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Abstract

Sensor-based monitoring has proven effective in many settings for deter-
mining people’s well-being and protecting their safety, even in difficult times
like the COVID-19 pandemic. In many applications, radio wave-based sys-
tems are more versatile than those based on traditional sensors, thanks to
non-contact sensing while preserving privacy. Health monitoring and assisted
living are two good examples of how such systems are finding widespread usa-
ge in everyday applications. Good performance in such complex monitoring
and recognition tasks is often achieved via machine learning. In particular,
deep learning can aid with feature extraction, algorithm performance opti-
mization, and forecasting. Yet, to learn how to tackle problems effectively,
the generated models usually need access to a substantial amount of data.
Furthermore, data preparation may be time-consuming and costly, especially
when handled by specialists or when required in real-time systems. Few-shot
learning techniques overcome these issues by adapting models to self-learn
how to extract meaningful information from limited data. This is feasible by
leveraging the learning context and previously acquired knowledge.

This doctoral thesis is the result of research on the exploration of few-
shot learning techniques for radar-based applications in activity recognition
and health monitoring. The investigation was performed by constraining the
adaptation of radar-based solutions to limited data, ensuring the robustness
of context generalization. The primary goal has been to investigate the use
of limited data in very different non-contact applications, each with its own
constraints and requirements. Millimeter-wave radar technology and few-
shot learning have been used for hand gesture recognition, people counting,
and human respiratory signal estimation. Such use cases, ranging from the
millimetric displacements of vital signs to the distance of moving individuals,
require specific information preprocessing. The generalization learning stra-
tegy has been explored for context and user adaptation while also accounting
for preprocessing. Some of the algorithms were adapted to run on edge de-
vices, allowing for end-to-end performance estimation and adaptation.

The research has been carried out under a doctoral contract at the faci-
lities of Infineon Technologies AG, at its headquarters in Munich, Germany.
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Resumen

La monitorización mediante sensores ha demostrado su eficacia en mu-
chos entornos para determinar el estado de salud de las personas y proteger
su seguridad, incluso en circunstancias difíciles como la pandemia de COVID-
19. En muchas aplicaciones, gracias a la detección sin contacto preservando la
privacidad, los sistemas basados en ondas de radio son más versátiles que los
basados en sensores tradicionales. La vigilancia de la salud y la vida asistida
son dos buenos ejemplos de cómo que son estos sistemas se están generalizan-
do en las aplicaciones cotidianas. Un buen rendimiento en estas complejas
tareas de supervisión y reconocimiento se consigue a menudo mediante el
aprendizaje automático. En particular, el aprendizaje profundo puede ayu-
dar en la extracción de características, la optimización del rendimiento de
los algoritmos y la predicción. Sin embargo, para aprender a abordar los
problemas con eficacia, los modelos generados suelen necesitar acceso a una
cantidad considerable de datos. Además, la preparación de los datos puede
llevar mucho tiempo y ser onerosa, especialmente cuando la manejan espe-
cialistas o cuando se requiere en sistemas en tiempo real. Las técnicas de
few-shot learning resuelven estos problemas adaptando los modelos para que
aprendan por sí mismos a extraer información significativa a partir de da-
tos limitados. Esto es posible aprovechando el contexto de aprendizaje y los
conocimientos adquiridos previamente.

Esta tesis doctoral es el resultado de una investigación sobre la explora-
ción de técnicas de few-shot learning para aplicaciones basadas en radares
en el reconocimiento de actividades y la monitorización de la salud. La in-
vestigación se ha realizado restringiendo la adaptación de soluciones basadas
en radar a unos pocos datos, asegurando la robustez de la generalización del
contexto. El objetivo principal ha sido investigar los usos de datos limitados
en aplicaciones sin contacto muy diferentes, cada una con sus propios contex-
tos y requisitos. La tecnología de radar de ondas milimétricas y el few-shot
learning se han utilizado para el reconocimiento de gestos de la mano, el
recuento de personas y la estimación de señales respiratorias humanas. Es-
tas aplicaciones requieren un preprocesamiento específico de la información,
que va desde los desplazamientos milimétricos de las señales vitales hasta
la distancia debida a individuos en movimiento. Se ha explorado la estra-
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xii Chapter 0. Resumen

tegia de aprendizaje por generalización para la adaptación al contexto y al
usuario, teniendo en cuenta también el preprocesamiento. Algunos de los al-
goritmos se adaptaron para ejecutarse en dispositivos periféricos (edge), lo
que permite la estimación y adaptación de las prestaciones end to end.

La investigación se ha realizado bajo un contrato doctoral en las ins-
talaciones de Infineon Technologies AG, en su sede principal de Múnich,
Alemania.
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Chapter 1

Introduction

You are the music while the music lasts

Thomas Stearns Eliot

Since the time of the earliest civilizations, human beings have always
sought to use tools, energy sources, and materials for the necessities of life.
As time progressed, innovations kept coming out faster and faster, which led
to a sudden rise in the quality and expectancy of life. Instruments to measure
wind speed or the time of day were already in use more than two thousand
years ago. Physical parameter sensing enabled the prediction of events and
potential hazards. In more recent times, such devices have taken on the name
”sensing“, enabling the detection of events or changes in environments.

Nowadays, sensors are used in the most varied applications, proving es-
sential in the monitoring of industrial processes [1, 2], human activities, and
vital functions [3, 4, 5]. Sensor-based systems can thus have very distinct
goals with respect to application context.

Human Activity Recognition (HAR) is the process of classifying peo-
ple’s actions from measurements gathered by sensors [6, 7]. With increasing
globalization and urbanization, HAR solutions can greatly benefit society
in different ways. Data collected on the crowd can be used to estimate the
number and monitor the actions of people, preventing disease contagion or
hazards [8]. HAR-based systems are typically used to recognize common hu-
man actions. Such actions can set off alarms in critical contexts, such as
elderly care [9]. Further, they can be used to activate and regulate domotic
systems like smart homes [10]. Specific actions like hand gestures can also
be leveraged in the context of Human Computer Interaction (HCI) [11, 12].

An important application field related to HAR is health monitoring. The
estimation of an individual’s vital functions can in fact facilitate the health
status screening. Both short- and long-term monitoring can be effectively
performed with various types of sensors [13, 14].

3
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For all of the aforementioned applications, very robust solutions can
be achieved by employing data from individual or combinations of sen-
sors. Usually, sensor parameter combination or core information extraction
is performed by computer vision or artificial intelligence (AI) techniques
[15, 16, 17].

Depending on the context, however, some types of sensors may not be
practically or ethically usable. Cameras, for example, could generate many
privacy concerns for activity monitoring at home [18]. Wearable sensors can
continuously collect information, but they can also lead to the recognition
of activities not voluntarily tracked by the individual [19].

Among all the sensing technologies, radio-based sensors preserve more
privacy thanks to their low resolution and set fewer user constraints thanks
to their non-contact approach. Yet, the data obtained from such sensors are
inherently difficult to interpret, requiring specific signal processing and pre-
diction models. Especially for radio-based sensors, the nature of the features
extracted limits the use of computer vision techniques. For this reason, AI
and specifically Deep Learning (DL) are used in many applications to enable
system monitoring and predict events [20, 21, 22]. Yet, many of the proposed
solutions require training on a large amount of data to achieve robust per-
formance. To counter this issue, a specific branch of Machine Learning (ML)
called few-shot learning has become relevant in recent years [23]. Few-shot
learning embraces several other ML sub-fields, including meta learning and
active learning [24, 25]. Meta learning, often known as ”learning to learn“,
refers to a set of algorithms whose primary objective is to learn how to ap-
proach new problems given prior experience, or meta-data [26, 27]. Active
learning, on the other hand, aims to optimize model performance with as
little labeled data as possible [28, 29]. The joint use of radar technology and
meta learning branches can prove successful for HAR and Health Monitoring
by ensuring privacy, no contact and rapid system adaptability, among other
advantages.

1.1. Motivation

This thesis research is driven by a dual motivation. The first motivation
is to investigate the manifold benefits of radar technology and how they can
be leveraged to enhance activity recognition and vital sign sensing applica-
tions. The second reason is to explore the potential of few-shot learning algo-
rithms in the chosen use cases for achieving robust performance and context
generalization with limited data. By pursuing these two motivations, this
research aims to enable the development of more accurate, reliable, and effi-
cient radar-based systems, leading to new and innovative applications across
diverse domains. The following two subsections analyze the two motivations
individually.
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1.1.1. Harnessing the Benefits of Radar Technology for Ac-
tivity Recognition and Health Monitoring

Many of contemporary solutions for activity recognition and vital sign
sensing rely on technologies that require direct contact with the individual
or lack of privacy [4, 30]. Other systems robustly tackle such issues but may
have other disadvantages, such as limited data interpretability and weather
dependence [31, 32, 33]. Sensors most commonly used for activity recognition
and vital sign sensing include:

Camera Sensor: cameras have been used for decades for a wide variety
of non-contact monitoring and tracking applications. Red, green, and
blue (RGB) cameras collect data in the form of multi-color pixel maps
that can also be used to differentiate important visual features. Time-
of-flight (ToF) cameras allow the processing of depth information by
generating a 3-D representation of the collected data [34]. Further, the
analysis of image sequences enables the estimation of multiple vital
parameters. For example, depth information can be used to estimate
an individual’s breath rate. Color images can monitor eye movement
and detect drowsiness, preventing fatalities in attention-demanding si-
tuations such as driving a vehicle [35]. Despite these advantages, the
camera is ethically or practically incompatible with multiple use cases.
Continuous monitoring of an individual can lead to serious privacy is-
sues for recognition and tracking. This is especially critical if the data
have to be saved on a server or used to improve an algorithm. Moreover,
camera sensors are highly sensitive to atmospheric phenomena such as
fog and low light. To counter this, in outdoor applications such as car
parking, it is necessary to employ camera sensors with high spatial
resolution, sensor fusion, and high system costs [36].

CO2 Sensor: this type of sensor is used to monitor processes that consu-
me or produce carbon dioxide. The CO2 is produced in the breathing
process that characterizes living beings. As a result, carbon dioxide
estimation can be used in non-contact monitoring solutions such as
people counting in an environment [37, 38]. CO2 sensors can also be
placed in contact with an individual or applied transcutaneously. In
that case, they can be used for measurements of metabolism or the
health of the pulmonary system. The CO2 sensor thus represents an
excellent privacy-friendly and non-contact solution to tackle the esti-
mation of some vital parameters and activities. On the other hand,
however, estimation of many vital parameters is only possible through
direct contact with individuals. Furthermore, counting people can only
be done in closed indoor environments where CO2 values are unaffected
by other factors like ventilation.
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Infrared Sensor: this sensor perceives electromagnetic radiation with
wavelengths longer than visible light. These frequencies, which are not
visible to the human eye, convey the heat generated by objects and
living things [39]. Thermographic cameras collect infrared radiation
with an array of detectors, generating thermal images. Through ther-
mal imaging, it is therefore possible, as opposed to using RGB cameras,
to monitor people in low light or darkness. Low resolution thermal sen-
sing further obviates major privacy concerns. [40]. Thermal imaging has
numerous medical diagnostic applications, including monitoring body
temperature and detecting joint inflammation [41, 42]. Despite all the
advantages, infrared sensing is sensitive to all heat sources. Especially
at low resolution, radiators, screens, or computers can make detecting
people complex. In addition, thermographic cameras are generally de-
pendent on thermal contrast, which makes the differentiation between
objects and environments with similar temperatures difficult.

LiDAR Sensor: this sensor makes it possible to determine the range of
an object in relation to a series of transmitted laser pulses. The range is
normally calculated as a function of the time it takes for the reflected
light to return to the receiver. A 3-D scan is obtained by collecting
range information in function of the direction and angle of transmitted
pulses [43]. LiDARs do very well in monitoring applications, allowing
tracking of targets even hundreds of meters away [44, 45]. In recent
times, LiDARs have found applications for vital sign detection, such
as in respiratory monitoring [46]. Despite its numerous advantages and
being a non-contact technology, the LiDAR presents some remarkable
disadvantages. Sensors capable of high resolution have a high cost per
unit compared to camera or radar systems. High resolution in LiDARs
is indispensable in applications such as vital sign sensing. Raindrops
or other atmospheric phenomena can deflect transmitted laser pulses
and make LiDARs unsuitable in several outdoor monitoring contexts.

Radar Sensor: this sensor enables determining the range, radial velo-
city, and angle of arrival of targets in the field of view (FoV). The detec-
tion is achieved via radio waves emitted from a transmitting antenna.
The information reflected from the targets in the FoV is combined with
a transmitted signal reference. The resulting frequency-processed and
analyzed information can be used to generate target information maps.
Ranging, velocity (Doppler), and angle maps can be obtained and sca-
led to the resolution and maximum values that can be utilized [47].
A specific type of radar, called frequency modulated continuous wave
(FMCW), further enables static target detection in the FoV by usually
transmitting linearly frequency-modulated signals and receiving their
reflections. This strategy enables the sensing of targets even in the ab-
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sence of the Doppler effect (and therefore static) [48]. Recently, FMCW
radars have found applications in a wide variety of industrial and even
medical fields [49, 50]. This is thanks to the various advantages of the
technology. Radars, in fact, enable non-contact sensing and are privacy-
friendly because they do not allow to reconstruct distinguishing featu-
res of subjects. Furthermore, such technology is scalable, particularly
for applications in the tens of gigahertz range (mm-wave), low cost
and low power when compared to other radio frequency technologies
like WiFi. Unlike LiDAR, radar systems are in general unaffected by
weather phenomena, despite being frequently limited to applications
in the tens of meters range. In fact, emitted radar signals, as a result
of their high frequency, are rarely reflected by the widely spaced rain-
drops. Yet, raw radar data are very often difficult to interpret with
classical computer vision tools. As a result, many radar solutions use
deep learning to extract relevant features [51]. Moreover, because of
their many advantages and versatility, radars are used extensively in
activity recognition, especially in short-range applications [52]. Some
examples of the research focus are hand gesture recognition [53] and
people tracking [54]. Thanks to the micro Doppler effect [55], some
radar technologies can also be used to analyze periodic displacements
in the millimeter range. In this way, the breath and heart signals of an
individual positioned in front of the board can be estimated [56].

Ultrasonic Sensor: this sensor estimates the distance of a target by
measuring the time needed for a transmitted signal to get reflected and
reach the receiver (ToF). Compared with radar, the ultrasonic trans-
ducer senses ultrasonic sound waves through piezoelectric crystals or
capacitive micro-machined ultrasonic transducers. Thanks to the non-
contact/non-invasive uses of this technology, ultrasound has already
been used for a long time in a wide variety of applications. This techno-
logy is particularly expendable for very short-range applications up to
1 m. In fact, it is used for biometric [57] or gesture recognition in HAR
[58, 59]. Furthermore, ultrasound is widely used in medicine for diag-
nostic purposes [60]. In sonography the distinct absorption coefficients
of different tissues are leveraged to create a structural image of internal
organs. High-resolution ultrasonic sensors and multi-receiver systems
are also employed in the field of vital sign sensing [61, 62]. Despite its
many advantages and applications, ultrasound also has considerable
disadvantages. Ultrasound waves require a propagation medium like
air or tissues. The speed of sound waves in air is highly dependent on
temperature and humidity, which can lead to significant measurement
errors as the data collection context changes. Additionally, the high
attenuation of ultrasound in air prevents its convenience at ranges of
more than a few meters.
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Wearable Sensors: systems that can be worn are becoming widely po-
pular for a wide range of uses. Wearable as belts, bracelets, or watches,
many solutions allow for continuous monitoring of an individual’s mo-
vements and physiological parameters [63, 64]. Thanks to their high
performance and non-invasiveness, they are often used as standard re-
ference sensors for the development of various non-contact systems.
Many activity monitoring solutions use information fusion between
accelerometers, gyroscopes, and magnetometers. A fusion of the da-
ta collected by these sensors allows improved and instantaneous es-
timation of acceleration, rotation, and orientation [65, 66]. For vital
sign sensing tasks, the sensors vary greatly with respect to the specific
target parameter [67]. The electrocardiogram (ECG) sensor measures
the electrical activity of the heart by placing electrodes on the skin.
The photoplethysmography (PPG) sensor measures changes in blood
volume and can be used to monitor heart rate, blood pressure, and
oxygen saturation. Breathing belts measure the respiratory signal in
newtons, and wearable temperature sensors can be used to monitor
fever or changes in body temperature due to exercise or stress. Wea-
rable sensors have several advantages, including the ability to track
multiple parameters simultaneously and enable continuous monitoring
in a wide variety of contexts remotely. On the other hand, continuous
monitoring of sensitive information can lead to privacy problems. In
addition, wearing the sensors can be uncomfortable in the long run for
the user.

WiFi sensing: using the WiFi signals that a router is constantly trans-
mitting, it is possible to detect the presence, activity, and even vital
signs of people who are present within the coverage area. WiFi sen-
sing is based on analyzing the signals that are partially reflected off
of people when they move or breathe. The changes in signal amplitu-
de, frequency, and phase in the reflected signals are often processed
using machine learning algorithms to extract features that correspond
to specific activities or vital signs [68, 69]. WiFi technology has the
great advantage of enabling these measurements in a completely non-
contact mode. In addition, it does not need image capture and is widely
available in indoor environments. This brings the great advantages of
privacy preservation and ease of availability and scalability. On the
other hand, WiFi consumes much more power (W) than other radio
frequency techniques, such as radar (mW). This is because WiFi sen-
sing requires continuous signal transmission and reception, which is not
required for radar. For radars, in fact, signals are typically transmitted
in short bursts, and the receiver only needs to listen for return signals,
resulting in lower power consumption.
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Specific tables that outline the strengths and weaknesses of sensing fea-
tures and target applications can be generated in relation to all of the con-
sidered sensing technologies.

Table 1.1 lists the characteristics of the analyzed sensors for various tech-
nologies, features, and application constraints. Table 1.2 presents specific ap-
plications where one of the sensors under consideration can be fully or par-
tially employed. In both tables, the checkmark (✓) represents an advantage
for a particular technology in a particular category, a cross (×) represents a
disadvantage, and a double tilde (≈) represents a case-dependent feature or
only partially addressable applications.

In Table 1.1, it can be seen that radar does not have a major disadvan-
tage in any of the categories under consideration. The price is much lower
than that of a camera, LiDAR, or many wearable systems. The same is ap-
plicable to compliance with privacy, scalability, and non-contact use. Radar
requires more power than ultrasonic and CO2 sensors on average. Such sen-
sors, however, are highly constrained by context. In fact, radar turns out
to be usable both indoors and outdoors and has little dependence on at-
mospheric or environmental phenomena. From the application point of view
in Table 1.2, radar sensing, with the proper configurations and application
constraints, turns out to be versatile in a wide range of use cases. Wearable
sensors are highly expendable in many use cases, but they are constrained
by wear requirements and, in some cases, cost. WiFi sensing or ultrasonic
sensors have similar versatility to radar but show numerous disadvantages
when compared with it (see Table 1.1).

Based on technological features and application constraints, radar sensing
proves to be an excellent and versatile choice for many use cases. Thus, radars
can be used to widely explore adaptability needs in activity recognition and
vital sign detection cases.

1.1.2. Leverage limited radar information via Few-shot Lear-
ning

Despite its versatility in a variety of applications, radar sensing has inhe-
rent complexity due to its data structure. In fact, raw radar data often needs
several steps of application-dependent preprocessing to extract useful featu-
res. In addition, the presence of ambient noise and the infeasibility of fully
reconstructing the shape of targets limit the use of classical computer vision
techniques.

For the listed reasons, DL techniques are normally used to extract use-
ful features from radar data [70, 52]. In cutting-edge solutions, DL is used
on partially preprocessed data and, in some cases, even on raw data [71].
Ordinarily, though, a large amount of training data is necessary to achieve
adequate performance in a given application. Further, when the classical DL
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learning framework is adopted, it is hard to robustly adapt a model in new
contexts without the collection of a large amount of new data. This approach
is especially unsuitable in use cases where rapid and continuous adaptation
of contexts or users is required.

Table 1.3 presents the main setup parameters and achieved performance
of some state-of-the-art radar-based solutions. All methods taken as exam-
ples need a large number of users and training examples to achieve optimal
performance in a given context. In [72], a total of 5,019 hours of recor-
dings have been utilized for training and validating the model to achieve a
robust 99 % accuracy rate on hand gesture recognition. Despite the various
DL topologies used, which very often leverage temporal information, context
adaptation is critical and leads to a significant performance drop [73, 74].

Meta and active learning techniques, leveraging prior information, can
enable context for user adaptation with no or only a small drop in perfor-
mance. With few-shot learning and the meta learning episodic approach, a
model can learn to generalize for a set of tasks instead of specializing in just
one. This method also yields, in many applications, robust generalizations
to unseen contexts [26, 27]. Active learning can be used to improve model
performance if new labeled data is available. One approach is to use only
examples with the highest classification uncertainty, and thus potentially
the most new information content [28, 29].

In the radar application frame, few-shot learning can enable models to
self-learn how to extract features from newly performed hand gestures. A
meta learning approach can be used to train a breath rate estimation model
on a new user or to count the number of people in a new environment. If the
radar is deployed to a new location in an environment, active learning can
be used over time on newly available data to boost performance.

Few-shot learning is thus a useful tool to counteract the need for large
amounts of data and complexity in context generalization of radar applica-
tions.

Despite the advantages of few-shot learning, a system exposed to conti-
nuous and rapid changes may require real-time adaptations to new contexts.
Consequently, it is also important to assess what the potential limitations of
adapting the few-shot learning approach might be in the various use cases.
For a given system, such analysis is done in terms of average adaptation time
and prediction time on new samples. Moreover, many state-of-the-art solu-
tions with radar-enabled machine learning can run even on processors with
limited performance, i.e., they can be Edge deployed [75, 53]. This topic is
still little explored in the context of meta learning and active learning algo-
rithms for radar applications. One of the main challenges is, in fact, adapting
the model to the Edge without losing generality, thus ensuring robust per-
formance in new contexts.
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1.2. Objectives

The objectives of this doctoral thesis are related to exploring the use of
few-shot learning for radar applications, aiming at context and user genera-
lization. Contributions to the state-of-the-art include the study of generali-
zation methods for radar-based use cases, the preprocessing of radar data,
the algorithmic optimization of active and meta learning methods, and the
study of deployment and inference estimation of developed solutions. These
contributions can be summarized as follows:

1. Context generalization for radar-based applications research

Research about potential context generalization needs in radar-
based use cases.

Analyze specific datasets and elaborate tasks generation strategies
for the episodic learning approach.

2. Radar data processing research

Research on radar data preprocessing strategies for efficient fea-
ture extraction.

Design of optimized deep learning topologies for radar data and
few-shot learning.

3. Meta and active learning algorithmic optimization

Research and optimize current meta learning algorithms for radar-
based applications.

Define new meta learning algorithms and strategies aiming at
radar-based context generalization.

Investigate a common evaluation framework to assess different
meta learning strategies and experiment performance.

Explore and define active learning strategies for task fine-tuning.

4. Inference and edge implementation research

Analyze inference and adaptation trade-off of the generalization
models.

Explore potential edge implementations of radar-based applica-
tions, leveraging few-shot learning
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1.3. Outline

The presented document constitutes a thesis by way of a compendium
of publications. Therefore, the most significant findings from the doctoral
program research serve as the foundation of the thesis.

The thesis consists of two main parts:

Ph.D. Dissertation: this part describes the objectives, methodology
and achievements of the carried out research. The section 2 presents
the adopted methodology according to the objectives outlined in the
section 1.2. The section 3 summarizes the main achievements with
respect to the state-of-the-art. The section 4 presents the conclusions
of the conducted research and lists some potential future trends.

Publications: this part gathers the journal articles pertinent to the
thesis dissertation research. These publications are devoted to the afo-
rementioned research aims.

The publications part consists of four publications. Respectively, three
indexed articles in scientific journals and one conference paper:

Gianfranco Mauro, Mateusz Chmurski, Muhammad Arsalan, Mariusz
Zubert, and Vadim Issakov. ”One-shot meta learning for radar-based
gesture sequences recognition.“ In Artificial Neural Networks and Ma-
chine Learning–ICANN 2021: 30th International Conference on Ar-
tificial Neural Networks, Bratislava, Slovakia, September 14–17, 2021,
Proceedings, Part II 30, pp. 500-511. Springer International Publishing,
2021.

Gianfranco Mauro, Mateusz Chmurski, Lorenzo Servadei, Manuel Pe-
galajar Cuellar, and Diego P. Morales-Santos. ”Few-shot user-definable
radar-based hand gesture recognition at the edge.“ IEEE Access 10:
29741-29759, 2022.

Gianfranco Mauro, Maria De Carlos Diez, Julius Ott, Lorenzo Serva-
dei, Manuel P. Cuellar, and Diego P. Morales-Santos. ”Few-Shot User-
Adaptable Radar-Based Breath Signal Sensing.“ Sensors 23, no. 2: 804,
2023.

Gianfranco Mauro, Ignacio Martinez-Rodriguez, Julius Ott, Lorenzo
Servadei, Robert Wille, Manuel P. Cuellar, and Diego P. Morales-
Santos. ”Context-Adaptable Radar-Based People Counting via Few-
Shot Learning.“ Applied Intelligence, 1-29, 2023.





Chapter 2

Methodology

All truths are easy to understand once
they are discovered; the point is to

discover them.

Galileo Galilei

This section presents the methodology used to achieve the objectives
presented in Section 1.3. Specific methodologies for each of the defined sets
of objectives are presented in the next sections.

2.1. Research on radar-based applications and con-
text generalization

The advantages of radar technology are described as one of the two main
motivations behind this doctoral research in Section 1.1.1. Radars are versa-
tile in several use cases thanks to their properties. Among the many advan-
tages, this technology enables non-contact tracking of targets while ensuring
privacy compliance, scalability, and very low influence from environmental
variables. The first step of research in this area for the doctoral program
has been to focus on the choice of a specific radar technology and modula-
tion. This has been necessary to define the set of radar-based use cases to
be considered for the overall research. In fact, distinct types of radars may
be particularly effective in automotive or industrial applications but not em-
ployable in other use cases, such as vital parameter estimation. The choice
of using millimeter wave, frequency modulated continuous wave (mm-wave
FMCW), was made after consulting numerous surveys on the topic. These
surveys cover both the technology, such as [81, 82] and the potential appli-
cations, such as [47, 20, 51]. The employed radar board has been the 60 GHz
mm-wave Infineon XENSIV™ DEMO BGT60TR13C.

17
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The use cases to be taken under examination have been chosen for a va-
riety of reasons. Specifically, the range of applications, the characteristics of
the information to be processed, and the complexity of adapting cutting-edge
solutions to new contexts. Regarding the application range, it has been cho-
sen to explore use cases with different distance magnitudes, specifically mm,
cm, and m, so as to fully exploit the properties of the mm-wave FMCW radar.
The signal amplitude, frequency, and phase have been the main information
considered from the gathered radar information. This allowed for broader
research on the need and type of context in which a developed solution may
have to generalize. For both of these reasons, the choice of applications has
been made by analyzing surveys on the potential use cases of the mm-wave
FMCW radar technology [47, 51]. For different use cases, the context or
scenario in which the generalization of the solution may be needed can con-
siderably vary. Some adaptation needs may, for example, involve a new user
with related characteristics, a new environment, new actions, or new functio-
nal parameters of the device. The study of the limitations of state-of-the-art
solutions for different use cases has been used to understand where context
generalization is often crucial and not easily achieved. In this case, specific
surveys related to application branches of radar technology have been analy-
zed [53, 83, 84, 85] as well as specific solutions that clearly point out the
limitations of context generalization [75, 74, 86].

For all the reasons mentioned, the doctoral program research had the
main focus on the following radar-based use cases (Figure 2.1):

Hand gesture recognition (cm)

Breath signal sensing (mm–cm)

In-door people counting (m)

The data collection approach for the various use cases, taking into account
contextual variation, is presented as part of the Achievements in Section 3.1.
The results obtained on the various context generalizations are collected in
all the publications attached to the thesis [87, 88, 89, 90].

2.2. Research on radar data processing and optimi-
zed deep learning topologies

In this research, emphasis has also been given to radar data processing
with respect to the various applications, which are discussed in Section 2.1.
The first objective in this regard has been to investigate what data processing
techniques are used for radar across use cases. This has been carried out
by consulting surveys related to radar data processing for the various use
cases, such as [20, 85, 83]. The usual preprocessing approach is to apply
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Figure 2.1: Use cases that were the focus of the research. On top in the image
is the Infineon XENSIV™ DEMO BGT60TR13C, used as the mm-wave 60
GHz radar board for all applications.

filtering and transformation techniques to single samples or sequences of
data to extract useful information and patterns. The main characterizations
evaluated for single samples have been range-Doppler maps and range-angle
maps. For sequences of data, representations that yield a large reduction in
data dimensionality without important loss of information have mainly been
evaluated. Specifically, the range, velocity, and angle over time, as well as
the unwrapped phase signal over time spans.

In many cutting-edge approaches, the extraction of features often invol-
ves the use of ML. As mentioned in the introduction, Section 1, radar data
are inherently complex to interpret. Compared to ordinary images obtai-
ned through a camera, for example, radar data cannot be directly processed
with computer vision techniques to locate targets. This is mainly due to
the resolution of the sensor and the nature of the sensor itself, which is
normally developed for target tracking rather than segmentation applica-
tions. With feature extraction architectures such as Convolutional Neural
Networks (CNNs), ML can be leveraged for both data handling and task sol-
ving. Other architectures, such as autoencoders, are efficiently pretrained on
a set of available data and then used as the backbone of models to reduce the
dimensionality of features. Few works have also associated radio-frequency
data processing with the episodic learning approach typical of meta learning
and few-shot learning [91, 92, 93]. This is of particular importance for this
doctoral research since the use of few-shot learning to leverage limited con-
text information represents one of its two main motivations (Section 1.1.2).
In general, representations with low dimensionality or no time dependence
are chosen for task resolution. This is a common approach to simplifying the
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computation needs and the task of feature extraction for the chosen models.
For all papers that are part of this cumulative doctoral thesis [87, 88, 89, 90],
it was chosen to use non-recurrent data handling techniques. Hence, it has
been chosen to simplify the preprocessing of the temporal component of the
data by mapping the time information into single channel representations.

The metrics used for assessing the preprocessing techniques are the num-
ber of model parameters and the task performance achieved with varying
feature sizes.

2.3. Research on meta learning algorithms

As outlined in the introduction Section 1, meta learning represents a
relatively new but broad branch of ML aimed at task generalization via so-
me prior collected experience. Given the variety of types of meta learning
algorithms, a consultation of the main available surveys on meta learning
[26, 27] has been conducted. The choice of the meta learning algorithms
to be further investigated has been conditioned by the chosen radar-based
use cases as defined in Section 2.1. For each of the specific applications, the
state-of-the-art has been researched, focusing on major work oriented toward
context generalization, such as [92, 74]. The main branch of meta learning
chosen for research has been optimization-based meta learning [94, 95]. In
this class of algorithms, information from one context or task is shared with
another by using gradient descent or averaging the weights of neural net-
works. The main advantage of these approaches is their model-agnosticism.
This property makes them suitable for generalization purposes, regardless of
the architecture of the neural networks. This valuable attribute uncouples
the data handling and processing needs dictated by radar-based applications
from the chosen training algorithm. Thanks to the model-agnosticism, the
research focus has been broadened to the optimization of neural network
topology for feature extraction and Edge deployment (Sections 2.2 and 2.5).
Optimization-based algorithms have been investigated, adapted, and opti-
mized in three of the four papers that are part of the compendium of this
thesis. Respectively, as classification for solving the hand gesture recognition
tasks in One-shot meta learning for radar-based gesture sequences recognition
[87] and Few-shot user-definable radar-based hand gesture recognition at the
edge [88] and as regression for the breath signal sensing task in Few-Shot
User-Adaptable Radar-Based Breath Signal Sensing [89].

Another class of meta learning algorithms chosen for investigation are
relation-based [96, 92]. These approaches enable powerful context genera-
lization by learning to classify combinations of instances rather than in-
dividual samples. This feature, though, is inherent to the model topology,
which extracts features from test images by comparing them with repre-
sentative samples from the training classes. The relation-based algorithms
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have been mainly investigated, adapted, and optimized for the people coun-
ting task in the paper Context-Adaptable Radar-Based People Counting via
Few-Shot Learning [90]. This paper also investigates the potential fusion of
optimization-based and relation-based techniques by trying to leverage the
advantages of both. The results in this regard are described in Section 3.5
and detailed in the paper. The differences between optimization-based and
relation-based meta learning, are shown graphically in Figure 2.2.

The approaches presented in [90] have been further evaluated on Omni-
glot [97]. Omniglot is a public dataset typically used for assessing the per-
formance of few-shot learning experiments. This dataset contains a total of
1,623 handwritten characters from 50 different alphabets around the world.
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Figure 2.2: The optimization-based algorithms (left), propagate the informa-
tion obtained on a task to the base model via weighted parameter summation
or gradient method. The relation-based algorithms (right), try to learn the
relationship between data rather than its class. In this case, a particular ML
model architecture is required.

Many of the cutting-edge meta learning solutions employ their own eva-
luation method for contexts and class generalization [94, 95, 96]. Unfortu-
nately, this does not allow for an objective evaluation of the advantages of
one approach over others, especially in various model classes. Regardless of
the algorithm, this doctoral research also had the main goal of developing a
common framework for evaluating models developed with various algorithms.
The main goal has been to ease the comparison of various algorithms by ge-
nerating numerical and graphical evaluations in the same format. The results
of this research are outlined in Section 3.6 and detailed in all publications
that are part of the compendium [87, 88, 89, 90]. The evaluation framework
permits the comparison of various algorithms not only in terms of episodic
generalization performance but also in terms of the trade-off between single-
sample inference time and training time to adapt to a new task (Section 3.8).
Most of the meta learning experiments have been performed on TensorFlow
with Python as the programming language. The general metrics for evalua-
ting the solutions were the performance (accuracy and loss) of the models
with different algorithms, time to adapt to a new task, and single-sample
inference time.
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2.4. Exploration of active learning strategies for epi-
sodic learning

Active learning is also a relevant branch of ML that, as introduced in
Section 1, aims to optimize the model’s performance with as few labeled
instances as possible. Like meta learning, active learning can be leveraged to
generalize to a new context by filtering out useful information from a pool of
new available data [98]. For the same reason, active learning can be further
used for fine-tuning the performance on a task of a ML model [29]. In this
doctoral research, the use of active learning has been tied to the use of meta
learning in radar-based use cases. Specifically, try to understand whether
prior experience learned through episodic meta learning can be beneficial for
active learning fine-tuning. Thus, given prior information on other similar
tasks, the goal has been to understand whether, for adaptation to a new
context, active learning can better filter out relevant data than starting from
a random initialization of parameters. The idea is that, if a new task is
generated from the same domain used for meta learning, the uncertainty
estimation can leverage the whole domain knowledge acquired by a chosen
model during the episodic training.

For this research objective, the achieved results are detailed in the publi-
cation Context-Adaptable Radar-Based People Counting via Few-Shot Lear-
ning [90], which is part of the compendium of papers. Major achievements
are also discussed in Section 3.7.

The main evaluation metric for active learning has been the performan-
ce of the model under varying formulations of prediction uncertainty and
types of initialization of neural network parameters (random or after meta
learning).

2.5. Exploration of meta learning implementations
at the Edge

Meta learning, as mentioned in Section 2.3, represents a powerful tool
for context generalization when new data are available. This approach might
prove useful to counter typical problems in deploying ML solutions in in-
dustrial environments, such as data drift [99]. Nevertheless, the deployment
and adaptation of meta learning solutions at the Edge can be complex and
sometimes prohibitively expensive due to computation requirements in cus-
tom neural network topologies. In other cases, however, the agnosticism of
meta learning training approaches, such as the optimization-based methods
outlined in Section 2.3, can be very advantageous in enabling deployment at
the Edge. Research on the main neural Edge devices available on the market
has been done to choose which one to employ. As this is an exploration, to
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test the feasibility of the deployment of meta learning as a proof-of-concept,
it has been chosen to test the deployment on the Intel® Neural Compute
Stick 2. This neural accelerator, compared to many other devices, allows the
deployment of many ML operations without strong limitations on maximum
computation and Floating Point Operations (FLOPS). The main results ob-
tained are presented in the paper Few-shot user-definable radar-based hand
gesture recognition at the edge [88], which is part of the compendium of pu-
blications in this thesis. The main achievements are also detailed in Section
3.9.

The main metric for evaluating deployment at the edge was single-sample
inference evaluation and adaptation training on new tasks as the available
computation units (Intel® Core™ i5 Processor, Raspberry® Pi3 ARM mi-
croprocessor, and Intel® Neural Compute Stick 2) changed.





Chapter 3

Achievements

Do not judge me by my successes, judge
me by how many times I fell down and

got back up again.

Nelson Mandela

In this chapter, the main achievements of the doctoral program, which led
to the publications attached to this dissertation, are discussed. The results
obtained, accomplished in multiple areas, are presented in specific chapter
sections according to the main objectives defined in Section 1.3 and elabora-
ted through the methodology described in Chapter 2. Each of the following
sections in this chapter presents the achievements of one or, normally, se-
veral of the attached publications. Reference is also given in each section
to the specific publications that are part of the compendium and contain
relevant information. The projects acknowledgment section details the Eu-
ropean funding projects that have funded the research performed and the
results achieved during this doctoral program for Infineon Technologies AG
3.10. A final collaborations section 3.11 cites all the related co-authored pu-
blications during the PhD program. These cited publications have been the
result of collaborative projects with research and industrial partners.

3.1. Research about context generalization in radar-
based use cases

This section outlines the main achievements of context generalization for
the selected radar-based applications, as defined in Section 2.1. For each of
the papers that constitute the compendium of publications, a specific meta-
dataset in relation to the defined context generalization requirements has
been generated. Each created meta-dataset attempted to collect the most
heterogeneous information possible in as few data samples as possible so

25
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as to correctly evaluate the potential of the meta learning generalization
approach (Section 2.3). According to the radar use case under investigation,
the need for generalization in new scenarios may vary considerably. The
following paragraphs provide specific use case descriptions of the context
variations taken into account in the compendium’s publications. A graphical
representation of the scenario variations investigated in this research for the
various use cases is shown in Figure 3.1.
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Figure 3.1: Investigated scenario changes with respect to use cases. Environ-
mental variations, such as different rooms or offices, have been considered
in all applications. Different individuals have been distinguished for the ges-
tures and breath sensing tasks. The motion of parts or the whole body of
individuals mainly influenced the tasks of people counting and breath sen-
sing. Positioning and orientation of the radar sensor have been considered for
the people counting task. A person’s vital condition exclusively influenced
breath sensing data collection. In contrast, actions performed with hands
influenced the data collection for gestures.

Both One-shot meta learning for radar-based gesture sequences recogni-
tion [87] and Few-shot user-definable radar-based hand gesture recognition
at the edge [88] focus on the task of radar-based hand gesture recognition.
For such a use case, the main context variations involve the type and mo-
de of gestures performed, the users, and the environment in which they are
gathered. The radar information requires proper preprocessing (Section 3.3)
to ease the characterization of similar types of gestures, such as the actions
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of push and slide in a given direction. Extracting the whole range, velocity,
and angle-of-arrival information for each gesture may be inadequate for so-
me HCI systems. The need for all these features can render a gesture too
complex to be performed for some categories of people, such as users with
motor impairments. For this specific reason, the meta-dataset generated for
One-shot meta learning for radar-based gesture sequences recognition [87],
contains only four types of gestures with very distinct features. However,
four actions can be far from a sufficient number of commands in most HCIs.
Consequently, the idea has been to consider not single actions but sequences
of gestures as single classes to increase interfacing possibilities. For the paper
Few-shot user-definable radar-based hand gesture recognition at the edge [88],
a more inclusive meta-dataset has instead been generated in order to further
test the limitations of the episodic meta learning approach. In this case, 20
classes of gestures with 20 examples per class performed by 5 people in 2
environments have been gathered. For this larger number of gestures, the
information on range, speed, and angle of arrival must be correctly extrac-
ted to simplify differentiation. The various users were also asked to perform
the gestures according to their definition, given just a general indication of
the specific gesture. Every gesture has been performed up to 40 cm from the
radar board and within a time span of roughly three seconds.

The publication Few-Shot User-Adaptable Radar-Based Breath Signal Sen-
sing [89] focuses on user generalization for a radar-based solution of respi-
ratory signal estimation at a workplace. The main goal of this research has
been the development of a solution that is user-adaptable and can promp-
tly generalize to new vital patterns. In this case, data have been collected
from 24 users at two distances and in two offices. The Infineon XENSIV™
60 GHz mm-wave radar has been used for the recordings, while a breathing
belt has been used as a reference. Ten sessions of 30 seconds each per user
have been collected. Different kinds of factors have been taken into account
for the generation of the meta-dataset for such a task. The main context
adaptability requirement for such an application is dictated by the user’s
characteristics. Users can, in fact, have very different breathing patterns in
relation to their age, physique, health, and other attributes. As non-contact,
usersáctions during recordings can cause corruption of radar data, so-called
motion corruption. Many cutting-edge solutions assume that users remain
idle in front of the radar [86, 100]. In this case, no restriction on stillness
has been given to users, and they have been allowed to talk, laugh, or use
the keyboard during data collection. Further information on how that infor-
mation is handled is outlined in Section 3.3 and detailed in the publication
[89] and. The board orientation as well as the distance from the board to the
tracked subject have also been taken into account for the recordings. Such
characteristics have, in fact, an impact on the intensity of reflections and
therefore the estimation of vital signs for the recorded data.



28 Chapter 3. Achievements

The task of in-door people counting has instead been handled in the pa-
per Context-Adaptable Radar-Based People Counting via Few-Shot Learning
[90]. People counting by radar enables a scalable, low-cost, and privacy-
friendly solution. Yet, most cutting-edge solutions are highly dependent on
the context in which they are deployed [74]. Deep learning-based solutions
can achieve high performance in a given environment, but they can perform
poorly in other contexts due to multiple factors. One of the main factors is
the structure of the training environment and the presence of static objects.
Data variation must involve multiple environments with different characte-
ristics, such as room size, furniture, windows, or other objects that cause
reflections. The variation must also involve the orientation of the radar sen-
sor, which has to be moved to multiple locations for the gathering of new data
sessions. In addition, data must also be collected on various people, moving
at various speeds and in various directions, sitting or standing still under
certain circumstances. For this use case, data have been recorded in three
different indoor environments with different furniture and sizes. Each session
involved 0 to 5 people in a room at the time, placing the radar in different
positions and orientations. Ten different people took part in the recordings,
with varying recording times between 60 and 90 seconds. The recorded da-
ta have been used to generate three distinct meta-datasets to enable better
evaluation in different contexts. One dataset called Mixed-Dataset contained
both training and test data from sessions collected from all environments but
from different orientations of the radar board. The other two meta-datasets
used two rooms for the training dataset and the third room as the test (the
smallest and largest environments, respectively).

For all the use cases, the information on training and test split and task
generation is related to the task generation strategy, and it is therefore de-
tailed in Section 3.2.

3.2. Research on tasks generation strategies for the
episodic learning approach

Once the meta-datasets have been defined for the various use cases (Sec-
tion 3.1, it has also been necessary to define a task generation strategy for the
episodic meta learning approach (Section 2.3). In principle, what should be
the context in which a model should be able to generalize for each new trai-
ning episode? The number of classes (ways) and training examples (shots)
for each experiment are also important parameters for task generation. The
data availability and number of classes per episode can drastically vary the
complexity of the experiments. Further, it is also important to correctly di-
vide the generated meta-datasets into training classes and test classes. In
fact, the models must have sufficient heterogeneous information available to
ensure generalization in training but also sufficient test information in order
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to adequately evaluate the behavior in new contexts.
In One-shot meta learning for radar-based gesture sequences recognition

[87], the permutations of the four available gestures were used in sequences
to generate tasks, creating sixteen classes. All classes containing the ‘Left/-
Right’ gesture were exclusively considered part of the test data. Experiments
were performed in 2–, 4– and 5– way, with 1-shot only. As the number of
ways varied, the examples representing the tasks were randomly sampled
from the set of available example sequences.

In Few-shot user-definable radar-based hand gesture recognition at the
edge [88], the 20 available gestures in the meta-dataset have been divided
into 12 gestures of training and 8 of testing. This division has been done
randomly, ensuring only that opposing actions such as left swipe and right
swipe were part of the two separate sets to ensure greater generalization and
better evaluation. For this meta-dataset, the whole information of range,
velocity, and azimuth angle of arrival over time has been elaborated for every
single gesture. This intrinsically allowed for high variation among gestures.
Therefore, a much broader set of tasks has been sampled compared to the
four gestures scenario. Experiments have been conducted in 2–way and 5–
way, with 1–shot, 3–shot and 5–shot. To achieve high generalization, the
training tasks have been randomly sampled as a combination of the available
training gestures. The evaluation has been performed in the same manner
over test gestures.

In Few-Shot User-Adaptable Radar-Based Breath Signal Sensing [89],
every task focuses on the single user adaptation. Every episodic task adapta-
tion utilizes randomly sampled recorded sessions at different distances bet-
ween the sensor and the tracked user. Data containing more motion corrup-
tion are proportionally less important than others for signal estimation. This
is handled via preprocessing and deep learning, as outlined in Section 3.3.
Being a single-user regression and reconstruction problem, the experiments
have all been performed at 1–way for 1–, 5– and 10–shot.

In Context-Adaptable Radar-Based People Counting via Few-Shot Lear-
ning [90] the episodic tasks have been differently generated for the training
and evaluation steps. The training has been performed by randomly sampling
classes belonging to various environments, sensor orientations, and numbers
of people in a room for a given session. The evaluation, instead, has been
done so that a specific number of people occupy specific label positions in a
ranked manner. For counting up to 3 people, for example, the first output
class of the model has been 0, the second 1, the third 2, and the last 3. Fea-
tures had been sampled from the various available environments, but with
a raking constraint on the defined ways. The ranking has been a necessity
for the intrinsic goal of generalizing by counting people in an environment
rather than distinguishing various environments or orientations.
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3.3. Research on radar data preprocessing strate-
gies for efficient feature extraction

Radar information is handled in very different ways as the use case and
application range changes. For mm-wave radars, the range of action is often
limited to a few meters [101]. For applications in the meter range, such as
people counting, the intention is usually to extract and track targets rather
than their features. In the cm range, thanks to a higher resolution in speed
and range, it is also possible to track the features of the movements. For
the recognition of hand gestures, oscillations due to actions like tickling or
rubbing can be tracked. The estimation of vital parameters requires the
analysis of displacements in the range of mm or a few cm. In this case, the
information is all encoded in the phase signal of the radar data, which is
very sensitive to such displacements, especially if periodic. Regardless of the
application, the information extracted from radar data may be too large in
size to be directly classified by fully connected neural networks. Specific DL
operations suitable for feature extraction have been employed in this research
as part of preprocessing to make the information more easily handled in the
learning and prediction phases. This also made it possible to reduce the
number of parameters to train for the models, simplifying episodic, few-shot
adaptation without harming generalization to new tasks.
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Figure 3.2: Temporal representations of a hand gesture, used in [87, 88], are
shown in (a). Shown in (b) are two examples of range Doppler maps used as
system input for the indoor people counting task [90]. The unfiltered radar
phase signal collected in a breath sensing session for [89] is shown in (c).

In One-shot meta learning for radar-based gesture sequences recognition
[87], as pointed out in Section 3.1, only data from four very distinct gestures
have been used. To simplify the potential use of the system as an HCI and
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also reduce power consumption, only range information collected from a sin-
gle radar receiver channel has been preprocessed. Each radar frame collected
in the gesture time window was frequency processed to extract the range
information. To simplify the time dependence of the collected data over ti-
me, only the peak range information was used and projected along an axis.
This made it possible to generate Range Time Maps (RTMs). By preserving
temporal information in a very small dimensionality, RTMs are widely used
in the literature [53, 75]. For each sampled task, RTMs represent instances
to be fed to a neural network as channels (gesture sequences). Further infor-
mation processing is done episodically through a CNN, which extracts key
information through episodically trained convolutional filters.

In Few-shot user-definable radar-based hand gesture recognition at the
edge [88], given the higher complexity of the collected gesture set, the infor-
mation of velocity and azimuth angle over time in addition to range has also
been used. Velocity and angle information have been extracted by frequency
analysis and Capon beam-forming [102], respectively. This information is
then also projected in time by generating the Doppler and angle time maps
(DTM and ATM). The use of all this information as channels for every ges-
ture sample grants the ability to distinguish feature-wise different kinds of
motions with particular oscillations and patterns.

In Few-Shot User-Adaptable Radar-Based Breath Signal Sensing [89], a
tailored preprocessing pipeline extracts, for every given session, the phase
information containing the user’s breathing profile. The raw data would be
too heavy and full of irrelevant information to be directly fed into a neural
network for breath profile extraction. This would also limit the capability of
the few-shot episodic approach given the very limited information available
per user. The pipeline smartly keeps track of the distance of the person
from the radar and extracts phase information only for the few range bins
corresponding to the position of the user. This feature reduces at the same
time the computation cost of the pipeline and the potential noise caused by
environmental reflections. The main innovation of the presented pipeline is
the estimation of the motion corruption level due to user movements. This
is done purely in terms of signal processing, autocorrelating the extracted
breath signal with itself over each data session for dissimilarity computation.
Whenever the dissimilarities are greater than a given threshold, the motion
corruption flag is triggered. The amount of corruption is used to optimize
the breath signal estimation in the episodic deep learning phase. Higher
is the corruption, more the term for only central frequency information is
relevant (it would not make sense to map the corrupted radar signal to
the belt data). This consents to overcome the major limitation of idle users
of many cutting-edge radar-based solutions [86, 100]. For this use case, a
Convolutional Variational Autoencoder (Conv-VAE) is completely embedded
into the meta learning training for episodic feature extraction (Section 3.4).
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The application of a double digital bandpass filter to the radar data is only
done after the meta learning step to extract the breath profile.

In Context-Adaptable Radar-Based People Counting via Few-Shot Lear-
ning [90], the preprocessing aims at increasing the signal-to-noise ratio on
sequences of available radar frames. For every new raw time frame, frequency
processing is performed so as to extract the range and velocity profile of mo-
ving people in the environment. The signal is mediated over the available
receiving channels. Specific window filtering and mean subtraction are also
performed to reduce the level of noise in the samples. A moving average is
performed over a buffer of recorded data to further enhance the SNR. Such
averaged frames, in the form of range-Doppler images, are used as input into
the Weighting-Injection Net (Section 3.4) for the two different training stra-
tegies chosen (Section 3.5). A graphical depiction of the preprocessed radar
data for various applications is provided in Figure 3.2.

3.4. Design of optimized deep learning topologies
for radar data and few-shot learning

Standard radar-based solutions with ML can be hard to generalize to new
contexts due to the complexity of feature patterns and scenario specifications
(Section 2.1). Specific DL architectures can be designed to gather the most
information possible about contexts and learn to compare examples in the
same scenario rather than just using previously learned information. Good
topologies for generalization can, anyway, be bulky and require a huge num-
ber of parameters to achieve good performance. Some targeted, cutting-edge
modules aiming at feature extraction and comparison can help find a good
trade-off between task generalization and model size.

In Few-shot user-definable radar-based hand gesture recognition at the
edge [88], a Conv-VAE enabled the reduction of data dimensionality while
retaining the information’s content. A graphical illustration with respective
formulation of the cost function for a Variational Autoencoder (VAE), is
shown in Figures 3.3. Once the meta-dataset has been generated (Section
3.1), the Conv-VAE has been pretrained over training classes and used as a
backbone. The Conv-VAE performance has been compared in the paper with
a CNN. The CNN reached slightly higher values of intra-task accuracy but
with an order of magnitude more trainable parameters. The model, which
used the Conv-VAE as its backbone, also required half of the adaptation
time for new tasks. With 5–way 5–shot, the accuracy loss is just around 1 %,
from 94.19 % to 92.97 %. The episodic optimization further fine-tuned the
encoder layers of the Conv-VAE for feature extraction. Further, this topology
has been fully deployed at the Edge on the Intel® Neural Compute Stick 2
(Section 3.9). In the few-shot learning frame, the encoder part of the Conv-
VAE is concatenated into a sequence of dense layers for task training. Such
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Figure 3.3: In general, a VAE consists of an encoder a decoder and a custom
cost function. The encoder compresses the input x into the latent space z.
The decoder approximately reconstructs the input, generating x̂, from the z
representation. The representation generated in z consists of a set of mean
values µx and standard deviations σx corresponding to normal distributions
N . The loss function (L) tries, on the one hand, to minimize the differences
between x̂ and x. On the other hand, a regularization term makes sure that
the various µx and σx are constrained to a normal distribution N . This is
possible by minimizing the Kullback-Leibler (KL) divergence between the
normal N (µx, σx) and the unit distribution N (0, 1) with mean value 0 and
standard deviation 1. Both encoders and decoders can have convolutional
layers for feature extraction (Conv-VAE).

a procedure makes it fully employable in the few-shot approach and also
deployable at the edge thanks to the pretty straightforward topology.

In Few-Shot User-Adaptable Radar-Based Breath Signal Sensing [89], a
specific two-branch topology has been developed for user-wise episodic adap-
tation (Section 3.2). The employed algorithm for episodic training has been
MAML [94]. The designed topology consists of a Conv-VAE, which maps, in
the training phase, the preprocessed phase information extracted from radar
data to the reference belt signal. The other branch constrains the features
generated in the Conv-VAE latent space to the central frequency of breathing
for the given session. The ground truth of such information is extracted from
the recorded belt data. The overall topology enables the episodic extraction
of the most relevant breathing information with around 740,000 trainable
parameters. A custom loss function has been designed for the task’s accom-
plishment so that:

1. The model can promptly adapt to new users given the limited number
of sessions available.

2. The motion corruption information is leveraged session-wise for model
learning, avoiding exploiting corrupted information in a harmful way.
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If the corruption is low, then priority is given to reconstructing the breath
signal using the belt data as a reference. If the corruption is high, then the
extraction of the central frequency of breathing is the main priority. Such
an approach is proportional to the level of corruption. The prediction on the
test sample is also a contribution from the two terms. The performance of
the designed C-VAE topology as a function of feature size has been a crucial
aspect to examine. This has been analyzed as a function of the latent space
dimension, which corresponds to the dimensions of the retrieved features.
The latent space values used for the MAML 1–shot experiments ranged from
16 to 128. A latent dimension of 32, which was also used for all of the
episodic experiments, led to the lowest mean loss value. It appears that a
latent dimension of 16 is insufficient to fully extract from the radar phase all
important breathing information. At the price of twice as many parameters,
a dimension of 64 resulted in similar average loss values to those with a
feature size of 32. Both a latent space of 64 and a latent space of 128 lead to
a discernible decrease in precision when looking at the values at 95 %. This
indicates that the higher-dimensional extracted features have a tendency to
overfit the training set and do not transfer well to test subjects.

In Context-Adaptable Radar-Based People Counting via Few-Shot Lear-
ning [90], the employed topology is a variation of the Weighting Network pre-
sented in [92] and it is part of the domain of relational net models [96] (Sec-
tion 2.3). The proposed topology, called Weighting-Injection Net, employs an
injection module in place of the classic embedding module for dimensionality
reduction. The injection module increases the input data dimensionality whi-
le generating a feature-enriched representation of support and query samples
for the subsequent relational phase. Such a topology requires more parame-
ters than embedding-based topologies but leads to higher accuracy when the
number of shots per task increases. The Weighting-Injection Net topology
has been tested with the traditional meta learning training approach of the
Weighting Network [92], on both the recorded radar data for in-door people
counting (Section 3.1) and the public dataset Omniglot [97]. Compared to
the embedding module, the injection operation projects the features in a
larger dimension and allows the extraction of more information for the fo-
llowing comparison module. In addition, this specific characteristic reduces
the possibility of overfitting on specific tasks during episodic learning. This
allows for greater generalization in multiple of the defined experimental se-
tups. Mainly, the increased dimensionality of support and query data via the
injection module facilitates the extraction of important features with higher
filter dimensionality when many shots per class are available (Section 3.2).
The main results obtained with the Weighting-Injection Net are outlined in
Section 3.5.
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3.5. Research on meta learning algorithms for radar-
based use cases

As specified in Section 2.3, it was chosen to further research optimization-
based and relation-based algorithms in the meta learning branch.

Optimization-based algorithms present model-agnosticism among their
main advantages, but can also be complex to train for generalization due to
the large number of hyperparameters and the chosen task generation strategy
(Section 3.2). Dependence on the chosen neural network architecture and
computational complexity can also lead to training instability, resulting in
performance collapse [103].

In Few-shot user-definable radar-based hand gesture recognition at the ed-
ge [88], different strategies aiming at increasing the stability of the Model
Agnostic Meta Learning (MAML) [94] algorithm are presented. The desig-
ned approaches, suitable for optimization-based meta learning, were tested
on the radar task of hand gesture recognition and also used together with
some techniques introduced in the MAML++ algorithm in [94]. The base-
line algorithm, consisting of MAML and stabilization techniques borrowed
from [94] has been called +MAML and used for comparisons. Respectively,
the presented methods are Dynamic Meta Class Weighting (DMCW), Task-
Specific Gradient Clipping (TSGC), and Evaluation-Based Gaussian Noise
Summation (EGNS). DMCW aims at reducing specific class overfitting in
episodic learning. The labels of some evaluation examples are predicted af-
ter every task adaptation. Such labels are used for the computation of class
weights for each task adaptation epoch. The obtained weights are also used
for the intra-episode adaptation. TSGC limits the magnitude of the gradient
updates in every task update when it exceeds a certain threshold. Instead, no
gradient clipping is used in the intra-episodic adaptation. This approach as-
sures that the generalization update will be generally more relevant than the
individual tasks. EGNS has the purpose of avoiding meta-overfitting, which
means depending too much on tasks sampled from the classes of training
while losing power of generalization in the test classes. When the valida-
tion accuracy on tasks sampled from training exceeds a certain threshold,
some Gaussian noise is added to the next training examples to increase the
complexity of the training and avoid meta-overfitting.

The three presented methods are more or less efficient than the baseli-
ne, according to the few-shot experiment setup and the employed topology
and number of parameters (Section 3.4). Specifically, with a large number of
parameters (CNN), the DMCW does not lead to performance improvements
since, with more trainable parameters, the model understands better diffe-
rences between classes without simply overfitting the few samples available
for just one or a few classes. DMCW is even more counterproductive as the
number of shots increases. The designed strategies are particularly effective
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when only a very few examples per class are utilized since they counter the
problems of task- and meta- overfitting. The DMCW introduces benefits for
the model using the encoder of the Conv-VAE. The proposed methods lead
to better results than all the state-of-the-art methods except Weighting Net
[92] for most of the performed experiments. Yet for the model with Conv-
VAE, the number of required parameters is half that required by Weighting
Networks, making it easier to deploy on edge devices and resulting in lower
inference costs by varying the number of shots.

Compared with optimization-based algorithms, relation-based networks
[96, 92] require significantly fewer hyperparameters but may suffer from
adaptation lack and instability with only a few shots per class available
[104].

In Context-Adaptable Radar-Based People Counting via Few-Shot Lear-
ning [90], a new algorithm called Model-agnostic meta-weighting (MAMW)
combines the two-step strategy MAML [94] for task and intra-episodic adap-
tation with the robustness and fast adaptation of relation-based meta lear-
ning. The MAMW algorithm targets mainly to increase the stability in trai-
ning of 1– and 2–shot experiments employing the Weighting Network [92]
as the network topology. In such an architecture, the representative exam-
ples per task of the training classes are called support examples. Instead,
the examples to be mapped to a given label are called query examples. The
Weighting Network’s intrinsic capability of instance comparison makes it a
strong episodic learning method. However, this strategy exhibits learning
instability with only a few training shots per episode. This is because, par-
ticularly in 1-shot learning, the query is compared to each unique support
instance, which may not be sufficiently class descriptive. As a result, MAMW
utilizes the task adaptation step of MAML to compare the available support
examples via the Weighting Network with a noisy version of themselves. This
leads the model to extract the most possible information from support exam-
ples before the outer step is evaluated on the query. The MAMW algorithm
has been tested on both the recorded radar data for in-door people counting
(Section 3.1) and the public dataset Omniglot [97]. In the context of people
counting via radar, the comparison of the range Doppler of support with a
noisy version of themselves has the further advantage of reducing the training
dependence of a given context (Section 3.1). In practice, the task adapta-
tion focuses on learning the main information about the targets contained in
the range Doppler images rather than potential noise due to the static en-
vironment, a.k.a. clutter. The 1- or 2-shot experiments carried out with the
MAMW yield higher average accuracy values than the Weighting-Injection
Net with a pure relation-based training approach, regardless of the meta-
dataset employed (Section 3.2 and Section 3.4). In these particular situations,
the initial comparison with a noisy version of the support samples, which
emphasizes the possible inherent noise of the query data, allows MAMW to
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provide the model with more information. As the number of shots increases
given the fixed number of ways, the classical relation-based approach applied
to the Weighting-Injection Net guarantees better performance except for the
Mixed-Dataset. As the number of available support instances increases and
adaptation occurs in totally new contexts, MAMW may cause a shift in the
learning goal toward noise detection rather than learning the query class.
This is due to the step of comparing the multiple available support exam-
ples with a noisy copy of themselves. Both the relation-based training of the
Weighting-Injection Net and MAMW led to better performance than state-
of-the-art in all the performed people counting experiments. The same exact
results for both MAMW and the Weighting-Injection Net can be observed
for all the experiments performed on the public dataset Omniglot.

3.6. Investigation of an evaluation framework to as-
sess the performance of the meta learning ex-
periments

As outlined in Section 2.3 and Section 3.5, meta learning algorithms can
approach the task of context generalization with very different strategies.
Even in the same class of algorithms, such as optimization-based algorithms,
the use of different task adaptation or intra-episodic strategies can make the
comparison of achieved performance more challenging. The evaluation beco-
mes even more complex when other classes of algorithms are considered, such
as relation-based, where query data are directly compared to the available
support instances.

A common evaluation framework aiming at assessing and correctly com-
paring the performance of types and classes of meta learning algorithms, as
specified in Section 2.3 has been elaborated in this research. The framework
aims at assessing generalization in a validation phase after each episodic
adaptation on randomly sampled training and test tasks. A further evalua-
tion is performed at the end of the episodic adaptation on a set of randomly
sampled test tasks to evaluate the performance after the final adaptation.

In One-shot meta learning for radar-based gesture sequences recognition
[87], a common evaluation framework for assessing the classification per-
formance of optimization-based algorithms is presented. The evaluation is
performed after each episode on both a task sampled from the meta-dataset
of training and the meta-dataset of tests. The sampled instances are uti-
lized to tune the model to the specific task. The learned weights are only
utilized for the specific task and forgotten right after, without influencing
the episodic adaptation. Some evaluation samples are instead used in the
following prediction phase to estimate the accuracy. For a fixed evaluation
strategy, as the episodes progress, the overall evaluation accuracy for new



38 Chapter 3. Achievements

tasks should increase for both training and test classes, thanks to the acqui-
red experience from past tasks. The performance is assessed over sequences
of episodes, generating box plots over the obtained accuracy values. With
episodes progression, box plots should converge to 100 % accuracy, while the
specific whiskers and quantiles should get narrower. A final evaluation is do-
ne on meta-test sampled tasks after the last generalization episode. In this
case, the average value of accuracy is used as a Key Performance Indicator
(KPI). A schematized version of the accuracy evaluation framework is shown
in Figure 3.4. Such a strategy allows for a accurate comparison of the various
state-of-the-art algorithms.
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Figure 3.4: Evaluation framework for assessing generalization accuracy over a
set of tasks. After each episode, an evaluation is performed on tasks sampled
from the training and test meta-datasets respectively. The performance is
assessed over a set of episodes, building accuracy box plots. The specific
whiskers and quantiles should become thinner as the episodes progress, and
box plots should converge to 100 % accuracy.

In Few-shot user-definable radar-based hand gesture recognition at the
edge [88], the evaluation procedure is further elaborated to extract the un-
derlying distribution of the generated box plots. The underlying density his-
tograms of the first and last box plots for every experiment are compared
with a Gaussian distribution. As the episodes progress, the histograms tend
to move from an initial multimodal distribution (evaluation accuracy obtai-
ned for different complexities of tasks) to a negatively skewed distribution
towards 100 % accuracy. The statistical comparison, also in terms of per-
centiles, highlights how the obtained accuracy histograms cannot be appro-
ximated by a Gaussian distribution. Another added feature represents the
analysis of cumulative class-wise confusion matrices as episodes progress. Cu-
mulative confusion matrices are generated over a set of episodes, appending
to an array the class-wise predictions over tasks and analyzing them from
a percentile perspective. Especially on test tasks, the more the main diago-
nal of the confusion matrix contains values closest to 100 as the episodes
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progress, the more the model is actually generalizing to new scenarios.
In Few-shot user-definable radar-based hand gesture recognition at the

edge [88], the same evaluation scenario is adapted to the regression scenario
for the Conv-VAE training (Section 3.3). In such a case, the closer the intra-
episode accuracy distribution is to zero, the better the estimation of test users
will be. For breath estimation, a further evaluation is performed for test users
by evaluating the error according to the average number of estimated breath
peaks per 30-second session. This analysis has been performed on box plots
built over equally distributed sets of sessions per range of detected breath
peaks. In general, independently of the number of shots per experiment, the
average and median losses are higher for less common cases of few (1-6) or
many (10–14) peaks per 30s. Further, the whiskers and quartiles in such
cases are much broader. By increasing the number of shots per experiment,
the average and median values for edge cases decrease, as do the sizes of
quartiles and whiskers. For the more common scenarios of 7 to 9 beats per
session, the average error slightly increases. This is most likely due to more
motion-corrupted sessions. Although the loss is defined to address such a
problem, additional training examples may not contain enough information
to improve the user’s adaptation.

In Context-Adaptable Radar-Based People Counting via Few-Shot Lear-
ning [90], the developed evaluation framework is generalized over relation-
based models. For the weighting network, the evaluation after every episode
requires only a comparison between some support examples representative
of the classes and the new test data. This is performed using both tasks
sampled from the training and test meta-datasets. Since the prediction is
performed by comparing support and test features via concatenation, there
is no adaptation needed. This means that the evaluation can be done without
the need to forget the learned evaluation weights, and it is much faster than
in the optimization-based method. The adaptation procedure is the same for
MAMW (Section 3.5), since in this case, the trained weighting network is
just utilized for evaluation on samples from new tasks.

3.7. Exploration of active learning strategies for task
fine-tuning

Active learning strategies such as pool-based sampling strategies are used
in a wide range of tasks for traditional supervised learning to filter out the
most useful data for training (Section 2.4). This is done by sampling some
random data from an unlabeled data pool. The sampled instances are then
evaluated to estimate the prediction uncertainty between classes. Then, an
oracle, which may be the machine itself, chooses which data to label accor-
ding to the chosen uncertainty criteria. The new labeled data are used in
the next training steps as part of the training dataset. Normally, it is con-
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sidered that the greater the uncertainty of an evaluated example, the more
informative it is and thus the more useful it is for training.
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Figure 3.5: At each fine-tuning epoch of a task, the models are trained on all
the available training data. Two different models are trained, one with ran-
dom initialization and the other with episodic meta learning model initiali-
zation. The meta learning initialization is obtained through training in other
contexts, thus making the model context-unaware of the fine-tuning scena-
rio. The model prediction is done on examples randomly sampled from an
unlabeled data pool. An estimate of uncertainty is made based on the pre-
dicted samples. Samples with higher uncertainty ( and thus categorized as
more significant) are added to the labeled data pool for the next training
epoch.

The pool-based active learning strategy is explored in combination with
meta learning in Context-Adaptable Radar-Based People Counting via Few-
Shot Learning [90]. In this work, it is first of all proposed to leverage relation-
based meta learning to obtain the best possible generalization on a set of de-
fined tasks (Section 3.5). A pool-based active learning algorithm is then pre-
sented to fine-tune the Weighting-Injection Net (Section 3.4) on a new task
by leveraging the acquired generalization knowledge during episodic training.
A general depiction of the strategy is given in Figures. 3.5. The parameters
learned in the episodic phase are used as model initialization for active lear-
ning. In a sequence of training epochs, the model learns how to solve the task
from a training dataset (support and query) and estimates the prediction un-
certainty on an evaluation set. That evaluation data are randomly sampled
from a pool of unlabeled data. The examples with the highest uncertainty
are then labeled by ground truth and added to the training set. At each step,
support and query examples are also randomly sampled from the training
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data pool. Per training epoch, the overall accuracy of a test set is also calcu-
lated. As epochs increase, the model effectively learns how to generalize over
new data, labeling only those instances with the highest estimated informa-
tion content. The approach is effective in the people counting task, leading
to fine-tuning training in a new environment with an accuracy far greater
than random model initialization. Compared with the model without prior
generalization information as initialization, both the parameter sets learned
with the relation-based approach and MAMW (Section 3.5) are significantly
better. The classic relation-based training leads to about 30 % higher accu-
racy than random initialization over an average of three repetitions of the
experiments. Further, the model employing random initialization collapses
in some experiments to the value of random accuracy. This means that the
random initialization fails to learn enough context information from the avai-
lable data. Various possible uncertainty formulations that led to very similar
fine-tuning performances have been taken into account in the active learning
experiments.

3.8. Analysis of inference and adaptation trade-off
of the generalization models

Inference time on single samples and adaptation time on a new task
represent two very important KPIs for evaluating different meta learning
strategies. As mentioned in Section 2.3, the various cutting-edge meta lear-
ning algorithms utilize different strategies of performance evaluation. The
validation framework, as described in Section 3.6, allows for adequate eva-
luation of the various meta learning algorithms and topologies taken under
consideration in this dissertation. Depending on the meta learning strategy,
there might be a need for adaptation based on newly gathered data from a
new context. Further, the size of the model can impact inference and lead to
times that could be infeasible for real-time applications. In all papers that are
part of the compendium in this dissertation, the trade-off between inferen-
ce and adaptation time was evaluated, leveraging the developed evaluation
framework.

In One-shot meta learning for radar-based gesture sequences recognition
[87], a traditional CNN supervised training approach is compared with MAML
episodic training on a meta-test sampled task. The traditional CNN is initia-
lized to random weights after every task adaptation because a transfer lear-
ning approach fails to generalize to the new tasks after fine-tuning. On ave-
rage, with 200 test samples, the generalization model obtained via meta
learning requires only 8 support examples and roughly 1.5 seconds to reach
the same performance that the traditional CNN obtains after 56 minutes
and with 1,000 training samples.

In Few-shot user-definable radar-based hand gesture recognition at the ed-
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ge [88], the adaptation time per task and inference time are measured for two
different architectures. Specifically, these quantities are measured for an op-
timized architecture that uses part of a Conv-VAE as a backbone for feature
extraction and for a pure CNN. On a quad-core CPU, the topology with the
backbone leads to half the adaptation time compared to the CNN topology.
The topology with a backbone in fact, is pre-trained on a set of training
tasks and requires one order of magnitude fewer trainable parameters than
the CNN. Both architectures, with an optimization-based training approach,
are also compared with other state-of-the-art solutions. Both the feature ex-
traction and CNN topologies are faster to adapt than the LGM-Net [105] but
much slower than the weighting net [92]. For 5–way, anyway, the inference
time needed by the presented solutions is less than all the state-of-the-art
approaches considered. Even if the weighting net leads to better average test
accuracy, the intrinsic topology requires a mapping between the multiple
available support samples and the query. This specific characteristic makes
the weighting net slower for inference with an increasing number of classes.
At the edge, the trade-off between inference and adaptation time is analy-
zed for the computations on a pure ARM microcontroller and for the ARM
microcontroller plus the Intel® Neural Compute Stick 2. The total time nee-
ded for adaptation becomes much more advantageous for several shots and
several ways when the Compute Stick is connected, thanks to distributed
computing capabilities and the short time needed to deploy binary models
on the Compute Stick 2.

The various setups of the solution presented for hand gesture recognition
in [88], are shown in Figure 3.6.
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Figure 3.6: Data gathering scenarios and deployment of the optimization-
based meta learning model at the Edge. In (a), the setup for inference
is shown with Raspberry® Pi3 (ARM microprocessor) and the connected
Intel® Neural Compute Stick 2. In (b), only the Raspberry® Pi3, used for da-
ta gathering. Shown in (c) is the Infineon XENSIV™ DEMO BGT60TR13C
radar mounted on a tripod for data collection. An example of a hand gesture
performed over the radar sensor is shown in (d).
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In Few-Shot User-Adaptable Radar-Based Breath Signal Sensing [89], the
task adaptation and inference time trade-off is computed over a regression
problem with the formulated loss function (Section 3.4). The average adap-
tation time is computed over 300 test tasks of episodic adaptation with
MAML. The episodic approach requires a steadily rising adaptation time as
the number of shots grows, given four learning epochs per user adaptation
(task). The adaptation time for 5– and 10– shot experiments is three to se-
ven times greater than it is for a 1–shot. The 1–shot experiments may be
thought of as providing the best trade-off because the mean loss does not
drop significantly for 5- or 10-shots (less than 1 %). The number of shots
utilized for user adaptation has no impact on the single inference time for
MAML. In light of this, the inference time has been computed as a global
average on all the 1–, 5–, and 10–shot experiments. As a result, a single in-
ference time value of 4.30 ms has been estimated. The same task adaptation
process as MAML for regression has been used to test other state-of-the-art
algorithms. Only the generalization parameters in the intra-episodic stage
are computed as a function of the algorithms. Algorithm-specific parameters
are used in the evaluation phase, although first-order gradient optimization
is always used in the adaptation. This means that although the parameter
values change, the adaptation time is independent of the algorithm used. As
a result, there is little to no difference in adaptation times across the selected
methods with respect to MAML. The same holds true for the single sample
inference time.

In Context-Adaptable Radar-Based People Counting via Few-Shot Lear-
ning [90], the computation of inference time is performed over relation-based
models (Section 3.4). Despite requiring a custom topology for the classifica-
tion of data pairs, relation-based models have a great advantage in task
adaptation. In fact, after episodic adaptation and for any new task, the pre-
sented weighting-network-based solutions require only support examples to
be used as a reference for the new classes. The prediction of the query class
can then be done immediately afterwards, without any necessary adaptation
time. The inference time, however, increases as the number of available trai-
ning shots, i.e., the number of support examples per class, increases. For both
MAMW (Section 3.5) and Weighting-Injection Net, the average inference ti-
me with a 1–shot is 14.46 ms on average and rises to 43.73 ms with 10 shots.
This corresponds to an increase of about 67 % in single query inference time.
For the state-of-the-art optimization-based algorithms under consideration,
the average estimated inference over 10,000 examples is 33.47 ms, regard-
less of the number of shots. This is because there is no comparison between
support and query but a direct mapping between examples and labels. The
inference time of the state-of-the-art turns out to be better than the 10–shot
relation-based experiments, at the expense, however, of accuracy about 15 %
worse on the test data for the best-obtained models.



44 Chapter 3. Achievements

3.9. Exploration of meta learning implementations
at the Edge

As outlined in Section 2.5, the deployment of meta learning solutions at
the Edge can be expensive due to computation requirements for custom neu-
ral network topologies. Yet, the model agnosticism typical of optimization-
based meta learning can ease deployment without setting important cons-
traints on the model architecture and operations.

Few-shot user-definable radar-based hand gesture recognition at the edge
[88] explores the implementation and adaptation of an optimization-based
meta learning model at the Edge. The task adaptation is always performed on
the Raspberry® Pi3 ARM microprocessor. After every task adaptation, the
trainable parameters of the obtained model are in order, pruned, quantized,
frozen, and then converted into a binary and an Extensible Markup Language
(XML) file for being read by OpenVino for the Edge inference. The obtained
binary file is transferred into the Intel® Neural Compute Stick 2. When
connected to the Raspberry® Pi3, the Intel® Neural Compute Stick 2 is used
for distributed computing on inference. With respect to the pure inference
on the ARM Core, the single sample inference with connected Intel® Neural
Compute Stick 2 takes around 5 ms rather than the 350 ms.

3.10. Projects Acknowledgments

The research developed during this doctoral program has been mostly
funded by the funding European Projects UpSim and ANDANTE.

The pan-European ITEA3 Project UpSim aims for Unleashing Po-
tentials in Simulation by introducing quality management to mode-
lling and simulation. Credible Digital Twins will be the game changer
for accelerating innovation and reducing development costs in diffe-
rent industries. UpSim will boost virtual system development and will
introduce collaboration processes that will ensure data availability in
distributed development environments. Broad automation via conti-
nuous testing and AI supported simulation is focused in the combina-
tion with block-chain-based traceability and quality measures, which
finally leads to credible Digital Twins for various applications – from
smart engineering, virtual commissioning to predictive maintenance in
system operation. This project has an initial duration of 36 months,
formed by a consortium of 30 partners from 7 European Union coun-
tries. For the German partners, including Infineon Technologies AG,
the project is funded by the German Federal Ministry of Education
and Research.

The research conducted in this doctoral program, related to the Up-



3.10. Projects Acknowledgments 45

Sim project concerns the development of a radar system for in-cabin
driver monitoring. For such a use case, it has been crucial to develop a
pipeline for hand gesture recognition and vital parameter tracking. In
this regard, the results are included in the following publications:

• Gianfranco Mauro, Mateusz Chmurski, Lorenzo Servadei, Manuel
Pegalajar Cuellar, and Diego P. Morales-Santos. ”Few-shot user-
definable radar-based hand gesture recognition at the edge.“ IEEE
Access 10: 29741-29759, 2022.

• Gianfranco Mauro, Maria De Carlos Diez, Julius Ott, Lorenzo Ser-
vadei, Manuel P. Cuellar, and Diego P. Morales-Santos. ”Few-Shot
User-Adaptable Radar-Based Breath Signal Sensing.“ Sensors 23,
no. 2: 804, 2023.

To create the AI foundations for future products in the edge Internet
of Things (IoT) domain, the EU-funded ECSEL ANDANTE project
aims to leverage innovative IC (integrated circuits) accelerators ba-
sed on artificial and spiking neural networks in order to build strong
hardware and software platforms for application developments. Mo-
reover, the resulting IoT devices will combine extreme power efficiency
with robust neuromorphic computing capabilities. By achieving effi-
cient cross-fertilization between major European foundries, chip de-
signers, system houses, application companies and research partners,
the project will build and expand the European ecosystem around the
definition, development, production and application of neuromorphic
ICs. The project’s work will promote innovative hardware and soft-
ware deep-learning solutions for future IoT at the edge products that
combine extreme power efficiency as well as robust and powerful cog-
nitive computing capabilities. This project has an initial duration of
36 months, formed by a consortium of 30 partners from 7 European
Union countries. For the German partners, including Infineon Techno-
logies AG, the project is funded by the German Federal Ministry of
Education and Research.

The related doctoral program research for the ANDANTE project,
yield the development of an indoor people counting and tracking so-
lution using radar. The main objective has been to improve the adap-
tability of the system in new environments and conditions compared
to the state-of-the-art. In this regard, the results are included in the
following publication:

• Gianfranco Mauro, Ignacio Martinez-Rodriguez, Julius Ott, Lo-
renzo Servadei, Robert Wille, Manuel P. Cuellar, and Diego P.
Morales-Santos. ”Context-Adaptable Radar-Based People Coun-
ting via Few-Shot Learning.“ Applied Intelligence, 1-29, 2023.
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3.11. Collaborations

Apart from the paper compendium, several co-authored publications have
been the result of collaborative projects with research and industrial part-
ners. Specifically, collaboration and co-authorship contributions resulted in
the following papers:

1. Mateusz Chmurski, Gianfranco Mauro, Avik Santra, Mariusz Zubert
and Gökberk Dagasan. Highly-optimized radar-based gesture recogni-
tion system with depthwise expansion module. Sensors, 21(21), 7298,
2021.

2. Julius Ott, Lorenzo Servadei, Gianfranco Mauro, Thomas Stadelmayer,
Avik Santra and Robert Wille. Uncertainty-based Meta-Reinforcement
Learning for Robust Radar Tracking. In 2022 21st IEEE International
Conference on Machine Learning and Applications (ICMLA) (pp. 1476-
1483). IEEE, 2022.

3. Jakob Valtl, Javier Mendez-Gomez, Gianfranco Mauro, Antonio Cabre-
ra and Vadim Issakov. Investigation for the need of traditional data-
preprocessing when applying artificial neural networks to FMCW-radar
data. In 2022 29th International Conference on Systems, Signals and
Image Processing (IWSSIP) (pp. 1-4). IEEE, 2022.

4. Borja Saez-Mingorance, Javier Mendez-Gomez, Gianfranco Mauro, En-
carnacion Castillo-Morales, Manuel Pegalajar-Cuellar and Diego P Morales-
Santos. Air-writing character recognition with ultrasonic transceivers.
Sensors, 21(20), 6700, 2021.

5. Julius Ott, Lorenzo Servadei, Jose Arjona-Medina, Enrico Rinaldi,
Gianfranco Mauro and Daniela Lopera Sánchez, Michael Stephan, Tho-
mas Stadelmayer, Avik Santra and Robert Wille. MEET: A Monte Car-
lo Exploration-Exploitation Trade-Off for Buffer Sampling. In ICASSP
2023-2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (pp. 1-5). IEEE, 2023.

6. Muhammad Arsalan, Avik Santra, Mateusz Chmurski, Moamen El-
Masry, Gianfranco Mauro and Vadim Issakov. Radar-based gesture
recognition system using spiking neural network. In 2021 26th IEEE
International Conference on Emerging Technologies and Factory Au-
tomation (ETFA) (pp. 1-5). IEEE, 2021.
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Conclusions

One never notices what has been done;
one can only see what remains to be

done.

Marie Curie

This doctoral research has focused on the design and optimization of
context generalization techniques in radar applications by leveraging only
the few available data instances. The adopted approach has been explora-
tory, researching and adapting few-shot approaches and meta learning to
three distinct radar-based use cases. The use of active learning as a fine-
tuning method for pre-trained meta learning models has also been resear-
ched. For each defined use case, the main pipeline steps have been designed
and optimized for the episodic learning approach. For the generation of a
proof-of-concept solution, these steps mainly involved the collection of a da-
taset, extraction of useful information, generation of learning tasks, design
of an ML model, training and validation of the ML model, and finally mo-
del deployment at the Edge. The main conclusions and contributions of this
doctoral research are listed as follows:

The first important contribution of this research has been harnessing
the advantages of radar technology for context generalization. The use
of mm-wave FMCW radar technology for this research (Infineon XEN-
SIV™ DEMO BGT60TR13C), has been based on extensive investi-
gation covering both the technology itself and potential applications.
The chosen radar-based use cases, namely hand gesture recognition,
breath signal sensing, and in-door people counting, have been carefully
selected to explore information processing complexities at various sen-
sing magnitudes. In all four papers that are part of the compendium
[87, 88, 89, 90], the research has addressed the need for generalization
in new scenarios, considering factors such as user characteristics, en-
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vironmental variations, and functional parameters of the devices. The
research contributions for objectives 1.a and 1.b of Section 1.2, inclu-
ded specific descriptions of use cases, strategies for generating tasks,
and the creation of meta-datasets for each application. This yields a
better evaluation of the context generalization approach. The results
detailed in the compendium publications demonstrate how the propo-
sed methods can effectively achieve context adaptability in radar-based
use cases.

In summary, this research has made significant strides in harnessing
radar technology for context generalization, paving the way for more
scalable, adaptable, and privacy-compliant solutions in various real-
world use cases. The presented methodologies and findings have the
potential to drive further advancements in radar-based systems and
contribute to the broader field of sensor applications and context lear-
ning.

Another relevant focus of the research has been tailoring radar data
processing for the episodic learning approach. Mainly the Objectives
2.a and 2.b. of Section 1.2. For context generalization, non-recurrent
data handling techniques have been used. In all the attached publica-
tions [87, 88, 89, 90], different data processing techniques have been
adopted and evaluated via metrics such as the number of trainable
parameters and task performance. For all the relevant use cases, the
gathered time information has been mapped into channel represen-
tations as part of the data preprocessing. The use of machine lear-
ning, particularly CNNs and autoencoders, facilitated feature extrac-
tion from radar data, which inherently lack of interpretability. Espe-
cially, the use of Conv-VAEs played a crucial role in reducing data
dimensionality while retaining important information. The model with
a Conv-VAE-based backbone, enabled in [88], efficient few-shot adap-
tation and edge deployment with minimal loss in accuracy. Together
with the Conv-VAE, the custom loss function designed for the task of
breath signal sensing in [89] led to a user-adaptable radar-based sensing
solution with robustness to motion corruption. The designed topolo-
gies, such as the Weighting-Injection Net in [90], helped to robustly
achieve context adaptation thanks to the inherent instance compari-
son strategy and feature extraction.

The findings provide valuable insights for the design and implementa-
tion of radar-based solutions with efficient data processing and adap-
table learning capabilities.

An extensive part of the research has been devoted to the research,
optimization, and standardized evaluation of meta learning techniques
(Objectives 3.a, 3.b, and 3.c of Section 1.2). A special focus has been
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given to optimization-based and relation-based algorithms.

The model-agnosticism property of optimization-based methods, enabled
decoupling data handling and processing requirements from the cho-
sen training algorithms in [87, 88, 89]. In [88], specific strategies have
been designed and evaluated to enhance the stability and performan-
ce of optimization-based algorithms for hand gesture recognition. As
highlighted in the achievements 3.5, these approaches showcased dif-
ferent performances depending on the experiment setup and network
topology. In [89], the optimization-based algorithms have been evalua-
ted on a regression task for a non-contact estimation of the breath
signal from radar data. Additionally, relation-based algorithms have
been investigated, as they enable powerful context generalization by
learning to classify matching characteristics of instances. In [90], a
novel algorithm called Model-agnostic meta-weighting (MAMW) has
been introduced to combine the advantages of optimization-based and
relation-based meta learning. MAMW aimed to increase stability in
few-shot experiments, particularly for people counting tasks, using the
Weighting-Injection Net as the topology.

Through the state-of-the-art investigation, a lack of a unified evalua-
tion framework for meta learning algorithms has been observed. As a
result, a new standardized evaluation framework has been developed to
facilitate comparison and analysis of different optimization-based and
relation-based approaches. The evaluation framework (Section 3.6), fa-
cilitates the comparison of various algorithms by providing numerical
and graphical evaluations in a consistent format. The generalization
performance of models is assessed after each episodic adaptation, for
both training and test tasks. Additionally, the framework assesses the
trade-off between single-sample inference time and training time to
adapt to a new task. The initial evaluation for optimization-based
algorithms included analysis of box plots and cumulative class-wise
confusion matrices for classification tasks [87, 88]. The framework has
been further extended to regression tasks in [89] and to relation-based
algorithms in [90]. The conducted analysis in the various use cases
demonstrated that the designed evaluation approach can effectively
reveal and compare the generalization capabilities of different models.
The same framework has also been employed for assessing the genera-
lization capabilities of models trained on the public dataset Omniglot
in [90].

In summary, the conducted research significantly contributes to the
optimization and evaluation of optimization-based and relation-based
meta learning algorithms. The main outcome has been the development
of new strategies and algorithms to improve learning stability and per-
formance. Aside from that, the development of a comprehensive eva-
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luation framework enabled the accurate comparison of the developed
techniques to the state-of-the-art.

Part of the research conducted explored the use of active learning stra-
tegies on top of pre-trained generalization models to optimize model
performance with limited labeled instances (Objectives 3.d of Section
1.2). One of the main objectives in [90], has been to investigate whether
episodic meta learning, which leverages prior experience from similar
tasks, could benefit active learning fine-tuning. The research highligh-
ted that, on top of an application-aware model, active learning effecti-
vely filters out relevant data from an unlabeled pool, leading to impro-
ved model performance with respect to random initialization. Specifi-
cally, the use of pool-based sampling strategies allowed the selection of
only informative examples via prediction uncertainty analysis, contri-
buting to better training and adaptation to new contexts.

Overall, the findings for the radar-based in-door people counting task
highlight an important synergy between active learning and meta lear-
ning. The use of previously acquired information can be used not only
to simplify adaptation in new contexts but also to filter out informa-
tive data through active learning. Further exploration and refinements
of the integration between meta learning and active learning can have
important future implications beyond radar-based use cases.

To assess the actual impact of the episodic learning approach on po-
tential deployed solutions, part of the research has been devoted to
the trade-off between adaptation and inference (Objectives 4.a and 4.b
of Section 1.2). The time trade-off between inference on a single ins-
tance and task adaptation has been analyzed in all the papers that
are part of the compendium [87, 88, 89, 90]. For this investigation,
the developed evaluation framework (Section 3.6) has been essential in
standardizing the evaluation and comparison of different meta learning
algorithms. The evaluation performed in all the researched use cases
highlighted the advantages of meta learning over traditional supervised
training approaches for adaptation. In [87], the meta learning-based
model achieved comparable performance to a CNN trained with the
classic supervised approach. Thanks to the prior knowledge acquired
in other contexts, the meta learning-based model required a signifi-
cantly smaller number of support examples and a shorter adaptation
time than the CNN, which required extensive training data and time.
In [88], further analysis has been done at the Edge, to explore the limi-
tations and deployment capabilities of meta learning algorithms given
limited computation. Despite the computation and model size cha-
llenges for meta learning, the agnostic nature of optimization-based
algorithms simplified the Edge deployment on the Intel® Neural Com-
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pute Stick 2 and on the Raspberry® Pi3 ARM microprocessor. Even
with computation constraints at the Edge, the agnosticism property
of optimization-based meta learning proved to be valuable in enabling
deployment without placing topological constraints on the model.

In summary, the conducted research contributes to the advancement
of deploying meta learning solutions at the Edge. The findings, also in
terms of adaptation and inference trade-offs, offer valuable insights in-
to the feasibility of deploying such solutions in real-world applications.
Further exploration of techniques such as model pruning and quanti-
zation tuned for meta learning can foster the development of efficient
and context-adaptable ML models at the Edge.

All remarkable results obtained during this doctoral program have been
published in scientific journals and presented at a conference, contribu-
ting to the state-of-the-art. Such papers represent the compendium of
publications attached to the thesis in the next chapters. The conference
paper has been published with Springer for the 31st International Con-
ference on Artificial Neural Networks (ICANN). The scientific journals
have been Springer Nature Applied Intelligence, MDPI Sensors and
IEEE Access.

According to the research carried out, a considerable enhancement of
the self-learning capability of models can be expected in the near future
for sensor applications. Approaches suitable for extracting and comparing
useful information from data will strengthen the generalization features of
artificial intelligence. Most of the research will probably leverage techniques
suitable for context generalization, such as meta learning and active lear-
ning, given their emerging importance in a wide variety of applications, such
as industrial and medical. The computational development of Edge devices
and on-chip systems will enable real-time context generalization for a large
variety of applications. This will allow sensor-based solutions to adapt ro-
bustly, with little data, and in a short time, to new scenarios and users. Many
applications, such as autonomous driving, will benefit from such algorithmic
improvements.

4.1. Future trends

Based on the experience gained through the doctoral research, some main
trends in the field of sensing applications can be foreseen. This could be the
object of further research.

Emerging meta learning strategies: in recent years, AI research
has focused on Implicit Neural Representation (INR). In this regard,
meta learning can be extremely useful for context and sparse data
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generalization [106]. The idea behind INRs is to represent signals as
continuous functions parameterized by a neural network that maps the
domain to the codomain, e.g., mapping the coordinates of an image to
their pixel values. One of the main advantages of INRs is that they no
longer constrain data to their spatial representation but parameterize
them. This can overcome the problem of handling discrete data with
limited resolution, such as audio signals or grids of pixels. Once the
implicit representation of the data is learned, INRs can also be used as
generational models, even in 3-D [107]. In relation to this, meta lear-
ning can be used to generalize on rarer but important representations
based on prior information obtained from available data. In this re-
gard, architectures capable of automatically and efficiently extracting
information from available data, such as Transformers, are beginning
to be used as meta learners [108].

The forecast is that meta learning will be heavily employed for data re-
construction and generation, especially through INRs. This is because
information acquired from other contexts can be effectively employed
to learn parametric representations of the data that do not overfit indi-
vidual samples. This could be an important part of the next generation
of image and video AI generators.

Sensor applications and context learning: in many industrial ca-
se studies nowadays, it is essential to make real-time decisions using
information from a large number of sensors and a large amount of data.
A prime example is autonomous driving, where passenger safety may
depend on decisions made in split-second moments. Normally, informa-
tion collected from various sensors is processed, fused, and processed
in part by ML algorithms to speed up decisions [109, 110]. In parti-
cular parts of the world, such as the United States, self-driving Taxi
solutions already exist. While efficient, such systems have been trained
largely on data collected in driving and traffic scenarios typical of the
geographic area. This means that in other areas of the world with dif-
ferent driving and road conditions, such solutions may not be viable.
Rather than training the models from scratch in each geographic area,
information acquired in other scenarios can be effectively employed in a
meta-learning approach to enable faster learning and decision-making
in new contexts. In this way, all sensor applications could leverage a
much larger amount of available information. This can be further en-
hanced by fusion approaches between multiple units of a sensor or types
of sensors, such as radar, LiDAR, and cameras.

The prediction is that, in the short future, it will be possible to genera-
lize to uncommon contexts even while having access to a small amount
of data, thanks to meta learning. This may have great implications for
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society, thanks to autonomous driving, for example.

Edge deployment of context-adaptable solutions: While it will
be possible in the near future, to develop large-scale context-adaptable
solutions, it will also be necessary to have powerful and power-efficient
Edge devices capable of processing information and learning in real-
time.

Such solutions will also need custom methodologies for pruning and
quantizing model parameters so that generalization information is not
lost in the deployment phase. This means that state-of-the-art hard-
ware and potentially neuromorphic computing [111], will be needed to
enable such applications through low inference and scalable production
in the market. On the other hand, specific model compression techni-
ques, such as pruning and quantization, will have to be well adapted to
meta learning to avoid the loss of valuable generalization information
during deployment. Algorithms that pose meta learning goals to avoid
task overfitting and pruning of channels in very deep neural networks
are already being researched [112, 113].

The forecast is that, thanks to the advent of new Edge technologies
and model size reduction techniques geared toward generalization, the-
re will be AI solutions with enormous and robust adaptive capabilities
in the near future. This will make it possible and fast to deploy com-
plex solutions such as autonomous driving in new contexts while also
enabling continuous system evolution and adaptation from newly avai-
lable data.
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Abstract.
Radar-based gesture recognition constitutes an intuitive way for enhan-

cing human-computer interaction (HCI). However, training algorithms for
HCI capable of adapting to gesture recognition often require a large data-
set with many task examples. In this work, we propose for the first time
on radar sensed hand-poses, the use of optimization-based meta-techniques
applied on a convolutional neural network (CNN) to distinguish 16 gesture
sequences with only one sample per class (shot) in 2-ways, 4-ways and 5-
ways experiments. We make use of a frequency-modulated continuous-wave
(FMCW) 60 GHz radar to capture the sequences of four basic hand gestures,
which are processed and stacked in the form of temporal projections of the
radar range information (Range-Time Map - RTM). The experimental re-
sults demonstrate how the use of optimization-based meta-techniques leads
to an accuracy greater than 94 % in a 5-ways 1-shot classification problem,
even on sequences containing a type of basic gesture never observed in the
training phase. Additionally, thanks to the generalization capabilities of the
proposed approach, the required training time on new sequences is reduced
by a factor of 8,000 in comparison to a typical deep CNN.
Keywords: Gesture recognition, Meta learning, Millimeter wave radar

5.1. Introduction

Gesture sensing technology represents a very direct and intuitive method
of human-computer interaction (HCI). Under the needs of users and sys-
tem interface architectures, hand movements can be identified and tracked
through the use of a wide variety of sensors and detection algorithms [1].
Conventional methods for the classification of gestures involve the employ-
ment of camera sensors for optical images or time of flight (ToF) images
for depth information. These sensors allow a complete and touchless unders-
tanding of the performed gestures, but they usually lead to privacy issues
and poor performance in the presence of intense light [2, 3, 4]. In contrast,
Radio-based sensing can be efficiently used to estimate movements and poses
of subjects even through walls and obstructions [5]. Through Wi-Fi techno-
logy, the hand-pose estimation can be addressed with very high performance
even in a cross-domain application, where the user’s location, orientation,
and environment can vary considerably [6]. However, Wi-Fi-based sensing
systems require often to develop high output power in the RF range and
a module in continuous working operation to exploit the functionalities. To
overcome these challenges, the use of radar sensors for this application is be-
coming a widely adopted practice [7]. Among the various radar modulation
techniques, FMCW is a particularly suitable approach, thanks to its capa-
bility of providing simultaneously accurate range and Doppler information
of objects and people located in the field of view [8, 9, 10, 11]. Excellent
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Figure 5.1: The in-training evaluation of the meta-model is performed after
each meta-iteration (adaptation of the CNN to the new extracted infor-
mation) on both a train and a test sampled tasks. Network generalization
capability is assessed through bar plots built on batches of tasks as the meta-
iterations progress.

results in the classification of gestures through range-Doppler images are
achieved in [12], using the BGT60TR13C FMCW radar sensor [13]. The
authors in [12] use the domain adaption applied to a CNN to minimize
the differences among users’gestures in both learning and application stages.
Through this approach, an average accuracy of 98.8 % is achieved on seven
gestures performed by ten different users. Even though the state-of-the-art
deep learning methods like [12] achieve excellent accuracy and robustness
on radar-based gestures recognition, they demand a large amount of data
to successfully train the detection algorithms [14]. This suggests that an in-
terface based on such systems, would not be able to learn promptly how to
distinguish new types of movements.

In contrast to the conventional deep learning approach, the meta-learning
(Meta-L) is designed to counter the problem of huge data demand. It is based
on multiple-episode few-shot optimization (tasks), which considers different
learning objectives in many training steps, to extract general information
from available data and efficiently solve series of problems by learning how
to learn [15, 16]. The class of optimization-based Meta-L algorithms ex-
ploits the model’s parameters and gradient propagation among several tasks
(meta-iterations) to accomplish the generalization goal. In the inner loop of
each meta-iteration, a model tries to solve an N -ways task, where N is the
number of classes, that are randomly sampled from a training set of data.
An example (1-shot) called support is then sampled for each class and used
for the training. Some algorithms such as Model Agnostic Meta-Learning
(MAML) [17], require additional examples per class called query for the eva-
luation of inter-tasks generalization performance after every meta-iteration.

In this paper, we suggest for the first time, the application of optimization-
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based meta-learning techniques to classify sequences of hand gestures using
only one sample per class. We make use of the radar range information only,
in the form of RTMs of four different basic gestures, to minimize preproces-
sing and the CNN input data complexity. We evaluate the models with a
common in-training procedure (Fig. 5.1) and test them on a sufficient num-
ber of new tasks to prove the robustness of the approach. With the use of
only one sequence of gestures instance and over 50 test examples per class,
we achieve an accuracy of 94 % even in the 5-ways experiments. Finally, we
compare the performance results of the Meta-L approach with the ones of
a conventional CNN trained on a configuration of gesture sequences. We re-
port how the potential offline adaptation to new gesture sequences with the
Meta-L model leads, in comparison with the traditional CNN, to an average
training time reduction of 4 orders of magnitude.

5.2. FMCW Radar Processing

5.2.1. Radar Sensor

To capture gestures, we use the BGT60TR13C FMCW radar sensor [13].
The BGT60TR13C is equipped with one transmit (TX) and three receive
(RX) channels including antennas integrated in package. During operations,
the instantaneous local oscillator and reflected signals from targets are mixed
and provide a resulting signal called intermediate frequency (IF) signal. As
an outcome of its system power mode management and operation optimized
duty-cycle, the device can run at less than 5mW for a detection range up to
5m in smart presence detection uses. Thanks to the center frequency of 60
GHz and a bandwidth of 7 GHz, this radar sensor enables a very high range
resolution sensing (≈ 2 cm). Moreover, time and micro-Doppler [18] analysis
of the IF signal enable the discrimination of elaborate hand gestures with
millimeter accuracy. The BGT60TR13C represents hence, a low-power and
small-size solution for short-range sensing applications.

5.2.2. Time-Range Preprocessing

The data is gathered with the 60 GHz radar and then processed. It con-
sists of RTM of four basic gestures [Down/Up, Left/Right, Rubbing, Up/-
Down] with a shape of 62×32 pixels per sample. We used a single RX anten-
na and extracted only the range information to reduce the power consum-
ption and to simplify the preprocessing pipeline. To obtain the representative
RTMs of the gestures starting from the IF signal, we performed the following
preprocessing steps. First of all, we subtracted the mean chirp value from
every data frame (set of chirps). In the next step, to resolve targets over the
range, we computed the first order Fast Fourier Transform (FFT) in the fast
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Figure 5.2: The Range Doppler images (RDI) are obtained through radar
frames (IF signal) preprocessing. The lines of the RDIs with the greatest
intensity are then transposed and stacked in time sequence, to obtain the
RTMs.

time direction. Then, to derive the Doppler information, we performed the
second-order FFT in the slow time direction.

The steps mentioned above allowed us to generate the sequence of the
range-Doppler images (RDI) for every gesture. RDIs were then employed to
produce the range-time images. The procedure of obtaining the range-time
image is as follows:

1. identify the point with the highest intensity in the RDI;

2. cut the row in which the point with the highest intensity is localized.
This row corresponds to the distance of the object from the radar in
the given time step;

3. transpose each row and stack them together to form the range-time
image.

The adopted preprocessing procedure in its steps is shown graphically in
Fig. 5.2.

To ensure a high level of variance of the dataset, the gestures were per-
formed by five different persons and collected in multiple environments. The
experimental setup and the employed sensor (BGT60TR13C ) are shown in
Fig. 5.3.

Each gesture was recorded independently, in a time slot of 3.1 seconds.
To diversify the gesture occurrence within the recording window, a random
shift in time and range was also applied to every RTM. An example of RTM
for each of the four basic gestures is shown in Fig. 5.4. Single gestures were
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Down/Up gesture

BGT60TR13 radar system

Figure 5.3: Experimental Setup (Down/Up gesture) and BGT60TR13C.
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Figure 5.4: Examples of generated RTMs corresponding to the four gestures.

then stacked in channels to make sequences of two and used to generate the
meta-dataset for our experiments (section 5.3.2).

5.3. Meta-Learning Based Network

5.3.1. Models and Training Procedure

As mentioned previously, we propose using an optimization-based meta-
approach applied on a CNN topology, to recognize hand gesture sequences
with only one sample per class in the 1-shot 2-ways, 1-shot 4-ways and 1-shot
5-ways experiments. For all the experiments, we used a CNN topology with
four convolution layers of 128 filters each, for the extraction of the visual
features, a kernel size 3×3 and a stride of size 2. All convolutional layers are
followed by BatchNormalization, to speed up the deep network training, and
by rectified linear unit (ReLU) activation function. The classification is then
performed by a fully connected layer with a Softmax activation function. The
chosen cost function is Sparse Categorical Crossentropy while the optimizer
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is Adam. For each set of experiments, belonging to a defined number of
ways, we employed three traditional optimization-based meta algorithms:
Reptile [19], MAML second-order [17] and MAML first-order approximation.
Additionally, we adopted a version of the second-order MAML algorithm that
uses Multi-Step Loss Optimization (MSL), Derivative-Order Annealing (DA)
and Cosine Annealing (CA) to stabilize inter-tasks training, as defined by
the authors in [20]. The evaluation of the models is done after each meta-
iteration, on a task sampled from the training set and another one sampled
from a set of classes never seen by the model (test). For each S number
of meta-iterations, a box-plot is built on the distribution of the obtained
accuracy values. The trend of inter-tasks accuracy values in the form of box
plots for sets of meta-iterations facilitates estimating the in-training learning
capability of the algorithm. The employed in-training evaluation procedure
is shown as part of the meta-approach schema in Fig. 5.1.

5.3.2. Meta-Dataset and Tasks Definition

Starting from the dataset D, containing the gathered data of the four
basic gestures [Down/Up, Left/Right, Rubbing, Up/Down] (section 5.2), we
generated a meta dataset Dm with 16 classes, i.e. all the possible combina-
tions of the four initial classes. Dm consists of 51 samples per class, where
every instance is a sequence of two RTMs that are randomly sampled from
D, augmented and then stacked in the 3rd dimension (channels). Dm is then
split into two sub-datasets, Dm-train and Dm-test. All the examples of the 7
classes that contain the basic ’Left / Right’ move are included in Dm-test so
that they never appear in the training phase and therefore can be used to
test the algorithm on never seen before gestures. Dm-train contains instead
all data belonging to the other 9 classes, which correspond to all the com-
binations of the other three basic gestures. An example of possible training
and test tasks in the 1-shot 2-ways experiments, sampled respectively from
Dm-train and Dm-test, is shown in Fig. 5.5.

5.4. Experimental Results

5.4.1. Models performance

For each task in every experiment, the convolutional networks were trai-
ned for 4 epochs with inner-loop batches of size 2. The best performance re-
sults were obtained with a meta-batch of size 1 in the outer loops (inter-tasks
training). An internal learning rate in the range [5− 10]e−4 and an external
one of 1e−4 were adopted for all MAML experiments. For the MAML ver-
sion that uses cosine annealing (CA), an initial outer learning rate of 2.5e−4
with a decay step every 1/4 of the total meta iterations was used. For all
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Figure 5.5: 1-shot 2-ways meta-experiments. Training and test tasks exam-
ples.

the Reptile simulations instead, an internal learning rate of 1e−3 and a meta
step-size for the outer loop of 0,25 have been employed. All hyperparameters,
except for the outer learning rate in MAML + CA + MSL + DA, were kept
constant throughout the entire meta-training procedure. The chosen number
of meta-iterations was respectively 100 for the 2-way experiments, 3,000 for
the 4-ways, and 10,000 for the 5-ways. Only the Reptile algorithm requi-
red 15,000 meta-iterations in the 5-way configuration to achieve a stationary
inter-tasks accuracy. The inter-task generalization capacity during training
was evaluated at the end of each meta-iteration following the procedure des-
cribed in section 5.3.1. All experiments were performed using a Tesla P4
GPU [21, 22] and the performance of the models in terms of inter-task ge-
neralization was evaluated as the average percentage classification accuracy.
All experiments were reproduced 3 times each.

Tab. 5.1 and Tab. 5.2 present respectively, the inter-task percentage me-
dian accuracy and interquartile range (IQR) values achieved with all the
combinations of employed algorithms and chosen number of ways. The lis-
ted values in all the tables represent the mean values obtained over all the
reproductions of each experiment for the first and last meta-tasks batches.

Fig. 5.6 shows the accuracy trend over meta-iterations as a sequence of
box plots of 1,000 samples each, for the MAML + CA + MSL + DA 1-shot
5-ways experiment. The evaluation done on the training tasks is shown in
red in the upper subplot of Fig. 5.6, while the evaluation on test tasks is
shown in blue in the bottom subplot. The lighter colored lines in the box
plots represent the median value of the accuracy (50th percentile) in the set
of meta-iterations, while the green triangles indicate the average value.

All the trained models were further tested on 250 tasks sampled from
Dm-test. For each task, one sample per class was used to train the model and
10 for the test. This means that e.g. in the 5-ways experiments, 5 training
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Figure 5.6: In-training evaluation of the inter-task generalization capacity
for MAML + CA + MSL + DA in the 5-ways experiment. Evaluation on
training tasks (upper subplot) and test tasks (bottom subplot).

samples and 50 test samples were used. The achieved percentage inter-task
mean accuracy values, averaged over 3 experiments reproductions are pre-
sented in Tab. 5.3.

As can be seen numerically from the tables, the MAML + CA + MSL
+ DA algorithm achieves the best performances regardless of the number of
ways. The application of the second gradient in MAML favors the achieve-
ment of a greater generalization and therefore of higher inter-task accuracy
compared to the first-order algorithms. Furthermore, the outer-loop update,
done on a query sample, increases the algorithm’s robustness thus redu-
cing the dependence on individual tasks. First-order algorithms (Reptile and
MAML 1st order) on the other hand, achieve very good results in the 2-way
experiments but lead to significantly lower results in more complex expe-
riments (4-ways and 5-ways). This is due to the first-order approximation
of the gradient and therefore to the lack of part of the information, which
becomes significant in more complex experiments.

For all the experiments, the increment in the median and mean accuracy
(Tab. 5.1), and the reduction of whiskers and quartiles of box plots with
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Table 5.1: Inter-task percentage median accuracy obtained on test tasks, on
an average of 3 experiment reproductions for the first and last meta tasks
batches. * In the Reptile 5-ways experiments (first batch: 0 - 1,499 , last
batch: 13,500 - 14,999).

1-shot Experiments - Median Accuracy

Algorithm 2-ways 4-ways 5-ways*
0-24 75-99 0-299 2700-2999 0-999 9000-9999

Reptile 91.67 % 94 % 81 % 90 % 70.67 % 72.67 %
MAML 1st 94.67 % 97 % 76 % 90.67 % 72 % 85 %
MAML 2nd 95.67 % 98 % 78 % 92.67 % 86 % 96 %

MAML 2nd –
CA+MSL+DA 96.33 % 98 % 82.67 % 96 % 87.33 % 96 %

Table 5.2: Inter-task interquartile range (IQR) measures, obtained on test
tasks, on an average of 3 experiment reproductions for the first and last meta
tasks batches. * In the Reptile 5-ways experiments (first batch: 0 - 1,499 ,
last batch: 13,500 - 14,999).

1-shot Experiments - Interquartile Ranges

Algorithm 2-ways 4-ways 5-ways*
0-24 75-99 0-299 2700-2999 0-999 9000-9999

Reptile 12.33 % 6.33 % 16 % 12.33 % 19.33 % 16.67 %
MAML 1st 5 % 1.67 % 20 % 13.33 % 20 % 18.33 %
MAML 2nd 4.33 % 1 % 12.33 % 9 % 16.67 % 8 %

MAML 2nd –
CA+MSL+DA 3.67 % 1 % 30 % 9.33 % 16 % 6 %

Table 5.3: Inter-task percentage mean accuracy obtained on 250 test tasks
for each experiment and number of ways on an average of 3 reproductions.

1-shot Experiments - Test Accuracy
Algorithm 2-ways 4-ways 5-ways

Reptile 92.59 % 86.22 % 72.36 %
MAML 1st 96.81 % 89.37 % 84.88 %
MAML 2nd 96.87 % 91.09 % 93.20 %

MAML 2nd –
CA+MSL+DA 97.12 % 94.67 % 94.12 %
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Table 5.4: Performance comparison of traditional and Meta-L CNNs for the
4-ways tasks. Training of both models done on a five cores CPU.

Trad. CNN Meta-L CNN
Training samples 1000 8 4

Test samples 200 200 200
Avg. train. time 56 min 39 min 1,580 msec 400 msec
Test accuracy 98.85 % 93.67 % 98.32 % 93.47 %

progressing of meta-iterations (Tab. 5.2), represent the models ability to
learn faster to solve new tasks. This means that with time, the CNN learns
how to solve new tasks with better performance than before, thanks to the
context information extracted from the previously faced tasks.

To exhibit the versatility of the meta-approach in adapting to new tasks,
we compared our best model in the 1-shot 4-ways, with the optimized CNN
defined in [23], that has been used to classify the four basic gestures dataset
employing a conventional deep learning approach. In our case, we trained
this traditional CNN on tasks sampled from Dm-test, using 1,000 sequences
of two gestures for training and 200 for testing. Through a transfer learning
approach on new tasks, this model fails to reach an appreciable accuracy va-
lue (over 85 %) despite the significant amount of training data. Consequently,
each new training is done starting from a random initialization of the model
parameters.

In Tab. 5.4, the average performance values of 3 independent tests of the
traditional CNN are compared with the ones achieved by testing the best
MAML + CA + MSL + DA model on 50 samples per class and over 250
tasks. The training of both models in this case has been done using a 5 cores
CPU. The performance values achieved by the traditional CNN are presented
in the relative two sub-columns of the table. The maximum achieved test
accuracy and its required training time are listed in the first sub-column.
The second sub-column shows instead, the time required to reach an average
test accuracy comparable to that of the 1-shot Meta-L CNN. Besides, we
also tested how many training shots per class are needed for the meta-model
to achieve a prediction accuracy in the order of the traditional CNN.

As can be observed, the optimized CNN achieves greater accuracy on the
test samples, at the expense of a large amount of data and a long adaptation
time to new tasks. The meta-model, on the other hand, thanks to the pre-
acquired knowledge during training, is capable of adapting to new contexts
with only one sample per class and in a very short time.
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5.5. Conclusion

This paper demonstrates that the use of optimization-based meta-techniques
can bring significant benefits for the recognition of FMCW radar-based hand
gesture sequences. The inter-tasks learning approach considerably enhances
the model’s ability to adapt to new potential gestures or performing users.
The experimental results show how even with a single sample per sequence,
it is possible to achieve an inter-task accuracy of over 94 % in the 5-way setup
on new test tasks. The outcomes also highlight how the Meta-L approach
can lead to an accuracy comparable to that of a traditional CNN with only
a few more samples per class. Furthermore, it is shown how the adaptation
of the obtained models to new tasks can take less than half of a second when
performing the experiments on a 5 cores CPU. Future work will focus on the
application of meta-learning for the recognition of a greater set of gestures
and on an online demonstrator to test the approach.
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Abstract. Technological advances and scalability are leading Human-
Computer Interaction (HCI) to evolve towards intuitive forms, such as th-
rough gesture recognition. Among the various interaction strategies, radar-
based recognition is emerging as a touchless, privacy-secure, and versatile
solution in different environmental conditions. Classical radar-based gestu-
re HCI solutions involve deep learning but require training on large and
varied datasets to achieve robust prediction. Innovative self-learning algo-
rithms can help tackling this problem by recognizing patterns and adapt
from similar contexts. Yet, such approaches are often computationally ex-
pensive and hardly integrable into hardware-constrained solutions. In this
paper, we present a gesture recognition algorithm which is easily adaptable
to new users and contexts. We exploit an optimization-based meta-learning
approach to enable gesture recognition in learning sequences. This method
targets at learning the best possible initialization of the model parameters,
simplifying training on new contexts when small amounts of data are availa-
ble. The reduction in computational cost is achieved by processing the radar
sensed data of gestures in the form of time maps, to minimize the input
data size. This approach enables the adaptation of simple convolutional neu-
ral network (CNN) to new hand poses, thus easing the integration of the
model into a hardware-constrained platform. Moreover, the use of a Varia-
tional Autoencoders (VAE) to reduce the gestures’dimensionality leads to
a model size decrease of an order of magnitude and to half of the required
adaptation time. The proposed framework, deployed on the Intel® Neural
Compute Stick 2 (NCS 2), leads to an average accuracy of around 84 % for
unseen gestures when only one example per class is utilized at training time.
The accuracy increases up to 92.6 % and 94.2 % when three and five samples
per class are used.

Keywords: Artificial neural networks, Edge computing, FMCW, Intel
Neural Compute Stick, Knowledge transfer, Meta learning, Human computer
interaction, Radar, Variational autoencoder.

6.1. Introduction

HCI represents a primary field of study to enable the communication
between humans and systems [1]. A classic and widely used HCI method
exploits the conductivity of a user’s finger or skin touch with a capacitive
surface [2, 3]. Although a precise technology, this approach requires direct
contact with the user and may not be versatile in specific contexts [4]. In re-
cent years, the development of technologies such as optic or radio-frequency
has radically increased the interfacing capability in all application areas [5].
Many advances in the field focus on vision-based interfacing, i.e. the use of
camera sensors such as Red Green Blue (RGB) and Time of Flight (ToF)
[6, 7, 8, 9]. In Fact, Camera sensors bring the advantage of touchless com-
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munication. Nevertheless, Camera-based solutions lead to potential privacy
issues and failures with poor light conditions in the environment. In com-
parison, radio-based methods are not directly affected by light and can also
be used to estimate user actions through walls or barriers [10]. Wi-Fi-based
systems can be robustly deployed in the HCI context even when the usage
environment or the user orientation changes considerably [11, 12, 13]. Yet,
Wi-Fi technology often requires the generation of high output power and a
continuously running module to ensure operation. In contrast to this, radar
technology, thanks to a more adaptable system power mode management, is
finding increasing interest in the field of HCI applications [14]. Among the
various radar modulation techniques, the Frequency Modulated Continuous
Way (FMCW) is particularly suitable in the context of action recognition by
providing simultaneously accurate information of the range and the velocity
of targets [15, 16].

Among the various interfacing approaches, hand gesture represents a na-
tural and easily interpretable communication mean [17, 18]. For this parti-
cular purpose, radars find wide use and can even be miniaturized and inte-
grated into smartphones or other portable devices, such as the Google Soli
[19]. State-of-the-art technology can allow hand movement sensing with high
spatial resolution but must be coupled with an action recognition algorithm
to enable HCI communication. Camera-based systems can find solutions ba-
sed on computer vision techniques, such as skin color, skeleton, or motion
recognition [20]. For radar applications, however, given the difficulty of re-
cognizing the shape and contours of the hands, Deep Learning solutions are
often adopted [21].

Machine learning finds applications in the most varied research areas,
both for direct task solving and as a powerful computational tool for speeding
up and modeling processes. Multiple topologies such as VGGNet [22], ResNet
[23] and Inception [24] have been developed in the recent years to solve com-
plex tasks with very high accuracy. Such networks, however, to be trained
and adapted, require a fair amount of computing power and resources, which
is not suitable for deployment on most edge devices [25]. Appropriate mo-
dels for edge devices require specific topologies and learning processes, often
leading to a trade-off between performance and adaptability. Research in the
edge domain focuses mainly on two areas, namely, the topologies optimiza-
tion for deployment and post-training adaptation [26]. Effective methods for
reducing the size of models and the computation parameters include the use
of information compression methods such as SqueezeNet [27] and depth-wise
separable filters like the MobileNets [28]. Post-training model optimization
can instead be achieved without important loss of performance, by emplo-
ying techniques like quantization [29], factorization [30], distillation [31] and
pruning [32]. Edge efficient models development has recently led to an in-
dustry movement toward such a framework. Indeed, devices with embedded
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deep learning components account for a large portion of state-of-the-art HCI
and Internet of Things (IoT) solutions [33]. In most of today’s industrial ap-
plications of deep learning, however, models and related learning algorithms
are tailor-made for specific tasks [34, 35]. While application-tuned models
can achieve outstanding performance in complex and multidimensional pro-
blems, they also imply visible adaptability and interpretability weaknesses
[36, 37]. The target algorithms often employ a lot of data to achieve high
and robust performance. In addition, data labeling can be expensive becau-
se it may require experts, or might be sparse and depending on real-time
applications [38].

A relatively new branch of machine learning, called Meta-Learning [39]
has emerged to find proper solutions to problems where the adaptability
on few data is essential. The idea behind Meta-Learning is to use contex-
tual information, so-called meta-knowledge, to build a more robust model,
easily adaptable to new tasks with little data. A specific subclass of meta-
models called optimization-based [40] allows the transfer of meta-information
between tasks via gradient method or parameters averaging. The general
optimization-based approach is to learn, for a set of tasks, the best possible
initialization of the parameters of a model, to make it easily adaptable in new
contexts. The optimization is usually performed in the form of an episodic
adaptation within two iterative steps. In base learning (inner-loop), a model
learns how to solve an N-ways task, where N is the number of classes ran-
domly sampled from the large set of training classes (if classification). In the
outer loop, called meta-learning, an algorithm adapts the model following a
generalization learning objective. The examples (shots) used in the inner loop
are called of support, while the data used with the objective of generalization
are called of query. While many meta-learning techniques rely on complex
topologies and forms of gradient transmission to achieve high-performance
[41, 42, 43], optimization-based techniques, given their generality, can enable
the deployment of optimized models on current edge technologies.

In this paper, we propose a meta-learning optimization-based approach
that enables the fast model adaptation on new gestures also at the edge.
Radar-based gesture recognition in short-range applications (in the range of
a few cm) represents a potential method of communication or interfacing with
portable systems such as smartphones. Depending on the desired application,
fast adaptation to new gestures or data may be essential. This approach can
be useful not only for recognizing new action types, but also for adapting to
individuals with motor disabilities or visual impairment, who are unable to
perform an action in a conventional way.

We first design a radar-based setup and preprocessing suitable for the
meta-learning context. Using the sensor BGT60TR13C FMCW [44] we gather
data for a total of twenty hand gestures, performed by five users in three dif-
ferent environments. The collected raw data follow a definite frequency-based
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Figure 6.1: Block Diagram of the proposed model. For each gesture, the se-
quence of raw radar frames is initially processed in frequency. It is then elabo-
rated and concatenated in the time domain to obtain the range, velocity, and
azimuth angle of arrival information of the targets. A VAE, pre-trained on
12 training gesture classes, compresses the three-channel image into a cons-
trained multivariate latent distribution of dimension 15. The meta-algorithm
training is done on a sequence of randomly sampled tasks, exploiting the sup-
port and query data in an N-ways K-shots approach. As the meta-iterations
progress, the adaptability performance is assessed on tasks sampled from the
8 test classes.

preprocessing and are then elaborated on the time axis for dimensionality
reduction without relevant information loss. Then, employing Model Agnos-
tic Meta-Learning (MAML) [45] as the base algorithm, we introduce some
methods to increase the generalization capabilities of the model over new
tasks. Respectively we introduce dynamic metaclass weighting (DMCW),
task-specific gradient clipping (TSGC), and evaluation-based Gaussian noi-
se summation (EGNS). We then describe how, by using part of a pre-trained
Convolutional Variational Autoencoder (Conv-VAE) in the classifier, we can
greatly reduce the size of the meta-model without a major loss in generaliza-
tion performance. The block diagram of the proposed approach is depicted
in Fig. 6.1.

We then compare the achieved results with other state-of-the-art meta-
learning algorithms, showing how our solution leads to an optimal trade-
off between network size, accuracy, and latency time. Finally, we perform
an offline adaptation of the base model on Raspberry® Pi4 with Intel®

Neural Compute Stick 2 (NCS 2), to enable the embedded application and
the fine-tuning on eight defined test gestures. In this context, the training
time required to tune the model to a new task on Raspberry® Pi4 and
the inference time per single prediction on NCS 2 are provided. The main
contributions of this paper are as follows:
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1. Implementation of a proof-of-concept user-definable radar-based hand
gesture recognition system at the edge. To the best of our knowledge,
the first implementation at the edge in the field of radar-based user-
definable gesture recognition.

2. Use of a specific preprocessing aiming at simplifying both time domain
dependency and computational complexity.

3. Conceptualization of some techniques aimed at increasing the genera-
lization capability of the algorithm on unseen gestures.

4. Design of a dimensionality reduction method, through a Conv-VAE,
suitable for the optimization-based meta-learning at the edge.

6.2. Related Works

In this section, we first analyze both general and radar-based methods for
hand gesture recognition. We then focus on the specific works that involve
the use of little training data, such as meta-learning.

A large part of the literature focuses on the use of vision-based techni-
ques for gesture recognition [46]. Sagayam et al. [47] proposed a method for
interpreting and classifying RGB Camera-based hand gestures using a 1-D
hidden Markov Model (1-D HMM). Instead of complex dynamic program-
ming methods, a heuristic method called Artificial Bee Colony (ABC) is used
for the 1-D HMM optimization. The presented algorithm leads to accurate
and fast models compared to other state-based methods. The state-based
approach, however, can be too slow and unsuitable for adaptation in new
contexts. De Smedt et al. [48] presented a method for classifying dynamic
hand skeletal data using the linear Support Vector Machine (SVM). Kine-
matic descriptors of gestures are extracted from the input data and then
statistically and temporally coded. The pre-segmented data are then fed to
the SVM for recognition. The method leads to a very low computational
latency in all experiments and great performance on various datasets, but
it is highly dependent on the time encoding. Liao et al. [49] illustrated a
system for hand gesture-based alphabet recognition using both RGB and
depth information. The Hough transform applied to the depth information
is used to remove the background from the color images. The feature extrac-
tion is done through a Double-Channel Convolution Neural Network (DC-
CNN). The method achieves robust performance on a large dataset but, the
multi-channel approach makes it unsuitable for recognition based on other
classes of sensors. Tran et al. [50] proposed a method that uses an RGB-D
camera and a 3D Convolution Neural Network (3DCNN) ensemble to accura-
tely and robustly recognize both gestures and fingertip position in real-time.
Recognition is achieved through the hand skeleton-joint extracted by the
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recordingsín-depth information. The model leads to a satisfactory accuracy
of 97.12 % on the test data. Despite the accuracy, the method is compu-
tationally expensive and complex to adapt to new gestures, such as those
featuring finger-tip oscillations. Azad et al. [51] presented a method for clas-
sifying sequences of hand depth maps by analyzing and sampling temporal
information at various levels. Gesture features in the form of spatiotemporal
information are derived using Weighted Depth Motion Maps (WDMM). The
extracted information is further reduced by Principal Component Analysis
(PCA) and classified by a single hidden layer feed-forward neural network
(SLFN) with an Extreme Learning Machine (ELM). Their proposed method
achieves satisfactory results in three different datasets, outperforming the
results obtained by deep learning methods. Although this algorithm is less
computationally complex than most deep models, its architecture is also clo-
sely related to the nature of the data and difficult to generalize to other types
of input.

Other classes of sensors used for touchless gesture recognition solutions
involve ultrasonic sensors and Wi-Fi technology. Das et al. [52] explored the
use of ultrasonic sensors for gesture recognition as low power and low-cost
alternative to optical sensors. The classification is achieved by combining a
CNN and a Long Short-Term Memory (LSTM) for both spatial and temporal
feature extraction. Ultrasonic sensors can represent an alternative approach
to radars but, if compared to the latter, can be subject to interference phe-
nomena and not always application-adaptable. Zheng et al. [53] presented
a system for gesture recognition via Wi-Fi that enables adaptability in va-
rious domains (i.e. orientation of people, locations, and environments). The
method exhibits zero-effort cross-domain adaptability employing a domain-
independent body-coordinate velocity profile (BVP) estimation method. A
Deep Neural Network (DNN) trained on a set of BVPs thus allows for ro-
bust recognition of as many as 15 hand gestures across domains without
re-training needs. Despite the versatility of the approach, the method still
requires 5,000 samples for training and is not easily adaptable to new types
of gestures.

The literature on recognition using radar sensors mainly focuses on Dop-
pler or FMCW modulated radars.

Skaria et al. [54] illustrated a method for classifying 14 types of gestures
captured by a Doppler radar via deep CNN. The radar device employed is a
miniaturized, low-cost dual-channel receiver model. To successfully differen-
tiate among Doppler radar sensed gestures, the phase difference between the
two antennas is exploited to infer the angle of arrival (AoA). The method
shows a classification accuracy of 95 % on the test and a clear differentia-
tion between classes. However, Doppler radars, due to their limitation in
spatial resolution, find limited use for gesture recognition commonly emplo-
yed for HCI. Lee et al. [55] presented a method to improve the prediction
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accuracy in hand gesture recognition by BGT60TR13C FMCW using deep
learning. The algorithm uses domain adaptation to address the problem of
gesture misrecognition due to performance differences as users vary. The
information extracted from the FMCW radar is frequency processed to ob-
tain Range-Doppler Maps (RDMs). A 3D-CNN with an Inception structure
processes the spatio-temporal sequence of the RDMs for classification. In
parallel, an adversarial domain discriminator is used to minimize the diffe-
rences between gestures performed by different users. With this method, the
accuracy of 98.8 % is achieved on seven gestures performed by ten users. The
domain adaptation represents a powerful generalization tool in the presence
of few data but requires a related source domain rich in labels to succeed.
Chmurski et al. [56] depicted how a neural network with depthwise separa-
ble convolutions can lead to high accuracy values for FMCW radar-based
gesture recognition while operating in a low-power and resource-constrained
environment. The model, built on eight hand gestures is optimized and de-
ployed on the Coral Edge TPU Board. This approach although efficient is
hardly adaptable to new actions.

In recent years, HCI research is evolving towards the adaptability of sys-
tems in new contexts and with little data. Rahimian et al. [57] presented
a class of few-shot learning architectures for gesture recognition via elec-
tromyography. The designed approach succeeds in the generalization with
only a few examples per gesture by combining temporal convolution with an
attention mechanism using a meta-learning approach. The contextual infor-
mation acquired with experience allows the model to adapt quickly even to
new gestures which have never been observed in the training phase. Lu et al.
[58] illustrated a one-shot method for gesture recognition using 3D-CNN, by
exploiting transfer learning methodology from models trained with big da-
tasets to strengthen the one-shot predictor. This approach, tested on several
Vision benchmark datasets, leads to good classification and latency results.
Madapana et al. [59] explored Hard Zero-Shot Learning (HZSL) on vision-
based datasets for dynamic gesture recognition. The work tries to solve the
classification problem by exploiting only limited training information in the
form of semantic description. Although the achieved performance is far from
direct data classification, this paper shows that even minimal information
can lead a model to learn how to generalize.

Some work focused directly on the use of self-learning techniques for
radar-based gestures. Fan et al. [60] have shown how a meta-learning ap-
proach can bring high generalization benefits for radar-based gesture recog-
nition using FMCW modulation. The information obtained by radar for a
set of seven gestures is preprocessed in the form of time maps to extract
the information of range, velocity, and angle of arrival of the hands. The
data is then fed in the form of tasks to an LGM-Net-based architecture [61].
The method leads to an accuracy of 97.3 % on the 2-ways task employing
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5 test samples per class. However, the multi-branch structure and the ela-
borate learning process make it computationally complex. Zent et al. [62]
have recently presented a work that focuses on gesture recognition using a
Doppler sensor. The information is processed as micro-Doppler spectrograms
to map over time the change in frequency caused by the hand displacement
atop the sensor. Rather than learning a direct mapping between gestures
and labels, the presented method, called Weighting Network, based on Rela-
tion Networks [41], learns to compare the test spectrograms with those used
for training. The presented solution has the great benefits of not requiring
adaptation training for new gesture types and a relatively small number of
parameters. However, the architecture needs inherently to learn the direct
relationship between the support and query examples in the comparison mo-
dule. This characteristic, intrinsic to Relation Net-based models, can lead as
exposed in [63] to lack of adaptation in the testing phase compared to other
methods. Further, in [64], it has been shown how an optimization-based
method can be effectively employed for HCI via FMCW radar by exploiting
simplified interfacing based on hand gesture sequences and a classical CNN
for classification.

6.3. System Description and Radar Preprocessing

In this section, we present the various components of the system (i.e.,
hardware details, operating parameters, and recording setup) and the pro-
posed preprocessing of the data collected via radar.

6.3.1. General Overview of the Proposed Framework

The proposed framework is shown in Fig. 6.2. First of all, the raw radar
signals are preprocessed to extract both frequency and time information.
The data obtained for each gesture in the shape of range, Doppler, and AoA
temporal maps, are then used as meta-dataset for the optimization-based
meta-learning approach. Twelve types of gestures are used to train the clas-
sifier, whereas the other eight are utilized for testing. After the training pro-
cess, the model is deployed through the Raspberry® Pi4 on the NCS 2 and,
adapted on new test gestures to exhibit the proof-of-concept for adaptability.

6.3.2. Radar Board

In this work, gesture sensing is performed by the BGT60TR13C FMCW
radar sensor [44], manufactured by Infineon Technologies AG. The sensor
is equipped with a Transmit (TX) and tree Receive (RX) channels with an
included antenna integrated into the package. The information is proces-
sed channel-wise in several steps, through the board to which the sensor is
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Figure 6.2: Data acquisition through FMCW radar, signal preprocessing,
meta-dataset generation, and training and testing process for the proposed
meta-learning-based hand gesture classifier. The orange-colored parts are
hardware related. In yellow is the data processing, while in green is the
classifier part. The frequency analysis is enabled by Fast Fourier Transform
(FFT).

connected Fig. 6.3. The operating principle of the sensor relies on linear fre-
quency modulation of continuous waves. The TX transmits periodic signals
called chirps and, the RXs receive signals reflected from the targets located
in front of the sensor. During operations, the instant local oscillations are
mixed with the reflected signals and result in an output signal called the In-
termediate Frequency (IF). The IF signal is then passed to a baseband chain
and digitalized through an analog-to-digital converter (ADC) with 12-bit
resolution.

The BGT60TR13C is a miniaturized solution with a center frequency f0
of 60 GHz and a bandwidth of about 6 GHz that enables a high range solution
(≈ 2 cm). The phase analysis of the IF signal, exploiting the micro-Doppler
effect [65], can also enable the discrimination of displacements with milli-
meter accuracy. Thanks to the 3 RX channels orthogonal to each other, the
radar enables the estimation of both azimuth (between 65 and -65 degrees)
and elevation (between 45 and -45 degrees) AoA of targets. This system also
features power mode management and an operation-optimized duty cycle
to reduce power consumption to only 5 mW for applications within the 5
m range. The BGT60TR13C represents so, a low-power and miniaturized
solution for short-range sensing applications.
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Figure 6.3: BGT60TR13 Radar System. The radar sensor, is mounted on
top of the board.

6.3.3. Radar Parameters Configuration

The BGT60TR13 system allows to transmit for each so-called radar fra-
me, a sequence of Nc chirps with a single signal duration time tc along the
slow-time dimension. Each chirp also consists of a number ns of samples
along the fast-time dimension. The transmitted signals use the saw-tooth
wave function modulation to enable a linear behavior during the chirp ri-
se phase. For an FMCW radar, the range resolution ∆r and the maximum
detection range Rmax can be derived through the following formulas:

∆r =
c

2Bw
(6.1)

Rmax =
∆r

2
· ns (6.2)

where c is the speed of light and Bw represents the frequency bandwidth
around the central f0 frequency. A bandwidth of 6 GHz, between 57 GHz
and 63 GHz, has been chosen to enable a high range resolution of about
2.5 cm. The number of samples per chirp has been set to 32 for enabling
the detection of targets up to a range of 40 cm. Further, an ADC sampling
frequency Fs of 2 MHz has been chosen not to limit Rmax because of signal
conversion. The velocity resolution ∆v and the maximum detectable velocity
in a given direction Vmax can be computed as:

Vmax =
c

4f0tc
(6.3)

∆v =
Vmax · 2

Nc
. (6.4)

A number of 64 chirps per frame Nc with single signal duration time tc
of 390.4 µs, has been chosen to allow a Vmax of about 3.14 m/s and a ∆v of
about 9.8 cm/s respectively. The parameters used for radar configuration in
the hand gesture sensing application are in Table 6.1.
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Table 6.1: Radar Sensor Parameters Configuration.

Symbol Quantity Value
f0 center frequency 60 GHz
Bw bandwidth [57 – 63] → 6 GHz
Fs sampling frequency ADC 2 MHz
Nc number of chirps 64
tc chirp time duration 390.4 µs
ns samples per chirp 32

Azi.AoA azimuth angle of arrival -65 – 65 deg
fps frames per second 10

6.3.4. Radar Signal Preprocessing

The raw sensed radar data are not easily interpretable due to spatial re-
solution constraints and the influence of noise and environment surrounding
the targets. While it may be possible to develop an application based on
raw data as input, this would involve the training on a large amount of data
that only partially contains the target information. In this work, we propose
to process the signals first in frequency to extract and separate the shifts
in range and velocity caused by the hands located in front of the sensor.
For each detected gesture, the information is processed frame-wise and then
concatenated in time to project the range and velocity contents in the 2-D
plane. In such a way, Range Time Maps (RTM) and Doppler Time Maps
(DTM) are generated. Exploiting the signal sensed by two RX channels, the
AoA azimuth is also estimated via Capon beamformer algorithm [66]. The
azimuth information is then processed and projected on the temporal plane
for each frame to form Angle Time Maps (ATM).

6.3.4.1. Single Frame Preprocessing

For this application, the IF signal SIF (n) for each of the three available
RX channels n ∈ NRX is employed to build a frame. For each n channel,
the data are arranged in a 2-D matrix with slow time for the x-axis (raws)
and fast time for the y-axis (columns). For each frame, by frequency analy-
sis using Fast Fourier Transform (FFT), the Range-Doppler Image (RDI) is
first calculated. The AoA azimuth is then estimated using the Capon algo-
rithm to build the Range Angle Image (RAI). Fig. 6.4 depicts the various
preprocessing steps used to obtain frame-wise RDI and RAI.

The first part of the preprocessing consists of the following steps.

1. First the mean values, computed over the fast time are subtracted
along the slow time axis.
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Figure 6.4: Diagram illustrating step by step the preprocessing used on each
radar frame. In orange are shown the operations performed in the time do-
main, in green those done in the frequency domain, in blue the AoA compu-
tation.

2. The data are then multiplied with a Hanning window along the fast
time to minimize spectral leakage effects for frequency analysis.

3. The 1-D FFT along fast time is executed to extract the range infor-
mation.

4. Hanning windowing is applied along the slow time axis.

5. The 1-D FFT along slow time is performed on data to extract the
velocity information.

6. The moving target indication (MTI) is next applied to discriminate
targets against unwanted background information, aka clutter (6.5).

SIF (n) = α · SIF (n) + (1− α) · SIF (n) (6.5)

where α is a parameter in the range [0 – 1] set to 0.9, and SIF (n) the
updated moving average for each frame.

7. A Constant False Alarm Rate (CFAR) algorithm is used for each chan-
nel n to filter the frequency peaks and increase the Signal-to-Noise
Ratio (SNR).
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To further increase the SNR for the RDI computation, the absolute value of
the average of SIF (n) over the NRX , as shown in (6.6).

RDI =

∣∣∣∣∣ 1

NRX
·
NRX∑
n=0

SIF (n)

∣∣∣∣∣ (6.6)

After using CFAR, the SIF (n) associated with the two RX channels placed
in the horizontal plane is processed by Capon beamforming for the AoA
computation. The absolute value is then calculated and the RAI is generated.

6.3.4.2. Gesture Sensing and Time Projection

Gesture sensing begins when an average SIF for the three RX channels is
higher than a defined threshold, which is computed every time the sensor is
turned on for a new recording session (i.e. new environment or new user). The
threshold is determined as the average value of the last 20 collected frames
(2 s) and it is used for comparison at every timestamp during operation.
A gesture is considered gathered when the threshold is not exceeded for 5
consecutive frames. The recording window has a length of 3.1 s and therefore
contains up to 32 frames for every performed action.

The stored frames, are then preprocessed in the form of RDI and RAI
and mapped into a lower-dimensional space to compute the RTM, DTM and
ATM. For each RDI or RAI, belonging to a sequence of matrices definable
as A : {1, ...,m}× {1, ...,m}× {1, ..., t} → R, where t ≥ 1, the goal is to find
the index (x, y) corresponding to the maximum value amax

x,y .

Am,n =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


where m× n represents the range and Doppler dimensions for the RDI and
range and angle dimensions for the RAI. The information, corresponding to
the distance and velocity of the target from the sensor, is extracted by taking
from the RDI the Colx(A) and the Rowy(A) respectively. The AoA azimuth
is instead extracted from the RAI by taking the Rowy(A). The concatenation
of the obtained rows or columns for the whole gesture duration leads to the
generation of the RTM, DTM, and ATM. Fig. 6.5 illustrates graphically
the principle of range information extraction given a sequence of frames.
Each hand pose is represented by 3-channel information (RTM, DTM, and
ATM). The gestures collected with fewer than 32 frames are expanded via
zero padding at the end of the time sequences. All instances are normalized
channel-wise in the [0 – 1] range.
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Figure 6.5: Example of time projection for an RTM generation.

6.3.5. Recording Setup

In this work, we sensed gestures via radar for a total of twenty classes.
The recording setup for data collection consists of a Raspberry® Pi4 and
the BGT60TR13 board. The radar board is mounted on a tripod through a
3D-printed case. With the defined radar configuration, a maximum detection
range of 40 cm implies the potential use as short-range application only. Such
setup is therefore meant for handheld or turnstile gesture recognition inter-
faces. The setup in its components is depicted in Fig. 6.6. The actions have
been performed by a total of five users and in three different environments
(office, hall, and outdoor). These specific environments have been chosen
among several possible, as they represent three contrasting application con-
texts. In the office, the presence of static furniture and devices placed in
the radar’s field of view can result in added reflections and subsequent noise
in the preprocessed signals. The hall and outdoors instead, represent two
wide environments where, in first approximation, only the arm and poten-
tially the body of the subject performing the gesture fall within the field of
view of the radar. The data were collected partly outdoors to avoid possible
dependencies from secondary reflections given by devices and metal ducts
placed in the hall environment. The consent has been obtained from users
prior to data collection and as much anonymity and privacy as possible were
maintained during the data collection and processing phases. Individuals of
varying height [1.60 – 1.85] m and age [25 – 40] years with no relevant mo-
tor or visual impairments have been engaged in the experiment. The only
information given to the users before performing the gestures were the radar
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orientation, and the maximum duration of the gestures of 3.1 s. The data
have not been saved in online archives and/or published. The chosen ges-
tures are those most commonly employed for HCI in touchless applications.
Only in the final test phase, to demonstrate the offline proof-of-concept of

Copyright © Infineon Technologies AG 2021. All rights reserved. 9
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Figure 6.6: Recording setup for gestures sensing. (a) shows the Raspberry®

Pi4 employed for data recording. (b) depicts the BGT60TR13 radar board on
the tripod. (c) shows an example of performed action for the class rubbing".

the system’s adaptability to new gestures, the developed model is deployed
on Raspberry® Pi4 and NCS 2. This setup is shown in Fig. 6.7.
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Figure 6.7: Recording setup for the offline proof-of-concept of the system
generalization capability at the edge. The Raspberry® Pi4 is used for data
preprocessing, model adaptation and script running. The NCS 2 enables the
deployment of the developed meta-learning model for a specific setup.

6.3.6. Gestures Dataset

For the meta-learning approach, the gestures are split by classes between
a meta-training Dm−train and meta-test Dm−test sets. Fig. 6.8 illustrates the
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Figure 6.8: Gestures vocabulary for the meta-training and meta-test datasets.
N, S, W and E represent the cardinal points.

twelve training and eight test gestures, respectively. The division of gestures
has been performed randomly, with the only constraint to keep, in the two
datasets, the sets of gestures that are opposite to each other. A t-distributed
Stochastic Neighbor Embedding (t-SNE) representation of the gestures in
two components is shown in Fig. 6.9.
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Figure 6.9: 2-D components t-SNE representation of the twenty gestures
of the dataset. Classes belonging to Dm−train are represented with a cross
marker. Classes belonging to Dm−test are represented by a point marker.

Extracting both range and azimuth information is crucial for correctly
distinguishing some gestures from others. Examples where RTM and ATM
clearly allow a distinction between two classes are shown in Fig. 6.10 and
Fig. 6.11, respectively. Velocity information can improve the separation bet-
ween classes, especially concerning the spatial plane in which the gestures
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are performed. In addition, such information can help distinguish actions
characterized by local finger oscillations, such as rubbing and tickling Fig.
6.12.
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Figure 6.10: Comparison of RTM, DTM and, ATM between (a) Pulling, and
(b) Pushing. In this example, the range information allows a clear distinction
between the two classes.

6.4. Proposed Method

In this section, we propose our approach, which belongs to the class
of optimization-based meta-learning algorithms. We first introduce some
methods to increase the model’s generalization capability in comparison to
the state-of-the-art. We then present the adopted CNN topology and the be-
nefits of using a pre-trained Conv-VAE as a backbone in the meta-learning
phase to reduce the number of parameters.
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Figure 6.11: Comparison of RTM, DTM and, ATM between (a) left swipe,
and (b) right swipe. In this example, the azimuth information allows a clear
distinction between the two classes.

6.4.1. Optimization-based Meta-Learning

In a conventional optimization-based meta-learning approach for deep
learning, the optimization consists of two iterative steps performed over the
distribution of tasks p(T ), to train a model represented by a parametric
function fθ with parameters θ. The two optimization steps are the following:

1. In base-learning, for a batch of N tasks, an inner learning model fθ′n
with parameters θ′n, tries to solve each task Tn, given a dataset DT n

and a task related loss function to minimize LT n(fθ).

2. In meta-learning, an outer algorithm makes use of the information
obtained through back-propagation of the gradient in the inner learning
phase to update the internal algorithm. The model trained during base
learning also minimizes an outer loss function Lext(fθ′n).
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(a) Rubbing
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Figure 6.12: Comparison of RTM, DTM and, ATM between (a) rubbing
and (b) tickling. Local oscillation caused by finger movement in the velocity
profile can be noted for both classes.

If the loss function defined for the task is differentiable, the internal optimiza-
tion is often performed by Stochastic Gradient Descent (SGD) in K batches
of training examples belonging to DT n. The θ′ parameters are computed as:

θ′n = θ − γ ·
K∑
k=1

∇θL
(k)
T n(fθ) (6.7)

where γ is the inner loop learning rate of the meta-algorithm. In [45], Finn
et al. present a very general method called Model Agnostic Meta-Learning
(MAML) where the meta-optimization across tasks is also performed via
SGD, by minimizing the function fθ′n with respect to θ, for each single task
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or N tasks sampled from p(T ).

mı́n
θ

1

N
·

N∑
n=1

L(n)ext(fθ′n)

=
1

N
·

N∑
n=1

L(n)ext(fθ−γ·
∑K

k=1 ∇θL
(k)
T n(fθ)

)

(6.8)

θ ← θ − β · 1
N
· ∇θ

N∑
n=1

L(n)ext(fθ′n) (6.9)

where β in (9) is the outer loop learning rate. In MAML for few-shot super-
vised learning, two different data sets are defined for each task Tn. Support
samples Dn for base learning and query D′

n for the inter-tasks generalization
step in the meta-learning phase. As can be seen in (8), meta-gradient invol-
ves a gradient through a gradient and can lead to instability during training
as well as resulting computationally expensive. Antoniou et al. [67] present
various modifications to the MAML to enhance the learning stability and
also the generalization capability.

In our work, we adopt MAML as the base algorithm, with a task batch
size N of 1 and, we exploit some of the methods presented in [67] to improve
the training stability. Specifically, we leverage the following contributions:

Multi-Step Loss Optimization (MSL): instead of minimizing the
outer loss function after the completion of all base learning steps for
support set task Dn, we do an update after each inner-epoch i ∈ I,
composed of K batches, using D′

n. Specifically, we exploit a set of
importance weights vi that enables a higher loss contribution for the
latest i in I.

θ ← θ − β · ∇θ

I∑
i=1

vi

K∑
k=1

L(k)ext(fθ′k) (6.10)

In addition, as the meta-iterations performed on the distribution of
tasks p(T ) progress, the relative weights of early epochs are decreased
and, those of the late epochs are increased. This strengthens the ability
to learn from every individual Tn task without potentially destabilizing
learning. In comparison to the method proposed in [67], where the up-
date of the outer loss is performed after each step towards the support
set task, we suggest an update after each inner-epoch. This leads to a
trade-off between intra-task learning steps and computational comple-
xity.

Derivative-Order Annealing (DA): the use of the second-order gra-
dient involves some computational expenses and can make the optimi-
zer inefficient and unstable during the early training phase of MAML.
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To overcome these problems, we anneal the derivative order in the first
50 meta-iterations by exploiting the first-order gradient information
only.

Cosine Annealing of Meta-Optimizer Learning Rate (CA):
to fine-tune the optimization via the outer algorithm as the meta-
iterations progress, we apply a cosine annealing scheduling on the op-
timizer. This yields an increase in generalization performance without
impacting the per task computation Tn.

We besides propose some methods that can increase the generalization
capability of MAML without bringing any increase in computational comple-
xity in evaluation and testing. Respectively, for this purpose, we present the
Dynamic Meta Class Weighting (DMCW), Task-Specific Gradient Clipping
(TSGC), and the Evaluation-based Gaussian Noise Summation (EGNS).

6.4.1.1. Dynamic Meta Class Weighting

In a task learning approach with only a few data, a model can easily
overfit the training instances leading to weak classification performance on
the testing instances. Few examples per class may not be informative enough
for the description and lead to significant misclassifications in testing. One
way to counter this is to use in the inner loop, for each task Tn, a set of
class weights ∀ c ∈ C, where C represents the number of ways. Specifically,
we propose to compute after each inner-epoch, for each c ∈ C, a weight
vc which is inversely proportional to the number of correct predictions. The
idea is to sample for each task Tn, a balanced set of examples Dc ̸= {Dn;D′

n}
on which each inner epoch performance can be dynamically evaluated. For a
given class c, with corresponding M weighting examples xm, the normalized
weight vc in the range [0–1] is computed as follows:

vc =
1∑C

c=1 vc
·

M∑
m=1

(ŷm − ym) (6.11)

where ym represents each instance-associated label, ŷm the predicted label
after every inner-epoch and, vc the computed weights before normalization.
The resulting vc weights are used both in the base learning and the meta-
learning updates after each batch k in K. Respectively:

θ′n = θ − γ ·
K∑
k=1

v(k)c · ∇θL
(k)
T n(fθ) (6.12)

and for the meta-learning update, through MSL:

θ ← θ − β · ∇θ

I∑
i=1

vi

K∑
k=1

v(k)c · L
(k)
ext(fθ′k) (6.13)
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Each inner update improves intra-task classification performance by bringing
more attention to minimizing LT n on classes whose examples have been
poorly classified. In addition, the outer update allows inter-task propagation
of the information obtained with the weights vc to improve generalization
performance.

6.4.1.2. Task-Specific Gradient Clipping

Task training performed with little data for a given number of epochs
I brings benefits in some cases but can also lead to gradient explosion and
instability in others. The model can so overfit on a given task, making gene-
ralization to others less effective. One solution to this is performing gradient
clipping for the intra-task updates when the gradient exceeds a threshold,
as presented by Pascanu et al. [68]. In our case, we suggest using clipping
in the intra-task phase, for each batch k in K on the when the gradient g
computed for LT n exceeds a certain threshold h:{

g = ∂LT n(fθ)
∂θ ,

g← g·h
||g|| , if ||g|| > h

(6.14)

where ||g|| represents the L2 norm computed on the gradients. We propose
further not to use gradient clipping for the intra-task update on queries via
Lext. By doing so, the query update grants a higher contribution to the whole
optimization-based procedure.

6.4.1.3. Evaluation-based Gaussian Noise Summation

Training on a sequence of tasks for a large number of meta-iterations can
make the algorithm too specific on Dm−train and thus decreasing the genera-
lization capability on Dm−test leading to the so-called meta-overfitting. One
way to counteract such behavior on Dm−train is to increase the complexity
of the task when the performance becomes very high. One way to make a
task n more complex is to add Gaussian noise to the examples xn in Dn or to
their embedded representations as to the output of the hidden layers of the
model. Specifically, we propose to sum to the output of various depths of the
model, random Gaussian noise in the interval [−σ ; σ] from the distribution
N (µ, σ2) generated for each batch k in K. This Gaussian noise is activated
for a new training task only when the validation accuracy, performed on a
sequence of tasks, sampled by Dm−train, exceeds a defined threshold.

6.4.2. Proposed Topologies

For the optimization-based meta-learning approach, we propose the use
of two topologies. First a traditional one, consisting of sets of convolutional
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layers for features extraction. Then, a structure that uses part of a Conv-
VAE as a backbone to considerably reduce the number of parameters in the
overall topology. For both neural networks, the goal is, given a task Tn, to
map the sequence of RTMs, DTMs, and ATMs belonging to a gesture to the
respective class.

6.4.2.1. Convolutional Neural Network

The first topology consists of three convolutional layers with the final
dense layer. The convolutional layers use 128, 256, and 512 filters respectively,
with a kernel size 3 × 3 and a stride of 2. Each of these layers is followed
by batch normalization, to increase the training stability for each batch k,
and by the ReLU activation function. A Flatten layer and a Dense layer
are attached to the last of the three convolution blocks. The Dense layer
output neurons correspond to the number of classes in the experiment. The
classification is enabled through the Softmax activation function, which maps
the output vector into a classes probability distribution. The topology is
depicted in Fig. 6.13.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Convolutional Model

2021-11-07             restricted

Input
128 256
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RTM, DTM, ATM

512

2D Conv. Kernel: 3x3, Stride: 2

Batch Normalization

ReLU Activation Layer

Flatten Layer

N-Ways

Dense + Softmax

Figure 6.13: CNN topology. For each gesture, consisting of RTM, DTM, and
ATM information in-depth channels, features are extracted from three blocks
of convolutional layers. A final dense layer with Softmax activation enables
the classification. The number of filters per convolution is noted above the
respective blocks.

6.4.2.2. Conv-VAE and Dense

The second topology exploits part of a Conv-VAE, pre-trained onDm−train,
to significantly squeeze the input size. The Conv-VAE compresses the three-
channel information (RTM, DTM, and ATM) into a constrained multivariate
latent distribution of dimension 15. The Encoder part of the Conv-VAE mo-
del is then extracted and concatenated to a sequence of Dense layers for task
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training. The Dense layers consist of 256, 128, and N output neurons respec-
tively, corresponding to the number of ways for the experiment. Also for this
topology, the outputs of the last layer are mapped in a classes probability
distribution through Softmax. The layers extracted from the Conv-VAE are
also trained during optimization-based meta-learning for the N-ways classi-
fication objective. The topology is shown in Fig. 6.14.

Copyright © Infineon Technologies AG 2021. All rights reserved.
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Figure 6.14: Conv-VAE and Dense topology. To significantly reduce the num-
ber of parameters compared to the convolutional model, the classification is
done by exploiting the encoder of a Conv-VAE pre-trained on Dm−train. For
the categorical classification, three Dense layers connected to the final layer
of the encoder (latent space) are used. The number of filters and neurons in
the various layers is noted above the respective blocks.

6.5. Experimental Setup

In this section, we present and analyze the performed optimization-based
meta-learning experiments. Specifically, we conducted 1-shot 2-ways, 1-shot
5-ways, 3-shots 5-ways, and 5-shots 5-ways experiments. The algorithm and
methods presented are mainly analyzed in the 5-ways setup, to depict their
advantages. The algorithm has been developed in the Python program-
ming language through the TensorFlow® module. The performance tests
for the state-of-the-art comparison, have been performed on a eight genera-
tion Intel® CoreTM i5 processor (4-cores). At the edge side, the Raspberry®

Pi4 and NCS 2 have been employed. Consequently, the RaspbianOS opera-
ting system has been utilized. To run the model on NCS 2 and optimize the
inference process, we used the OpenVino module on Python.
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6.5.1. Meta-learning Experiments

All experiments have been performed in a similar setup for the two topo-
logies (CNN and Conv-VAE + Dense). For the topology with the Conv-VAE,
the network on the Dm−train dataset is first pre-trained. The employed loss
function and optimizer are binary crossentropy and Adam respectively. A
learning rate of 1e-4 is used for Adam. The training is conducted on 200
epochs with a latent dimension of 15, i.e., 30 descriptive parameters of the
set of multivariate Gaussian distributions. Since Conv-VAE is part of the ca-
tegory of deep generative networks, it can also partially reconstruct Dm−test

instances without further training. An example of reconstruction on sampled
classes from both Dm−train and Dm−test is displayed in Fig. 6.15.

Real Processed Gestures Dm−test

Latent Space Representation

Real Processed Gestures Dm−train

Reconstructed Gestures Dm−train Reconstructed Gestures Dm−test

Latent Space Representation

Figure 6.15: Example of latent space generation (heatmap representation)
and example reconstruction using Conv-VAE. For better visualization of the
instances, the RTM, DTM, and ATM channels are concatenated as a single
image.

For the 5 ways experiments, the task training is performed through 4 in-
ner epochs and an inner-batch of size 2 for 1-shot, and size 3 otherwise. For
both base-learning and meta-learning phases, the Adam optimizer is used
with β1 and β2 equal to 0 and 0.5 respectively. The inner learning rate is set
to 8e-4, whereas the meta-learning rate has an initial value of 7e-4 with a
decay step of 2,000. The chosen number of meta-iterations is 2,200, while the
classes for each task are randomly sampled by Dm−train. The loss function
chosen for the classification is categorical crossentropy. In the evaluation
phase, accuracy statistics are saved and processed every 220 iterations in the
shape of box plots. For experiments with the EGNS, a task buffer of length
5 has been chosen, with a Dm−train validation accuracy threshold of 89 %,
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95 % and 98 % for 1-shot, 3-shots, and 5-shots, respectively. For the TSGC
experiments, the gradient is clipped when the L2 norm exceeds 0.5. For the
DMCW, a total of 10 samples per class is used for the computation of the
weights. The generated models are finally tested on 1,000 tasks sampled by
Dm−test. For DMCW and EGNS, the final task training is performed as a
traditional single-task optimization approach. For TSGC, gradient clipping
is also executed on the training batches. The EGNS and DMCW are ex-
clusively used during meta-iterations, to increase the model’s generalization
capability over one or a few new examples of unseen classes. The achieved
prediction accuracy, model size, adaptation time, and latency are evaluated
and compared with state-of-the-art techniques. In both the evaluation and
testing phases, 10 examples per class are used for testing. This means that
in the 5-ways experiments, 50 test examples per task are utilized.

6.5.2. Performance Evaluation

We first present the results obtained on a single experiment, showing
the benefits achievable on unseen classes thanks to an optimization-based
meta-learning approach. Then, we conduct an ablation study, by analyzing
the contributions of the individual proposed methods, for both proposed to-
pologies. Next, we compare our achieved results with those of some existing
techniques in terms of neural network size, prediction accuracy, and latency.
All the experiments for the proposed methods and ablation study have been
performed on a 4-core eight generation Intel® CoreTM i5 processor. Regar-
ding adaptation at the Edge, we display the results of adaptation time to
new tasks and model deployment on Raspberry® Pi4 and NCS 2.

6.5.2.1. Experiment Analysis

The metric used to evaluate the training performance of each model is
validation accuracy. This parameter is estimated after each meta-iteration,
by evaluating the model on new sampled tasks. For each validation two tasks
are sampled by the Dm−train and Dm−test respectively. A box-plot of task
statistics is built every 220 meta-iterations. Generalization ability can be as-
sessed by observing the variation in the box plots as meta-iterations progress.
In a successful experiment, we observe the increase of the median accuracy
on the sequence of box plots, as well as the reduction of the intervals of per-
centiles and whiskers. The trend of box plots for the experiment with EGNS
for the CNN topology is shown in Fig. 6.16. The contribution of EGNS is
combined with the basic MAML + MSL + DA + CA algorithm, which we
term +MAML. Another possible way of assessing the generalization capabi-
lity is to observe the distribution of validation accuracy as meta-iterations
increase. Usually, for the first training tasks, the accuracy tends to assu-
me a multimodal shape due to different complexity in tasks resolution. In
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Figure 6.16: The trend of box plots generated on classification accuracy in
the validation phase for the EGNS experiment with CNN topology. In red
are the box plots built on the tasks sampled from the meta-train dataset,
while in blue are those built over the meta-test. The mean and median values
are represented for each box plot by a triangle and a line, respectively.

the training time, the model learns to resolve better new tasks thanks to
the improved parametersínitialization. This leads the accuracy distribution
to have a negatively skewed tendency towards the 100 % correct classifica-
tion. The accuracy density histograms, generated for the first and last 220
meta-iteration box-plots, are shown in Fig. 6.17 for the CNN - EGNS expe-
riment. The quartiles and range percentages are noted in the middle plot on
a Gaussian distribution that could be associated with the box plot. Roughly
by definition, 50 % of the values are contained between the first and third
quartiles of the box plots. The actual accuracy distribution, however, as can
be seen, does not assume a Gaussian shape.

The generalization outcome can even be observed on the individual clas-
ses by generating a cumulative confusion matrix for sets of meta-iterations.
In Fig. 6.18 are depicted the confusion matrices of the first and last 550 meta-
iterations for the EGNS with CNN topology experiment. As can be noticed
from the matrices, as the iterations progress, the model learns to solve quic-
ker new tasks thanks to the updated initialization. This also applies to the
unseen classes belonging to Dm−test.

Some actions are more complex to distinguish between each other because
of similarities in patterns, thus leading to specific prediction errors. It can be
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Figure 6.17: Density histogram of validation accuracy on test for the EGNS
experiment with CNN topology. Values q1 and q3 on the Gaussian indicate
first and third quartiles, respectively. Percentages indicate the amount of
data in the sections of the distribution. The accuracy, which does not assume
a Gaussian distribution, exhibits a negative skew for the last 220 meta-
iterations.

noted, for example, the misclassification between right swipe and diagonal
nw-se in the confusion matrix on Dm−train and specularly that between left-
swipe and diagonal nw-sw for Dm−test.

6.5.2.2. Results Analysis

All the experiments have been performed for both the proposed topolo-
gies, analyzing the combination of the presented methods against the base
algorithm +MAML. Each experiment, tested on 1,000 final test tasks, has
been repeated three times. The average accuracy results for the 5-way expe-
riments are presented in Table 6.2 and Table 6.3, respectively.

For the CNN topology experiments, the total number of trainable para-
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Table 6.2: CNN topology. Average accuracy results of 5-ways experiments
with 95 % confidence intervals, computed over 1,000 final test tasks of
Dm−test. Individual methods are implemented in each experiment to the
base algorithm.

Accuracy 5-ways 1-shot [%] 3-shots [%] 5-shots [%]
Base (+MAML) 82.85 ± 0.55 92.07 ± 0.31 94.19 ± 0.26

DMCW 82.32 ± 0.56 90.80 ± 0.40 93.64 ± 0.27
EGNS 84.36 ± 0.55 92.54 ± 0.30 93.87 ± 0.25
TSGC 84.28 ± 0.56 92.85 ± 0.30 94.16 ± 0.26

DMCW+EGNS 82.53 ± 0.57 91.10 ± 0.34 93.85 ± 0.25
DMCW+TSGC 82.81 ± 0.53 91.39 ± 0.34 93.49 ± 0.26
EGNS+TSGC 83.97 ± 0.54 92.02 ± 0.32 94.15 ± 0.25

All 83.29 ± 0.55 91.90 ± 0.31 93.92 ± 0.26

Table 6.3: Conv-VAE+Dense topology. Average accuracy results of 5-ways
experiments with 95 % confidence intervals, computed over 1,000 final test
tasks of Dm−test. Individual methods are implemented in each experiment
to the base algorithm.

Accuracy 5-ways 1-shot [%] 3-shots [%] 5-shots [%]
Base (+MAML) 76.31 ± 0.63 87.18 ± 0.38 90.78 ± 0.31

DMCW 76.86 ± 0.61 88.95 ± 0.38 92.06 ± 0.30
EGNS 78.69 ± 0.61 87.99 ± 0.37 90.90 ± 0.29
TSGC 78.67 ± 0.60 88.24 ± 0.35 91.18 ± 0.28

DMCW+EGNS 78.67 ± 0.57 89.46 ± 0.37 92.59 ± 0.27
DMCW+TSGC 80.09 ± 0.59 90.59 ± 0.33 92.97 ± 0.27
EGNS+TSGC 80.25 ± 0.58 88.73 ± 0.34 92.07 ± 0.28

All 79.19 ± 0.57 89.93 ± 0.33 92.59 ± 0.26
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Figure 6.18: Cumulative confusion matrices for the EGNS experiment with
the CNN topology. Confusion matrices are obtained on the first and last 550
meta-iterations in the validation phase for both training and test classes.

meters in the model is 1,562,629. This large number of parameters, as can be
noticed through accuracy results in Table 6.2, allows the model to generalize
well, guaranteeing with fast-adaptation, excellent results on unseen classes.
For such a topology, the DMCW method brings no performance benefit. The
model size enables extracting more features from each data while query up-
date after each epoch through MSL reduces the possibility of overfitting. The
DMCW is even more counterproductive as the number of shots increases. In
such a case, the model comprehends better the differences among classes,
thanks to the higher number of examples. For 1 and 3 shots experiments,
individual use of EGNS and TSGC leads to the highest accuracy. These tech-
niques give less importance to single tasks, thus favoring the meta-learning
objective. In the 5-shot approach, the +MAML algorithm, allows without
additional contributions, to achieve the highest accuracy. The information
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Table 6.4: Average accuracy results of 1-shot 2-ways experiments with 95 %
confidence intervals, computed over 1,000 final test tasks of Dm−test. Indivi-
dual methods are applied in each experiment to the base algorithm, for both
topologies.

Accuracy 1-shot 2-ways CNN [%] Conv-VAE+Dense [%]
Base (+MAML) 90.57 ± 0.73 88.89 ± 0.77

DMCW 90.78 ± 0.71 86.71 ± 0.98
EGNS 91.17 ± 0.73 87.62 ± 0.84
TSGC 92.70 ± 0.67 91.23 ± 0.69

DMCW+EGNS 91.53 ± 0.71 86.51 ± 1.00
DMCW+TSGC 91.38 ± 0.73 90.43 ± 0.74
EGNS+TSGC 92.88 ± 0.64 90.86 ± 0.69

All 93.05 ± 0.63 87.32 ± 0.86

provided by the training instances is then enough to compensate for possi-
ble overfitting and exploding gradients. For the first topology, none of the
experiments where the contributions are combined bring accuracy benefits.
For a model with high feature extraction capability, the use of both EGNS
and DMCW techniques can make each task locally complex and misleading.
Thus, decreasing the significance of the meta-learning updates.

For simulations with the Conv-VAE+Dense topology, the total number
of trainable parameters in the model drops to only 118,851. Due to input
information mapping to small size, individual tasks may be more affected by
overfitting phenomena. In this case, the DMCW introduces benefits compa-
red to the basic version of the algorithm. This contribution is also beneficial
with 3 and 5 shots, probably supporting the classification of the compressed
information squeezed by the backbone. For this topology, the best results are
achieved by combining the DMCW and TSGC methods. The classification
of low-dimensional representations is aided by class weighting for individual
tasks. The TSGC, on the other hand, avoids exploding gradient and gives
more importance to the outer loop update at the end of each inner epoch.
The combination of the three methods brings equal or less satisfactory re-
sults than combining two of them for 1 and 3 shot experiments. With the use
of 5 shots, the single techniques contributions do not lead to better results
than with +MAML. This is probably due to the higher amount of data avai-
lable, which leads to smoother task training. The accuracy results for both
topologies in the 1-shot 2-ways approach are presented in Table 6.4.

For 1-shot 2-ways experiments, the greatest benefits are achieved through
TSGC for both the topologies. For a 2-ways application, the DMCW contri-
butions are counterproductive or not significant. Class weighting with only
two categories can easily skew the learning towards one of them, especially
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Table 6.5: Training times to adapt to new tasks for both topologies on the
4-core Intel® CPU. Times, given a number of ways and shots, are calculated
as the average of the adaptation time of all experiments, each tested and
averaged over 1,000 final test tasks of Dm−test.

Adaptation Time CNN [ms] Conv-VAE+Dense [ms]
1-shot 2-ways 498 206
1-shot 5-ways 1,180 647
3-shots 5-ways 2,548 1,254
5-shots 5-ways 4,278 1,991

Table 6.6: Best-in-class results compared to the state of the art. Average
accuracy results of the experiments with 95 % confidence intervals, computed
over 1,000 final test tasks ofDm−test. The various algorithms have been tested
under similar evaluation conditions on the 20 gestures dataset. The proposed
algorithms are marked with *. FC means Fully Connected (Dense).

Accuracy 5-ways [%] 2-ways [%]
1-shot 3-shot 5-shot 1-shot

Reptile 63.95 ± 0.62 86.82 ± 0.39 89.68 ± 0.40 87.27 ± 0.84
MAML (2nd Ord.) 78.95 ± 0.59 90.71 ± 0.36 93.41 ± 0.23 88.53 ± 0.78

LGM-Net 77.57 ± 0.20 84.38 ± 0.14 89.98 ± 0.10 85.04 ± 0.17
Weighting Net 81.17 ± 0.48 93.47 ± 0.30 94.47 ± 0.28 95.61 ± 0.43

CNN* 84.36 ± 0.55 92.54 ± 0.30 94.19 ± 0.26 93.05 ± 0.63
Conv-VAE+FC* 80.25 ± 0.58 90.59 ± 0.33 92.97 ± 0.27 91.23 ± 0.69

with small input sizes as for the second topology. For similar reasons, the
model can learn to over-depend on noise augmented inputs via EGNS and
rank worse on the test data. For CNN, the use of combined EGNS and TSGC
brings some benefits, mainly preventing overfitting in the base-learning pha-
se, given the higher simplicity of the tasks. The accuracy reached with the
three techniques combined depicts how preventing over-dependence on the
individual tasks can favor the generalization aim.

The average adaptation times to new tasks on the 4-core Intel® CPU for
the two topologies are listed in Table 6.5.

As can be seen from the table, the model size of the Conv-VAE topology,
which is an order of magnitude smaller than the CNN, allows a reduction of
the adaptation time by half for the 1-shot experiments. The time required
to adapt to a new task is further reduced for Conv-VAE when more than 1
example per class is employed. Regardless of the method used, the inference
time on CPU to predict the class of a single example is on average 64 ms for
both topologies in the 5-ways approach.
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6.5.2.3. Comparison with Existing Techniques

The best-achieved results, obtained through the various experiments and
topologies, are compared with both meta-learning state-of-the-art and classi-
cal optimization-based algorithms, trained onDm−train and tested onDm−test.
Respectively, the Reptile [69] and MAML algorithms for the optimization-
based class and Weighting Net and LGM-Net, employed in the papers [61]
and [62] are trained on our proposed gestures dataset. For the comparison,
similar evaluation conditions are used. The Reptile and MAML (2nd Or-
der) algorithms are utilized to train the proposed CNN topology for 2,200
meta-iterations. The topology presented in [61], adapted to 3-channel ges-
ture information, has been employed for the LGM-Net. The Weighting Net,
with a feature dimension of 64, has been adapted to the shape of the gestu-
res and, the relative embedding module has been trained to extract features
only from the support instances. The accuracy results for the state-of-the-art
algorithms, averaged over three repetitions, are presented in Table 6.6.

As can be noticed from Table 6.6, the proposed method with CNN to-
pology performs the best in the 1-shot 5-ways experiment, leading to better
results than the Weighting Net by around 3 %. In all the other experiments,
the proposed method performs slightly less accurately only compared to the
Weighting Net. With more than one shot, the Weighting Net has the advan-
tage of being able to mediate the predictions obtained thanks to a sequence
of comparisons of the query image with those of support. However, with the
availability of only one example per class, it lacks this great feature and lo-
ses robustness. The proposed methods though, lead in all the experiments
to better results than all the other optimization-based methods. For simple
experiments (2-ways) or a higher number of shots, the difference in accuracy
obtained between the methods gets narrower. In such conditions, even the
simplest algorithms can achieve high feature extraction from samples. So, the
resolution of the tasks becomes less dependent on the initialization making
the employed generalization techniques less effective.

The comparison in terms of model size is presented in Table 6.7.
In terms of the number of parameters, the Conv-VAE+Dense approach

enables the generation of an order of magnitude smaller models compared
to the CNN. Even if in terms of accuracy the second topology performs a
few percentage points worse than the Weighting Net, it requires about half
as many parameters for tasks resolution. Furthermore, among the compared
methods, the Conv-VAE topology results in the one with the least number
of required variables.

Table 6.8 presents the time required for adaptation to a new task (Ta) and
the single-sample inference (Ti) for the considered algorithms. Reptile and
MAML are tested using the same methodology as the proposed optimization-
based models. As they are utilized on the CNN topology, they lead to results
very similar to those of the proposed methods and are, therefore, excluded
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Table 6.7: Best-in-class results compared to the state of the art. Number
of trainable parameters per topology and experiment, computed over 1,000
final test tasks of Dm−test. The various algorithms have been tested under
similar evaluation conditions.

Model Size 5-ways 2-ways
Reptile 1,562,629 1,513,474

MAML (2nd Order) 1,562,629 1,513,474
LGM-Net 300,421 298,882

Weighting Net 229,157 226,034
Proposed (CNN) 1,562,629 1,513,474

Proposed (Conv-VAE+Dense) 118,851 118,464

Table 6.8: Best-in-class results compared to the state of the art. Adaptation
time (Ta) and latency of prediction on single sample (Ti) per topology and
experiment, computed over 1,000 final test tasks of Dm−test. The various
algorithms have been tested under similar evaluation conditions on the 4-
core Intel® CPU. The proposed algorithms are marked with *

Adaptation (Ta) + 5-ways [ms] 2-ways [ms]
single prediction time (Ti) 1-shot 3-shot 5-shot 1-shot

Ta + Ti Ta + Ti Ta + Ti Ta + Ti
LGM-Net 1,710 4,310 6,290 1,340

Weighting Net 92 + 143 278 + 215 476 + 287 39 + 55
CNN* 1,180 + 64 2,548 + 64 4,278 + 64 498 + 61

Conv-VAE+Dense* 647 + 64 1,254 + 64 1,991 + 64 206 + 61

from this table. For LGM-Net, the two values of Ta and Ti are summed,
given the high degree of interdependence between the modules (Embedding,
MetaNet, and TargetNet) in its structure. For the Weighting Net, Ta is esti-
mated as the required time to map the support examples to a reduced size via
the EmbeddingNet. In this case, Ti is computed as the needed time to pro-
cess and classify a query example through the entire model pipeline after the
support adaptation. In terms of adaptation time (Ta), the proposed models
take longer than the Weighting Net. On the other hand, the optimization-
based models enable the instance classification in a significantly short time
(Ti) and in a way that is independent of the number of training shots. In the
5-shot experiment, the proposed topologies require only a quarter of the time
needed by the Weighting Net for prediction. This brings a huge advantage
in real-time applications or implementations at the edge.
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Table 6.9: Training times to adapt to new tasks for both topologies on
Raspberry® Pi4 (without NCS 2). Times, given a number of ways and shots,
are calculated as the average of the adaptation time of all experiments, each
tested and averaged over 10 final test tasks of Dm−test.

Adaptation Time CNN [ms] Conv-VAE+Dense [ms]
1-shot 2-ways 3,655 983
1-shot 5-ways 7,976 2,572
3-shots 5-ways 22,188 5,851
5-shots 5-ways 37,310 9,416

Table 6.10: Training times to adapt to new tasks for both topologies on
Raspberry® Pi4 plus deployment time on NCS 2. Times, given a number of
ways and shots, are calculated as the average of the adaptation time of all
experiments, each tested and averaged over 10 final test tasks of Dm−test.

Adaptation Time CNN [ms] Conv-VAE+Dense [ms]
1-shot 2-ways 3,678 2,265
1-shot 5-ways 7,416 3,544
3-shots 5-ways 13,283 4,562
5-shots 5-ways 21,567 6,701

6.5.2.4. Edge Implementation

The topologies presented in this paper use only NCS 2 compatible la-
yers and procedures. All models, pre-trained with the optimization-based
approach on the 4-cores CPU, are adapted at the edge to single tasks ge-
nerated by Dm−test via Raspberry® Pi4. The models are first tested on the
Raspberry® Pi4 without connecting NCS 2, consequently using only the 4
ARM cores, to estimate adaptation time and inference on single sample. The
computed task adaptation time are presented in Table 6.9. The models are
then deployed on the NCS 2 and, prediction inference for each test sample is
conducted at the device level. For the various experiments, the achieved re-
sults in terms of summation of task adaptation time on Raspberry® Pi4 and
deployment on NCS 2 are presented in Table 6.10. As can be noticed from
the Table 6.9 and Table 6.10, as the number of samples per class increases,
the time to adapt to a new task rises significantly for the CNN topology, re-
quiring up to more than 21 s for an adaptation and deployment on the NCS
2. On the contrary, the Conv-VAE+Dense, given the much smaller number
of parameters, requires less than 7 s for a 5-shots task. Conv-VAE+Dense
can therefore lead to a saving of up to about two-thirds of the time. The
results from Table 6.9 highlight generally longer adaptation times for both
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topologies on the Raspberry®. This is mainly due to computation limits, es-
pecially for the CNN topology as the number of shots increases. In addition,
the models, once deployed on the NCS 2, allow much shorter single inference
times (Ti) and therefore enable potential real-time applications with very low
latency. The needed time for a single prediction after model adaptation is
topology-dependent. For both 2-ways and 5-ways experiments, the model on
NCS 2 requires an average of 5 ms and 4 ms for CNN and Conv-VAE+Dense,
respectively. These values are significantly lower than those obtained only via
Raspberry® Pi4 (Table 6.9), where the prediction of a single example takes
on average 351 and 333 ms for CNN and Conv-VAE+Dense, respectively.
The demonstrated results underscore how deploying on the NCS 2 can be
a very advantageous strategy when very low latency is required. Since the
adaptation is performed offline, the single inference time does not consider
the time required for gesture sampling (Ts) and preprocessing time (Tp).
These times are dependent on the type of gesture performed, its intrinsic
duration, and the number of recorded frames before applying zero padding.
Table 6.11 presents the computed Ts and Tp times for one example per class
of each of the 20 gestures. The Tp values are obtained over an average of
10 preprocessing repetitions of the same example performed on Raspberry®

Pi4. Thus, the total (end-to-end) time consists of the sum of Ts+Tp+Ti.

6.6. Conclusion

In this paper we present a complete pipeline based on hand gestures per-
formed on an FMCW radar, to exhibit a proof-of-concept of user-adaptability
for novel unseen hand poses. The system solution, based on data collected
for twenty different types of gestures, from five users in three different en-
vironments, allows not only the extraction of useful features of performed
actions but also a fast adaptation to new gestures. The pipeline is composed
of a first preprocessing phase, then a meta-learning approach to generate
the best possible model initialization, and an edge-suitable adaptation to
new tasks and classes never faced in the training phase. The specific pre-
processing employed, thanks to the combination of techniques both in the
frequency and time domain, allows extracting the main information of the
gestures only, thus significantly reducing the size of the raw data collected by
radar. The information constructed for each gesture, in the form of 3 chan-
nels, represents the hand distance from the radar, the action velocity, and the
azimuth angle of arrival. A meta-learning optimization-based approach, trai-
ned on twelve of the processed gestures, depicts how new never faced tasks
can be more easily solved, thanks to the context information extracted in
the training phase. Three techniques, aiming at increasing the generalization
ability of the model in comparison to the state-of-the-art, are presented: dy-
namic meta-class weighting, task-specific gradient clipping, and evaluation-
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Table 6.11: Recording (Ts) and preprocessing (Tp) times computed for a
random example belonging to each class of gestures. The time Tp is computed
over an average of 10 preprocessing repetitions on Raspberry® Pi4.

Gesture Ts [ms] Tp [ms]
Down - Up 2,700 1,198
Up - Down 2,900 1,285
Left - Right 400 209

Rubbing 2,900 1,320
Right - Left 1,800 802

Diagonal SW-NE 1,900 884
Diagonal SW-NW 2,600 1,173

Clapping 1,700 786
Zoom-In 2,000 905

Zoom-Out 2,100 942
X-Y Rotation 3,100 1,370

Pushing 3,100 1,399
Pulling 2,500 1,116
Tickling 3,100 1,408

Diagonal NW-SE 1,600 719
Diagonal NW-SW 2,100 941

Right Swipe 1,600 721
Left Swipe 2,000 890

Y-Z Rotation 1,800 815
Two Hands Rubbing 2,600 1,166
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based Gaussian noise summation respectively. The introduced methods have
the great advantage of improving the model’s parameters initialization in
the training phase without directly affecting the final adaptation setup on
the eight test classes. This enables both a more versatile implementation at
the edge and a very fast prediction on new samples, reducing remarkably
the computation latency. Further, compared to other state-of-the-art tech-
niques, the optimization-based approach doesn’t involve the comparison of
the query samples with the support ones in the test phase, thus, bringing
to an additional time latency reduction. Two different topologies for task
resolution are presented. A first topology based on a series of convolution la-
yers consents feature extraction for each sample thanks to a large number of
defined parameters. A second topology instead, employs the encoding part
of a Conv-VAE as a backbone to efficiently extract features, thus greatly
reducing the number of model parameters. For such a topology, a greater ef-
fect of the presented optimization techniques is visible, thanks to the various
contributions that counteract the effects of overfitting, exploding gradient,
and meta-overfitting. Thanks to these features, this topology enables the
generation of models that perform very well in terms of accuracy but with
half the variables required in comparison to state-of-the-art. Moreover, the
results obtained at the edge optimistically show how these algorithms can be
used for real-time applications, aiding the adaptation to new users, gestures,
and situations. To the best of our knowledge, this is the first user-adaptable
model implemented at the edge for radar-based HCI.

On the other hand, the generated models lead to an accuracy that is
lower than the state-of-the-art in several experiments. Other meta-learning
algorithms, based on the classification of relations among examples, have the
inherent advantage of leading to more robust predictions. Future work will
explore the application at the edge of relational algorithms and potential
methods of reducing the model size without harming generalization capabi-
lities. Experiments with a broader set of gestures and examples will also be
conducted, examining the generalization ability of the models across various
splits of users and environments. Adaptive interfacing, based on an approach
such as the one presented in this paper may be exploitable for people with
motor or visual impairments, due to their inability to perform classic actions
in a conventional manner. Since individuals without disabilities have been
considered in this current work, direct studies will be conducted on analy-
zing how much radar adaptive interfacing can be used and relied on in these
particular use cases.
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Abstract. Vital signs estimation provides valuable information about
an individual’s overall health status. Gathering such information usually re-
quires wearable devices or privacy-invasive settings. In this work, we propose
a radar-based user-adaptable solution for respiratory signal prediction while
sitting at an office desk. Such an approach leads to a contact-free, privacy-
friendly, and easily adaptable system with little reference training data. Data
from 24 subjects are preprocessed to extract respiration information using
a 60 GHz frequency-modulated continuous wave radar. With few training
examples, episodic optimization-based learning allows for generalization to
new individuals. Episodically, a convolutional variational autoencoder learns
how to map the processed radar data to a reference signal, generating a
constrained latent space to the central respiration frequency. Moreover, au-
tocorrelation over recorded radar data time assesses the information corrup-
tion due to subject motions. The model learning procedure and breathing
prediction are adjusted by exploiting the motion corruption level. Thanks to
the episodic acquired knowledge, the model requires an adaptation time of
less than one and two seconds for one to five training examples, respectively.
The suggested approach represents a novel, quickly adaptable, non-contact
alternative for office settings with little user motion.

Keywords: Vital sign sensing; Respiration signal; Artificial neural net-
works; Meta-learning; Radar; FMCW; Few-shot learning; Autocorrelation;
Variational autoencoder; Signal processing.

7.1. Introduction

Estimating a person’s vital parameters has always been an important
research topic, as it allows tracking of health status and preventing some
diseases and potential accidents [1, 2]. Vital signs include the breath wave,
heartbeat, body temperature, and blood pressure. The main focus of research
is the heart wave, which gives direct information about how a person’s heart
is working and can help prevent life-threatening events such as a heart at-
tack or arrhythmia. The breath signal can instead provide information on
how the lungs are behaving. The breath wave shape can highlight if the sub-
ject is undergoing a hyperventilation episode or if the airways are obstructed
due to an allergic reaction or a physical blockage [3, 4]. The estimation of
vital parameters is usually performed to diagnose a health problem caused
by some often acute symptoms. On the other hand, continuous vital sign
monitoring could predict and prevent the worsening of respiratory and car-
diovascular diseases, which account for 32 % of worldwide deaths per year [5].
Vital parameter estimation can be performed over days with portable am-
bulatory devices such as the Holter monitor for electrocardiogram (ECG).
For long-term measurements intended for prevention, however, ambulatory
machines are not versatile due to cost, maintenance, and the limitations of



7.1. Introduction 129

user activities. To counter this, wearable devices capable of monitoring mul-
tiple vital parameters at the same time and reporting abnormalities have
emerged over the years [6, 7]. Many wearable devices, such as smartwatches,
proved to help predict vital anomalies, but they also have the intrinsic need
to be continuously worn. This can be hard in the case, for example, of bulkier
devices for breathing sense, which can be worn by newborns or elders. Many
solutions are therefore moving toward non-contact sensing techniques [8].

Some non-contact solutions employ camera sensors. Through video sig-
nal processing, it is indeed possible to extract parameters such as heart rate
(HR) and respiration rate (RR), which can be particularly useful in clinical
or telehealth consultations [9, 10]. The use of camera sensors, however, can
be inadequate in many applications, leading, especially in long-term monito-
ring, to serious privacy concerns. The use of thermal sensors can be employed
to partially overcome this problem [11, 12]. Yet, thermal measurements are
sensitive to heat and weather conditions and are not employable in all con-
texts. For contact-free sensing of vital parameters, ultrasound systems can
be an excellent privacy-friendly solution [13]. High-frequency systems such
as radar or Wi-Fi may have additional advantages, such as a much greater
spatial range and the ability to pass through surfaces [14, 15, 16]. WiFi-
based solutions can be very accurate in estimating vital signs [17, 18] but
often require systems with transmitting (Tx) and receiving (Rx) antennas
placed in separate devices, contributing to higher power consumption than
radar. Remarkable among the various radar modulations is the frequency
modulated continuous wave (FMCW), which enables simultaneous estima-
tion of the relative range, velocity, and angle of arrival of targets placed in
the sensor’s field of view (FoV) [19, 20]. The ability to sense static compo-
nents, thanks to the frequency modulation of chirp signals sent from the Tx
channels of the FCMW radar, can enable privacy-friendly tracking of targets
in the FoV. Further, thanks to the micro-Doppler effect, radar can also sense
small and periodic displacements generated as vital signs [21]. The collected
information, preprocessed in phase, is particularly corruptible by continuous
user movement. Nevertheless, non-contact vital parameter estimation can be
employed in relatively static settings, such as an office, even for multi-person
sensing [22].

Raw radar data are inherently difficult to interpret and often require arti-
ficial intelligence (AI) techniques to filter useful information rather than pure
signal processing or computer vision. Many state-of-the-art solutions use Kal-
man filters to reduce measured noise in vital signs or to update the specific
parameter band-pass filter limits for estimates and uncertainties of chosen
state variables [23, 24, 25]. However, given the Kalman filter assumptions, it
is necessary to selectively filter out corrupted data caused by random user
movements to avoid corrupting subsequent vital sign estimates [23]. Other
solutions employ machine learning (ML) approaches to predict vital parame-
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ters in the form of time series [26] or to extract relevant information, such as
arrhythmia detection [27]. In other cases, the interest is more in estimating
the number of peaks in time than in reconstructing the vital signs. In [28],
to decrease prediction latency, the solution uses an artificial neural network
(ANN) exclusively to predict the presence of heart peaks from raw radar
data using labeled ECGs. Although all AI-listed solutions enable accurate
reconstructions of vital parameters or estimation of target variables, they all
require a large dataset of training data on various subjects for such an achie-
vement. While tested in various contexts and for new users, many solutions
may not easily fit users with unconventional vital signs or in new recording
positions and angles. To address the big data need, a specific branch of ML
called Meta-Learning (Meta-L) is gaining momentum [29]. In Meta-L, the
goal is context generalization. An algorithm learns to solve various tasks via
episodes, leveraging the accumulated experience and only a little new availa-
ble data to adapt faster in new contexts. Usually, in each episode, the model
tries to address an N–ways task, where N represents the number of classes
(one per regression) and k–shots, or k examples per class. Generally, tasks
are sampled from the same domain, and episodic learning often occurs in two
phases. In an inner step, the learning algorithm learns to solve a given task by
exploiting support (S ) examples. In an outer step, the ability to generalize to
new tasks is estimated and tuned using query (Q) examples. In optimization-
based algorithms, such as model-agnostic meta-learning (MAML) [30], the
learning algorithm parameters update is performed using gradient descent
in both episodic steps.

In this paper, we present a user-adaptable FMCW radar solution based
on signal processing and Meta-L for breath signal estimation. The approach
was tested in an office desk-workplace with a single person in the FoV. The
ideal user-radar board distance is up to 40 cm. This non-contact solution is
employable when the user under test performs some actions characterized
by little movements, such as laughing, talking, or using the keyboard, but
leads to better performances in idle scenarios. Continuous detection of the
user-radar range enables user tracking and radar preprocessing adaptation.
Through prior information acquired via Meta-L, the algorithm is adaptable
to a new person with a single or few training examples. The episodic training
is designed to extract the breath information from the radar data while mini-
mizing the contribution of the detected motion corruption due to the user’s
actions. Data are collected for short sessions at the desk-workplace, from 24
different users at 2 ranges of distances, up to 30 cm and 40 cm. Among all
the users, 14 are selected for training and 10 for testing. Radar data are
gathered via the FMCW 60 GHz radar system with 1 Tx and 3 Rx, while a
breath-sensing belt is used as a reference. In a single 30-second session, the
collected radar data are first preprocessed in frequency to extract the ran-
ge information of a single target user. The phase signal, which contains the
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breath information, is then unwrapped for a selected set of range bins, which
are dynamically adjusted over the sessions. A multi-output ANN trained epi-
sodically in 1–, 5–, and 10–shots aims to predict the user’s breath signal from
the phase signal. The ANN maps, via a convolutional variational autoenco-
der (C-VAE), the radar phase to the belt reference signal, constraining the
generation of latent space to the central frequency (Fc) of breath. The overall
topology scheme is depicted in Figure 7.1. A series of two-band-pass digital
biquad filters selectively filter the breath signal information according to the
predicted Fc. The autocorrelation of the extracted signal, performed with
a sliding window, allows estimating per session the level of corruption due
to user motion. The corruption information is thus employed in both epi-
sodic training and prediction to improve ANN performance by fetching the
most valuable information available in motion-corrupted sessions. The main
contributions of this paper are as follows:

1. Implementation, to the best of our knowledge, of the first few-shot
user-adaptable radar-based breath signal sensing solution.

2. Development of a specialized radar data preprocessing pipeline that
dynamically tracks the user’s position relative to the board.

3. Design of a cost function that constrains the generation of the latent
space of a C-VAE to the respiration Fc in a multi-output ANN.

4. Development of a corruption-based sample weighting approach that
guides the breathing signal estimation in the presence of user motion.

7.2. Related Works

In this section, we first investigate methods for non-contact estimation of
the breath signal, focusing mainly on high-frequency solutions that are AI-
oriented. We then discuss vital sign-sensing approaches that employ Meta-L
techniques.

Alizadeh et al. [31] used a 77 GHz FMCW radar to extract vital parame-
ters from a patient lying down on a bed in a non-contact vital sign sensing
solution. In this work, vital signs are estimated by purely signal-processing-
based methods. An initial fast Fourier transform (FFT) is performed to
extract the range information of the subject from the radar board. The Fc
of the vital signs is estimated on the unwrapped phase signal downstream
of a second FFT that calculates the vibrations, leading to the generation of
a range-vibration map. The vital signs are then extracted via a band-pass
filter. This method allows reconstruction of breath rate 94 % similar to a
reference signal but places the major constraint that the only non-stationary
features in the range-vibration map are the biological activities. This makes
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Figure 7.1: For each learning episode, a training subject is randomly sam-
pled. For each training shot, the radar phase information is mapped to the
reference belt signal (ref.) via a C-VAE. Through a dense layer, the ANN
also tries to regress the extracted respiration Fc, learning from the ideal belt
Fc. The latent space mapping is thus constrained to the Fc, whose estimate
is also used in the prediction phase.

the solution only applicable when the subject under test is idle. Wang Y. et
al. [32] proposed two different methods of vital signal estimation from phase
information extracted from data collected with a 77 GHz FMCW. These
methods, namely the Compressive Sensing based on orthogonal matching
pursuit (CS-OMP) algorithm and the Rigrsure Adaptive soft threshold noi-
se reduction based on discrete wavelet transform (RA-DWT), separate and
reconstruct breathing and heartbeat signals instead of the more traditional
band-pass filtering. Although the results obtained are very similar to tho-
se obtained with contact-based reference sensors, there is still the inherent
constraint that the subject has to remain stationary in front of the radar
system. Iyer et al. [27] developed a solution that uses Fourier series analysis
on data collected by a 77 GHz FMCW radar to extract the vital signs of an
individual from various orientations. Although the paper mainly focuses on
the heartbeat for detecting arrhythmias using an ANN, the breath rate (BR)
and the breathing wave are also estimated. The latter is obtained through
a digital biquad band-pass filter whose parameters are invariant to the user
or recording session. A filter that is not selective enough can lead to noisy
predictions with many falsely detected breath peaks due to motion. Lee et
al. [33] implemented a solution that detects the vital parameters of multiple
subjects in the FoV using a 24 GHz FMCW Doppler radar. Doppler phase
information is combined with range measurements obtained by parametric
spectral estimation to distinguish multiple targets even beyond the theoreti-
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cal range resolution limit. Likewise, in this approach, a band-pass filter with
relatively wide bandwidth is utilized, which may not be adequate in all con-
texts. Lv et al. [34] used a much higher frequency FMCW 120 GHz radar
system to estimate the vital signs of eight volunteers. The solution mainly
focuses on acquiring the heartbeat signal, utilizing a notch filter to filter out
the respiratory harmonics in the spectrum of interest. This is mainly conduc-
ted to overcome the problem of overlapping and interference of breathing and
heart harmonics in some measurements. As also mentioned by the authors,
the classical FFT approach does not guarantee the correct prediction of vi-
tal parameters in motion-corrupted scenarios. Gong et al. [35] illustrate an
FMCW-based solution for vital sign estimation that also seeks to address the
problem of sensing even in the presence of motion. The approach combines
direct FMCW sensing for static instances with an indirect vital sign predic-
tion based on motion power estimation. Two sub-long short-term memories
(sub-LSTMs) are used to estimate the RR; they first classify the motion
patterns and then estimate the RR. The method is robust even with some
random movement patterns, such as lifting an arm, in new environments, and
with new users. However, the variation in RR is estimated and not the res-
piratory signal, which can give additional information about a user’s health
quality. It is also not specified whether the users were allowed to speak du-
ring the recordings or whether this activity was taken into account. Wang
D. et al. [36] proposed an interesting comparison in vital sign estimation
between impulse radio ultra-wideband (IR-UWB) and FMCW radar. While
radar FMCW needs phase information to extract vital signs, IR-UWB uses
distance information. The data of both radar topologies are processed with a
relatively standard approach that employs a band-pass filter. The IR-UWB
achieves a better estimate and signal-to-noise ratio (SNR) but needs to send
many pulses to distinguish the signal from noise. A high pulse rate per second
also requires a high-speed analog-to-digital converter (ADC) which increa-
ses cost and hardware design complexity compared to the FMCW. For the
FMCW, on the other hand, a narrow instantaneous bandwidth allows the use
of lower-speed ADCs. In addition, multiple-input-multiple-output (MIMO)
topologies for FMCWs allow multiple target locations and real-time moni-
toring. Rana et al. [37] presented a system that processes, via short-term
Fourier transformation (STFT), the data collected from a UWB radar to ex-
tract vital signs. Data are collected in various areas of the house. The UWB
recordings are complemented by a multi-class support vector machine (MC-
SVM) that distinguishes vital signs when different activities are performed
in the available locations. This approach shows preliminary results of how it
is possible to recognize specific user activities with little training data. This
could also potentially be used to improve the estimation of activity-related
vital signs. Khan et al. [38] illustrated a channel state information (CSI)
based WiFi sensing solution to track the vital signs of a patient. With the
features extracted from the collected data, the health status of patients is
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estimated through four types of ML algorithms via classification. These al-
gorithms are K-nearest neighbor (KNN), decision tree, random forest, and
support vector machine (SVM). The presented feature extraction approaches
make it possible to preserve valid information by decreasing the dimension of
the individual examples collected and simplifying the task of ML algorithms.

As far as we know, there is only one source for video-based physiological
measurement that uses Meta-L and few-shot learning to estimate vital pa-
rameters. Liu et al. [39] proposed a Meta-L-based approach for personalized
video-based non-contact cardiac pulse and heart rate monitoring. Thanks to
the episodic training of MAML, the approach requires only 18 seconds of
video for customization to new scenarios with different users, sunlight, and
indoor illuminations. The solution, evaluated in two benchmark datasets,
yielded substantially superior performances compared to state-of-the-art ap-
proaches.

7.3. System Description and Implementation

This section gives a general overview of the system, a description of how
the data acquisition system is set up, details on radar system configuration,
and the main preprocessing steps.

7.3.1. General Overview of the Proposed Framework

The proposed framework is depicted in Figure 7.2. For a Meta-L solu-
tion, a dataset as small and diverse as possible is generated. Specific infor-
mation about the breath dataset for Meta-L is given in Section 7.3.7. The
recordings from the respiration belt, which serves as a reference sensor, and
the FMCW radar are collected synchronously over 30 s sessions using the
recording setup described in Section 7.3.3. The preprocessing, as depicted
in Section 7.3.4, aims to unwrap the phase information, reconstructing the
displacement generated by user breathing. During dataset generation, the
radar-based respiration signal Fc is estimated by calculating the maximum
correlation between the radar phase and belt reference downstream of a
double biquad band-pass filter (Sections 7.3.5.1). The entire Meta-L stage is
presented in Section 7.4. From the estimated breath signal, it is also possible
to calculate the instantaneous breaths per minute (bpm) and the amount of
corruption per recording session caused by user motion (Section 7.3.6).

7.3.2. Radar Board and Configuration

The chosen radar system for this application is the XENSIV™ 60 GHz
BGT60TR13 FMCW, manufactured by Infineon Technologies AG [40]. The
radar board is a miniaturized and low-power frequency modulated solution
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Figure 7.2: The diagram shows the main steps of the implementation. For
a chosen scenario (room and user), several data sessions with synchronized
radar and a reference respiration belt are collected. For multi-output ANN,
the labels consist of belt reference signals and the central breath frequencies,
estimated from the pure belt reference. The data from fourteen users are
then used to train an ANN episodically using Meta-L, while the data from
the remaining ten users are solely used for testing.

with a center frequency f0 of 60 GHz and a bandwidth of approximately
6 GHz, which allows for a high range resolution of approximately 2 cm. In
sensing applications within 5 m, the power consumption is reduced to only 5
mW thanks to an operation-optimized duty cycle. Further, by exploiting the
micro-Doppler effect through phase analysis, it is possible to capture perio-
dic displacements over time, such as vital signs, well below the 2-cm range
limit [21]. The BGT60TR13C has three Rx channels and one Tx channel,
all embedded in the package. Additionally, to enable accurate estimation of
targetsázimuth and elevation angles of arrival (AoAs) in the FoV, the Rx
antennas are positioned orthogonally to each other. With an f0 of 60 GHz
and a single Tx channel, such a board provides a less expensive and lower-
frequency solution than many cutting-edge non-contact high-frequency vital
signs systems. The evaluation board with the sensor board mounted on top
is shown in Figure 7.3.

The BGT60TR13C generates chirps, which are a series of linearly frequency-
modulated signals with a bandwidth of Bw centered on f0. Each chirp lasts
tc and is made up of a predetermined number of ns samples. In use, the data
gathered from the Rx channels are mixed with a Tx reference and digitized
with 12-bit resolution. The generated output signal is referred to as interme-
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(a) (b) 

Figure 7.3: The BGT60TR13 radar system (a) delivers filtered, mixed, and
digitized information from each Rx channel. The BGT60TR13C radar (b)
is mounted on top of the evaluation board.

diate frequency (IF ). Radar data are frequently compressed into frames for
additional preprocessing, with each frame carrying the IF for a series of Nc

chirps. For an FMCW modulation, the theoretical range resolution ∆r and
maximum detection range Rmax are calculated using the following formulas:

∆r =
c

2Bw
, (7.1)

Rmax =
∆r

2
ns , (7.2)

where c indicates the speed of light in the air. For the application of breath
sensing at the workplace desk, a theoretical Rmax of 50 cm would be suffi-
cient. However, a theoretical maximum distance of about 3.75 m was selected
for compatibility with other use cases and for future works. In the preproces-
sing, though, only the range bins where the user is detected are processed.
The selected ∆r instead is roughly 37.5 cm, which enables user identification
from the surrounding clutter (static targets). The set values of Bw and ns are
accordingly 4 GHz and 200. For appropriate phase analysis, we also chose tc
and Nc values of 150 µs and 2, respectively. To acquire around 20 frames per
second, a frame repetition time (fps) of 50 ms was chosen. Additionally, a 2
MHz ADC sampling rate Fs was used. All the values selected for the radar
board configuration are outlined in Table 7.1.

7.3.3. Recording Setup

The recording setup, shown in Figure 7.4, is consistent with the cho-
sen application, i.e., at-desk workplace monitoring at short distances (up to
about 40 cm). The BGT60TR13C radar system is mounted on the front of
the desk, and the Go Direct ® respiration belt [41] is placed at the level of
the users’diaphragm. The belt is used as a reference to measure displacement
in N (Newtons). We chose to use this belt as a reference since it is employed
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Table 7.1: BGT60TR13C radar board, parameters configuration for breath
sensing.

Symbol Quantity Value
NTx number of transmitters 1
NRx number of receivers 3
Nc number of chirps 2
ns samples per chirp 200
f0 center freq. 60 GHz
Fs sampling freq. ADC 2 MHz
fps frames per second 20 Hz
tc chirp time duration 150 µs
Bw bandwidth [58, 62] → 4 GHz

in other state-of-the-art work for benchmarking with radar solutions such
as [36, 35]. As reported in these works, the belt has a force resolution of
0.1 Newton. This resolution allows displacements generated by breathing to
be distinguishable in the presence of user motion. Although we consider the
belt as a reference, such a sensor may also be subject to motion corruption.
In the specific use case at the desk workplace, many of the movements made
by users have little impact on a chest-mounted wearable sensor. A practical
example may be typing on the keyboard. Other movements, such as bending
the back, can also degrade the belt signal. In our work, however, we impose
the constraint that the belt signal is the ground truth, unaffected by motion
corruption noise. The data gathered by the respiration belt and radar system
have been synchronized during the recordings. The data from the two sen-
sors were synchronized frame by frame using a global time stamp generated
at the laptop level. The gathering and synchronization have been performed
with an Intel® Core i7-8700K CPU. Data collection was performed for 24
healthy users with an age range of up to about 35 years. All users agreed in
advance to participate in data collection. The data were collected and stored
as anonymously as possible, without tracking names or other characteristics
that could be used to identify an individual. The data will not be made
public. The users were told to behave as normally as possible, performing
actions such as laughing, joking, and using the keyboard and mouse. Many
users also chose to watch a video during data collection to avoid respiratory
bias due to recording. For each user, 20 sessions of 30 s each were collected.
Two desks in different offices and two distance ranges were chosen. The desks
used are of the same type and height (about 76 cm). However, data were co-
llected in two different environments to avoid the potential overfitting of ML
models on a single location. A total of 10 sessions per user were collected at
a distance from the radar board to the person’s chest of up to 30 cm and
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another 10 up to about 40 cm. With the 10 min allotted to each user, a total
of 4 h of data was collected.
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Figure 7.4: Recording Setup. A synchronized radar system and respiration
belt are used to collect 10 30-second sessions per user and distance. The dis-
tance ranges used in data collection (up to 30 or 40 cm), refer to the distance
between the chest and the radar board.

7.3.4. Radar Phase Signal Extraction

Thanks to the micro-Doppler effect [21], it is possible to extract the
breath information from the unwrapped phase signal derived from the raw
radar data. The preprocessing pipeline for the application is shown in Figu-
re 7.5. The preprocessing can be divided into the following steps:

Raw radar and respiration belt data are collected synchronously for
a session. The chosen frame rate per session is 660 (Nm), which is
10 % higher than the theoretical frame rate of 600 (20 fps * 30 s).
Longer sessions for either sensor are interpolated, whereas shorter ones
are zero-padded. The belt signal is used as a reference estimation in
the Meta-L training phase. Subsequent preprocessing steps involve the
radar signal only.

The IF signal is computed channel-wise, for the three Rx, for each
radar frame. The information is organized in a 3D matrix, with the
x-axis representing fast time (samples), the y-axis representing slow
time (chirps), and the z-axis representing channels.

The average value is subtracted from the sequence of 660 frames so
that the potential direct current (DC) offset is subtracted.
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Over slow time and channels, the radar-sensed information derives from
the same recorded event. Rather than using a single channel or single
chirp, we use the averaged information over both axes for the next
steps. Intrinsically, given the equal importance of the information in
the chirps and their respective channels, the averaged information will
be more robust to the noise.

A 1D FFT is performed along fast-time to retrieve the range informa-
tion.

From the range information, it is possible to estimate the user’s position
frame-wise, select the set of meaningful range bins, and subtract the
clutter in each (Section 7.3.5).

The phase information is calculated for the selected bins. Frame-wise,
only the bin range with the highest mean squared error (MSE) to the
estimated clutter is chosen (Section 7.3.5).

The phase beyond (−pi, pi) is then unwrapped using a phase disconti-
nuity threshold approach.

Because users had freedom of action during the recordings, the Fc
estimated from the radar phase by frequency analysis may not coincide
with the central respiration Fc. For this reason, Meta-L is used to map
the radar phase to the computed ideal belt Fc (Section 7.3.5.1).

Comparison between radar-estimated breath signal and respiration belt
is performed on normalized signals between zero and one, calcula-
ting MSE and estimating instantaneous bpm along the session (Sec-
tion 7.3.6).

7.3.5. Range Bins Selection and Clutter Removal

Relevant radar information is only contained in a limited range of bins
that reflect the user’s position relative to the radar board. Let SR(m, s) with
m ∈ [0, Nm] and s ∈ [0, ns] be the radar signal with range information on
the x-axis and slow time on the y-axis. The maximum bin range is calculated
∀ m as follows:

máx
s
|SR(m, s)| . (7.3)

Around the maximum detected, 12 range bins are also processed for phase
information extraction. The boundary range bins are dynamically updated
via a moving average of eight frames. The dynamic adaptation avoids abrupt
changes in the range under process due to instantaneous noise. Clutter is
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Figure 7.5: Preprocessing pipeline. First, the phase information is unwrapped
from the raw radar data. The respiration signal and Fc are then estimated
by Meta-L, exploiting only in the training phase the data collected with the
respiration belt.

computed only for the selected bins s, frame-wise ∀ m ∈ [0, Nm], using the
moving target indication (MTI):

SR(s)new = α SR(m, s) + (1− α) SR(s)old ; (7.4)

where α ∈ [0, 1] is set to 0,4 and SR(s)old is the average over the preceding
s bins. The value of α was chosen empirically, noting that values less than
0.2 gave too much weight to previous clutter contributions, while values
greater than 0.6 depended too much on the current radar signal. Only the
bin range with the highest peak-to-clutter information is extracted, which
corresponds theoretically to the subject position at a given time. The MSE
between SR(m, s) and the new clutter SR(s)new is calculated. The maximum
MSE value corresponds to the highest peak-to-clutter. Two examples of the
user range over session time are depicted in Figure 7.6.

7.3.5.1. Central Frequency Estimation and Labeling

The respiration rate can be estimated by spectral analysis in a given ses-
sion, for example, by analyzing the power spectrum and taking the maximum
peak in a given frequency range. Such a method is often employed for radar
data recorded in idle conditions but is more of a challenge in the presence of
user motion. The respiration bandwidth and Fc also depend strongly on the
physiology and characteristics of the individual. Therefore, we propose using
Meta-L to estimate the Fc in a user-adaptable manner, using the central fre-
quency extracted from the respiration belt as a reference label. The reference
Fc is obtained from the belt signal power spectrum by locating the frequency
corresponding to the maximum peak in the limit range [0.1, 0.5] Hz, corres-
ponding to 6 and 30 bpm. Section 7.4 describes how the proposed method
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Figure 7.6: Lines in yellow indicate the defined range bin limits and, in
red, the detected maximum bin per frame. Range plotting is generated after
clutter removal. In (a), the subject did not move much during the session.
In (b), the range limits vary according to the user’s distance from the radar
board.

estimates radar-based breathing signal learning from both the reference belt
signal and relative Fc. The radar-based breathing signal is then computed
by applying a sequence of two biquad band-pass filters to the unwrapped
phase signal with the estimated Fc. The employed filter is a second-order
digital recursive linear infinite impulse response (IIR) containing two poles
and two zeros. A time representation of the filter can be described as follows:

O[n] = a0 I[n] + a1 I[n− 1] + a2 I[n− 2]− b1 O[n− 1]− b2 O[n− 2] ,
(7.5)

where n is the time step; I the input vector; O the output vector, and
a0, a1, a2, b0, b1, b2, the filter parameters according to the type. These latter
parameters depend on the Fc selected for a given session. The formulas
are provided in Appendix 7.8. Each of the two cascaded biquad filters has a
quality factor Q of

√
2 and a sampling frequency (fs) of 20 Hz, corresponding

to the fps. The characteristics of the filter are outlined in Figure 7.7.

7.3.6. Breaths per Minute Estimation and Corruption De-
tection

Along with the collected data session, the instantaneous bpm can be as-
sessed via a sliding window. This information may also be useful in radar
sessions that have been partially corrupted by motion and contain less respi-
ration information. The sliding window is dynamically computed per session
proportionally to the average distance between peaks. By leveraging this
window, it is also possible to estimate the instantaneous motion corruption
by comparing the signal with itself through autocorrelation. The corruption
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Figure 7.7: Band-pass bi-quadratic filter. The diagram (a) depicts the linear
flow of the biquad filter, where the output O(n) at time instant n is deter-
mined by the two previous input I and output O values. Instead, a gain vs.
frequency plot of a biquad band-pass filter obtained for a Q of

√
2 and fs of

20, over an Fc of 0.33 Hz, is shown as a reference in (b).

information is used to weight the training samples in Meta-L and improve
the predictions, as explained in Section 7.4.

In a recording session, the sliding window is defined as twice the average
distance between the detected peaks of the radar phase signal after band-
pass filtering. The window length is, therefore, about two whole cycles of
breathing, intended as sequences of inhalation and exhalation. Because the
estimated peaks for radar and belt may not match, a specific sliding window
is calculated for each of the two signals. An example of the belt and radar
respiration signal with computed sliding window is shown in Figure 7.8. In
this instance, the respiration Fc for the radar signal is ideally extracted from
the belt and has not yet been estimated by Meta-L. Local peak time shifts are
visible in the plot between the radar and belt signals. These shifts are caused
by two main reasons in the radar signal. First, the belt signal already contains
the breathing information, whereas the radar requires multiple preprocessing
steps. These steps, including the biquad filter, cause global shifts in the
extracted information. In addition, the respiration belt is connected to the
individual during recordings, while the radar is connected to the desk. As a
result, millimeter-scale user displacements along the session can contribute
to local shifts in the radar respiration signal peaks with respect to the belt.
Discrepancies in amplitude, on the other hand, can be caused by ambient
noise and the extracted phase, which is very sensitive to small displacements.
Corruption is also visible in the radar signal at the beginning of the session.
As it is not present in the belt signal, it was most likely caused by arm
movements, which are mostly undetectable by the wearable sensor on the
chest.
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Figure 7.8: Example of sliding window generation for instant bpm estimation
on a recorded session The radar signal has been filtered using the ideal belt,
Fc. The radar, as opposed to the belt, is not connected to the user during
recordings, but to the desk. This results in the local shift of signal breathing
peaks due to the millimeter movements of the user. The window (in purple in
the plot) is shown paler on the two peaks closest to the calculated peaks’mean
distance. It is also possible to notice some slight corruption at the beginning
of the session due to user motion.

The instantaneous bpm value is estimated as the number of peaks within
the sliding window throughout the session. Because two different sliding win-
dows are calculated for radar and belt, the length of the x-axis bpm estimate
(number of samples minus the length of the sliding window) may not match
in all the sessions. Autocorrelation along the session is used to estimate co-
rruption, with a window about one and a half times as long as a breathing
peak (three-quarters of a bpm sliding window). The correlation of the signal
with itself gives a measure of how similar and periodic it is over time. A flag
variable, by default set to zero, is set to one when the maximum autoco-
rrelation goes below a threshold. This threshold is adjusted dynamically for
the length of the sliding window. Empirically, this value is, for normalized
sessions between 0 and 1, set to 0.001 times the sliding window length. On
user-collected test examples, a magnitude less than 0.001 or greater seems
to lead to over- or underestimation of corruption, respectively. The instanta-
neous bpm and corruption flag are plotted in Figure 7.9 for the same session
as in Figure 7.8.
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Figure 7.9: Comparison of instantaneous bpm between respiration belt and
radar (with ideal Fc) for a recording session. The x-axis corresponds to the
difference between the number of frames in the session and the sliding window
length. The radar signal corruption flag variable is plotted in green. At the
beginning of the session, the radar signal is motion-corrupted (as shown in
Figure 7.8) and thus does not lead to a reliable bpm. On the other hand, for
the workplace use case, the reference belt signal is more robust to motion.
In this case, the motion performed was the movement of the hands toward
the desk.

7.3.7. Breath Meta-Dataset

The Breath Meta-Dataset for training and testing the Meta-L algorithm
contains data collected from 24 different healthy users up to 35 years old.
Specific information on setup and data collection is provided in Section 7.3.3.
For each session collected, the unwrapped radar phase signal (Meta-L input),
the respiration belt signal, and the corresponding ideal respiration Fc (Meta-
L outputs) are saved. All signals are interpolated or sampled to have a length
of 660 samples for the 30-second recording. Both radar phase and belt signals
are normalized between zero and one and translated in the interval by their
average. Fourteen users were randomly selected for episodic Meta-L training,
whereas the other ten were used for testing. The breath signal is highly
dependent on an individual’s characteristics and the presence of motion.
A subject-wise two-component t-distributed stochastic neighbor embedding
(t-SNE [42]) of the radar phase signal for all data collected is shown in
Figure 7.10. All radar signals for t-SNE representation were filtered with a
series of 2 band-pass filters with respiration frequency Fc fixed at 0.33 Hz
and Q at 0.8. As can be seen from the figure, under t-SNE assumptions, two
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components do not seem to be sufficient to show user-specific characteristics.
This emphasizes how complex the interpretation of radar data is to extract
features in an unsupervised manner for such an application.
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Figure 7.10: Two-component t-SNE representation of the Breath Meta-
Dataset radar data. The circles represent the training users, while the crosses
represent the testing users for the Meta-L. No user-specific feature clusters
are visible under the t-SNE assumptions. The t-SNE was obtained with a
perplexity of 20 and 7000 iterations [42].

7.4. Proposed Method

In this section, we describe the algorithm and topology we chose to ge-
nerate the user-adaptable Meta-L model on the Breath Meta-Dataset. We
propose an episodic learning approach by exploiting Meta-L and a C-VAE
for regularized feature extraction. Once trained for generalization, leveraging
a few examples gathered via the reference respiration belt, the model enables
the fast adaptation of the non-contact radar sensing solution to a new user.
To partially overcome the problem of motion corruption in sessions, we al-
so present an optimized loss function (Section 7.4.3) that makes use of the
corruption estimation method presented in Section 7.3.6.

7.4.1. Episodic Breath Signal Estimation

For the episodic breath signal estimation approach, we use the optimization-
based MAML second-order algorithm (MAML 2nd) [30]. Let R be the set
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of training episodes. A task Tr is sampled for each r ∈ R, corresponding to a
single training user. During the episode, a model learns to map the unwrap-
ped radar phase x to the reference data of the respiration belt xbelt using k
shots of support. The model learns by minimizing the binary cross-entropy
(BCE), as follows:

BCE(x, xbelt) = −x log(xbelt)− (1− x) log(1− xbelt), (7.6)

with variables x and xbelt in [0, 1].
Radar features are encoded in a normally distributed variable z ∼ N (µx, σx)

using a C-VAE topology. The µx and σx variables represent the mean and
standard deviation for a given latent space dimension and input x, respecti-
vely. In addition, the Kullback–Leibler (KL) divergence [43] is used to ensure
that z is close to a reference N (0, 1) distribution. Although KL divergence
allows regularization of latent space approaching a standard multivariate
normal distribution, C-VAE could learn to extract unnecessary information
from the unwrapped radar phase. Such information includes, for example,
displacements caused by user motion during sessions or noise. To overcome
this, the latent space generation is constrained by breathing information.
This is achieved by minimizing the MSE between ideal Fc extracted from
the belt (y) and ŷ predicted via a single-neuron dense layer with the linear
activation function.

Adding up the three components, the loss function L is defined as follows:

L(x, xbelt, y, ŷ) = BCE(x, xbelt) +KL[N (µx, σx),N (0, 1)] +K ||y − ŷ||2,
(7.7)

where K equal to 1000 is an equalization coefficient aimed at adjusting the
magnitude of the MSE. The same loss function is also used in the outer step
of Meta-L, on a query sample, given for the same task Tr. The loss function
terms are represented in Figure 7.11.

For a fixed training strategy, model generalization is assessed based on
the ability to perform better on new tasks as episodes progress. This is
performed by evaluating the model after each outer step on two evaluation
tasks Tr and one Tv sampled by the training and test users, respectively.
Box plots are constructed based on the loss values obtained for sequences
of episodes. As the episodes progress, the mean loss should decrease, and
the box plotsínterquartile range (IQR) and whiskers should also get smaller.
This represents the ideal training behavior in Meta-L. Such factors, when
also observed on the tasks Tv, highlight how generalization occurs even on
test users, never observed in the training phase.

7.4.2. Proposed C-VAE-Based Topology

The chosen C-VAE topology takes the unwrapped radar phase x as an
input and returns two outputs. Decoder-side, the network attempts to re-
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Figure 7.11: Graphical representation of single-episode learning with C-VAE.
The unwrapped radar phase is mapped to the respiration belt signal using
the signal reconstruction term. The regularization term makes the latent
space closer to a standard multivariate normal distribution. Fc regression
allows the parameterization to depend on the respiration signal.

construct the xbelt reference signal from the variable z. The ideal Fc, also
extracted from the belt reference, is regressed from the latent space, with a
single-neuron dense layer and linear activation function. The encoder con-
tains two sequences of convolutional blocks that extract features from x. The
decoder, on the other hand, tries to reconstruct xbelt starting from z with
two deconvolution blocks and up-sampling. The C-VAE topology is shown
in Figure 7.12 with an indication of layers and their parameters. The stra-
tegy of mapping the unwrapped radar phase to the belt signal attempts to
counteract the problems of amplitude discrepancy and local peak time shift
described in Section 7.3.6. The latent space generated during training, in
fact, depends on the belt signal, which is gathered directly from the sensor
attached to the individual’s lower chest.

The dimension of the latent space can considerably impact the model’s
performance. In our experiments, we chose a dimension of 32 as the trade-off
between performance and topology size. In total, the chosen topology has
739,074 parameters, all of which are trainable. Some examples of generated
latent space in relation to different inputs are shown in Figure 7.13.

7.4.3. Corruption-Weighted Loss and Breathing Estimation
Formulation

Even though C-VAE is set up to get information about breathing by pre-
dicting the Fc, there is still a problem when the user is moving. Radar data
sessions may, in fact, be highly corrupted by motion noise and not contain
the necessary respiration information. In such cases, mapping the unwrapped
radar phase to the belt signal is not an effective choice. With the amount of
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Figure 7.12: Chosen C-VAE topology. The latent space representation is
constrained by both the reconstruction of x with respect to the xbelt reference
and the ideal Fc of breathing y. The decoder layers are an up-sampled mirror
version of the encoder layers.

predicted corruption motion and taking advantage of the method described
in Section 7.3.6, a higher priority can be given to estimating the Fc than to
reconstructing the ideal signal. The corruption rate for each session can be
estimated by summing frame-wise ∀ m ∈ [0, Nm] the corruption flag variable
c(m). The greater the motion corruption, the greater the contribution of Fc
in the Loss Function L must be over the signal reconstruction term.

The L can then be adjusted as follows (L∗):

L∗ = τ BCE(x, xbelt) +KL[N (µx, σx),N (0, 1)] + γ K ||y − ŷ||2, (7.8)

where τ = 1∑Nm
m c(m)

, and γ = 1− τ .
The τ values are obtained during Meta-L training and are normalized per

epoch to the training batch size. Consistently, the reconstructed breathing
signal via the C-VAE topology can be corrected using the two estimated
outputs x̂belt and ŷ and the predicted corruption level for the single session.
An adjusted estimate x̂∗ of the radar-based breathing signal can be given by
the following formula:

x̂∗ =
τ x̂belt + γ ϵ biquad(x, ŷ)

τ + γ ϵ
(7.9)

where biquad(x, ŷ) represents the filtered version of x, with the estimated ŷ as
Fc
(Section 7.3.5.1) and ϵ set to two, makes the contribution of ŷ even more
dominant in the presence of motion corruption.
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Figure 7.13: Examples of latent space generation. Examples of radar phase
input (a) and generated latent spaces (b), size 32, are shown. The latent
spaces are obtained after the model generalization training. Each 8 x 8
representation consists of the mean values µ and the standard deviations σ.
Starting from the top of the representations toward the right, the first 32
pixels represent µ values, while the last 32 are those of σ.

7.4.4. Information about Experiments

All experiments have been conducted by minimizing the loss function
L∗, training the C-VAE model with latent dimension 32. As described in
Sections 7.4.1 and 7.4.3, the loss function includes a contribution to the FC
as well as a contribution to the reconstruction of the respiration signal. The
latter imposes normalized signals in the range [0, 1]. The loss consequently
has no unit of measurement but can be understood as an absolute value to
be minimized with respect to zero. The optimizer chosen is Adam, with β1
and β2 equal to 0 and 0.5, respectively. The training is performed on 3000
episodes at 4 epochs per episode. For 1–shot experiments, the batch size is
one, and for 5– and 10–shot experiments, it is 5. The inner learning rate is
set to 18e− 4 for the 1–shot experiments and 8e− 4 for the 5– and 10–shot
experiments to avoid episodic overfitting. The chosen outer learning rate is
17e−4. Each experiment is performed three times. The performance of the C-
VAE model is evaluated in terms of mean L∗ as episodes progress, adaptation
time on new users, and single inference time on a new sample. For the loss
evaluation, we also present a confidence value. This value represents the 95 %
confidence that the true mean is included in the distribution. In general, the
lower this value, the more stable and precise a given type of experiment
is. The adaptation time per user corresponds to the time required by the
Meta-L model to complete an entire training episode via a simple first-order
gradient descent. Optimization is performed for a specific number of epochs
and batches by minimizing the loss of L∗ over k training shots. For the
adaptation time estimation, we chose four epochs of training with first-order
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gradient optimization. The other hyperparameters remain unchanged from
the Meta-L training procedure. Single-sample inference time is calculated
at the end of each adaptation training, on a random sample of tests for a
given user. This value is consequently independent of the number of training
shots selected in the adaptation. At the end of each adaptation test episode,
the model parameters are restored to the values learned during the Meta-L
training.

7.5. Results and Discussion

This section presents the results of Meta-L experiments on the Breath
Meta-Dataset. The experiments were carried out with the optimization-based
algorithm (MAML 2nd), for 1–, 5– and 10–shots (Section 7.5.1). Without, to
the best of our knowledge, any state-of-the-art Meta-L solutions for breath
sensing, we compare our method to other state-of-the-art Meta-L algorithms,
taking advantage of our proposed C-VAE topology (Section 7.5.3). We then
show in an ablative study the benefits of using motion corruption estimation
in the loss function and the model performance with various latent dimen-
sions (Section 7.5.2).

All experiments were performed on Intel® Core i7-8700K CPU, and
DIMM 16 GB DDR4-3000 module of RAM.

7.5.1. Results on MAML Second Order

All results presented represent the average of the results achieved in the
various repetitions. The model performance was evaluated every 300 episo-
des, creating a box plot on the collected loss values in the evaluation loop
over 10 test examples per class (Section 7.4.1). The episodic learning trend
on a 1–shot experiment is shown in Figure 7.14. As the episodes progress,
L∗ decreases, as well as the IQR and whiskers. While learning from only one
example per user, the model can generalize better thanks to prior acquired
experience. This behavior is observable not only for Tr tasks but also for Tv
test tasks, which are unobserved in episodic learning.

Box plots are an effective way to assess the progress of episodic learning
but do not reveal the underlying distribution of the L∗ variable. The his-
tograms built on L∗ for a given interval of episodes can help estimate the
distribution and assess the generalization. The histograms corresponding to
the box plots generated for the first and last 300 episodes of a 1–shot expe-
riment are depicted in Figure 7.15. The bottom plots represent the density
histogram of the L∗, while the Gaussian approximation of the box plots with
their respective quartiles is shown in the middle plots. The histograms do not
undergo a Gaussian distribution. At the beginning of episodic learning, the
distribution is usually multimodal because of the different learning comple-
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Figure 7.14: MAML 2nd 1–shot experiment, Box Plots. Learning trends of
Meta-L, box plots versus episodes (evaluation loop) for the Breath Meta-
Dataset. The box in (a) depicts the trend for users in the training set (Tr
tasks). In (b), the trend for the users of the test set (Tv tasks) is shown. The
box’s mid-line represents the median value, while the little green triangle
represents the mean.

xity between tasks. In the last learning step, the histograms typically feature
a positive skewness toward the zero of the L∗. This behavior occurs thanks
to the generalization of information acquired episodically.

The values of L∗ obtained for MAML 2nd experiments for 1–, 5–, and
10–shots on test users are presented in Table 7.2.

Table 7.2: MAML 2nd experiments, average L∗ over the last 300 episodes
of test tasks Tv evaluation, averaged over 3 repetitions with 95 % confidence
intervals.

Loss / N–Shots 1–Shot 5–Shots 10–Shots
L∗ 84.11 ± 6 83.92 ± 1 83.39 ± 1

As can be seen from the table, as the number of shots increases, there are
no significant reductions in the mean loss for new users. Experiments with 5–
and 10–shots, however, show a lower 95 % confidence value, and thus higher
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Figure 7.15: MAML 2nd 1–shot experiment histograms for the first (a)
and last (b) set of 300 episodes. The box plots in the topmost plots also
contain outliers as small circles outside the whiskers. The mid-plots show an
approximation to the Gaussian distribution. The lower plots show the true
histograms, which do not underlie a Gaussian distribution. The q1 and q3
represent the first and third quartiles, respectively.

precision. This attests that in some cases, a single training example with
different characteristics from others gathered may not be sufficient to gene-
ralize on the test. The generalization strategy allows the model to extract a
substantial amount of breath signal information, independent of the number
of shots, as illustrated in Figure 7.14. Many user data sessions are corrupted
by motion and limit the increase in performance of the C-VAE model as
the number of training examples increases. However, by relating the loss L∗

to the average breathing rate per 30 s session, a specific learning behavior
can be observed. The box plots generated according to the respiration rate
for all test users are shown in Figure 7.16. The respiration rate between 7
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and 9 represents a standard human breathing rate. As can be seen in the
figure, the base of the box plots is not uniform over the RR range. In fact,
most of the collected examples have a number of respiration peaks that are
close to or equivalent to the standard value. Between 1 and 4 and 12 and
14, there are only 4 and 5 examples, respectively. On the other hand, for
a respiration rate between 7 and 9, there are about 30 instances per class.
This motivates the choice of the box plot construction. By fitting the model
to each test user separately after episodic learning and using the remaining
sessions as tests for each fit, it is possible to obtain the model behavior as
a function of the RR. With the 1–shot fit, the model is more accurate at
reconstructing breath signals between 7 and 9 peaks per 30 s. For lower or
higher rates, the model performs less well in reconstruction, resulting in an
increased loss. This behavior can be due to two main reasons. The first is
that motion corruption may not have allowed the identification of the co-
rrect breathing peaks in the test sessions. Motion corruption results in the
erroneous identification of breathing patterns and subsequent missed lear-
ning. The second is that the model did not have enough reference examples
for low and high rates during generalization learning. Because of this, a few
examples of training for a new user may not be sufficient for adaptation.
For the 5– and 10–shots fit, the model seems to be able to tackle low or
high RR situations better, but it performs slightly less well than the 1–shot
model for standard RRs. This may be mainly caused by motion corruption
in many sessions for all users. Although the L∗ is defined to address such a
problem, additional training examples may not contain enough information
to overcome motion corruption.

Figures 7.17 and 7.18 show examples of prediction after test user adap-
tation of MAML 2nd 1–shot. In both figures, the top plots represent the
breath signal prediction while the bottom plots represent the instantaneous
bpm estimation. The prediction of breath signals is obtained using the x̂∗

formula (Equation (7.9)). Figure 7.17 depicts two examples of correct breath
signal prediction throughout the session. In the example (a), there is almost
no corruption due to user motion for most of the session. In accordance with
Figure 7.16 for 1–shot, this example falls within the range of 12—14 beats
for 30 s. Even so, the algorithm leads to a quite accurate bpm estimation,
with an average gap between the belt reference and the estimated radar, of
three beats. The presence of many detected peaks often corresponds to much
motion corruption for radar. In this case, however, many peaks are also vi-
sible in the belt reference. The example (b), which is part of the samples in
the range 7–9 peaks, is characterized by more radar signal corruption with
respect to (a). Nevertheless, the robust formulation of L∗ allows the extrac-
tion of peak position and bpm despite the presence of motion corruption.
However, for both plots, there are discrepancies in time shift and peak am-
plitude between radar and belt. As described in Sections 7.3.6 and 7.4.2, the
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Figure 7.16: Loss (L∗ ) as a function of the number of detected breathing
spikes over the 30 s sessions for the 10 test users. The base of the box plots
with non-uniform ranges was chosen so as to have at least 4 examples for the
least common classes (1–4 and 12–14). The upper plot is obtained by fitting
the 1–shot Meta-L model (a) to new users, while the middle and lower plots
are obtained by 5– (b) and 10– (c) shots adaptation, respectively. For the
first two plots, the circles that lie outside the box plots whiskers represent
the outliers. Plot (c) shows no visible outliers.

proposed C-VAE topology tries to mediate these challenges but still cannot
perfectly reconstruct the belt reference signal. In general, incorrect detection
of radar peaks can result in erroneous local predictions of the bpm. In both
plots, the corruption flag correctly predicts the motion in correspondence to
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the false peaks detected. Figure 7.18 instead shows two edge examples with
a relatively low (a) and high (b) belt reference number of peaks per session.
In both cases, the model leads to quite different results from the reference
ones. Although the bpm estimate does not deviate much from the reference,
peaks are detected at incorrect times. For (a), the combination of just a few
breathing peaks and motion corruption makes correct prediction challenging.
One way to potentially solve this issue would be to collect a lot of edge data
and train the model episodically to generalize better in such scenarios. In
the example (b), the user breathed much more frequently than in the other
sessions, including the training one. This leads to the model’s inability, given
the prior acquired knowledge, to generalize to the user scenarios with only
one training shot. The time shift between radar peaks is also not seen as
corruption by the specific flag, as it is probably not caused by motion.
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Figure 7.17: Standard prediction examples obtained post 1–shot test user-
adaptation with MAML 2nd. The top plots show the prediction x̂∗ versus
the respiration belt reference, while the bottom plots display the estimated
bpm and corruption flag. Legends, which also apply to the plots on the right,
are placed in the plots on the left. An example of optimal prediction with
radar information characterized by little motion corruption is shown in (a).
The respiration signal is recovered even in the presence of some corruption,
as in (b), thanks to the L∗ formulation.

Table 7.3 lists the adaptation time for a new user, varying the number of
shots in milliseconds using L∗. The procedure of estimating the adaptation
time to new users is explained in Section 7.4.4. Given four epochs of learning
per single user, the algorithm requires a gradually increasing adaptation
time as the number of shots increases. Indeed, compared to a 1–shot, the
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Figure 7.18: Edge prediction examples obtained post 1–shot test user-
adaptation with MAML 2nd. The top plots show the prediction x̂∗ versus
the respiration belt reference, while the bottom plots display the estimated
bpm and corruption flag. Legends, which also apply to the plots on the right,
are placed in the plots on the left. In (a), there are six visible peaks in the
belt signal (blue), while in (b) there are thirteen peaks. In these examples,
the algorithm performs less well than in standard cases. This is mainly due
to the lack of edge data as prior knowledge during episodic learning. In the
bpm estimation in the example (a), a shorter estimate can be seen for the
belt than for radar. This is due to the computation of two distinct windows
between radar and belt, as explained in Section 7.3.6.

adaptation time is roughly 3 and 7 times longer for 5– and 10–shots. Since
the mean L∗ does not decrease much for 5– or 10–shots (less than 1 %), the
1–shot model can be considered the best trade-off. On the other hand, for
the 1–shot experiments, there is a bigger variation in the confidence value
(up to 5 %). For this reason, we decided to show the 1–shot outcomes in the
single-experiment analysis.

The single inference time for MAML 2nd experiments , as discussed in
Section 7.4.4, is independent by the number of shots used for user adaptation.
Accordingly, we calculated an average value over all repetitions of the 1–, 5–
and 10–shots experiments, already averaged over the last 300 test evaluations
of each. The computed value of single inference time for MAML 2nd is 4.30
ms.
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Table 7.3: MAML 2nd experiments, average adaptation time over the last
300 episodes of test tasks Tv evaluation, averaged over 3 repetitions using
L∗, in milliseconds.

Time N–Shots 1–Shot 5–Shots 10–Shots
Adaptation Time [ms] 797 2,614 5,877

7.5.2. Ablation Study

To show the real benefits of robustness to motion corruption, it is also im-
portant to compare it with training that does not take this information into
account when figuring out the loss function. This can be conducted by com-
paring the results obtained with L∗, with the loss L presented in Section 7.4.
The average values over three experiments for loss comparison are given in
Table 7.4. As can be seen from the results, the mean L∗ turns out to be less
than half despite the fact that the two formulated losses are characterized
by the same magnitude for the three components to minimize. Moreover,
the 95 % confidence shows that the loss L does not become more accurate
as the number of shots increases. Probably, without limiting the learning for
corrupted training examples, as for L∗, the model also learns information
that is not useful for respiration estimation.. Aside from the values, restric-
ting feature extraction to pure breathing information improves learning and
model prediction by incorporating the amount of motion corruption in loss
formulation.

Table 7.4: MAML 2nd experiments, average L and L∗ over the last 300
episodes of test tasks Tv evaluation, averaged over 3 repetitions, with 95 %
confidence intervals.

Loss / N–Shots 1–Shot 5–Shots 10–Shots
L (No Corrupt.) 226.30 ± 5 224.53 ± 5 221.97 ± 5
L∗ (Corrupt.) 84.11 ± 6 83.92 ± 1 83.39 ± 1

Another important feature to analyze is how the performance of the cho-
sen C-VAE topology varies as a function of the model size. This can be
accomplished by varying the size of the latent space, which represents the
size of the extracted features. MAML 2nd 1–shot experiments were carried
out with latent space values ranging from 16 to 128. Table 7.5 shows the
values of L∗ and the number of trainable parameters as a function of the
latent dimension. The mean L∗ reaches the minimum for a latent dimension
of 32, which was also selected for all experiments in Section 7.5.1. A latent
dimension of 16 seems to not be enough to extract all useful breathing fea-
tures from the radar phase. A dimension of 64 brings similar mean values to
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32 at the expense of twice as many parameters. Looking also at the values
at 95 %, both a latent space of 64 and 128 lead to a visible degradation of
precision. This means that the features extracted for many of the evaluation
episodes, tend to overfit the training data and thus fail to generalize well to
test users.

Table 7.5: MAML 2nd 1–shot experiments, average L∗ and trainable para-
meters with varying latent dimension. The L∗ values are obtained over the
last 300 episodes of test tasks Tv evaluation. The results are provided with
95 % confidence intervals, averaged over 3 repetitions.

Parameters / Latent Dim. 16 32 64 128
L∗ 86.75 ± 5 84.11 ± 6 84.31 ± 14 85.19 ± 34

Trainable Params. 382,658 739,074 1,451,906 2,877,570

7.5.3. Results on Various Optimization-Based Algorithms

Using the same C-VAE topology, the performance of MAML 2nd Order
can be compared to that of other cutting-edge Meta-L algorithms.

We propose comparing MAML 1st (first-order model) [30], Reptile [44],
and an improved in-training stability version of MAML based on some con-
tributions from Antoniu et al. [45]. We call MAML +, the stabilized version
of MAML that incorporates multi-step loss optimization (MSL), derivative-
order annealing (DA), and meta-optimizer learning rate cosine annealing
(CA). We trained such algorithms following the same episodic training and
evaluation setup as defined in Section 7.5.1, for MAML 2nd. Reptile episodic
training was carried out with a batch size of 2 and an inner learning rate of
3e− 5. The outer step weight update has been conducted with a meta step
size of 0.4. For MAML +, a value of 17e − 4 is chosen as the initial value
for the outer step learning rate before cosine annealing.

The average accuracy values for test users over three repetitions of the
experiment are given in Table 7.6. For 1– and 5–shots, MAML algorithms
perform better than Reptile. MAML 2nd produces the lowest average value of
L∗ for a single shot, allowing for better reconstruction of respiration signals.
For 5–shots, the MAML + algorithm guarantees the best average result. The
latter, however, lacks precision, leading to a broad 95 % confidence interval
in the 10–shot approach and even decreasing the learning rate in the inner
step. Most likely, second-order learning, coupled with training that tends to
be more selective as episodes progress, leads the model to give more weight to
motion corruption features. This leads to instability when multiple training
samples are employed and thus decreases performance. MAML 2nd and
MAML 1st are tied as the algorithms with the lowest mean L∗ for 10 shots.
For all algorithms except Reptile, it can be seen that there is no marked
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decrease in the mean L∗ as the number of shots increases. By having more
data available, this behavior could be countered by using only the least
corrupted data for training.

Table 7.6: Optimization-based experiments comparison, average L∗ over the
last 300 episodes of test tasks Tv evaluation, averaged over 3 repetitions with
95 % confidence intervals.

Algorithm N–Shots 1–Shot 5–Shots 10–Shots
Reptile 100.02 ± 2 90.78 ± 2 86.95 ± 1

MAML 1st 86.52 ± 5 83.68 ± 1 83.45 ± 1
MAML + 85.86 ± 10.7 82.9 ± 3 88.16 ± 15

MAML 2nd 84.11 ± 6 83.92 ± 1 83.39 ± 1

The adaptation procedure adopted for the other algorithms is the same as
that of MAML 2nd, illustrated in Section 7.4.4. As the algorithms vary, only
the procedure for computing the generalization parameters in the Meta-L
stage changes. The parameters in the evaluation phase are algorithm specific,
but the adaptation always employs first-order gradient optimization. This
means that the adaptation time is independent of the chosen algorithm, since
what changes are only the values of the parameters. Thus, there is no real
difference in adaptation time between the chosen algorithms with respect to
the value provided in Section 7.5.1. The same is true for the single-sample
inference time.

7.6. Conclusions

In this paper, we present a user-adaptable and non-contact solution for
respiration signal estimation using a 60 GHz FMCW radar. This system is
mainly intended for office work-desk applications in a distance range of 20 to
40 cm, characterized by little user motion. This solution, while not as accu-
rate as user-contact estimation approaches, shows how radar can potentially
be employed to non-contact monitor respiration rates. The episodic learning
approach eases the system’s adaptation to new users through short model
adaptation sessions. The estimated respiratory rate may be used for anomaly
detection related to the specific user to whom the system is tailored. Thanks
to a variational autoencoder, the topology employed can extract respiration
features from the radar phase signal, using as a reference for reconstruc-
tion, the signal collected with a respiration belt. Although the belt could be
used on its own for respiration estimation, it would not allow non-contact
estimation. Through this approach, the belt can serve only in user-specific
learning to enhance radar predictions. The cost function of the model is
suitably modified by constraining feature generation to the respiration in-
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formation, to avoid learning motion corruption information. In addition, a
direct estimation of corruption in the collected data sessions allows for im-
proved learning and model estimation in breath signal generation. The whole
system presented represents the first step toward a possible non-contact so-
lution for estimating multiple vital parameters that is adaptable quickly and
has cutting-edge performance for new users. The radar solution by sensing
millimeter displacements could also be used for estimating cardiac signals or
the presence of muscle tremors caused by potential diseases.

Although this solution offers several innovative advantages, it also has the
disadvantage of relying, only during adaptation, on a breathing belt used as
a reference. We placed the constraint so that such a reference sensor depends
little on degradation caused by user motion. The generated models also do
not perform particularly well for users with respiratory rates significantly
higher or lower than the standard 7 to 9 beats per 30 s. This is mainly due
to only a few reference examples available in meta-learning, not enough for
proper generalization. Radar information is also easily corrupted by long
movements in the recording sessions Further, the use of multiple training
examples for user adaptation results in improvements for out-of-standard
respiratory rates but can degrade performance within the standard range
itself. Therefore, substantially motion-corrupted sessions should still be dis-
carded and not used for adaptation. Sensor fusion systems and discarding
corrupt sessions could improve performance under these circumstances.

Future work will focus on benchmarking the presented approach against
other non-contact solutions, comparing the Meta-Learning solution with
transfer learning and adapting the system to other environments, such as
outdoors. An additional important aspect that will be analyzed is the varia-
tion in model performance per user and bpm as the level of motion corruption
in the sessions changes. Another intriguing possibility would be to test and
improve the solution on users with respiratory dysfunction in order to assess
its benefits and drawbacks.
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7.8. Appendix A. Biquad Filter Parameters Compu-
tation

A biquad band-pass filter is used for filtering the respiratory signal. A
temporal representation of the filter is given in Equation (7.5). The parame-
ters a0, a1, a2, b0, b1, b2 depend on the central frequency FC, the sampling
frequency fs, and Q the quality factor. Q determines the sharpness of the
filter. Let ω be the amount of degrees to advance the periodic signal per
sample:

ω = 2πFc/fs. (7.10)

Let η be a function of ω with respect to the Q value:

η =
sin(ω)

(2Q)
. (7.11)

For a biquad band-pass filter, the time parameters can be calculated with
the following formulas:

a0 = 1 + η, (7.12)

a1 = −2cos(ω), (7.13)

a2 = 1− η, (7.14)

b0 = η, (7.15)

b1 = 0, (7.16)

b2 = −η. (7.17)
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Abstract.
In many industrial or healthcare contexts, keeping track of the number

of people is essential. Radar systems, with their low overall cost and power
consumption, enable privacy-friendly monitoring in many use cases. Yet, ra-
dar data are hard to interpret and incompatible with most computer vision
strategies. Many current deep learning-based systems achieve high monito-
ring performance but are strongly context-dependent. In this work, we show
how context generalization approaches can let the monitoring system fit un-
seen radar scenarios without adaptation steps. We collect data via a 60 GHz
frequency-modulated continuous wave in three office rooms with up to th-
ree people and preprocess them in the frequency domain. Then, using meta
learning, specifically the Weighting-Injection Net, we generate relationship
scores between the few training datasets and query data. We further pre-
sent an optimization-based approach coupled with weighting networks that
can increase the training stability when only very few training examples are
available. Finally, we use pool-based sampling active learning to fine-tune
the model in new scenarios, labeling only the most uncertain data. Without
adaptation needs, we achieve over 80 % and 70 % accuracy by testing the
meta learning algorithms in new radar positions and a new office, respecti-
vely.

Keywords: active learning, meta learning, radar, few shot learning, people
counting, weighting network.

8.1. Introduction

Counting the number of people in an environment can be a crucial task
not only in industrial settings but also in medical and safety scenarios. In dif-
ficult times, such as during a pandemic, keeping track of the occupancy of an
environment can greatly reduce the risk of spreading a pathogen [1, 2]. Esti-
mating the presence of people can lead to other advantages, such as enabling
energy management plans in places with frequent turnover of people, such as
hospitals, by smartly activating equipment and heating systems [3]. A non-
automated measure may be challenging or impossible in many contexts, such
as for pedestrian crowds in public areas [4]. The majority of solutions desig-
ned for people monitoring rely on images captured by cameras and thermal
sensors [5]. Most camera-based solutions use RGB or time of flight (ToF)
sensors, and occupancy information is estimated using computer vision [6, 7]
or machine learning [8, 9, 10]. Camera systems that use cross techniques for
image segmentation and edge detection, such as convolutional neural net-
works (CNNs), achieve high performance even in crowded environments, but
suffer from the inherent problem of a lack of privacy [11]. Thermal sensors,
on the other hand, are much less privacy-invasive because of the usage of
infrared frequencies and often lower image resolution [12]. Thermal sensors
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also have the advantage of being usable in the dark, but they can be affected
by thermal noise, caused, for example, by heaters and sunlight. In addition,
the lack of depth information generally does not allow distinguishing bet-
ween people moving in the same direction. In contrast to visual solutions,
many other systems exploit the measurement of environmental quantities.
Radio-frequency (RF) and laser technologies are typically classified as non-
image-based approaches [13]. The CO2 sensors, for example, can be used
to estimate the occupancy of a room by the concentration of carbon dioxide
produced by individuals. Such systems are frequently low-power but must
account for venting systems and are practically unusable in open spaces [14].
LiDARs represent often another privacy-friendly solution for people counting
and tracking. Through the use of pulsed lasers and a scanner, a LiDAR yields
the generation of 2-D or 3-D maps of the surrounding space [15, 16]. Such
systems frequently have high spatial resolution and frame rates, but they can
be costly and power-consuming. RF-based systems have the advantage of ha-
ving almost no privacy concerns and little dependence on light and weather
conditions. These characteristics make them appropriate for monitoring se-
veral people. Wi-Fi technology, for example, can enable the recognition and
segmentation of people even through walls and obstructions [17, 18]. Wi-Fi
modules, however, require the development of high output power in the RF
range (≈W) and a continuous working operation to exploit their functiona-
lities. On the contrary, radar sensors are more versatile in many applications
thanks to lower power consumption (≈ mW) and optimized system power
management. Among radar modulations, frequency-modulated continuous
wave (FMCW) is particularly suited to people monitoring, allowing accura-
te estimation of the range and velocity of both dynamic and static targets
located within the device’s field of view (FoV) [19, 20]. Specifically, 60 GHz
technology is particularly suitable for short-range people monitoring applica-
tions [21]. Radars transmitting around this frequency are cost-effective and
versatile compared to other solutions such as cameras or LiDAR. Further,
the 60 GHz frequency is much less susceptible to interference with other
radio-frequency signals or Bluetooth devices. Image-based or high-resolution
RF systems often implement a vision-based pipeline to predict the number
of people in a given context. This approach can lead to high classification
performance even in the challenging task of tracking through image segmen-
tation, edge detection, and skeleton-pose extraction [6]. On the other hand,
radar data are hardly interpretable through classical computer vision ap-
proaches. In this case, deep learning (DL) techniques are commonly used to
process the information [22].

DL is nowadays finding the most varied uses for solving tasks and spee-
ding up processes. Over the years, classes of DL models have been develo-
ped to extract valuable information from the available data for given tasks.
Examples are CNNs for feature map generation or recurrent neural networks
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(RNNs) for processing time series. Over the years, multiple neural network
topologies, such as Inception [23] and VGGNet [24] have been designed to
solve specific tasks with successful outcomes.Yet, such topologies have the
inherent need to be trained on a large amount of data to achieve robust
performance across new contexts. Commonly, these models are adaptable to
new tasks by leveraging transfer learning [25], tailoring parameters to newly
collected data. However, the limited availability of data and the need for
rapid adaptation to new contexts make transfer learning hardly usable for
defined types of tasks. To deal with these challenges, a specific branch of DL
called few-shot learning has gained momentum in recent years [26]. The goal
of few-shot learning is to exploit the little available information and data
patterns, leveraging previous experience to adapt to new contexts or solve
tasks that have not been tackled before.Few-shot learning is approached from
different perspectives by specific DL sub-branches such as meta learning and
active learning [27, 28].

Meta learning, or learning to learn, accounts for the set of algorithms
where the primary goal is to learn how to approach new tasks given some
past experience, or meta-data [29, 30]. This process not only encourages con-
text generalization but also accelerates the fine-tuning of already observed
tasks when new data are available. If the meta learning is optimization-based,
an iterative learning process called episodic learning based on available trai-
ning data is generally used. For a task defined in N–way, i.e., N classes, the
few available samples are called shots. To assess generalization performance,
C samples of support and J samples of query are fed to the defined model
for each class. Algorithms commonly used for meta learning are model ag-
nostic meta learning (MAML) [31] and Reptile [32] which, thanks to their
very general conceptualization, enable the episodic adaptation of most of
the common topologies defined in DL. Frameworks based on optimization-
based meta learning are highly effective and perform well in several data-poor
tasks [33, 34]. However, they have an inherent need for training on a set of
representative data for each new, unseen task to learn to generalize. A spe-
cific kind of method, called relation network [35], was created to obviate this
need by exploiting the ability of the model to compare the features of diffe-
rent examples and learn to distinguish them. The comparison is possible by
properly shaping the model topology and regressing a relation score between
0 and 1, comparing individual support and query examples. The relation
scores are unconventionally regressed by minimizing the mean squared error
(MSE) to the ground truth of query instances. This approach assumes that
all available support instances are mutually independent of each other. In-
tuitively, the model relies on a one-to-one comparison rather than comparing
the new query examples with all the available support samples. Such issues
are addressed by the weighting network [36]. In this adapted topology, the
relation between support and query is propagated through two modules. A



8.1. Introduction 171

Graphical Abstract

𝑒𝜃

1

2

3

0

1

Injection Module

Comparison Module

𝑔𝜃

Weighting Module

𝑤𝜃

Probability

1

2

3

0

Support Samples

Query Sample

Increased Dimensionality

Support and Query 

Comparison

Features 

Weighting

Weighting-Injection Net

Figure 8.1: Weighting network with an injection module (Weighting-Injection
Net). At least one instance per class, represented in the figure with a different
marker color and a label, is used as support. A query example belonging to
one of the classes is what is to be associated with a label by the classification
algorithm. An injection module trained on the support images enables the
concatenation of a query with an increased-dimensionality representation of
each support. A comparison module merges support and query information
by mapping the relation into a one-dimensional vector. Finally, a weighting
module composed of fully connected layers maps the relational information
to the query label. The model parameters are represented by θ.

first comparison module for the extraction of the similarity between the sam-
ples and a second weighting module that compresses the information into a
one-dimensional vector representing the relation scores. This method levera-
ges all available support sample features for query prediction. Further, the
weighting network endorses the use of traditional classification cost functions
such as crossentropy during episodic optimization.

Active learning, on the other hand, aims to optimize the model’s per-
formance with as few labeled instances as possible [37, 38]. To accomplish
this, the algorithm has control over the inputs on which it trains, labels,
or requests additional information about the data it deems most useful for
learning. A common strategy is to assign a priority score to the unlabeled
data pool, exploiting, for example, the probability distribution generated by
the model. Only the instances identified as most uncertain are then labe-
led and used during training. This procedure, called pool-based sampling, is
normally repeated multiple times, increasing the amount of labeled training
data, until satisfactory performance for a given task is achieved.

In this paper, we exhibit how few-shot learning techniques can grant ge-
neralization of scenarios (environments and locations) for an FMCW radar-
based algorithm designed for people counting. The application of this system
is intended for uncrowded areas or rooms where there is a need to count the
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presence of a few people. For this work, a specific dataset was collected using
a 60 GHz radar that was set up for the task of counting people. The informa-
tion was gathered in three different offices with at least four different in-room
locations. Per location, 0 to 3 people took part in the data recording for at
least 60 seconds per session. The data were preprocessed in frequency to
extract range and Doppler information from the people in the scene. Meta
learning is then used for the monitoring use case, estimating the number of
people from radar data. Instead of using all the available data in a single
training, we propose a few-shot episodic approach to foster and speed up
adaptation. To meet the learning needs, we introduce both a new relation
topology, which we call the Weighting-Injection Net, and an algorithm, which
we call model-agnostic meta-weighting (MAMW). The Weighting-Injection
Net represents a modification to the traditional weighting network presented
in [36]. Instead of an embedding module that reduces the dimensionality of
the support samples for the next comparison step, the proposed one uses an
injection module. This module increases the dimensionality of input data, ge-
nerating a feature-enriched representation of support and query samples for
the next relational phase. The overall network scheme is shown in Figure 8.1.
The MAMW, on the other hand, combines the query relation strategy of the
weighted network with the two-step optimization-based approach of MAML.
This is meant to improve the stability of the few-shot episodic training, es-
pecially when only very few instances are available as training. Experiments
with 1–, 2–, 5–, and 10–shot have been performed and analyzed for the
proposed methods. The achieved generalization results have been compared
with those of other state-of-the-art approaches. State-of-the-art comparisons
are also conducted up to five-person counting, to test the limitations of the
radar-based episodic approach.

We also exhibit how pool-based sampling active learning can be efficiently
employed to fine-tune the performance of a relational model by exploiting
the most uncertain data. Showing how, for adaptations in new contexts, the
use of generalization information learned from episodic adaptation leads to
a better fit than starting from random initialization. The active learning
strategy has been used to fit the 1–shot-pre-trained model on data from an
office room used as a test that is therefore unseen in the meta-training phase.

For the meta learning algorithms, we also conducted experiments on a
publicly available dataset for few-shot learning in the Appendix 8.8. The
main contributions of this paper are as follows:

1. Implementation, to the best of our knowledge, of the first context-
adaptable radar-based solution for counting people without a necessary
adaptation training.

2. Design and implementation of the Weighting-Injection Net. This net-
work represents a variation of the weighting network with an injection
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module. The injection operation increases the dimension of support
and queries to ease feature matching in the subsequent comparison
module.

3. Design of a cross-algorithm between MAML and the weighting net-
work, called MAMW to increase the training stability of 1– and 2–shot
experiments.

4. Development of a pool-based sampling active learning algorithm com-
patible with weighting network topologies.

8.2. Related Works

In this section, we first investigate state-of-the-art solutions for people
counting that offer similar features to radar-based systems, such as privacy
preservation and low frame resolution. We then focus on the specific approa-
ches aimed at context generalization and active learning.

When low frame resolution and privacy are system needs, traditional
image segmentation and detection methods are often replaced or aided by
deep learning. Neural networks can also be used to process time series or
generate density maps for crowd monitoring.

Massa et al. [39] presented a recurrent neural network (RNN) architec-
ture called LRCN-RetailNet (Long-term recurrent convolutional network)
that takes as input sequences of low-resolution RGB frames and analyzes
their spatiotemporal content for people counting. The strategy outperforms
other state-of-the-art single-image-based approaches. The system based on
temporal sequences may be unusable in low frame rate scenarios or with
hardware implementation constraints. Gomez et al. [40] developed a system
using long-wave infrared imaging and a CNN implementation on the NXP®

LPC54102 microcontroller. The classification approach is binary, exploiting
a small detection window on image sections to predict the presence or absen-
ce of heads. Because all weights fit in a 512 KB flash memory, the CNN can
be easily deployed on the microcontroller. The counting algorithm using the
embedded version of the model achieves an accuracy of 53.7 % on test images
and up to six people. This solution is very low-power and privacy-friendly,
but the presence of heat sources in the environment could cause counting
issues due to the low resolution of the thermal sensor.

The most common types of RF-based systems used for monitoring are
Wi-Fi and radars that use impulse radio ultra-wide band (IR-UWB) or
FMCW technology. Most of these solutions are inherently characterized by
privacy preservation and low sensor resolution. Kianoush et al. [41] presented
a people counting system via Wi-Fi radio infrastructure that uses an ensem-
ble of models to leverage the space-frequency features of various transmission
and reception channels. The ensemble exploits Bayesian techniques based on
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signal propagation statistics from RX to TX, a feed-forward neural network
(FF-NN), and long-short-term memory (LSTM). Some of the constructed
ensembles achieve an accuracy of over 95 % in the test setup. However, a
network of Wi-Fi terminals is employed for this purpose, which results in
higher power consumption and challenges usability in other environments.
Bao et al. [42] featured a CNN-based algorithm for people counting focu-
sing on extracting multi-scale range-time maps from IR-UWB radar data.
Sequences of radar frames are preprocessed to extract the peak information
and remove the background. The single frames are then stacked together to
form range-time maps. The method proved robust in counting up to 10 peo-
ple in the selected environment. However, the time dependency and lack of
velocity information may make the system unsuitable for real-time applica-
tions where multiple people may be at the same distance. Stephan et al. [43]
proposed a people counting solution via the BGT60TR13 radar system (60
GHz FMCW) that makes use of knowledge distillation from synchronized
camera data during the model generation. The suggested architecture first
processes the camera RGB data, exploiting an OpenPose network that ex-
tracts the people’s poses through pre-trained layers of the VGG-16 network
and a multi-stage CNN. The extracted information is then fed to a triplet
network with a 32-D embedding layer to generate clusters for each person
count class. Radar information is first preprocessed in the form of range Dop-
pler images (RDI) and fed to an encoder with fully connected final layers
that learn through knowledge distillation from camera embeddings. Informa-
tion transfer is possible by minimizing the Kullback-Leibler (KL) divergence
between radar and camera embeddings. The method is robust and leads, in
the test phase, to an accuracy of up to 71 % for six people with another ra-
dar sensor with different positions and orientations. What is learned through
knowledge distillation, however, could significantly affect the capabilities of
the architecture in new environments where morphological and light condi-
tions would directly influence the camera data.

A few cutting-edge works attempt to solve the people counting problem
through active learning or aim at context generalization.

Vandoni et al. [44] featured a solution that uses active learning, coupled
with SVMs, to improve training on subareas of crowd images via head count.
Samples that are more dissimilar than those already tagged are estimated in
terms of their uncertainty via a metric that accounts for crowd density, ca-
lled maximum excess over subarrays (MESA). Zhao et al. [45] also proposed
an active learning solution for head counting in camera-based density maps.
In this case, in the iterative process of instances sampling to be labeled,
both crowd density information and dissimilarity from previous selections
are employed. The sampling technique is a context-appropriate version of
partition-based sample selection with weights (PSSW). The number of peo-
ple is then regressed through mean absolute error (MAE) and MSE. Both
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methods presented in [44] and [45] result effective in improving the people
count through uncertainty sampling in crowded scenes but are very depen-
dent on the 2D RGB nature of the images. Zhang Yingying et al. [46] propo-
sed a multi-column convolutional neural network (MCNN) to estimate crowd
head counts from single images without temporal dependence. Even with a
sparse number of people, the method outperforms other cutting-edge solu-
tions on a variety of public datasets. The model, trained on a large dataset
with various density map sizes, can be easily tuned for new datasets and
contexts via transfer learning. The required resolution is nonetheless high
and could create context-specific privacy issues. Reddy et al. [47] and Zan
et al. [48] designed an adaptive algorithm to generate crowd density maps
using MAML with episodic training. In [47] a backbone consisting of the first
layers of VGG-16 and a density map estimator are trained on various RGB
sequences collected in different environments. The pioneering approaches de-
pict how meta learning can be effectively employed for people counting. Hou
X. et al. [49] presented a cross-domain solution for the estimation of density
maps by episodic learning. In this case, a domain-invariant feature represen-
tation module is exploited, where synthetic and real camera data are used
as source and target domains, respectively. The density maps are then gene-
rated using a pre-trained CNN network and an algorithm called β-MAML,
where β represents the generalization step’s learning rate. The parameter β
is dynamically adapted in the episodes by exploiting the gradient informa-
tion of parts of the images. The number of people is finally estimated from
the density maps. The meta learning approach presents more robust per-
formance for the algorithm than other state-of-the-art methods for density
map generation. However, the need for a sensor camera does not allow for
low-resolution uses or where privacy is a requirement.

Some cutting-edge RF-based works also propose adaptive context gene-
ralization solutions. Hou H. et al. [50] illustrated a few-shot learning solution
for indoor crowd counting using Wi-Fi technology. The solution consists of
a two-stage framework called domain-agnostic and sample-efficient wireless
indoor crowd (DaseCount). In a first stage of meta-training, two separate
CNNs learn to extract human activity information from wireless channel
state information (CSI) measurements. Generalization performance is im-
proved at this stage by knowledge distillation. In the meta-testing phase,
the features extracted via CNNs from the CSI data are fed to a few-shot
regression algorithm for the people counting task. The presented framework
achieves, on average, over 96 % accuracy for counting up to eight people in
various domain setups. Yet, the solution is computationally expensive for
classifier retraining and may not be suitable for frequent Wi-Fi transceiver
location changes. Zhang Yong et al. [51] proposed a WI-FI-based few-shot
learning solution for activity recognition that makes use of graph neural
networks. The method uses a graph convolutional block attention module
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to extract activity-related information from CSI data. A final classification
layer is used to classify the graph features and recognize the activity. The ap-
proach presents a robust 99.74 % accuracy in the 5–way 5–shot experiment
for new environments and activities. Yet, much computation and memory
are required for model adaptations.

8.3. System Setup and Radar Preprocessing

In this section, we propose a general overview of the system, discuss the
data acquisition setup, and provide information about the employed radar
board, its configuration, and the main preprocessing steps.
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Figure 8.2: Proposed Framework. The setup is mounted in three rooms. Data
sessions with a number of people from 0 to 3 in the scenario are collected
and processed (orange). The frequency analysis is performed via the fast
Fourier transform (FFT). Instances are generated via a moving average over
frame sequences. A meta-dataset is then generated, and one room is used as
the test dataset. A classifier is then episodically trained and tested. Active
learning is used to fine-tune the model to a new environment (yellow).
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8.3.1. General Overview of the System

Figure 8.2 depicts the overall framework. First, rooms for data gathe-
ring are chosen for the few-shot learning approach. The radar data are then
gathered from various in-room locations with varying numbers of people.
Preprocessing is performed to extract range and Doppler information about
the people in the FoV of the device. The sequences of preprocessed frames
are averaged by moving average to generate the individual instances of the
meta-dataset. The data are then saved and labeled in session-specific folders.
The folder names denote the label encoding, from 0 to 3, of the number of
people who attended the session. In most of the proposed experiments, the
information recorded in two rooms is used as input data for the episodic
training of the meta learning model. The third room is instead utilized for
testing. Model fine-tuning can be performed via active learning on the test
data, using the meta learning model as a baseline.

8.3.2. Radar Board

All radar data in this work were collected using the BGT60TR13C FMCW
sensor [21] from Infineon Technologies AG. With a center frequency of f0 of
60 GHz and a bandwidth of about 6 GHz, this radar represents a miniatu-
rized and low-power solution. This f0 and bandwidth are especially suitable
in short-distance and indoor applications, resulting in low susceptibility to
interference with other signals such as WiFi or Bluetooth. Thanks to an
operation-optimized duty cycle, the power consumption for sensing within 5
m is minimized to only 5 mW. The BGT60TR13C has a transmit (TX) and
three receive (RX) channels built into the package. The RX antennas are
placed orthogonally to each other to enable the reconstruction of azimuth
and elevation angles of arrival (AoA) for the targets placed in the FoV. The
information collected from the RX channels is mixed with the TX and di-
gitized with 12-bit resolution via the board connected to the radar sensor
(Figure 8.3).

Figure 8.3: BGT60TR13 Radar System. The board filters, mixes, and digi-
tizes data from each RX channel, located on top of the radar sensor.
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8.3.3. Radar Configuration

The BGT60TR13C transmits a series of linearly frequency-modulated
signals called chirps in a defined bandwidth Bw around the central frequency
f0. Each chirp, of duration tc, normally consists of a fixed number of samples
ns. During use, the information reflected in the RX channels is mixed with a
transmitted signal reference and digitized, thus generating an output signal
called intermediate frequency (IF). Normally, for further preprocessing, the
radar information is packed into frames, each containing the IF relative to
a sequence of chirps Nc. The theoretical maximum detection range Rmax

and range resolution ∆r of an FMCW modulation are calculated using the
following formulas:

∆r =
c

2Bw
, (8.1)

Rmax =
∆r

2
ns , (8.2)

where c stands for the speed of light in air. A narrow Bw of 0.48 GHz was
chosen to achieve a Rmax of about 10 m, which would cover the entire size
of the chosen environments. A resolution ∆r of at least 31 cm was chosen
to let several targets placed in front of the radar be distinguished even at
a considerable distance. A ns per chirp of 64 has been specifically selected.
The maximum discernible velocity of the targets Vmax in one direction and
the resolution ∆v can instead be calculated with the following formulas:

Vmax =
c

4f0tc
, (8.3)

∆v =
2Vmax

Nc
. (8.4)

The average human walking speed is about 1.42 m/s. To allow detecting
even faster motions, we opted for a Vmax of 3.5 m/s and a ∆v of 1.1 cm/s.
As a result, we set tc to 351 µs and Nc to 64. To collect approximately
seven frames every half second, a frame repetition time fps of 75 ms was
chosen. Furthermore, an analog-to-digital converter (ADC) sampling rate Fs

of 2 MHz was chosen. The parameters used to configure the BGT60TR13C
for the people counting recordings in all the selected rooms are listed in
Table 8.1.

8.3.4. Recording Setup

The BGT60TR13C radar system was mounted on a tripod for the people
counting data, and the data were collected using a Raspberry® Pi 4. The raw
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Table 8.1: Radar Sensor Parameters Configuration.

Symbol Quantity Value
f0 center frequency 60 GHz
fps frames per second 13.33
Nc number of chirps 64
ns samples per chirp 64
tc chirp time duration 351 µs
Bw bandwidth [59.78 – 60.26] GHz
Fs sampling frequency ADC 2 MHz

radar data were then processed and labeled offline at a later time on an eight-
generation Intel® CoreTM i5 processor (4 cores). Figure 8.4 depicts the used
setup. Three different rooms of various sizes were chosen for data collection:
an office of approximately 26 m2 and two meeting rooms of about 20 and
39 m2, respectively. Only a portion of the office has been used, with walls
separating the other two areas. Various types of furniture, such as cabinets,
desks, tables, and chairs, were left in the rooms and were unmoved from their
locations. The reflection of such objects represents the so-called clutter that
characterizes the FMCW radar data. A graphical illustration of the three
environments, indicated with the letters S, M , and B, standing for small,
medium, and big, is provided in Figure 8.5. Data were gathered in each room
from at least the four corners. Data were also collected in three additional
locations in the office room. At every location, the tripod was set up at a
height ranging from 1.65 to 1.75 meters. Four sessions have been carried out
per location, each lasting approximately 60 seconds for the meeting rooms
and 90 seconds for the office. Each session contains data from 0 up to a
maximum of 3 people in the room at the same time. Ten different people with
heights ranging from 1.60 to 1.78 meters took part in the recordings. Some
data up to 5 people have been gathered in the big room to further test the
performance of the developed algorithm. Before collecting data, user consent
was obtained, and as much privacy and data anonymization as possible were
maintained during the recordings. The collected data has not been made
publicly available.

8.3.5. Radar Preprocessing

Raw radar frames are difficult to interpret and label. The information
to be fed to a DL model for learning purposes can be too noisy and highly
context-dependent due to clutter. In this work, we propose to preprocess the
raw data collected for people counting by removing the clutter and extracting
the Doppler and range information of the targets through frequency analysis
with the fast Fourier transform (FFT). We then perform two averages to
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Figure 8.4: Data recording setup. A Raspberry® Pi4 (a) is used for data
storage. For data collection, the BGT60TR13C radar system is mounted on
the tripod (b). The tripod is moved between sessions in the various rooms
and locations (c).

reduce the noise in the data for the next model generation step. One for
each frame, averaging the IF signal ChIF (i) generated for each of the three
RX channels (i ∈ IRX), and another for each 7-frame recorded series. The
whole process, given the fps of 75 ms, leads to the generation of about 2
RDI per second. The main preprocessing steps are shown in Figure 8.6.

The preprocessing steps performed for each RX-generated IF signal are
as follows:

1. For each chirp (slow time), the average value of the samples (fast time)
is calculated and then subtracted.

2. The IF signal is then multiplied in fast time with a Hanning window
to reduce the spectral leakage effects.

3. A 1-D FFT is performed on the samples to derive the range information
of the targets.

4. A multiplication with a Hanning window is run also in the slow time.

5. A 1-D FFT is performed along the slow time to obtain the velocity
information.

6. To drop the information of static objects, aka clutter, moving target
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Figure 8.5: A graphic illustration of the environments chosen for data co-
llection. Data from 0 to 3 people were collected from the four corners of the
rooms. For the office M , data were also gathered at three other locations (C,
E, and H, respectively). For M , data could not be collected from location B
due to the presence of the front door.

indication (MTI) is utilized (Equation 8.5).

ChIF (i) = µChIF (i) + (1− µ)ChIF (i) , (8.5)

where µ ∈ [0, 1] is set to 0.9, and weights the importance of the current
frame against the average of the previous ones ChIF (i).

7. For each ChIF (i) a constant false alarm rate (CFAR) algorithm is used
to locally select Range and Doppler peaks in frequency and discard
the surrounding information, thus increasing the signal-to-noise ratio
(SNR).

8. To further improve the SNR, the RDIs(v) for each frame v ∈ V
are computed as the absolute value of the average of ChIF (i) (Equa-
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tion 8.6).

RDI(v) =

∣∣∣∣∣ 1

IRX

IRX∑
n=0

ChIF (i)

∣∣∣∣∣ . (8.6)

9. The RDIs thus generated are stored in a seven frames buffer (Nv),
which corresponds to roughly half the frame rate. A moving average
is performed on the buffer to further reduce the noise in the RDIs.
These RDIs represent the individual instances of the people counting
dataset that get labeled (Equation 8.7).

RDI =

∣∣∣∣∣ 1

Nv

Nv∑
v=0

RDI(v)

∣∣∣∣∣ . (8.7)

8.3.6. People Counting Dataset

For people counting, three different meta-datasets have been generated
from the collected data of up to three people. Given a frame timing of 75 ms
and the frames averaged performed on a seven frames buffer, a total of 7,669
labeled samples have been created. Each sample has a size of 32 times 64
pixels. The width of 64 pixels represents the velocity span, corresponding to
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the number of chirps per frame. The height of 32 pixels represents the range
span, corresponding to half of the bin samples per frame. Independently
of the recording room, labels represents the number of people Pm in the
recording, with m ∈ [0, 3]. As shown in Figure 8.5, the data has been divided
into sub-folders of the tuple (R, Pm, and L). The tuple components are the
room’s name R: S, M , or B, the number of people (Pm), and the location, L ∈
[A,H]. With an average duration of 60 seconds across all recordings in rooms
S and B, a total of 1,677 and 1,702 examples were created, respectively.
For M , a total of 4,290 examples were built with six available locations.
With all the available instances, the following three meta-datasets have been
generated:

Mixed-Dataset : the data from the sub-folders (R, Pm, L) were ran-
domly split so that approximately 75 % of the instances was training
and 25 % was testing. The number of training and test instances in this
case are 5,803 and 1,866, respectively.

S-Test-Dataset : in this case, all sub-folders (S, Pm, L) were used as
tests, while all others ([M,B], Pm, L) were used as training. In total,
for this meta-dataset, there are 5,922 training examples and 1,677 test
examples.

B-Test-Dataset : all the sub-folders (B, Pm, L) were used as test, while
all the others ([S,M ], Pm, L) were used as training. The number of
training and test instances are 5,967 and 1,702, respectively.

In general, for each of the three generated meta-datasets, the training and
test instances are part of the respective training Dm−train and test Dm−test

meta-dataset splits. Three different averaged RDI examples per class, sam-
pled from the different recordings in all rooms and locations, are shown in
Figure 8.7.

Even in the same environment, RDIs from classes 1 to 3 are difficult
to distinguish from one another. Figure 8.8 shows a t-distributed stochastic
neighbor embedding (t-SNE) with a 2-D component representation of all
instances in the S room. The t-SNE succeeds in correctly clustering only data
with zero people in the environment. A t-SNE representation of all collected
data are shown in Figure 8.9 according to the B-Test-Dataset split. Even with
a larger amount of data, only the zero-person instances are easily clustered.
In this case, it can also be observed that the test data, which represents the B
room, have different features than the rest of the points. This is an important
indication of the dependence of radar data on the location in which they are
collected. Algorithms trained in a single location may be difficult to use in
other environments and usually require adaptation. Euclidean distance was
used as a metric, and Barnes-Hut was used as an optimization algorithm to
generate the t-SNE representation.
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Figure 8.8: 2-D t-SNE representation of all S room data. This t-SNE was
obtained with a perplexity of 40 over 6,000 optimization iterations.

8.4. Proposed Approach

In this section, we present our solutions for generalization learning. We
begin by proposing a new network topology called the Weighting-Injection
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representation was obtained with a perplexity of 30 over 7,000 optimization
iterations.

Net, which is inspired by the weighting network [36]. We then propose an
algorithm that makes use of optimization-based meta learning features from
MAML [31], which we call MAMW. This modified version aims at increasing
training stability when only a very limited number of shots per class are
available. Then, we propose an active learning strategy tailored for weighting
networks to allow fine-tuning in a new environment while minimizing the
amount of required labeled data.

8.4.1. Meta Learning

In episodic meta learning, K tasks are sampled from a distribution p(Tr)
defined over Dm−train. As the episodes progress, the goal is to improve the
performance of the model on tasks sampled from p(Ts) defined on Dm−test.
In DL, task-based learning is often achieved via the gradient method, which
involves training the parameters θ′ by minimizing a cost function LTr(fθ′),
where fθ′ represents the relation between the input x and the predicted
output ŷ. In the relation networks [35], generalization among tasks is di-
rectly achieved thanks to the intrinsic comparison of instances enabled by
the topology. In optimization-based meta learning, such as in MAML [31],
the information learned for tasks Tr and encoded in the parameters θ′, is
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transferred to a base model fθ with parameters θ, minimizing an outer cost
function LTr(fθ′). In this case, the task-specific cost function depends on the
parameters θ of the base model LTr(fθ).

8.4.1.1. Weighting-Injection Net

The Weighting-Injection Net aims to compare the features of the arbi-
trary examples of query q with those of reference to the support s classes
for each task k ∈ K. The Weighting-Injection Net, as shown in Figure 8.1 is
based on three main modules: injection, comparison, and weighting. During
training, the gradient information is propagated through all modules in both
forward and backpropagation steps. For a N–way 1–shot task, the idea is to
map the relationship between support examples sn, where n ∈ N: [1, 2, ...,
N ], to each query example qj , where j is the index of the j-th example of
the set.

The injection module eθ generates a higher dimension representation of
the input x to enhance the extraction and matching of features in the subse-
quent comparison step. Gradient information for the injection module is only
propagated as eθ′(sn) through the support instances. For the query, only the
feature representation eθ′(qj) is generated.

The comparison module cθ, takes as input the concatenation along N
channels of eθ′(qj), with each of the n support samples. The number of chan-
nels N corresponds to the task number of ways. The features are extracted in
the module using convolution layer sequences, yielding a comparison vector
z. The vector z is generated in the following way:

zn,j = gθ′(eθ′(sn) ∥ eθ′(qj)) , (8.8)

where ∥ denotes the operation of concatenation along the N channels.
Lastly, the weighting module wθ is designed to generate a probability

density from the concatenated N channels in the z vector. Each zn,j is the
output of the comparison module, between the query qj and a support sn.
The predicted output ŷj for the sample qj can be expressed as follows:

ŷj = wθ′(
Nn

n=1

zn,j) = wθ′(z1,j ∥ z2,j · · · ∥ zN,j) , (8.9)

where
f

represents the sequence of concatenations performed over the chan-
nels N of z.

In the case of a N -way C–shot task, where c ∈ N: [1, 2, ..., C], the sup-
ports per class can be denoted as sn,c. The Weighting-Injection Net can be
leveraged in this case to create a more robust representation of the com-
parison vector zn,j . This can be done by arithmetic averaging over C sets
of N -channel concatenations, given by the embedded representations of qj
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with each of the support sets sn,c. Such a more robust representation yields
the query class estimation with less bias than with the single support shot
scenario. The mathematical expression for a single qj is as follows:

zn,j =
1

C

C∑
c=1

gθ′(eθ′(sn,c) ∥ eθ′(qj)) . (8.10)

The Weighting-Injection Net, trained on p(Tr), can be tested, thanks to
its inherent structure, on tasks from p(Ts) without further training. Given
a support set with elements sn,c for a task T ∼ p(Ts) a N–way C–shot, the
class probability density of the j-th query sample qj , is directly estimated
by inference.

8.4.1.2. Model-Agnostic Meta-Weighting

The weighting network [36] represents a robust episodic learning algo-
rithm thanks to the inherent feature of instance comparison. Yet, this method
can be characterized by learning instability when only a few-shot per class
are available. Especially in 1–shot learning, this is due to the comparison
of the query with the individual support instances, which may not be suf-
ficiently descriptive of a class for a given task. Hence, we present a method
called model-agnostic meta-weighting (MAMW), which tries to incorpora-
te within the weighting network some features of optimization-based meta
learning to enhance the stability and robustness of prediction in this setting.
Specifically, in the MAMW, we propose to divide episodic learning into inner
and outer steps. Given a N–way C–shot task:

1. In the inner step, the support instances are compared with a noisy
version of themselves of Gaussian type via a function eθ(ϕ((sn,c))).
This noise is generated at random from the N (0, σ2) distribution in
the interval [−σ, σ]. Defined sh as the h-th support example, where
H = N · C =⇒ h ∈ N: [1, 2, ..., H], the computation of zn,h can be
expressed as follows:

zn,h =
1

C

C∑
c=1

gθ(eθ(sn,c) ∥ eθ(ϕ(sh))) , (8.11)

ŷh = wθ(
Nn

n=1

zn,h) , (8.12)

where θ represent the parameters of the base model fθ. Such operations
can also be carried out in batches. An example of people counting
instances compared with their noisy version is shown in Figure 8.10.
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2. In the outer step, the comparison between the support examples sn,c
and each query qj is performed, starting from the weights θ′ learned in
the inner loop. In this case, the comparison vectors z are computed with
the Equation (8.10) and the predicted output ŷj with Equation (8.9).

0

20

0 People 1 Person 2 People

0 25 50

0

20

Radar RDI Instances With Additive Gaussian Noise: μ= 0, σ=0.005
3 People

0 25 50 0 25 50 0 25 50

(a)

(b)

Figure 8.10: Examples of RDI without (a) and with added Gaussian noise
(b) used in the inner step training of the MAMW.

The main steps of the MAMW, in the case of few-shot, supervised lear-
ning with outer updates after every task, are defined in Algorithm 1.

The presented Weighting-Injection Net topology can be trained via the
MAMW algorithm. Also with the MAMW episodic learning, the Weighting-
Injection Net can tackle new test tasks without the necessary adaptation
training. MAMW does not need algorithmic modifications when an embed-
ding module is used instead of the injection module.

8.4.2. Active Learning

Active learning can also be used on top of a meta learning model to
perform fine-tuning on a given task, leveraging the most uncertain queries
during adaptation. We propose to use pool-based sampling active learning
to fine-tune the Weighting-Injection Net on p(Ts), starting from what has
been learned on p(Tr). We chose an uncertainty sampling strategy to let the
algorithm decide at each training epoch which new examples to label. We
test the approach with three different priority scores: least confidence (LC),
margin sampling (MS), and entropy (E), respectively. For the instances
qj = {xj , yj} representing the input/output pairs on queries sampled by T ,
the priority scores Sp can be defined as follows:

SLC = argmax
xj

(1− Pθ(ŷmax | xj)) , (8.13)

SMS = argmin
xj

(Pθ(ŷmax | xj)− Pθ(ŷmax−1 | xj)) , (8.14)
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Algorithm 1 MAMW for N–way C–shot Supervised Learning
Ensure: N–way: n ∈ N: [1, 2, ..., N ]
Ensure: C–shot: c ∈ N: [1, 2, ..., C]
Require: p(T ): distribution over tasks
Require: α, β: step size hyperparameters
1: Randomly initialize θ
2: Random sample K tasks T from p(T )
3: for Tk ∈ T do
4: Sample H = N · C support instances sh from Tk
5: for all sh do
6: Compute zn,h in Equation (8.11)
7: Compute ŷh in Equation (8.12)
8: Evaluate ∇θLTk(ŷh) by LTk for sh
9: Compute adapted parameters with gradient

descent: θ′ = θ − α∇θLTk(ŷh)
10: end for
11: Sample J query instances qj from Tk
12: Compute zn,j in Equation (8.10)
13: Compute ŷj in Equation (8.9)
14: Update θ ← θ − β∇θLTk(ŷj) for qj
15: end for

SE = argmax
xj

(−
N∑

n=1

Pθ(ŷn | xj) logPθ(ŷn | xj)) , (8.15)

where Pθ of ŷmax is the highest posterior probability predicted by the
model with θ parameters for xj , and N is the number of classes.

Algorithm 2 defines the main step of the proposed pool-based sampling on
a task T . In general, the Algorithm 2 represents a generalization of the pool-
based sampling approach for relational models. For a given task, a set of class-
related support examples is initially labeled. As the number of iterations
increases, the uncertainty of the query examples is evaluated, and those
with the highest priority score are added to the labeled dataset. A maximum
number of support instances per class per iteration is also chosen. Instead of
starting with random weights, parameters learned during episodic learning
on training tasks can be used as the model initialization. The active learning
procedure is therefore performed on unseen test tasks.

8.5. Experimental Setup

In this section, we present all the results achieved on meta learning episo-
dic experiments and active learning fine-tuning on the people counting meta-
datasets (Section 8.3.6). The algorithms have been written in the Python
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Algorithm 2 Pool-based Sampling Active Learning for N–way C–shot Su-
pervised Learning on Weighting-Injection Net
Ensure: N–way: n ∈ N: [1, 2, ..., N ]
Ensure: C–shot: c ∈ N: [1, 2, ..., C]
Require: Task T ∼ p(T )
Require: J : Queries to sample per epoch
Require: A: Queries to label per epoch
1: Initialize θ with meta-learned weights
2: Initialize Dp = {} as labeled Pool.
3: Sample in T support instances:

sn,c = {xn,c, yn,c}
4: Add all sn,c in Dp

5: Sample in T , J query instances:
qj = {xj , yj}

6: while not done do
7: Compute zn,j in Equation (8.10)
8: Compute ŷj in Equation (8.9)
9: Compute Sp of qj with Equation (8.13), (8.14) or (8.15)

10: With Sp of qj , select A queries qja and ŷja
11: Add all qja in Dp

12: Update θ ← θ − β∇θLTk(ŷja)
13: Sample in Dp support instances:

sn,c = {xn,c, yn,c}
14: Sample in Dp, J query instances:

qj = {xj , yj}
15: end while
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Figure 8.11: Representation of the topology modules and respective layers
used in the relational experiments. The injection module (eθ) increases the
data dimensionality via a sequence of convolutional layers. The query sample
is compared with all the available support samples. To combine relevant
features, the comparison module (gθ) employs convolution and global average
pooling. The weighting module (wθ) generates a feature matching probability
density using dense layers and softmax activation.

programming language, using the TensorFlow™ module to implement the
DL models. Further experiments on a public dataset have been performed
and discussed in the Appendix 8.8. The codes related to the algorithms and
topologies used for the meta learning experiments are available online1. As
a process unit, we used an Nvidia® Tesla® P4 GPU and CUDA® Toolkit
v11.1.0 for parallel computing.

8.5.1. Meta Learning Experiments

All the episodic experiments have been performed with the topology pre-
sented in Section 8.4.1.1 and Figure 8.1. Specifically, 4–way experiments with
1–, 2–, 5–, and 10–shot have been performed. The topology has been trained
with two different algorithms. First with the classical episodic few-shot trai-
ning of weighting networks, as defined in [36], using the Weighting-Injection
Net equations (Section 8.4.1.1). Further, the topology has been trained in
episodic sequences of inner and outer steps, following the steps of the MAMW
algorithm proposed in Section 8.4.1.2. All the results presented in this section
refer to the two algorithms and are consistently called Weighting-Injection
Net and MAMW. Comparison results of the two algorithms with the state-
of-the-art are presented in the Section 8.5.1.1. The cutting-edge comparison
also features some application limit experiments for indoor people counting
up to five individuals in a room.

1The codes for the meta learning algorithms are available at https://github.com/
GiancoMauro/TF-Meta-Learning/
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A graphical representation of the model modules and respective layers
is shown in Figure 8.11. The model consists of 283,379 trainable parameters
in its entire module sequence. Of the total, the injection module consists
of 239,680 parameters, the comparison module of 39,936, and the weighting
module of the remaining 4,180. To rescale feature size, max pooling is used
in cascade to the 2D convolution (Conv2D) for the two modules eθ and gθ.
In addition, batch normalization is used to increase the stability of training.
All batch normalization layers are followed by a rectified linear unit (ReLU)
activation function. To map the output vector into a probability distribution
over the classes, the softmax is used as an activation function for wθ. The
cost function chosen for the query classification is categorical crossentropy,
and the optimization algorithm is Adam. β1 and β2 for Adam have been set
to 0 and 0.5, respectively. A learning rate of 5e− 4 has been chosen for the
Weighting-Injection Net. A learning rate of 5e − 4 has also been chosen for
both the inner and outer steps of MAMW. For the Gaussian noise statistic
on the MAMW inner step, a value of σ2 equal to 0.005 has been chosen. This
value represents an empirical choice, noting that larger values led to the loss
of the main information in the support instances, while smaller values were
less effective for the performance of the experiments.

Regardless of the number of shots, every meta-training experiment is
performed over 22,000 episodes, each of a single training epoch. The episodic
learning is carried out on Dm−train. The validation and testing have been
performed at the end of each episode on 10-shot per class (40 samples) on
tasks sampled by Dm−train and Dm−test respectively.

All experiments have been carried out with an embedding size g of 64.
Smaller embedding sizes resulted in non-convergent experiments, whereas
larger sizes resulted in meta-overfitting on Dm−train. For the injection mo-
dule, an output representation of 14 ·14 ·g has been chosen (feature size). This
led to a representation per image of 12,544 units. On the Nvidia® Tesla®

P4 GPU, the number of floating points operations per second (FLOPS) for
the injection module with this configuration is 108 megaFLOPS. The size
in bytes of the weights of the model when saved in ".h5"format, regardless
of the chosen episodic training algorithm and the number of shots, is 1,148
KB. Some experiments at varying feature sizes are also presented later in
this section to test the benefits of the injection module over the standard
embedding module.

The obtained values of prediction accuracy, model size, and single-sample
prediction latency are compared to state-of-the-art values obtained by trai-
ning other algorithms on the people counting dataset employed in this work.
The accuracy results for the Weighting-Injection Net are reported for var-
ying numbers of shots. Each experiment by algorithm, meta-dataset, and
number of shots has been performed three times and tested on 10,000 final
tasks sampled by Dm−test. All presented results include the 95 % confidence
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interval in addition to the average accuracy value.

Table 8.2: Network Layers Configuration - People Counting.

Module Type Filter Shape1 Output Shape

Injection

Conv2D 3×7×1×64 j×30×58×64
MaxPool 2×2 j×15×29×64
Conv2D 3×7×64×64 j×13×23×64
Conv2D2 3×7×64×64 j×13×19×64
Conv2D2 3×7×64×64 j×14×14×g

Comparison

Conv2D2 3×1×2g×g jc×44×16×g
MaxPool 3×3 jc×14×5×g
Conv2D 3×3×g×g jc×12×3×g
AvgPool 1×1 jc×g

Weighting Dense ng×16 j×16
Dense 1×n j×n

The performance evaluation of each individual experiment is measured
according to the validation and test accuracy values obtained by the model
as the number of episodes increases. For every experiment, a box plot on
the validation and testing accuracy statistics of tasks sampled by Dm−train

and Dm−test is constructed every 2,200 episodes. In the following plots and
paragraphs, statistical insights from one of the experiments performed are
analyzed. Specifically, a MAMW 10–shot experiment on Mixed-Dataset is
chosen thanks to the good achieved generalization performance. Figure 8.12
shows the set of box plots generated as the training episodes advance for the
considered experiment. As the episodes progress, the mean and median va-
lues of the distributions rise while the quartiles and whiskers narrow. With
episodes progressing, even the outliers move closer to the upper limit of
accuracy. The described behavior demonstrates how, thanks to previously
acquired experience, the model can generalize better on new sampled tasks.
This means that newly learned parameters θ generalize better in new con-
texts, i.e., new locations and test rooms, resulting in higher performance
under the same learning conditions.

Discrete accuracy density histograms can be used to represent the distri-
bution underlying individual box plots. Graphical evidence of how the distri-
bution tends to shift towards higher generalization accuracy can be observed
by comparing the first and last histograms of the episodic optimization. Such
density histograms can also be compared to a Gaussian probability distri-
bution, thus showing what percentage of the achieved accuracy lies between
the first and third quartiles. Figure 8.13 depicts a comparison of accuracy
statistics for the examined experiment at the beginning and end of the episo-
dic training. Even for tasks sampled only by Dm−test, the probability density
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Figure 8.12: Accuracy statistics box plots vs. episodes for a MAMW 10–shot
Mixed-Dataset experiment. The red box plots are generated on validation
tasks(a), whereas the blue ones (b) are generated on test tasks. The median
and mean values are represented by a horizontal line and a green triangle in
each box plot. The small circles represent the box plot outliers.

tends, as the episodes progress, to take on a negative skew towards the upper
limit of accuracy. The actual distributions underlying the box plots are not
Gaussian but multi-modal with density peaks due to the variable complexity
of the sampled tasks.

The generalization capability can be addressed at the level of individual
classes by constructing cumulative confusion matrices on task sequences.
Labels 0 to 3 represent the real and predicted number of people for the two
dataset splits. Figure 8.14 depicts the confusion matrices underlying the first
and last box plots of Figure 8.12 for both Dm−train and Dm−test.

Figure 8.15 shows another example of cumulative confusion matrices for a
Weighting-Injection Net 5–shot experiment on S-Test-Dataset. It is noticea-
ble in both Figure 8.14 and Figure 8.15, that the model learns to generalize
better as episodes progress for both unseen locations and rooms. Most miss-
classifications, especially at the end of episodic learning, lie around the main
diagonal. This means that the models, in most cases, count ±1 person com-
pared to the actual number of individuals in the environment. Moreover, the
majority of the misclassifications happen for the classes of 1 to 3 persons,
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Figure 8.13: MAMW 10–shot experiment, first (a) and last (b) box plot un-
derlying distributions, generated on test tasks sampled from Mixed-Dataset.
The q1 and q2 values on the Gaussians indicate the first and third quar-
tiles, respectively. The probability density histograms show the actual non-
Gaussian nature of the distribution. The accuracy probability density for the
last box plot (b) exhibits a negative skew as a result of the generalization
learning.

while the model easily succeeds in distinguishing the case 0 that corresponds
to no people detected in the sensor’s FoV. The per-class accuracy of the test
confusion matrices in Figure 8.15 turns out to be lower than that in Figu-
re 8.14. This is due not only to the use of 10–shot instead of 5–shot in the
experiment but also to the higher complexity of the test tasks. In fact, the
Figure 8.15 experiment sampled all test tasks from a room not included in
the training (S).

The prediction accuracy values obtained as an average of the post-training
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MAMW - Injection - 10-shots - Mixed-Dataset - Cumulative Confusion Matrices
Episodes: 0-5499 (a) 
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Figure 8.14: Cumulative confusion matrices for a 10–shot MAMW Mixed-
Dataset experiment. Confusion matrices are obtained on the first (a) and
last (b) 5,550 meta-iterations in the validation phase for both Dm−train and
Dm−test sampled tasks.

tests for each experiment type are listed in Tables 8.3, 8.4, 8.5 for the three
defined meta-datasets.

As can be observed from Tables 8.3, 8.4 and 8.5, regardless of the used
meta-dataset, the 1– or 2–shot experiments performed with the MAMW
lead to higher average accuracy values than the Weighting-Injection Net. In
these specific cases, in episodic learning, the few supports per class make
the prediction given by the Weighting-Injection Net less robust, where the
learning depends solely and exclusively on the comparison with the query.
MAMW instead supplies more information to the model thanks to the initial
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Figure 8.15: Cumulative confusion matrices for a 5–shot Weighting-Injection
Net S-Test-Dataset experiment. Confusion matrices are obtained on the
first (a) and last (b) 5,550 meta-iterations in the validation phase for both
Dm−train and Dm−test sampled tasks. In this case, the entire S room is uti-
lized as the test set.

comparison with a noisy version of the support samples, thus emphasizing
the potential intrinsic noise of the query data. For the 5– and 10–shot ex-
periments, the two episodic approaches lead to different performances with
respect to the used meta-dataset. The MAMW outperforms the Weighting-
Injection Net on the Mixed-Dataset, regardless of the number of shots. The
Mixed-Dataset contains, in fact, recordings from all rooms, but with different
locations and numbers of people. In this case, the MAMW goal of capturing
noise similarity between support and query also aids query class recogni-
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Table 8.3: Accuracy of the two meta learning approaches on people counting
(4 classes): Mixed-Dataset.

Accuracy [%]
Mixed-Dataset

Weighting-Injection Net MAMW

1–shot 63.01 ± 0.21 66.95 ± 0.22
2–shot 71.79 ± 0.20 74.10 ± 0.20
5–shot 78.26 ± 0.18 78.63 ± 0.19
10–shot 81.40 ± 0.16 82.16 ± 0.16

Table 8.4: Accuracy of the two meta learning approaches on people counting
(4 classes): S-Test-Dataset.

Accuracy [%]
S-Test-Dataset

Weighting-Injection Net MAMW

1–shot 59.85 ± 0.19 61.98 ± 0.19
2–shot 61.14 ± 0.16 64.48 ± 0.17
5–shot 71.77 ± 0.17 73.40 ± 0.18
10–shot 76.61 ± 0.16 73.53 ± 0.16

Table 8.5: Accuracy of the two meta learning approaches on people counting
(4 classes): B-Test-Dataset.

Accuracy [%]
B-Test-Dataset

Weighting-Injection Net MAMW

1–shot 54.26 ± 0.23 57.35 ± 0.23
2–shot 60.00 ± 0.22 60.83 ± 0.22
5–shot 69.98 ± 0.18 68.57 ± 0.18
10–shot 71.06 ± 0.18 70.74 ± 0.18

tion. This is thanks to the intrinsic features of the RDIs collected in the
same room, which are thus influenced by the properties of that environment.
On S-Test-Dataset and B-Test-Dataset instead, the Weighting-Injection Net
outperforms MAMW in most 5– and 10–shot experiments. In these cases,
given the relevant difference in context for the test room, the MAMW com-
parison with the noisy version of supports might shift the learning objective
towards detecting noise rather than the class of query samples.

For relation-based topologies, there is no need to perform adaptation trai-
ning for new tasks as a result of the direct comparison of features between
the newly available support samples and the query. Therefore, the adapta-
tion time to a new task is null. Instead, the inference time on a single sample
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(query) can be computed as a function of the number of shots. It corresponds
to the time required by the model to predict the query class given the availa-
ble supports. The time required to compute the z comparison vectors for all
available supports is thus included in the inference time for single queries.
As both the proposed algorithms share the same inference procedure, these
values are independent of the employed approach. The single sample infe-
rence time is also independent of the selected counting meta-dataset, given
the same input size. Average inference values on a single query are listed in
Table 8.6.

Table 8.6: Average single-sample inference time computed as the average of
all MAMW and Weighting-Injection Net experiments on all defined meta-
datasets, in function of the number of shots. Every experiment has been run
over 10,000 final tasks on Nvidia® Tesla® P4 GPU.

Number of Shots Avg. Inference Time [ms]
1–shot 14.46
2–shot 16.21
5–shot 27.03
10–shot 43.73

As can be seen from Table 8.6, the inference time for a single query
increases as the number of shots increases. Multiple supports available per
class enable a more robust prediction of the query class, as shown in Equa-
tion 8.10. However, this requires the generation of multiple z comparison
vectors, which, in proportion to the number of shots, lead to a progressive
increase in inference time on a single query.

Table 8.7: Accuracy achieved for the Weighting-Injection Net with varying
feature size on people counting (4 classes): S-Test-Dataset. The chosen em-
bedding size g is 64.

Accuracy [%]
S-Test-Dataset

1,024 (4 · 4 · g) 5,184 (9 · 9 · g) 12,544 (14 · 14 · g)

1–shot 61.63 ± 0.20 60.17 ± 0.21 59.85 ± 0.19
2–shot 63.84 ± 0.18 63.83 ± 0.17 61.14 ± 0.16
5–shot 68.82 ± 0.18 68.63 ± 0.16 71.77 ± 0.17
10–shot 67.94 ± 0.16 71.49 ± 0.17 76.61 ± 0.16

Classification accuracy is also dependent on the chosen feature represen-
tation dimension in the feature extraction module eθ. In specific experimental
settings, the injection can counter episodic overfitting effects by increasing
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Table 8.8: Mean classification accuracy achieved by the various algorithms,
for experiments on people counting (4 classes): S-Test-Dataset.

Accuracy
[%]
S-Test
Dataset

Reptile MAML 2nd MAML+
Weighting-
Injection
Net

MAMW

1–shot 49.61 ± 0.16 49.92 ± 0.18 52.53 ± 0.17 59.85 ± 0.19 61.98 ± 0.19
2–shot 52.02 ± 0.15 53.79 ± 0.16 56.91 ± 0.16 61.14 ± 0.16 64.48 ± 0.17
5–shot 57.95 ± 0.15 60.26 ± 0.17 60.38 ± 0.16 71.77 ± 0.17 73.40 ± 0.18
10–shot 63.00 ± 0.16 65.49 ± 0.17 64.67 ± 0.16 76.61 ± 0.16 73.53 ± 0.16

feature size as opposed to the standard embedding. The 14 · 14 feature size
chosen for all the other experiments is compared with two representations of
4·4 and 9·9 respectively. Given the size of an RDI example of 32·64 = 2, 048,
a feature representation of 4 · 4 · 64 = 1, 024 converts the injection module
into an embedding module. Compared with the 108 MegaFLOPS required
by the feature size of 14 · 14, the size 4 · 4 requires only 0.28 MegaFLOPS.
Overall, the injection operation, compared to embedding, results in the GPU
performing significantly more FLOPS. This is due to the larger size of the
extracted features in the convolutional layers.

Table 8.7 features the results on the S-Test-Dataset, obtained with the
Weighting-Injection Net as feature size, and the number of shots vary. The
1–shot experiment seems to benefit more from embedding than from an in-
jection module. The squeezed representation of features in such experiments
leads to a more compact representation. The entire weighting network can
succeed in extracting key features from the few samples available per class
in each episode bringing benefits of generalized learning. On the other hand,
as the number of shots increases, a larger representation of features seems to
lead to greater benefits in training. With 5– or 10–shot per class, a larger fea-
ture space upstream of the comparison module facilitates feature extraction
from the available support samples and yields better generalization results.
The effect of overfitting on individual tasks is clearly visible by comparing
the accuracy obtained with the 4 · 4 feature size between the 5– and 10–
shot experiments. Contrary to the common scenario, the performance of the
model worsens as the number of shots doubles. Without tuning the other
hyperparameters, the small feature size favors single-task adaptation rather
than generalized learning, reducing so, the overall performance.

8.5.1.1. Comparison with the State-of-the-Art and Limitations

In this section, the results of Weighting-Injection Net and MAMW are
compared to the results of other state-of-the-art meta learning methods for
the task of people counting. Reptile [32] is used as a baseline algorithm.
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MAML 2nd [31] and a more stabilized and performant version of MAML pre-
sented in Antoniou et al. [52], are the other algorithms used for comparison.
The latter, labeled MAML+, leverages the contributions of multi-step loss
optimization (MSL), derivative-order annealing (DA), and cosine annealing
of meta-optimizer learning rate (CA). The model chosen for the state-of-the-
art algorithms is a CNN suitable for the generalization goal, consisting of four
main blocks. The first three blocks consist of a Conv2D with 64, 128, and 256
filters, followed by batch normalization and the ReLU activation function.
The last block consists of a dense layer with 4 neurons, corresponding to
the number of classes. This topology consists of 403,332 trainable parame-
ters compared to the 283,379 of MAMW and the Weighting-Injection Net.
The adaptation training was done with Adam as the optimizer, with lear-
ning rates of 8e − 3 and 7e − 3 in the inner and outer cycles, respectively.
Likewise, in this case, the values of β1 and β2 for Adam have been set to 0
and 0.5, respectively. The model training was executed on 22,000 episodes
with a batch size of 2 and a number of epochs per task of 4, respectively.
The comparison was performed on 10,000 final tasks on S-Test-Dataset for
1–, 2–, 5– and 10–shot over 3 repetitions of each experiment. For each task,
10 test samples per class were randomly selected, resulting in 40 test ins-
tances in total. The computed mean classification accuracy values are listed
in Table 8.8. As can be observed, the MAMW turns out to be the best-
performing method in all experiments apart from the 10–shot experiment,
where, as commented in Section 8.5.1, the Weighting-Injection Net achieves
a higher average accuracy. The accuracy values obtained with the propo-
sed methods are better despite using 30 % fewer trainable parameters. As
the number of shots increases, relation-based models show an even larger
accuracy gap than optimization-based ones due to the more robust predic-
tion given by averaging the comparison vectors computed for the available
support samples.

Because of the direct mapping between sample and label in the lear-
ning process, the single-sample inference time for Reptile, MAML 2nd and
MAML+ is independent of the number of shots. Across all the experiments,
on an average of 10,000 final tasks, the overall estimated inference time has
been 33.47 ms. In comparison to the results in Table 8.6, only for the 10–
shot experiments, the pure optimization-based methods turn out to be 25 %
faster for single inference, whereas they turn out to be slower in the other
configurations.

The task adaptation time needed for the various algorithms is provided
in Table 8.9. The considered state-of-the-art methods require an adaptation
time per task that rises considerably as the number of shots increases. On
the contrary, relation-based models, thanks to their comparison-based topo-
logy, do not require adaptation for new tasks and therefore lead to a null
adaptation time. This results in a great advantage for relational topologies



202
Chapter 8. Context-Adaptable Radar-Based People Counting via Few-Shot

Learning

over traditional optimization-based topologies.

Table 8.9: Adaptation time per new task by algorithm and number of shots.
The values, computed on Nvidia® Tesla® P4 GPU, are averaged over three
repetitions of each experiment for 10,000 tasks.

Avg.
Adaptation
Time [ms]

Reptile MAML
2nd MAML+

Weighting-
Injection
Net1

MAMW1

1–shot 130 135 135 - -
2–shot 275 286 310 - -
5–shot 606 660 667 - -
10–shot 1,261 1,294 1,411 - -

1For MAMW and Weighting-Injection Net, considering only the need to compare the
query with the available supports, the adaptation time is null (0 ms).

To test the application limits of the episodic learning approach for radar-
based people counting, experiments were also conducted with up to five peo-
ple per session in the big room B (Section 8.3.6). In this case, five sessions
of one minute each per location and number of people were collected and
used. Locations A and C were used to generate training tasks, and locations
B and D were used for testing tasks. Table 8.10 presents the results obtained
on test data for the average of three experiments and 10,000 final tasks. The
results for this meta-dataset show similar characteristics to those where an
entire room is used exclusively as a test. In general, the two proposed ap-
proaches outperform the state of the art regardless of the number of shots.
The MAMW proves more stable and performs better in experiments with
very few shots (1– and 2–). The Weighting-Injection Net, on the other hand,
outperforms MAMW for the 5– and 10– shot approaches. The extension of
the counting approach to up to five people and the limitation of radar resolu-
tion for close targets in this scenario make generalization more complex. The
increased complexity is reflected in the RDIs input instances and features
across the different recording locations. For this reason, with a larger number
of shots, MAMW performs less well, favoring noise filtering in support sam-
ples rather than classification of query instances. Weighting-Injection Net,
on the other hand, focuses directly on learning the query class and performs
better in this scenario.

In general, although the proposed algorithms outperform the state of
the art, they lead to an average accuracy of less than 60 % over the six
classes with 10–shots. This unfortunately shows that the purely episodic
generalization approach with a few shots is limited to scenarios with a very
small number of people. Adaptations to larger and more varied datasets or
the use of radar sensors with higher resolution could obviate the current
limitations. The weights of the counting model up to 5 people need an in-
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memory size of 1,156 KB. This value is slightly larger than the approach of
up to 3 people. More information on a single experiment for the adaptation
of up to five people is provided in Appendix 8.9.

Table 8.10: Mean classification accuracy achieved by the various algorithms,
for people counting (6 classes): B room, B and D locations.

Accuracy [%]
B room test Reptile MAML

2nd MAML+ Weighting-
Injection Net MAMW

1–shot 35.05 ± 0.11 36.82 ± 0.13 35.56 ± 0.13 36.00 ± 0.13 44.86 ± 0.16
2–shot 37.12 ± 0.12 41.01 ± 0.13 40.03 ± 0.13 46.60 ± 0.15 48.71 ± 0.13
5–shot 39.25 ± 0.12 44.74 ± 0.13 43.86 ± 0.13 55.69 ± 0.14 50.64 ± 0.14
10–shot 43.19 ± 0.12 48.56 ± 0.13 46.01 ± 0.12 57.83 ± 0.14 56.71 ± 0.14

8.5.2. Active Learning Experiments

Active learning experiments with the Algorithm 2 are intended to de-
monstrate how meta learning-driven model initialization benefits task fine-
tuning. All the experiments have been carried out on the task of radar-based
people counting, using 75 % and 25 % of the data collected in the S room
as training and testing, respectively. This means that active learning aims
to boost the estimation performance in counting people in the entire small
room, given all the locations in which the RDIs were collected. Since all the
in-room locations are considered at once, the adaptation in this case is more
complex than during episodic training. The uncertainty-based experiments
used priority scores Sp defined in Equations (8.13), (8.14) and (8.15). As
initialization, the parameters θ obtained after the 1–shot episodic learning
of Weighting-Injection Net and MAMW on the remaining two environments
(M and B) have been used. As Dp grows larger, the experiments are limited
to a maximum of five supports per class. The selected number of epochs for
the active learning training is 6,000. For each epoch, 4 queries (J) are to be
sampled, with A of them labeled using the uncertainty-based approach. Ta-
ble 8.11 compares the average results from three experiments for each defined
Sp score to the random initialization of θ. As can be seen from the table, the
results for initialization based on MAMW and Weighting-Injection Net vary
very little as the chosen priority score differs. Such initialization, however,
leads to a great performance gap compared to the random one, which also
features training instability over repetitions. The Weighting-Injection Net
also seems to achieve slightly better performance than the MAMW. This
is most likely related to the large availability of labeled data, which for a
test room setup, makes this method more performant than MAMW (Sec-
tion 8.5.1). In the case of random initialization, however, the model succeeds
in learning almost exclusively when entropy Se is used as the scoring fun-
ction. This may be due to the entropy formulation itself, which results in a
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more balanced query selection by taking into account the distribution over
all classes for the score computation.

Table 8.11: Accuracy on people counting (4 classes), obtained through pool-
based sampling active learning. All the S room data have been used for the
adaptation. The results are averaged over three experiment repetitions of
6,000 iterations each. The initialization consists of meta-learned weights for
the M and B rooms.

Accuracy [%]
Small Room S

Weighting-Injection Net MAMW Random Init.

SLC 63.09 60.81 31.14
SMS 63.41 59.98 26.46
SE 63.62 61.54 43.44

The accuracy learning curve for the entropy-based experiments is depic-
ted in Figure 8.16. Adaptation starting with Weighting-Injection Net and
MAMW weights exhibits similar accuracy profiles as training epochs pro-
gress. Random initialization, on the other hand, not only leads to lower-
performing learning but also to instability and experiment failure, collapsing
to a 25 % accuracy over the four classes. In this case, the algorithm encoun-
ters difficulties with only a few learning data at a time to generalize to all
locations. Fluctuations in accuracy curves are due to adaptation to new la-
beled data sampled from different S room locations, which normally display
different features. This behavior can be observed in the t-SNE representa-
tions of the data in Section 8.3.6.

8.6. Conclusion

This paper features how meta learning and active learning can be ef-
fectively employed for radar-based people counting using real-world data.
For such a use case, multiple meta-datasets are generated based on different
combinations of rooms and radar orientations. Episodic learning for few-
shot adaptation is carried out through a comparative approach. The model
learns task-wise to map features of query examples to representative sup-
port instances belonging to the same class. In this way, the belonging class
of a radar instance is predicted by comparing it with representative sup-
port examples of classes zero to three people. With respect to the traditional
weighting network, an injection module increases the input data dimensio-
nality before the comparison step. This process facilitates the comparison
of query and support features, reducing episodic task overfitting and aiding
generalization. The overall topology with an injection module is called the
Weighting-Injection Net.

An episodic adaptation algorithm called model-agnostic meta-weighting
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Figure 8.16: Entropy pool-based active learning accuracy across epochs. The
thicker lines highlight the best experiments by type of initialization. Accuracy
values are averaged per trial every 20 epochs. Random initialization (green)
experiments are more unstable and collapse to 25 % random learning on 4
classes.

is then presented for specific adaptations to very few-shot per task. This
two-step training algorithm combines the weighting network topology and
the optimization-based meta learning approach to enhance the feature ex-
traction capabilities of the model. The approach features an inner step task
adaptation that compares support instances with a noisy version of themsel-
ves, leading to more stable generalization training, especially in the 1–shot
training. Finally, a pool-based active learning approach designed specifically
for relation-based methods is presented. Using only the available samples
with the highest prediction uncertainty, this algorithm seeks to minimize the
number of examples needed for learning.

The presented meta learning achieves cutting-edge accuracy in people
counting while also yielding other performance advantages. The relation-
based topology grants no training time for adaptation at new radar test
locations. Furthermore, the availability of multiple support examples per
class allows for more robust averaged query estimation. Both the presented
algorithms are up to 15 % more accurate than the state-of-the-art for 1–
and 10–shot. They are also found to be up to 50 % faster for computing
single-sample inference when the model is tested on a new task. The active
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learning algorithm performs better and is more stable when the initialization
is set to the episodically learned weights rather than at random. Nonrandom
initialization improves radar adaptation accuracy by 30 % on test room radar
instances.

Despite the great benefits shown, the work presented is only tested offline
on previously collected data. In the future, it will be important to test such a
system in a real-time setting. The monitoring approach with more than three
people leads to accuracy performance which may be insufficient in several
practical contexts. Future work will focus on using relation-based topologies
and sensor fusion to counter the current limitations. The use of an uncon-
ventional injection module for the relational networks could bring additional
benefits for feature representation in episodic learning. In-depth studies will
therefore be conducted on the possible applications and limitations of such
a module. Research on the injection module will also be carried out in the
field of the interpretability of neural networks and training complexity. Al-
so, further active learning and uncertainty sampling strategies that focus on
episodic learning with relation-based approaches will be investigated.
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8.8. Appendix A. Experiments on Public Dataset

This section presents the results obtained with the Weighting-Injection
Net (Section 8.4.1.1) and MAMW (Section 8.4.1.2) on Omniglot [53] public
dataset.

8.8.1. Omniglot Dataset

Omniglot [53], is a dataset specifically created for few-shot learning. That
dataset contains hand-written instances of as many as 1,623 characters taken
from 50 alphabets. Each character was drawn by different people a total of
20 times each. The meta-dataset, divided between Dm−train and Dm−test, as
defined in the Ominglot repository 2, was used for training and testing the
Weighting-Injection Net and MAMW.

8.8.2. Experiments on Omniglot

On Omniglot, the experiments have been performed with 1–shot for 2–
and 5–way and 5–shot for 5– and 10–way. The topology used for these ex-
periments is the same as for radar-based people counting (Figure 8.1 and
Figure 8.11), but it has been adapted to the larger input size. Each handw-
ritten sample has a resolution of 105×105 pixels. The chosen embedding size
g and feature size for the injection module have been 32 and 22, respecti-
vely. The configuration of the layers is presented in Table 8.12. In this case,
task classification is also accomplished by minimizing categorical crossen-
tropy with Adam as the optimization method, with β1 and β2 set to 0 and
0.5, respectively. The episodic learning rate used for the Weighting-Injection
Net and the outer step learning rate used for MAMW experiments have been
set to 3e− 4 For the MAMW, an inner step learning rate of 5e− 5 has been
utilized. Regardless of the number of shots, one query sample qj per class
per episode is used for tasks sampled on p(Tr) and defined on Dm−train. The
generalization is then tested episode-wise on 10 test instances per class, on
tasks T sampled from p(Ts) in Dm−test, and p(Tr). All the experiments have
been performed on 22,000 episodes. The built models have then been tested
for 10,000 final tests on tasks sampled from p(Ts) in Dm−test.

8.8.3. Results and State-of-the-Art Comparison Omniglot

Also on Omniglot, to assess the generalization performance, box plots
have been generated based on the average accuracy obtained for sets of
2,200 episodes. As an example, the trend obtained for the 5–shot, 5–way
Weighting-Injection Net experiment is shown in Figure 8.17. As the episodes
progress, training on Omniglot sees a sharper increase in generalization in

2Available at https://github.com/brendenlake/omniglot/



208
Chapter 8. Context-Adaptable Radar-Based People Counting via Few-Shot

Learning

Table 8.12: Network Layers Configuration - Omniglot.

Module Type Filter Shape1 Output Shape

Injection

Conv2D 2×2×1×64 j×104×104×64
MaxPool 2×2 j×52×52×64
Conv2D 3×3×64×64 j×50×50×64
MaxPool 2×2 j×25×25×64
Conv2D 2×2×64×64 j×24×24×64
Conv2D 3×3×64×64 j×22×22×g

Comparison

Conv2D2 3×1×2g×g jc×23×24×g
MaxPool 3×3 jc×7×8×g
Conv2D 3×3×g×g jc×5×6×g
AvgPool 1×1 jc×g

Weighting Dense ng×64 j×64
Dense 1×n j×n

Table 8.13: The mean classification accuracy achieved by the various selected
algorithms for experiments on Omniglot.

Accuracy
Omniglot
Eval. [%]

Reptile MAML
2nd MAML+

Weighting-
Injection
Net

MAMW

1–shot 2–way 69.21 ± 0.30 74.18 ± 0.34 80.30 ± 0.32 76.65 ± 0.32 81.99 ± 0.31
1–shot 5–way 41.14 ± 0.10 55.76 ± 0.23 59.36 ± 0.23 71.46 ± 0.23 72.19 ± 0.23
5–shot 5–way 52.59 ± 0.20 84.99 ± 0.14 77.50 ± 0.18 85.76 ± 0.15 85.02 ± 0.16
5–shot 10–way 36.72 ± 0.15 78.60 ± 0.12 77.61 ± 0.13 79.11 ± 0.12 81.23 ± 0.12

the early stages than radar-based people counting. This is most likely caused
by the greater variety of classes among the handwritten characters, whose
features take longer to be extracted by the relational network through the
comparison mechanism.

The accuracy values achieved with Weighting-Injection Net and MAMW
are listed for the various experiments in Table 8.13, in comparison with
state-of-the-art methods. For the state-of-the-art algorithms, a TensorFlow™

implementation and the same testing pipeline as for the people counting
comparison have been adopted. The accuracy of the tasks is not calculated on
a single query sample per class, as in Reptile [32], but on ten test instances per
class in a step following the learning step. This allows a more fair comparison
with relational algorithms, where the query example is not used in a step
subsequent to the support ones. In addition, no data augmentation or scaling
is performed on single inputs, in contrast to the MAML methods presented
in [31, 52]. For the state-of-the-art methods, the same CNN topology and
configurations presented in Section 8.5.1.1 for radar-based people counting
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Figure 8.17: Accuracy statistics box plots vs. episodes for a Weighting-
Injection Net 5–shot 5–way experiment on Omniglot. The red box plots are
constructed on validation tasks sampled from Dm−train (a), whereas the blue
ones are constructed on test tasks sampled from Dm−test (b). The median
and mean values are represented by a horizontal line and a green triangle in
each box plot.

have been used on Omniglot.
All experiments have been performed on an Nvidia® Tesla® P4 GPU

and CUDA® Toolkit v11.1.0 for parallel computing.
Similarly to what has been observed in Section 8.5.1 for the radar-based

people counting dataset, the MAMW seems to perform better than the
Weighting-Injection Net in the 1–shot and 10–way scenarios (Table 8.13).
For the 5–shot 5–way experiment, the two relation-based algorithms achie-
ved similar accuracy, which is comparable to MAML 2nd. This may be inhe-
rent in the fact that for Omniglot, unlike radar data, there is no intrinsic
background noise in the input instances. Consequently, the introduction of
noise in the comparison between supports in MAMW does not promote ge-
neralization learning when many shots are fed to the network. Conversely,
MAMW inner step may divert attention away from the learning goal of single
tasks. Even for Omniglot, using the injection module seems to help generali-
zation learning by making it easier to compare support features and queries
in a higher dimension. Regardless of the number of ways and shots, the
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Weighting-Injection Net and MAMW outperform the other state-of-the-art
in most of the Omniglot experiments. The presented methods, with about
30 % fewer parameters, also perform significantly better in single-shot ap-
proaches than optimization-based methods. In the 1–shot 5–way experiment,
MAMW leads to an average accuracy about 18 % higher than MAML+.

8.9. Appendix B. More People Count Details

This section analyses a single episodic meta learning experiment for
radar-based indoor people counting up to five people.
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Figure 8.18: Accuracy statistics box plots vs. episodes for a Weighting-
Injection Net 10–shot 6–way experiment on radar-based people counting (B
room). The red box plots are constructed on validation tasks (a), whereas
the blue box plots are constructed on test tasks (b). The median and mean
values are represented by a horizontal line and a green triangle in each box
plot.

8.9.1. Single Experiment People Counting Analysis up to
Five Individuals.

The outcomes of the episodic adaptation on the five people meta-dataset
of Section 8.5.1.1 can be analyzed at the level of the individual experiment.
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Figure 8.19: Weighting-Injection Net 10–shot 6–way, first (a) and last (b) box
plot underlying distributions, generated on people counting test tasks. The
q1 and q2 values on the Gaussians indicate the first and third quartiles, res-
pectively. The probability density histograms show the actual non-Gaussian
nature of the distribution. The accuracy probability density for the last box
plot (b) has a mean value shifted towards higher accuracy as a result of the
generalization learning.

Every experiment consists of 22,000 episodes of meta-training in the room
B (Figure 8.5). Training and validation are performed on tasks sampled
from locations A and C in the room, while testing is done on tasks sampled
from locations B and D. The experiment is a 6–way, since zero individuals
in the room is also considered a class. Figures 8.18, 8.19 and 8.20, show dif-
ferent statistical insights of a 10–shot Weighting-Injection Net experiment.
Figure 8.18 displays the trend of box plots built on accuracy as episodes
increase. Compared to the training up to three people (Figure 8.12), the
adaptation up to five people shows a less pronounced trend of improvement.
In this case, the test fails to generalize better from 15,000 episodes onward,
reaching a saturation of accuracy around 55 %. Figure 8.19 reveals the den-
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Figure 8.20: Cumulative confusion matrices for Weighting-Injection Net 10–
shot 6–way people counting experiment. Confusion matrices are obtained on
the first (a) and last (b) 5,550 meta-iterations in the validation phase for
both training and test sampled tasks.

sity histograms underlying the first and last box plots constructed on the
test in episodic learning. In comparison to the adaptation of up to three
people Figure 8.13, no marked reduction in whiskers or negative skew in the
last histogram is noticeable. Yet, there is an increase in average accuracy
from 37 % to 55 % (18 % improvement in generalization). A very interesting
analysis can be done by analyzing the accuracy on individual classes, thus
by generating the cumulative confusion matrices shown in Figure 8.20. As in
the confusion matrices generated for the 4-way approach (Figures 8.14 and
8.15), the model easily succeeds in classifying the absence of people in the
environment, reaching a solid 98 % class accuracy in the test at the end of
episodic learning. Further, as the episodes progress, the generalization ap-
proach yields higher accuracy in counting more than one person. Moreover,
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most of the miss-classifications lie around the main diagonal of the confusion
matrix, which represents the ±1 of accuracy. This means that most of the
classification errors tend to under- or overestimate the number of people in
the room by only one unit.
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Sotto l‘azzurro fitto
del cielo qualche uccello di mare se ne va;

né sosta mai: perché tutte le immagini portano scritto:
“più in là!“
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