn-
ing. In International conference on learning representations.



230 Bibliography

[SAM96] Sill J. and Abu-Mostafa Y. (1996) Monotonicity hints. Advances in neural
information processing systems 9.

[SBB+16] Santoro A., Bartunov S., Botvinick M., Wierstra D., and Lillicrap T. (2016)
Meta-learning with memory-augmented neural networks. In International
conference on machine learning, pp. 1842–1850. PMLR.

[SC22] Sousa D. and Couto F. M. (2022) Biomedical relation extraction with knowl-
edge graph-based recommendations. IEEE Journal of Biomedical and Health
Informatics 26(8): 4207–4217.

[SCYZ22] Su X., Cheng C., Yang K., and Zhou X. (2022) A knowledge-based data aug-
mentation framework for few-shot biomedical information extraction. In
China Health Information Processing Conference, pp. 29–40. Springer.

[SE18] Satorras V. G. and Estrach J. B. (2018) Few-shot learning with graph neural
networks. In International conference on learning representations.

[SGH21] Suárez J. L., García S., and Herrera F. (2021) A tutorial on distance met-
ric learning: Mathematical foundations, algorithms, experimental analysis,
prospects and challenges. Neurocomputing 425: 300–322.

[SLS+21] Summaira J., Li X., Shoib A. M., Li S., and Abdul J. (2021) Recent ad-
vances and trends in multimodal deep learning: a review. arXiv preprint
arXiv:2105.11087 .

[SLY+19] Shi Y., Li P., Yuan H., Miao J., and Niu L. (2019) Fast kernel extreme learning
machine for ordinal regression. Knowledge-Based Systems 177: 44–54.

[SSBD14] Shalev-Shwartz S. and Ben-David S. (2014) Understanding machine learning:
From theory to algorithms. Cambridge university press.

[SSZ17] Snell J., Swersky K., and Zemel R. (2017) Prototypical networks for few-shot
learning. Advances in neural information processing systems 30.

[SYZ+18] Sung F., Yang Y., Zhang L., Xiang T., Torr P. H., and Hospedales T. M. (2018)
Learning to compare: Relation network for few-shot learning. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1199–
1208.

[TKS11] Taylor M. E., Kulis B., and Sha F. (2011) Metric learning for reinforcement
learning agents. In The 10th International Conference on Autonomous Agents
and Multiagent Systems-Volume 2, pp. 777–784.

[TL07] Torresani L. and Lee K.-C. (2007) Large margin component analysis. In Ad-
vances in Neural Information Processing Systems, pp. 1385–1392.



Bibliography 231

[TLL22] Tu J., Liu H., and Li C. (2022) Ordinal regression for direction-related
anomaly detection. IEEE Transactions on Neural Networks and Learning Sys-
tems pp. 1–14.

[TMP+24] Triguero I., Molina D., Poyatos J., Del Ser J., and Herrera F. (2024) General
purpose artificial intelligence systems (gpais): Properties, definition, taxon-
omy, societal implications and responsible governance. Information Fusion
103: 102135.

[VBL+16] Vinyals O., Blundell C., Lillicrap T., Wierstra D., et al. (2016) Matching net-
works for one shot learning. Advances in neural information processing sys-
tems 29.

[VEH20] Van Engelen J. E. and Hoos H. H. (2020) A survey on semi-supervised learn-
ing. Machine Learning 109(2): 373–440.

[VV19] Van Veen T. (2019) Wikidata. Information technology and libraries 38(2): 72–
81.

[WKW12] Wang J., Kalousis A., andWoznica A. (2012) Parametric local metric learning
for nearest neighbor classification. Advances in Neural Information Process-
ing Systems 25.

[WS09] Weinberger K. Q. and Saul L. K. (2009) Distance metric learning for large
margin nearest neighbor classification. Journal ofMachine LearningResearch
10(Feb): 207–244.

[WT07] Weinberger K. Q. and Tesauro G. (2007)Metric learning for kernel regression.
In Artificial intelligence and statistics, pp. 612–619. PMLR.

[WYKN20] Wang Y., Yao Q., Kwok J. T., and Ni L. M. (2020) Generalizing from a few ex-
amples: A survey on few-shot learning. ACM computing surveys (csur) 53(3):
1–34.

[WZ07] Wang F. and Zhang C. (2007) Feature extraction by maximizing the average
neighborhood margin. In 2007 IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 1–8. IEEE.

[WZW+17] Wang J., Zhou F., Wen S., Liu X., and Lin Y. (2017) Deepmetric learning with
angular loss. In Proceedings of the IEEE international conference on computer
vision, pp. 2593–2601.

[WZZ+23] Wang Y., Zhang Y., Zhu J., Liao W., Yuan M., and Zhou W. (2023) Enhanc-
ing conversational recommender systems via multi-level knowledge model-
ing with semantic relations. Knowledge-Based Systems 282: 111129.

[XJRN03] Xing E. P., Jordan M. I., Russell S. J., and Ng A. Y. (2003) Distance metric
learning with application to clustering with side-information. In Advances
in neural information processing systems, pp. 521–528.



232 Bibliography

[XSP20] Xuan H., Stylianou A., and Pless R. (2020) Improved embeddings with easy
positive triplet mining. In Proceedings of the IEEE/CVFWinter Conference on
Applications of Computer Vision, pp. 2474–2482.

[YPB+14] Yi X., Paulet R., Bertino E., Yi X., Paulet R., and Bertino E. (2014) Homomor-
phic encryption. Springer.

[YT19] Yu B. and Tao D. (2019) Deep metric learning with tuplet margin loss. In
Proceedings of the IEEE/CVF international conference on computer vision, pp.
6490–6499.

[YTM+21] Yong C. W., Teo K., Murphy B. P., Hum Y. C., Tee Y. K., Xia K., and Lai K. W.
(2021) Knee osteoarthritis severity classificationwith ordinal regressionmod-
ule. Multimedia Tools and Applications pp. 1–13.

[YWH+23] Yuan Y., Wei J., Huang H., Jiao W., Wang J., and Chen H. (2023) Review of
resampling techniques for the treatment of imbalanced industrial data clas-
sification in equipment condition monitoring. Engineering Applications of
Artificial Intelligence 126: 106911.

[ZBL+23] Zha D., Bhat Z. P., Lai K.-H., Yang F., and Hu X. (2023) Data-centric ai: Per-
spectives and challenges. In Proceedings of the 2023 SIAM International Con-
ference on Data Mining (SDM), pp. 945–948. SIAM.

[ZFH23] Zhuang L., Fei H., and Hu P. (2023) Knowledge-enhanced event relation ex-
traction via event ontology prompt. Information Fusion 100: 101919.

[ZG02] Zhu X. and Ghahramani Z. (2002) Learning from labeled and unlabeled data
with label propagation. Technical report, Carnegie Mellon University.

[ZG22] Zhao Y. and Gai Z. (2022) Transformation and optimization of rural ecolog-
ical endowment industry chain based on constrained clustering algorithm.
Scientific Programming 2022.

[ZHX+22] Zhang B., Hu Y., Xu D., Li M., and Li M. (2022) Skg-learning: a deep learn-
ing model for sentiment knowledge graph construction in social networks.
Neural Computing and Applications 34(13): 11015–11034.

[ZLL+17] Zeng J., Liu Y., Leng B., Xiong Z., and Cheung Y.-m. (2017) Dimensionality
reduction in multiple ordinal regression. IEEE Transactions on Neural Net-
works and Learning Systems 29(9): 4088–4101.

[ZLZ+21] Zhang Z., Lan C., Zeng W., Chen Z., and Chang S.-F. (2021) Beyond triplet
loss: Meta prototypical n-tuple loss for person re-identification. IEEE Trans-
actions on Multimedia 24: 4158–4169.

[ZXB+21] Zhang C., Xie Y., Bai H., Yu B., LiW., and Gao Y. (2021) A survey on federated
learning. Knowledge-Based Systems 216: 106775.


