
PHYSICAL REVIEW C 109, 015502 (2024)

Semi-inclusive two-nucleon emission in (anti) neutrino charged current scattering
within the relativistic mean field framework
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This paper delves into the distribution of semi-inclusive events involving the emission of two nucleons
in (anti) neutrino charged-current scattering. The analysis is conducted within the framework of relativistic
mean-field theory applied to nuclear matter. To quantify the likelihood of such semi-inclusive events occurring,
we employ a relativistic model of meson-exchange currents that aligns with the 2p2h inclusive cross section. The
outcomes are presented in terms of onefold and twofold integrated semi-inclusive cross sections. To highlight
disparities among the various emission channels, including proton-proton, neutron-proton, and neutron-neutron,
we compare them against a purely phase-space isotropic distribution within the center of mass of the two
nucleons. These comparisons reveal significant differences in the event distributions, shedding light on the
distinctive characteristics of each channel.
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I. INTRODUCTION

The investigation of multinucleon emission reactions in-
duced by neutrinos and other electroweak probes has garnered
significant attention in contemporary physics [1–6]. This
heightened interest stems from the compelling evidence of
its presence within the quasielastic (QE) peak region, where
a substantial contribution of two-nucleon emission coexists
with one-nucleon knockout events, defying disentanglement
in inclusive experiments. In other words, in this context, the
precise final hadronic state is largely unknown, except for the
possible absence of pions. This intriguing phenomenon has
been underscored in the analysis of neutrino and antineutrino
scattering experiments [7–10].

The significance of 2p2h processes in the inclusive cross
section has been underscored and substantiated through the-
oretical investigations by various research groups [11–14].
These studies employ diverse models that incorporate various
nuclear effects, such as meson-exchange currents (MECs)
with �-isobar excitations, final-state interactions (FSIs),
short-range correlations (SRCs), the random-phase approx-
imation (RPA), and effective interactions. These models
encompass a range of approaches, including Fermi gas
models, which can be either local or global and may in-
corporate relativistic corrections. Other approaches, on the
other hand, utilize shell models or quantum hadrodynamics
models [15–17]. Ab initio methods also have unveiled that
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MEC exert a substantial influence on the transverse response,
a phenomenon consistent with the significant presence of
2p2h excitations. However, it is worth noting that, in these
calculations, the contribution from distinct final states cannot
be readily disentangled [18,19]. In the factorization scheme,
which relies on the spectral function formalism, a similar
contribution attributed to 2p2h excitations has also been iden-
tified [20]. However, the inclusion of these model-dependent
ingredients has resulted in noticeable disparities among the
theoretical predictions. As a consequence, numerous research
endeavors have aimed to compare the results to elucidate and
mitigate the systematic uncertainties inherent in neutrino data
analyses [21–24].

This situation has necessitated the integration of two-
nucleon ejection mechanisms into Monte Carlo (MC) neutrino
event generators [25]. Typically, one commences with only
the inclusive cross-section information in the 2p2h channel, as
provided by theoretical groups, and lacks the corresponding
semi-inclusive cross-section data. In the absence of specific
knowledge regarding the distribution of the two final particles,
it has become imperative to resort to reasonable prescriptions
for implementing an algorithm that generates events with
two-nucleon final states, based on given values of momen-
tum and energy transfer. The conventional approach [26–29]
involves selecting two nucleons from the Fermi sea. By en-
suring energy-momentum conservation, the four-momentum
of the final hadronic state (comprising two nucleons) can
be computed. A reasonable assumption, in the absence of
more specific information, is to consider that the distribution
of the two final particles is isotropic in the center of mass
(CM) frame. In other words, within this frame, it is assumed
that the two final nucleons move in opposite directions with
equal energy and opposite momentum, and the emission an-
gles are randomly chosen in the CM, assuming an isotropic
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distribution. Once the final momenta are determined, a boost
is applied to transition to the laboratory system, obtaining
the momenta of the two ejected nucleons in this frame. Sub-
sequently, these momenta are further propagated within a
cascade FSI model [30,31].

Therefore, while these event generators employ theoretical
or phenomenological methods to incorporate interactions dur-
ing the propagation of the final state, it is crucial to recognize
that the isotropic 2p distribution from which they begin is an
assumption that may not be entirely accurate and could intro-
duce uncertainties into the simulation results. The distinction
between the isotropic distribution employed in MC generators
and the more realistic distribution associated with a 2p2h
microscopic model is primarily delineated by the value of
the semi-inclusive hadronic tensor for a specific configuration
of the two final particles. This crucial ingredient is absent
in most current simulations. A recent endeavor to develop
a microscopic model for calculating the distribution of two
outgoing nucleons, when compared with the isotropic distri-
bution model utilized in NEUT [32], has revealed significant
discrepancies between the two distributions. This discrepancy
between the isotropic assumption and the actual distribution
of outgoing particles highlights a crucial area of interest in the
study of neutrino-induced two-nucleon emission processes.
It underscores the need for a more detailed and precise un-
derstanding of the semi-inclusive hadronic tensor within such
processes, particularly with regard to the configurations of the
final-state nucleons.

The relevance of studying semi-inclusive reactions and
implementing them in Monte Carlo event generators is closely
tied to the need for improving the reconstruction of incident
neutrino energy based on measurements of the final state. This
reconstruction would be possible if both the final leptonic
and hadronic states were known. Efforts in this direction have
included recent measurements of semi-inclusive observables,
which involve the kinematics of both the final lepton and
hadron(s), conducted by the T2K, MINERvA, and Micro-
BooNE Collaborations [33–37].

Simultaneously, a series of recent investigations have fo-
cused on the theoretical [38–40] study of semi-inclusive
reactions induced by neutrinos, where one nucleon is detected
in coincidence with the lepton [31,41–44]. However, the semi-
inclusive one nucleon emission also has a contribution from
2p2h processes and, in general, multinucleon emission. In
the absence of a semi-inclusive model for the 2p2h chan-
nel, attempts to estimate this contribution have modeled it
using the Monte Carlo implementation of 2p2h in GENIE
[43,44]. This, in turn, assumes that the distribution of two
nucleons is isotropic in the center of mass, neglecting again
the dependence of microscopical hadronic tensor on the semi-
inclusive variables. Therefore, this shows that there is a need
for theoretical studies of microscopic semi-inclusive versions
associated with the 2p2h cross sections.

In this paper, we embark on an in-depth exploration of this
issue. Our objective is to investigate the semi-inclusive cross
section in two-particle emission reactions induced by neu-
trinos, employing a simple yet nontrivial microscopic model
that consistently incorporates the 2p2h hadronic tensor. This
endeavor will enable us to scrutinize the distribution of the

two final nucleons and elucidate how it deviates from the
isotropic distribution in the CM frame. To achieve this, we
utilize a relativistic model of electroweak MEC [45,46] in
conjunction with the relativistic mean field (RMF) model of
nuclear matter. [47–49].

The MEC 2p2h responses, calculated within the frame-
work of the relativistic Fermi gas (RFG) model, have found
extensive application in numerous analyses and calculations
of inclusive neutrino and antineutrino cross sections, in con-
junction with superscaling analysis (SuSA, SuSAv2) and the
spectral function model [50–53], and have been implemented
within the GENIE event generator as one of the widely uti-
lized 2p2h parametrizations [29].

In the present work, we introduce several improvements to
this 2p2h MEC model:

(1) First we use the RMF framework, which accounts for
the effects of the relativistic interaction between nu-
cleons via scalar and vector potentials, giving rise to a
relativistic effective mass and vector energy.

(2) Second, we include the complete � propagator, en-
compassing both its real and imaginary parts. The �

propagator assumes a crucial role within the MEC
framework when a nucleon undergoes excitation to
a �-isobar, subsequently decaying while interacting
with a second nucleon. This process constitutes a fun-
damental component of the mechanisms underlying
two-nucleon emission for high energy transfer.

The 2p2h MEC model, based on the RMF framework
considered in this work has been employed to compute the
inclusive 2p2h responses and cross sections in neutrino and
antineutrino charged-current (CC) scattering [54–56]. This
very model has also been recently utilized to analyze the
interference between the one-body current and MEC contri-
butions within the 1p1h response [57]. However, the primary
focus of this work lies in exploring the semi-inclusive re-
sponse associated with the emission of two particles, as
deduced from this microscopic model. In the realm of semi-
inclusive reactions, the two emitted nucleons possess known
momenta in the proton-proton (PP), neutron-proton (NP), or
neutron-neutron channels. Yet, the state of the residual nu-
cleus remains unknown. One of the fundamental requirements
for semi-inclusive distributions is that their integral equals the
inclusive 2p2h cross section. This condition is essential to
ensure the model’s full consistency with the inclusive frame-
work, and it constitutes one of the fundamental tests in this
study.

The study of two-nucleon semi-inclusive reactions presents
an additional challenge due to the fact that the distributions
of two nucleons expand a six-dimensional space, making it
impractical to visualize results for the full two-nucleon dis-
tribution. A commonly employed approach is to fix four or
five of the final variables, either angles or momenta, and then
examine the distributions in the remaining variables, typically
one or two dimensions. However, this method may not yield
general conclusions unless the complete map of configura-
tions is explored, a task that is infeasible within the confines
of a few pages. In this work, as it marks our initial exploration

015502-2



SEMI-INCLUSIVE TWO-NUCLEON EMISSION IN (ANTI) … PHYSICAL REVIEW C 109, 015502 (2024)

of these observables, we present the results in an alternative
manner. Our approach involves fixing one or two final vari-
ables and integrating over the remaining ones. This allows us
to study partial semi-inclusive cross sections, of the onefold
or twofold type. These onefold and twofold semi-inclusive
cross sections encapsulate the global information of the full
six-dimensional (6D) distribution, effectively averaging over
the remaining variables. This approach simplifies the compar-
ison between pure phase-space distributions and the model
incorporating the hadronic tensor. Moreover, it allows for
more straightforward conclusions to be drawn, as any differ-
ences observed in the onefold or twofold distributions imply
corresponding differences in the overall distributions. By em-
ploying this strategy, we aim to provide a comprehensive
view of the semi-inclusive reactions induced by neutrinos,
shedding light on the intricacies of two-nucleon emission
processes.

In Sec. II, we expound upon the formalism governing
semi-inclusive and inclusive two-nucleon knockout processes
initiated by neutrinos. In Sec. III, we delve into the method
of calculation for both the onefold and twofold cross sec-
tions employed in this study. This method involves partial
summations over bins within the space of exclusive variables.
Section IV is devoted to the presentation of our results, which
encompass a range of lepton kinematics relevant to neutrino
scattering reactions. Finally, in Sec. V, we draw our con-
clusions, summarizing our findings and highlighting the key
insights gleaned from this study.

II. FORMALISM

A. 2p2h cross section

In this paper we consider the reactions (νμ, μ−N1N2) and
(νμ, μ+N1N2), where an incident (anti) neutrino with energy
Eν interact with a complex nucleus changing into a muon with
kinetic energy Tμ and solid angle �μ = (θμ, φμ), with the
result of the ejection of two nucleons, N1, N2, with momenta
(p′

1, p′
2) in the final state plus a residual nucleus. The outgoing

nucleons can be neutrons or protons, Ni = N, P. If the two
nucleons are detected in coincidence with the μ± lepton the
probability of the reaction is determined by the semi-inclusive
cross section

dσN1N2

dTμd�μd3 p′
1d3 p′

2

= σ0(k, k′)LμνW μν
N1N2

(p′
1, p′

2, q, ω), (1)

where Lμν is the leptonic tensor and W μν
N1N2

(p′
1, p′

2, q, ω) is
the semi-inclusive hadronic tensor. Denoting the neutrino
and muon four-momenta as kν = (ε, k), and k′ν = (ε′, k′),
respectively, the momentum transfer is q = k − k′ and the
energy transfer is ω = ε − ε′. The four-momentum transfer
Qμ = (ω, q) verifies Q2 = ω2 − q2 < 0.

The function σ0 in Eq. (1) is defined by

σ0(k, k′) = G2 cos2 θc

4π2

k′

k
, (2)

where G = 1.166 × 10−11 MeV−2 is the Fermi constant, and
θc is the Cabibbo angle, cos θc = 0.975.

The leptonic tensor Lμν appearing in Eq. (1) is given by

Lμν = kμk′
ν + kνk′

μ − kk′gμν ± iεμναβkαk′β, (3)

where + (−) is for neutrino (antineutrino).
The semi-inclusive hadronic tensor W μν

N1N2
(p′

1, p′
2, q, ω)

contains the information about the nuclear transition matrix
elements of the weak current in the above reaction.

The inclusive cross section in the two-nucleon emission
channel is recovered by integration over the two final nucleons(

dσ

dTμd�μ

)
2p2h

= σ0Lμν

∫
d3 p′

1d3 p′
2W

μν (p′
1, p′

2, q, ω)

= σ0LμνW μν

2p2h(q, ω), (4)

with

W μν (p′
1, p′

2, q, ω) =
∑
N1N2

W μν
N1N2

(p′
1, p′

2, q, ω), (5)

where the isospin sum is performed over final pairs (NP,
PP) in the case of neutrino scattering, and (NN, NP) for an-
tineutrinos. The inclusive hadronic tensor in the two-particle,
two-hole (2p2h) channel is defined as

W μν

2p2h(q, ω) =
∑
N1N2

(
W μν

2p2h

)
N1N2

(q, ω), (6)

where the inclusive 2p2h hadronic tensor in the (N1, N2) chan-
nel is(

W μν

2p2h

)
N1N2

(q, ω) =
∫

d3 p′
1d3 p′

2W
μν

N1N2
(p′

1, p′
2, q, ω). (7)

In Ref. [46] a MEC model was developed for the inclusive
2p2h hadronic tensor in the RFG. With independent-particle
models such as the noninteracting Fermi gas, the emission of
two particles in a nuclear transition is only possible through a
two-body current operator. In this MEC model we consider
the diagrams with exchange of a pion as shown in Fig. 1.
This approach is based on the weak pion emission model of
Ref. [58]. Here we consider the same MEC model extended
[54] to include the RMF within the framework of the Walecka
model [47–49]. In this model the inclusive 2p2h hadronic
tensor in the N1, N2 channel is written

(
W μν

2p2h

)
N1N2

= V

(2π )9

∫
d3 p′

1d3 p′
2d3h1d3h2

(m∗
N )4

E1E2E ′
1E ′

2

×w
μν
N1N2

(p′
1, p′

2, h1, h2)δ(p′
1+p′

2−q−h1−h2)

× θ (p′
1 − kF )θ (kF − h1)θ (p′

2 − kF )θ (kF − h2)

× δ(E ′
1 + E ′

2 − E1 − E2 − ω), (8)

where w
μν
N1N2

(p′
1, p′

2, h1, h2) is the elementary 2p2h hadronic
tensor given below, Eq. (11), and V/(2π )3 = Z/( 8

3πk3
F ) for

symmetric nuclear matter with Fermi momentum kF . In
Eq. (8) the variable m∗

N is the relativistic effective mass of the
nucleon, the four-momenta of the final particles and holes are
P′

i
μ = (E ′

i , p′
i ), and Hi

μ = (Ei, hi ), respectively. Momentum
conservation implies p′

2 = h1 + h2 + q − p′
1.

Within the RMF model of nuclear matter [47–49], the
nucleons are interacting with relativistic scalar and vector
potentials, denoted gsφ0 and gvV0, respectively, see Ref. [48].
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FIG. 1. Feynman diagrams of meson exchange currents considered in the present work.

The single-particle wave functions are plane waves with mo-
mentum p, and with on-shell energy E = [(m∗

N )2 + p2]1/2.
The relativistic effective mass of the nucleon is defined by
m∗

N = mN − gsφ0 = M∗mN , where mN is the free nucleon
mass. Additionally the nucleon acquires a positive energy due
to the repulsion by the relativistic vector potential, Ev = gvV0.
Thus the total nucleon energy is ERMF = E + Ev . Note that
the vector energy does not appear explicitly in Eq. (8). This
is because it cancels out by subtraction of particle and hole
energies in the energy δ function. However it can be seen
that the vector energy enter in the � current diagrams of
Figs. 1(f)–1(i) through the energy of the intermediate � ex-
citation (see Ref. [54] for details).

The nuclear states in the RMF are Slater determinants
constructed with plane waves obtained by solving the free
Dirac equation with effective mass m∗

N . Note that we use
the same effective mass for particles and holes. All states
with momentum h < kF are occupied in the ground state.
The 2p2h excitations are obtained by raising two particles
above the Fermi level, with momenta p′

1 and p′
2 > kF , leav-

ing two holes with momenta h1 and h2 < kF . The 2p2h
hadronic tensor is generated by the neutrino interaction with
the two-body MEC operator, whose matrix elements can be

written as

〈 f |Jμ(Q)|i〉 = (2π )3

V 2
δ(p′

1 + p′
2 − q − h1 − h2)

× (m∗
N )2√

E ′
1E ′

2E1E2
jμ(p′

1, p′
2, h1, h2). (9)

The spin-isospin two-body current function jμ(p′
1, p′

2, h1, h2)
is the sum of diagrams of Fig. 1, described in detail in
Refs. [46,54].

The elementary 2p2h hadronic tensor w
μν
N1N2

(p′
1, p′

2,

h1, h2), where N1, N2 are the charge states of the final nucle-
ons, corresponds to the transition

|h1s1, h2s2〉 → |p′
1s′

1, p′
2s′

2〉, (10)

where si, s′
j are the initial and final spin components. We

denote this transition, in short, by |1, 2〉 → |1′, 2′〉. Then the
elementary 2p2h hadronic tensor is given by

w
μν
N1N2

(p′
1, p′

2, h1, h2)

= 1

2

∑
s1s2s′

1s′
2

jμ(1′, 2′, 1, 2)∗A jν (1′, 2′, 1, 2)A, (11)
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where the two-body current matrix element is antisymmetrized with respect the pp or nn pair

jμ(1′, 2′, 1, 2)A ≡
{

jμ(1′, 2′, 1, 2) − jμ(1′, 2′, 2, 1) for νμNN → μNP or νμPP → μ+NP

jμ(1′, 2′, 1, 2) − jμ(2′, 1′, 1, 2) for νμNP → μPP or νμNP → μ+NN .
(12)

The factor 1/2 in Eq. (11) accounts for the antisymmetry of
the two-body wave function with respect to exchange of mo-
menta and spin quantum numbers to avoid double counting.

B. Probability distribution of 2p2h events

In this work we are interested in studying the proba-
bility distribution of semi-inclusive events corresponding to
CC neutrino (antineutrino) scattering, Eν → (Tμ,�μ), with
two outgoing nucleons N1, N2 with momenta p′

1, p′
2 in the

final hadronic state. In Monte Carlo event generators the
semi-inclusive event distribution is obtained by choosing two
random momenta for the holes, h1, h2, below kF . Then the
total momentum and energy of the final nucleons is computed
as p′ = h1 + h2 + q and E ′ = E1 + E2 + ω. The individual
momenta p′

1 and p′
2 for an event are generated by assuming

an isotropic distribution of the two final nucleons in the CM
frame, and then they are transformed to the Lab system. The
2p2h event E = (h1, h2, p′

1, p′
2) is allowed if the conditions

p′
i > kF are verified. All 2p2h events E of this kind that are al-

lowed for a kinematics (Eν, Tμ,�μ) contribute to the inclusive
cross section with some probability that depends on the value
of the hadronic tensor for the 2p2h event, wμν (p′

1, p′
2, h1, h2).

To find such probability within our MEC model we pro-
ceed as follows. We start with the inclusive 2p2h cross
section written in the way

dσN1N2

dTμd�μ

= V

(2π )9

∫
d3h1d3h2θ (kF − h1)θ (kF − h2)

× (m∗
N )4

E1E2
FN1N2 (h1, h2), (13)

where the two-hole distribution function FN1N2 (h1, h2) deter-
mines the contribution of each pair of holes (h1, h2). It is given
by

FN1N2 (h1, h2) =
∫

d3 p′
1d3 p′

2
1

E ′
1E ′

2

δ(E ′
1 + E ′

2 − E ′)

× δ(p′
1 + p′

2 − p′) fN1N2 (p′
1, p′

2, h1, h2),

(14)

where we have introduced the total energy and momentum
in the final state, E ′ = E1 + E2 + ω and p′ = h1 + h2 + q,
respectively. The function fN1N2 (p′

1, p′
2, h1, h2) is

fN1N2 (p′
1, p′

2, h1, h2) = σ0Lμνw
μν
N1N2

(p′
1, p′

2, h1, h2)

× θ (p′
1 − kF )θ (p′

2 − kF ). (15)

Note that P′μ = (E ′, p′) is the total four-momentum of the
two-particle final state |p′

1, p′
2〉 in the lab frame. The integral

over (p′
1, p′

2) in Eq. (14) can be performed by going to the
center of mass system of the final nucleons. This was done in
Ref. [59] to compute the 2p2h phase space in frozen approx-
imation (for hi = 0). Here we extend the method to arbitrary

values of hole momenta and including the MEC dependence
in the hadronic tensor.

Doubly primed variables refer to the CM system. The total
final momentum in the CM is zero. p′′ = p′′

1 + p′′
2 = 0, and

the total final energy E ′′ is determined by Lorentz invariance
of the squared four-momentum, E ′′ = (E ′2 − p′2)1/2.

In the CM frame the two final nucleons are going back-to-
back with the same momentum and with the same energy

E ′′
1 = E ′′

2 = E ′′

2
= 1

2

√
E ′2 − p′2

= 1

2

√
(E1 + E2 + ω)2 − (h1 + h2 + q)2. (16)

The condition E ′′
1 > mN restricts the allowed values of

(h1, h2) for which two-nucleon emission is possible.
We perform the integration with respect CM coordinates,

p′′
1, p′′

2, using d3 p′
i/E ′

i = d3 p′′
i /E ′′

i . Then we integrate over
p′′

2 using the delta of momentum. The two-hole distribution
function, Eq. (14), becomes

FN1N2 (h1, h2) =
∫

d3 p′′
1

1

(E ′′
1 )2

δ(2E ′′
1 − E ′′)

× fN1N2 (p′
1, p′

2, h1, h2)θ
(
E ′2−p′2− 4m∗2

N

)
,

(17)

where p′′
2 = −p′′

1. The step function θ (E ′2 − p′2 − 4m∗2
N ) en-

sures that the invariant mass of the final two-particle hadronic
system is larger than 2m∗

N and also that the total speed of
the CM is v < 1. Using h′′

1dh′′
1 = E ′′

1 dE ′′
1 to integrate over the

energy, E ′′
1 with the help of the Dirac δ function, we obtain

E ′′
1 = E ′′/2, as expected. This fixes the value of the modulus

p′′
1 = [(E ′′

1 )2 − (m∗
N )2]1/2, resulting in

FN1N2 (h1, h2) = p′′
1

2E ′′
1

∫
d�′′

1 fN1N2 (p′
1, p′

2, h1, h2)

× θ
(
E ′2 − p′2 − 4m∗2

N

)
, (18)

where d�′′
1 = d cos θ ′′

1 dφ′′
1 are the angles of p′′

1 in the CM
system. Note that the function fN1N2 (p′

1, p′
2, h1, h2) inside the

integral (18) has to be evaluated for the momenta p′
1, p′

2 in
the lab system. Then once p′′

1, p′′
2 are defined they are boosted

back to the lab system.
The CM moves with velocity v = p′/E ′. The direction of

the velocity is defined by the unit vector u = v/v. The boost
of a CM vector (E ′′, p′′) to the lab system can be written using
γ = 1/(1 − v2)1/2:

p′
u = γ (vE ′′ + p′′

u), (19)

p′
⊥ = p′′

⊥, (20)

where p′
u = p′ · u is the component along u, and p′

⊥ is the in-
variant component perpendicular to u. Using p′ = p′

uu + p′
⊥
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we can write

p′ = γ (vE ′′ + p′′
u)u + p′′

⊥
= [γ vE ′′ + (γ − 1)p′′

u]u + p′′
uu + p′′

⊥
= [γ vE ′′ + (γ − 1)p′′

u]u + p′′. (21)

Therefore the vectors p′
i in the lab system inside the integral

(18) can be computed as

p′
i = [γ vE ′′

i + (γ − 1)p′′
i · u]u + p′′

i . (22)

Inserting Eq. (18) into (13) we can write the 2p2h inclusive
cross section in the N1N2 channel as(

dσN1N2

dTμd�μ

)
2p2h

= V

(2π )9

∫
d3h1d3h2θ (kF − h1)θ (kF − h2)

× θ
(
E ′2 − p′2 − 4m∗2

N

)
× (m∗

N )4

E1E2

p′′
1

2E ′′
1

∫
d�′′

1 fN1N2 (p′
1, p′

2, h1, h2).

(23)

This integral over eight dimensions is computed us-
ing numerical methods. Note that with eight coordinates
(h1, θ1, φ1, h2, θ2, φ2, θr, φr ), we generate the full space of ex-
clusive events E = (h1, h2, p′

1, p′
2). For clarity here we denote

by (θr, φr ) the two nucleon angles relative to the CM, i.e.,

θr = θ ′′
1 , φr = φ′′

1 . (24)

Thus the 2p2h inclusive cross section is finally written as(
dσN1N2

dTμd�μ

)
2p2h

=
∫

SF

d3h1

∫
SF

d3h2

∫
d cos θrdφr

× GN1N2 (h1, h2, θr, φr ), (25)

where the integrals over holes is performed in the Fermi
sphere, SF , that is, for hi < kF , and the function GN1N2 is

GN1N2 (h1, h2, θr, φr )

= V

(2π )9

(m∗
N )4

E1E2

p′′
1

2E ′′
1

σ0Lμνw
μν
N1N2

(p′
1, p′

2, h1, h2)

× θ (p′
1 − kF )θ (p′

2 − kF )θ
(
E ′2 − p′2 − 4m∗2

N

)
,(26)

with

E ′ = E1 + E2 + ω, p′ = |h1 + h2 + q|, (27)

and the factor

p′′
1

2E ′′
1

= 1

2

√
1 − 4(m∗

N )2

(E1 + E2 + ω)2 − (h1 + h2 + q)2 (28)

comes from the Jacobian of the Lorentz transformation to
the CM system. Note that the step function θ (E ′2 − p′2 −
4m∗2

N ) ensures that the value of above square root is real.
The function GN1N2 (h1, h2, θr, φr ) determines the probability
distribution of exclusive events.

C. Semi-inclusive 2p2h events

Starting from Eq. (25), the inclusive cross section can
be calculated numerically. We proceed by a discretization

procedure by selecting a representative set of the exclusive
events that contribute to the inclusive cross section. With this
set of exclusive events all kinds of semi-inclusive events can
be generated and computed through partial sums. We must
clarify the difference between the concepts of exclusive event
and semi-inclusive event in the context of this approach.

(1) By exclusive event we mean a set of four-vectors E =
(h1, h2, p′

1, p′
2) that represent a particular excitation of

a 2p2h state that is compatible with conservation of
energy and momentum, and thus contributes to the
integral (25). Each exclusive event, in turn, can be
expressed as a set of two hole momenta and two rel-
ative angles in the center-of-mass system of the final
nucleons E = (h1, h2, θr, φr ). Note that each exclusive
event carries an implicit, fixed value of the moment
and energy transfer q, ω.

(2) A semi-inclusive event refers to a fixed value of the
final momenta E ′ = (p′

1, p′
2) without specifying values

for the holes (h1h2), which are not observed. Therefore
there are many pairs of nucleons, (h1h2), that can
contribute to a given semi-inclusive event E ′, which
implies in term of probability or cross section a sum (or
integral) over the contributing pairs, (h1h2), with the
given restriction that they belong to the semi-inclusive
event E ′.

(3) A partial semi-inclusive event is defined by speci-
fying a subset of the six coordinates (p′

1, p′
2) of the

final state. In this work we consider (i) the onefold
events that correspond to fixing one of the values
(p′

1, θ
′
1, φ

′
1, p′

2, θ
′
2, φ

′
2), and (ii) the twofold events that

correspond to fixing two of them. This allows us to
simplify the study of the semi-inclusive cross section,
which depends on six variables, attacking first the sim-
pler problem of the analysis of its partial integrals as
will be seen below in more detail.

(4) Finally, a relative semi-inclusive event refers to the
specification of the two relative angles (θr, φr ) of the
final particles, in the CM system of the final nucle-
ons. It must be clarified that in a relative event of
this type the total momentum of the final nucleons
is not constant because many pairs of initial nucle-
ons (h1, h2) can contribute, and therefore the relative
semi-inclusive events are not observable. But it will
be useful to analyze the distribution of these relative
events in order to study the influence of the hadronic
tensor on the semi-inclusive cross section.

The probability distribution of partial semi-inclusive events
that we study in the next section is determined by the follow-
ing onefold semi-inclusive cross sections:

dσN1N2

dTμd�μd p′
i

,
dσN1N2

dTμd�μd cos θ ′
i

,
dσN1N2

dTμd�μdφ′
i

, (29)

for i = 1, 2, obtained by integration of the sixfold semi-
inclusive cross section over five final variables. For instance

dσN1N2

dTμd�μd p′
1

=
∫

p′
1

2d�′
1d3 p′

2
dσN1N2

dTμd�μd3 p′
1d3 p′

2

. (30)
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The twofold semi-inclusive cross sections are the follow-
ing:

dσN1N2

dTμd�μd p′
1d p′

2

,
dσN1N2

dTμd�μd cos θ ′
1d cos θ ′

2

,

dσN1N2

dTμd�μdφ′
1dφ′

2

, (31)

dσN1N2

dTμd�μd p′
id cos θ ′

j

,
dσN1N2

dTμd�μd p′
idφ′

j

,

dσN1N2

dTμd�μd cos θ ′
i dφ′

j

. (32)

with i, j = 1, 2.
We discretize the integration domain of Eq. (25) to gen-

erate a finite set of bins of exclusive events. We choose the
integration variables (h3

1, cos θ1, φ1, h3
2, cos θ2, φ2, cos θr, φr ).

We divide the integration interval of each variable into
a finite number of subintervals of respective widths
(�h3,� cos θ,�φ,�h3,� cos θ,�φ,� cos θr,�φr ). Note
that we use the variable h3 instead of h to perform the dis-
cretization, that goes from 0 to k3

F . This is convenient because
the property h2dh = dh3/3 to improve the precision in the
numerical integral. We use the same integration widths for the
two initial nucleons. In this way the space of exclusive events
is discretized as a finite set {Ei|i = 1, . . .N }. The volume
element in the discretized space of exclusive events is

�E = (
1
3�h3� cos θh�φh

)2
� cos θr�φr . (33)

The inclusive cross section can be approximated as a sum over
discrete exclusive events(

dσN1N2

dTμd�μ

)
2p2h

	
N∑
i=1

GN1N2 (Ei )�E . (34)

In the limit �E → 0 the exact cross section is obtained.
According to Eq. (34) the probability of each exclusive

event, for a given lepton kinematics Eν , Tμ, �μ is given by

PN1N2 (E ) = GN1N2 (E )�E( dσN1N2
dTμd�μ

)
2p2h

, (35)

and it is normalized to one:
N∑
i=1

PN1N2 (Ei ) = 1. (36)

The function GN1N2 (E ) is given by Eq. (26) were we see
that, for fixed values h1 and h2, the outgoing nucleons are
distributed according to the available phase space but they
are not generated uniformly in the center of mass of the final
hadronic system because the function GN1N2 (E ) depends on
the value of the exclusive 2p2h hadronic tensor, wμν (E ) for
the event E . This contrasts with the procedure used in most
model implementations in neutrino interaction event gener-
ators, where an isotropic distribution for the two outgoing
nucleons is assumed. This is the case, for instance, of the
NUWRO [26], NEUT [32], and GENIE [29] event generators.
Something similar happens in GiBUU implementation of the
2p2h excitations where the exclusive hadronic tensor does not

depend on the event E [14]. In the results section we study the
effect of including or not the exclusive hadronic tensor in the
distribution of the final particles and the difference between
the distributions in the different charge channels (PN, PP, or
NN).

III. ONE- AND TWOFOLD 2p2h SEMI-INCLUSIVE
CROSS SECTIONS

To calculate the one- and twofold semi-inclusive
cross sections, we begin by generating the discrete set
of exclusive events corresponding to a specific lepton
kinematics. This means a uniform set of coordinates
(h3

1, cos θ1, φ1, h3
2, cos θ2, φ2, cos θr, φr ) for holes and relative

angles of the particles, providing a discrete set of exclusive
events Ei that generates the inclusive cross section. In fact,
the first check we make is that the sum over events of the
function G(E ), Eq. (34), reproduces the inclusive 2p2h cross
section for the given kinematics.

Discretization in the space of exclusive events implies in
particular the discretization of semi-inclusive events (p′

1, p′
2).

We divide the intervals of possible values of the exclusive
variables into n subintervals or bins:

p′
i : [kF , (p′

i )max] = [
p′

i
(1), p′

i
(2), . . . , p′

i
(n+1)], (37)

cos θ ′
i : [−1, 1] = [

cos θ ′
i

(1), cos θ ′
i

(2), . . . , cos θ ′
i

(n+1)],
(38)

φ′
i : [0, 2π ] = [

φ′
i
(1), φ′

i
(2), . . . , φ′

i
(n+1)], (39)

where the maximum momentum of final nucleons is (p′
i )max =

[(E ′
i )2

max − (m∗
N )2]1/2 with (E ′

i )max = EF + ω, corresponding
to a nucleon with Fermi energy that receives all the energy
transfer.

A. Onefold semi-inclusive cross sections

The onefold semi-inclusive cross sections can be computed
for each bin as follows:

Let X be one of the semi-inclusive variables X =
p′

i, cos θ ′
i , φ

′
i , for i = 1, 2. For each exclusive event E we de-

note by X (E ) the corresponding coordinate of the event. For
instance if E = (h1, h2, p′

1, p′
2) is an event, then p′

1(E ) = p′
1.

Let us now define by B(X (k) ) the subset of events E such as
X (k) � X (E ) < X (k+1). That is, the event E belong to the kth
bin of the variable X , i.e., the interval [X (k), X (k+1)]

B(X (k) ) ≡ {E such that X (k) � X (E ) < X (k+1)}. (40)

The total probability that an event belong to the bin k is
obtained by summing the probabilities of all events that fall
within the bin

PN1N2 (X (k) ) =
∑

E∈B(X (k) )

PN1N2 (E ), (41)

verifying∑
k

PN1N2 (X (k) ) =
∑

k

∑
E∈B(X (k) )

PN1N2 (E ) = 1. (42)
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Let be �X = X (k+1) − X (k) the (constant) width of the bin of
the X variable. We define

S(X (k) ) = PN1N2 (X (k) )

�X

(
dσN1N2

dTμd�μ

)
2p2h

. (43)

Using Eq. (42) we obtain

∑
k

S(X (k) )�X =
(

dσN1N2

dTμd�μ

)
2p2h

. (44)

Therefore we identify S(X (k) ) as the corresponding onefold
semi-inclusive cross section averaged over the bin X (k):

dσN1N2

dTμd�μdX

∣∣∣∣
X (k)

= S(X (k) ) = 1

�X

∑
E∈B(X (k) )

GN1N2 (E )�E .

(45)

By summation over semi-inclusive bins we recover the inclu-
sive 2p2h cross section,

∑
k

dσN1N2

dTμd�μdX

∣∣∣∣
X (k)

�X = dσN1N2

dTμd�μ

. (46)

By this approach we compute the six onefold 2p2h semi-
inclusive cross sections as

dσN1N2

dTμd�μd p′
i

∣∣∣∣
p′(k)

i

= 1

�p′
i

∑
E∈B(p′(k)

i )

GN1N2 (E )�E, (47)

dσN1N2

dTμd�μd cos θ ′
i

∣∣∣∣
cos θ

′(k)
i

= 1

� cos θ ′
i

∑
E∈B(cos θ

′(k)
i )

GN1N2 (E )�E,

(48)

dσN1N2

dTμd�μdφ′
i

∣∣∣∣
φ

′(k)
i

= 1

�φ′
i

∑
E∈B(φ′(k)

i )

GN1N2 (E )�E, (49)

where the partial sums are performed over the subset of events
corresponding to the bins of p′

i, cos θ ′
i or φ′

i :

B
(
p′

i
(k)) = {E such that p′

1
(k) � p′

1(E ) < p′
1

(k+1)}, (50)

B
(
cos θ ′

i
(k)) = {E such that cos θ ′

1
(k) � cos θ ′

1(E )

< cos θ ′
1

(k+1)}, (51)

B
(
φ′

i
(k)) = {E such that φ′

1
(k) � φ′

1(E ) < φ′
1

(k+1)}. (52)

B. Twofold semi-inclusive cross sections

The above procedure to obtain the onefold semi-inclusive
cross sections is straightforwardly extended to the case of
twofold semi-inclusive cross sections. If X �= Y is a pair of
semi-inclusive variables X,Y = p′

i, cos θ ′
i , φ

′
i , for i = 1, 2, we

construct the subset B(X (k),Y (l ) ) of exclusive events E such
that X (E ) is inside the kth bin of the variable X , and Y (E ) is
inside the lth bin of the variable Y , i.e.,

B(X (k),Y (l ) ) ≡ {E | X (k) � X (E ) < X (k+1) and Y (l )

� Y (E ) < Y (l+1)}. (53)

The total probability that an event belong to the bins (k, l ) of
variables (X,Y ) is then

PN1N2 (X (k),Y (l ) ) =
∑

E∈B(X (k),Y (l ) )

PN1N2 (E ). (54)

Again the total probability is one:∑
kl

PN1N2 (X (k),Y (l ) ) =
∑

kl

∑
E∈B(X (k),Y (l ) )

PN1N2 (E ) = 1. (55)

As in the previous section, we define

S(X (k),Y (l ) ) = PN1N2 (X (k),Y (l ) )

�X�Y

(
dσN1N2

dTμd�μ

)
2p2h

. (56)

Using Eq. (55) we obtain

∑
kl

S(X (k),Y (l ) )�X�Y =
(

dσN1N2

dTμd�μ

)
2p2h

. (57)

Therefore we identify S(X (k),Y (l ) ) as the corresponding
twofold semi-inclusive cross section averaged over the bins
X (k),Y (l )

dσN1N2

dTμd�μdXdY

∣∣∣∣
X (k),Y (l )

= S(X (k),Y (l ) )

= 1

�X�Y

∑
E∈B(X (k),Y (l ) )

GN1N2 (E )�E .

(58)

Is easy to check that the summation over twofold semi-
inclusive bins, gives again the inclusive 2p2h cross section

∑
kl

dσN1N2

dTμd�μdXdY

∣∣∣∣
X (k),Y (l )

�X�Y = dσN1N2

dTμd�μ

. (59)

Therefore the probability distribution of the twofold events is
related to the twofold semi-inclusive cross section by

dσN1N2

dTμd�μdXdY

∣∣∣∣
X (k),Y (l )

= PN1N2 (X (k),Y (l ) )

�X�Y

(
dσN1N2

dTμd�μ

)
2p2h

.

(60)

Using Eq. (58), the twofold 2p2h semi-inclusive cross sec-
tions are computed as

dσN1N2

dTμd�μd p′
1d p′

2

∣∣∣∣
p′(k)

i ,p′(l )
j

= 1

�p′
1�p′

2

∑
E∈B(p′(k)

1 ,p′(l )
2 )

GN1N2 (E )�E, (61)

dσN1N2

dTμd�μd cos θ ′
1d cos θ ′

2

∣∣∣∣
cos θ

′(k)
1 ,cos θ

′(l )
2

= 1

� cos θ ′
1� cos θ ′

2

∑
E∈B(cos θ

′(k)
1 ,cos θ

′(l )
2 )

GN1N2 (E )�E,

(62)
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dσN1N2

dTμd�μdφ′
1dφ′

2

∣∣∣∣
φ

′(k)
1 ,φ

′(l )
2

= 1

�φ′
1�φ′

2

∑
E∈B(φ′(k)

1 ,φ
′(l )
2 )

GN1N2 (E )�E, (63)

dσN1N2

dTμd�μd p′
id cos θ ′

j

∣∣∣∣∣
p′(k)

i ,cos θ
′(l )
j

= 1

�p′
i� cos θ ′

j

∑
E∈B(p′(k)

i ,cos θ
′(l )
j )

GN1N2 (E )�E, (64)

dσN1N2

dTμd�μd p′
idφ′

j

∣∣∣∣∣
p′(k)

i ,φ
′(l )
j

= 1

�p′
i�φ′

j

∑
E∈B(p′(k)

i ,φ
′(l )
j )

GN1N2 (E )�E, (65)

dσN1N2

dTμd�μd cos θ ′
i dφ′

j

∣∣∣∣∣
cos θ

′(k)
i ,φ

′(l )
j

= 1

� cos θ ′
i �φ′

j

∑
E∈B(cos θ

′(k)
i ,φ

′(l )
j )

GN1N2 (E )�E . (66)

C. Relative semi-inclusive cross sections

Guided by the above procedure we can define the twofold,
semi-inclusive cross section for fixed relative angles of the
final nucleons. We already mentioned that said cross section is
not measurable, but mathematically it is well defined and will
allow us to shed additional light on the effect of the hadronic
tensor on the distribution of semi-inclusive events, which is
the goal of this work.

Therefore, to proceed with the definition, we consider the
variables cos θr , φr corresponding to the relative angles of
each exclusive event, which will also be distributed in bins
or subintervals of [−1, 1], in the case of cos θr , and [0, 2π ]
in the case of the φr variable. The subset of exclusive events
with relative angles in bins (k, l ) of the variables (cos θr, φr )
is now

B
(
cos θ (k)

r , φ(l )
r

) ≡ {E | cos θ (k)
r � cos θr (E )

< cos θ (k+1)
r and φ(l )

r � φr (E ) < φ(l+1)
r

}
.

(67)

The total probability that an event belong to the bins (k, l ) of
variables (cos θr, φr ) is then

PN1N2

(
cos θ (k)

r , φ(l )) =
∑

E∈B(cos θ
(k)
r ,φ

(l )
r )

PN1N2 (E ), (68)

and the twofold 2p2h semi-inclusive cross section av-
eraged over the bins cos θ (k)

r , φ(l )
r is defined as in

FIG. 2. Kinematics for 2p2h semi-inclusive events used in this
work. The incident neutrino defines the z axis, and the muon direction
define the scattering plane. The two final nucleon momenta define
with the z axis the two reaction planes with angles φ′

1 and φ′
2 with

respect to the scattering plane.

Eq. (58):

dσN1N2

dTμd�μd cos θrdφr

∣∣∣∣
cos θ

(k)
r ,φ

(l )
r

= 1

� cos θr�φr

∑
E∈B(cos θ

(k)
r ,φ

(l )
r )

GN1N2 (E )�E . (69)

Once more we have the result∑
kl

dσN1N2

dTμd�μd cos θrdφr

∣∣∣∣
cos θ

(k)
r ,φ

(l )
r

� cos θr�φr = dσN1N2

dTμd�μ

.

(70)

IV. RESULTS

The coordinate system and kinematics for the description
of semi-inclusive 2p2h reaction is shown in Fig. 2. We choose
the z axis in the direction of the incident neutrino. The scat-
tering plane (x, z) is defined by the final muon and the initial
neutrino. The transverse component of the muon momentum
with respect to the neutrino defines the x direction. The di-
rections of the two final momenta p′

i and the z axis define
two corresponding reaction planes that form angles φ′

1 and φ′
2,

respectively, with the scattering plane. The angles between p′
i

and the z axis are θ ′
i .

Analyzing the semi-inclusive cross section, which is de-
pendent upon the six variables (p′

1, p′
2), can be notably

intricate due to the necessity of selecting final events within
a six-dimensional space. Therefore, in this initial exploration
of the two-nucleon emission process, we focus on the dis-
tributions of partial semi-inclusive events—both onefold and
twofold. This entails the fixation of one or two final hadronic
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TABLE I. Selected lepton kinematics studied in this work: neutrino energy, muon energy, scattering angle and the corresponding values of
q, ω and also the angle θq between q and the neutrino direction (z axis).

Kinematics Eν (MeV) Eμ (MeV) cos θμ θμ [deg] q [MeV/c] ω [MeV] θq [deg]

1 950 600 0.85 31.79 545.42 350 34.78
2 700 600 0.85 31.79 368.77 100 57.53
3 800 300 0.05 87.13 834.49 500 19.64
4 400 300 0.05 87.13 477.07 100 36.00
5 700 200 −0.75 138.59 834.93 500 7.73
6 300 200 −0.75 138.59 441.85 100 14.72

variables, with integration being performed across the remain-
ing ones.

As shown in the preceding section, the probability of such
partial events is computed through a partial summation of
exclusive event probabilities within a discretized framework.
The semi-inclusive variables p′

1 and p′
2 will similarly be dis-

cretely binned.
For the sake of convenience, we further present the out-

comes in terms of probabilities concerning the distributions
of feasible events of both onefold and twofold nature, while
maintaining a constant neutrino kinematic configuration. The
corresponding onefold and twofold cross sections are directly
proportional to these probabilities, with the proportionality
factor being precisely the inclusive 2p2h cross section. This
value, established for the lepton kinematics, is divided by the
bin volume, as indicated in Eqs. (43) and (60). In this study,
we not delve into averaging over the neutrino flux. Instead,
we operate under the assumption of an incident neutrino pos-
sessing a predetermined energy, yielding a muon with certain
energy and scattering angle.

We consider the six kinematics given in Table I. These
kinematics have been chosen as follows. First of all we
choose three scattering angles cos θμ = 0.85, 0.05 and −0.75
corresponding to three angular bins from the MiniBoonE
experiment. In Fig. 3 we plot the inclusive 2p2h cross sec-
tion averaged with the neutrino flux against the muon energy,
for the three given angles. The position of the maximum
on this cross section is indicated with the arrows in each
panel, that corresponds approximately to the energy of the
muon in the kinematics of Table I. In each panel of Fig. 3
we also show the 2p2h cross section for two fixed neutrino
energies. The value of the first neutrino energy in the green
curves is chosen so that the position of the maximum of
the cross section roughly coincides with that of the averaged
cross section. This is indicated by long thin arrows. These
neutrino energies corresponds to kinematics 1, 3, and 5 of
Table I.

The value of the second neutrino energy in the blue curves
of Fig. 3 is chosen such that ω = 100 MeV at the maximum of
the average cross section. This corresponds to the kinematics
2, 4, and 6 of Table I. A short thick arrow shows the contribu-
tion of this second neutrino energy to the cross section before
averaging in the flux. These neutrino energies give a smaller
contribution to the 2p2h cross section.

Once the lepton kinematics are defined, the lepton tensor
can be immediately calculated with Eq. (3) taking into ac-
count that the leptonic vectors and momentum transfer in the

coordinate system of Fig. 2 are the following:

kμ = (Eν, k) = (Eν, 0, 0, Eν ), (71)

kν = (Eμ, k′) = (Eμ, k′ sin θμ, 0, k′ cos θμ), (72)

q = k − k′ = (−k′ sin θμ, 0, Eν − k′ cos θμ). (73)

As explained in the last section, for each kinematic
we generate exclusive events in terms of six coordinates
(h3

1, cos θ1, φ1, h3
2, cos θ2, φ2) for the two holes, and two rel-

ative angles (cos θr, φr ) for the final particles. We generate
a number of 76 hole pairs and 2002 pairs of relative angles.
The total number of exclusive events, E = (h1, h2, p′

1, p′
2),

generated in this way is Nevents = 4.71 × 109 for each one of
the kinematics of Table I.

Now, for each exclusive event, Ei, we compute the ex-
clusive hadronic tensor w

μν
N1N2

(Ei ) for PP and NP (NN and
NP) ejection in the case of neutrino (antineutrino) scattering.
After contraction with the leptonic tensor, we build the val-
ues of the function GN1N2 (Ei ) of Eq. (26) that determine the
probability distribution of events and the semi-inclusive cross
sections. We sum over the events included in the selected
bins, and compute the corresponding onefold and twofold
semi-inclusive cross sections averaged over the bin using the
Eqs. (45) and (58). Dividing by the inclusive cross section,
the probability distribution of partial semi-inclusive events is
obtained.

In this work we are interested in comparing with the pure
phase-space isotropic distribution of final-state nucleons in
the hadronic center-of-mass frame, similar to what is done
in the Monte Carlo implementations [26]. This is equivalent
to neglecting the dependence of the hadronic tensor W μν

N1N2
(E )

on the exclusive event E . In our calculation we simply
set

σ0LμνW μν
N1N2

(E ) = 1. (74)

The resulting semi-inclusive event distribution is only due to
the kinematics of 2p2h phase-space (PS) and does not depend
on the current matrix elements. In this case the probability of
exclusive events is computed similarly to Eq. (35):

PP.S.(E ) = GP.S.(E )∑
E ′ GP.S.(E ′)

, (75)
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FIG. 3. Inclusive 2p2h neutrino cross section as a function of
muon energy. Each panel corresponds to a fixed muon angle. In each
panel we plot the cross section for two neutrino energies compared
with the cross section averaged over the neutrino flux. The neutrino
energies are those that appear in Table I. The arrows indicate the
muon energies in the table.

where the exclusive phase-space GP.S. function is defined
similarly to Eq. (26):

GP.S.(h1, h2, θr, φr ) = V

(2π )9

(m∗
N )4

E1E2

p′′
1

2E ′′
1

θ (p′
1 − kF )

× θ (p′
2 − kF )θ

(
E ′2 − p′2 − 4m∗2

N

)
.

(76)

Note that the GP.S. function does not depend on the charge of
the nucleons, it only depends on the phase-space kinematics.
Using this phase-space distribution we can define a semi-
inclusive cross section whose integral is equal to the inclusive
cross section, similarly to Eq. (77):

dσP.S.

dTμd�μdXdY

∣∣∣∣
X (k),Y (l )

≡ PP.S.(X (k),Y (l ) )

�X�Y

(
dσ

dTμd�μ

)
2p2h

.

(77)

A. Twofold distributions

In Figs. 4 and 5 we show our results for the twofold
semi-inclusive cross section of the relative angles in the
center-of-mass system of the two outgoing nucleons, given by
Eq. (69), for kinematics 1 and 2 of Table I. In the top panels
we show the phase-space results. The NP and PP channels for
neutrino scattering, (νμ, μNP) and (νμ, μPP), respectively,
are also shown separately, as well as the NP and NN channels
for antineutrino scattering, (νμ, μ+NP), and (νμ, μ+NN ),
respectively. All of them have been calculated including the
full 2p2h hadronic tensor (11).

To begin our analysis, we first verified that the integrals of
the distributions, as shown in Figs. 4 and 5 over the relative
angles, yield the value of the inclusive 2p2h cross section for
the specified kinematics and charge channel. This serves as a
valuable test of our present calculation. In Refs. [54–56,60],
inclusive 2p2h response functions were computed within a
reference frame with the momentum transfer pointing along
the z-axis, utilizing a seven-dimensional integration scheme.
In contrast, in the present calculation the z-axis is aligned with
the neutrino direction, necessitating an eight-dimensional
integration. Moreover, we compute all components of the
hadronic tensor, while in Refs. [54–56,60] only the inclusive
response functions where calculated. This cross-check rein-
forces the consistency of our results.

In Figs. 4 and 5 the phase-space (PS) distributions are
appropriately normalized to the total neutron-proton (NP) plus
proton-proton (PP) inclusive neutrino cross section. A close
inspection reveals that indeed, in the case of neutrino scatter-
ing, the sum of the NP and PP cross sections approximately
matches the PS cross section in the upper panel. Furthermore,
it is evident that the PP cross section is approximately seven
times greater than the NP cross section. A similar value for
the PP/NP ratio was reported in Ref. [61] around the � peak
of the 2p2h inclusive response.

It is noteworthy that the NP and PP distributions differ from
the phase-space distribution. This discrepancy arises from our
inclusion of the exact dependence of the hadronic tensor on
the exclusive variables of 2p2h excitations. It is noteworthy
that the PS distribution is not perfectly uniform, primarily
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FIG. 4. Twofold Semi-inclusive cross section with respect to the
relative angles in the center-of-mass system of the two outgoing
nucleons. From top to bottom we show the phase-space, NP and PP
emission with neutrinos, and NP and NN emission with antineutri-
nos. The kinematics is row 1 of Table I.

due to the summation over holes. Consequently, the center-
of-mass momentum is not constant, resulting in an averaged

FIG. 5. The same as Fig. 4 for the kinematics row 2 of Table I.

distribution over all possible values of the center of mass
contributing to the semi-inclusive observable. According to
Table I, the results of Fig. 4 correspond to a neutrino energy
Eν = 950 MeV, q = 545 MeV/c and ω = 350 MeV. For this
case it is apparent that, according to phase space, the most
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probable events cluster around the darker continuous band
show in the top panel. However, a noticeable difference is
observed compared with the neutrino PP and NP distributions,
with the differences being more pronounced in the case of
NP emission. Additionally, we note that the distribution peaks
for NP and PP emission occur at different angles. In the case
of antineutrinos, distinct distributions are also observed for
NP and NN emissions, which deviate from the phase-space
predictions. These observations emphasize the importance of
considering the full dependence of the hadronic tensor on the
exclusive variables.

The distributions of the relative angles also exhibit a sig-
nificant dependence on the leptonic kinematics, as can be
discerned when comparing them with the case of different
kinematics, as exemplified in Fig. 5. In this scenario, charac-
terized by a neutrino energy of 700 MeV, momentum transfer
q = 369 MeV/c and energy transfer ω = 100 MeV, notable
distinctions become apparent. In the case of neutrino scatter-
ing, the PP distribution closely aligns with the pure phase
space, a feature corroborated by the location of the darker
region where the cross section is larger. Conversely, the NP
distribution deviates considerably from both the phase space
and the PP distribution, with its maximum found at backward
angles (θr ). In this instance, the NP cross section is slightly
smaller than that of the PP, although it remains of the same
order of magnitude.

Similar trends are observed in the case of antineutrino
scattering in Fig. 5. Turning our attention to the antineutrino
NN cross section, it closely resembles the phase-space dis-
tribution, whereas the NP cross section exhibits noticeable
differences. In this case, the maximum is shifted towards
forward angles in θr . These nuanced variations underscore
the intricacies of the semi-inclusive reactions and emphasize
the impact of the hadronic tensor and lepton kinematics on the
semi-inclusive 2p2h cross section.

The results presented in Figs. 4 and 5 are expressed in
terms of absolute cross-section values. We have observed
similar trends, demonstrating deviations of the semi-inclusive
distributions from those expected for pure phase space, for
all the leptonic kinematics of Table I. Notably, these differ-
ences are most pronounced for PN emission. These results
provide a partial integration of the total semi-inclusive cross
section. To gain a broader view of the entire six-dimensional
landscape but in two-dimensional averaged sections, we now
display results for the twofold cross sections involving pairs
of the observable semi-inclusive variables (p′

i, cos θi, φi ). In
this context, it is less critical to ascertain the absolute value
of the cross section, as we are aware that the normalization
is uniform across all distributions, with the inclusive cross
section serving as a common reference for a given kinematic
scenario. Therefore, we present the results in terms of prob-
abilities for each semi-inclusive bin, understanding that the
summation over bins in these distributions equals one. Our
primary objective is to examine the differences among various
semi-inclusive charge channels and their distinctions relative
to a pure phase-space distribution.

We show a more complete example of the available twofold
distributions in Figs. 6–8. In the interest of brevity and
due to space limitations, we have chosen to focus on rep-

resentative examples of these combinations, mindful of not
overwhelming the reader with an exhaustive display of every
possible distribution. It is essential to acknowledge that illus-
trating every conceivable combination is impractical within
the confines of this presentation. However, the selected distri-
butions provide a meaningful and insightful glimpse into the
complex multidimensional landscape of semi-inclusive reac-
tions initiated by neutrinos and antineutrinos. Together, these
figures provide a comprehensive perspective on the distribu-
tions within the semi-inclusive charge channels, enabling a
deeper understanding of the deviations from pure phase-space
models.

As a first example, in Fig. 6 we present the twofold distri-
butions, namely, P(p′

1, p′
2), P(cos θ ′

1, cos θ ′
2), and P(φ′

1, φ
′
2),

for both neutrino and antineutrino scattering. These distribu-
tions provide insights into the joint probability distributions
of pairs of momenta or emission angles of the two parti-
cles within the semi-inclusive reactions. This example vividly
demonstrates the correlations between pairs of variables and
the differences introduced by considering the semi-inclusive
hadronic tensor in contrast with pure phase-space distri-
butions. Notably, these distributions show the asymmetries
present in the final-state momenta of protons and neutrons
within the NP channel, underscoring the influence of the
hadronic tensor.

Specifically, the P(p′
1, p′

2) distribution (first column of
Fig. 6) reveals a strong correlation between these two vari-
ables. The distribution occupies a narrow band around a curve
centered at (kF , kF ), corresponding to the minimum values the
outgoing particles can attain. The global shape of the distribu-
tion is primarily dictated by kinematics, and does not depend
on the hadronic tensor. We observe that the distribution is cen-
tered and exhibits a maximum around emission momenta of
p′

1 = p′
2 ≈ 550 MeV/c for PP, NN, and the phase-space (PS)

distributions. However, the NP distribution reveals a distinct
pattern. For neutrino scattering, its maximum is centered ap-
proximately at p′

1 ≈ 650 MeV/c and p′
2 = 450 MeV/c, while

for antineutrino scattering, the situation is reversed, bearing in
mind that particle 1 is a neutron and particle 2 is a proton. This
clear asymmetry underscores the dissimilarity in final proton
and neutron momenta within the NP channel, a consequence
of the influence of the hadronic tensor.

In the second column of Fig. 6, we turn our attention to
the correlations between the emission angles θ ′

1 and θ ′
2. Here

we also observe a distinctive pattern: the emission angles tend
to cluster within a relatively narrow band, forming a curve
that traverses from backward-forward (−1, 1) to forward-
backward (1,−1) emissions. Within this band, all pairs of
angles exhibit fairly similar probabilities, except in the ex-
tremes. Additionally, asymmetries in the distributions of NP
emission concerning particles 1 and 2 are observed, even
though they might not be as evident in the graph. Meanwhile,
the distributions for PP, NN, and PS exhibit clear symmetry
under the 1 ↔ 2 exchange.

In the third column of Fig. 6, we finally explore the
correlations between the azimuthal emission angles φ′

1 and
φ′

2, which correspond to the angles between the emission
plane and the scattering plane (as illustrated in Fig. 2). Once
again, we observe a distinct correlation shape that traces two
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FIG. 6. Twofold distributions, namely, P(p1, p2), P(cos θ1, cos θ2 ), and P(φ1, φ2), for kinematics row 1. From top to bottom we show the
phase space, the neutrino NP and PP, and the antineutrino NP and NN emission channels, respectively. The units in each panel are such that
the corresponding distribution is normalized to one.

precise trajectories in the (φ1, φ2) plane, ranging from (0, π )
to (π, 2π ) and from (π, 0) to (2π, π ). It is worth noting that,
in spherical coordinates, the values 0π and 2π are identified
as the same point, so these two trajectories actually form a
single path. In this case, we observe a clear 1 ↔ 2 symmetry
in the distributions for PP, NN, and the phase space around the
angles of (π/2, 3π/2) and (3π/2, π/2). However, in the case
of NP emission, this symmetry is disrupted again due to the
influence of the hadronic tensor.

As a second example, depicted in Fig. 7, we present the
twofold distributions P(p′

1, cos θ ′
1), P(p′

1, φ
′
1), P(p′

1, cos θ ′
2),

and P(p′
1, φ

′
2), specifically for neutrino scattering and kine-

matics 1. These distributions shed light on the correlations
between momentum of the first particle and one of the four
angular variables. When comparing the phase-space, NP, and
PP distributions, it is observed that they share a similar shape.
This similarity is attributed to the fact that, as in the pre-
vious cases, the overall features are largely determined by
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FIG. 7. Twofold distributions, P(p1, cos θ1), P(p1, φ1), P(p1, cos θ2), and P(p1, φ2), specifically for neutrino scattering and kinematics 1.
In each panel from left to right we show the phase space, NP, and PP distributions.

kinematics, specifically energy and momentum conservation.
The influence of the hadronic tensor alters the finer details,
and clear differences can be observed between NP and PP
emissions when compared with the phase-space distribution.

In a final example, in Fig. 8, we showcase the twofold
distributions, P(cos θ ′

1, φ
′
1) and P(cos θ ′

1, φ
′
2), for neutrino

scattering and kinematics 1, highlighting the joint proba-
bilities associated with the emission angle of particle one
and one of the azimuthal angles in the semi-inclusive re-
action. Once more, we observe that the overall shapes of
these distributions are similar among the three cases: phase-
space, NP, and PP emissions. However, notable differences
become evident in the detailed behavior of P(cos θ ′

1, φ
′
1),

indicating that this distribution is particularly sensitive to
the influence of the hadronic tensor. The distribution of
cos θ ′

1 and φ′
2 exhibits a pronounced peak around forward

emission, and it becomes smoother away from that re-
gion. While there are still differences between the various

emission channels, these differences are not very noticeable
in the figure.

To conclude the discussion of twofold distributions in
semi-inclusive two-nucleon emission, Fig. 9 provides a com-
prehensive comparison of the distribution P(p′

1, p′
2). This

comparison covers kinematics 2 to 6 (rows in Fig. 9) for
neutrino scattering, as outlined in Table I. The three columns,
from left to right, correspond to phase-space, NP, and PP
distributions, respectively. In this analysis, a clear correlation
between the two momenta remains evident across all cases. In
the instances of phase-space and PP emissions, the distribu-
tions exhibit clear symmetry with respect to 1 ↔ exchange.
Then p′

1 equals p′
2 at the maximum of the distribution. Con-

versely, the NP distribution displays a clear asymmetry under
1 ↔ exchange, and p′

1 �= p′
2 at the maximum. These result

suggest that it is more likely for the neutron to possess more
energy than the proton. The consistent trend of distinct distri-
butions of momentum pairs between the NP and PP channels
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FIG. 8. Twofold semi-inclusive distributions, P(cos θ ′
1, φ

′
1) and P(cos θ ′

1, φ
′
2), for neutrino scattering and for kinematics 1. From left to

right we show the phase-space, NP, and PP emission channels, respectively.

is observed across all the kinematic configurations analyzed
in this study. This consistency underscores the necessity of
including the hadronic tensor to accurately account for these
differences.

B. Onefold distributions

Now we discuss the results for the onefold distributions
in semi-inclusive two-nucleon emission induced by neutrinos
(antineutrinos). Note that these onefold cross sections also
contribute to semi-inclusive one-nucleon emission when com-
bined with the results obtained from a model of one-nucleon
knockout.

In Fig. 10, we present the distributions specifically for
neutrino scattering, focusing on kinematics 1 as outlined in
Table I. In each panel, we display the onefold distributions of
the variables p′

1, p′
2, cos θ ′

1, cos θ ′
2, φ′

1, φ′
2 as well as the angles

in the center-of-mass (CM) frame of the final particles, cos θr

and φr . Within each panel, we provide a comparison between
the distributions for phase-space (PS), NP, and PP channels.

In these distributions we fix the bins for one variable and
integrate with respect to all other variables (or sum over all
remaining bins). As a consequence the onefold distributions
on the different channels appears quite similar. This is, in
a way, an averaging effect on the hadronic tensor. However,
despite this overall similarity, the NP channel exhibits notable
distinctions from the NP and PP channels. The differences
between the phase space and the two emission channels
are typically on the order of 10%–20% depending on the
kinematics.

We observe, when comparing the two top panels, that the
distribution P(p′

1) is equal to the P(p′
2) distribution for PP

emission. This equality arises due to the symmetry under the
exchange of two protons. The same symmetry holds for the
phase space, but in this case, it is because, by definition,
the phase-space distribution depends solely on kinematics.

However, in the case of NP emission, this symmetry is not
observed due to the inherent differences between the two
outgoing particles and the isospin dependence of the hadronic
tensor. Recall that particle 1 is a neutron and particle 2 is
a proton. Consequently, the neutron distribution exhibits a
more pronounced peak at higher momenta compared with the
proton distribution.

Moving on to the panels of the second row in Fig. 10, we
examine the distributions with respect to the polar emission
angles, P(cos θ ′

1) and P(cos θ ′
2). Ideally, these two distribu-

tions should be exactly equal for the phase space, but in the
figure, they do not appear exactly identical one being slightly
higher than the other. This small discrepancy results from the
numerical error introduced when discretizing the integrals into
bins and the calculation method not treating particles 1 and 2
symmetrically. Consequently, the differences between these
curves provide an estimate of the numerical error incurred
when calculating these angular distributions, which here is
approximately 5%. To reduce this error, one would need to
decrease the bin size accordingly. However, this would signif-
icantly increase the number of exclusive events that need to
be summed (and computed). It is important to keep this error
in mind when interpreting the results of this study. Looking
at the probability distributions in the panels of the second
row, we notice that they increase with cos θ ′

i , which means
they decrease with the angle itself. This indicates that forward
emission (with forward being the direction of the neutrino) is
more probable, while backward emission is less likely.

Now we examine the two panels of the third row in Fig. 10
that display the distributions over the azimuthal angles. This
indicates the probability of the orientation of the reaction
plane of particle one with respect to the scattering plane when
the other emerges in any direction, or vice versa in the case
of particle 2. We observe that the prevailing trend is to be
emitted predominantly in the semiplane with an angle of π ,
which is where the momentum transfer vector is contained
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FIG. 9. Twofold distribution P(p′
1, p′

2) for semi-inclusive 2p2h neutrino scattering. From top to bottom, the rows refer to the kinematics
2–6 of Table I, from left to right, the columns refer to the phase-space, NP, and PP distribution, respectively.

(see Fig. 2). There is an asymmetry in the case of NP emission
when switching particle 1 for particle 2. This results in the
neutron (particle 1) having a greater tendency to be emitted in
the π plane (and adjacent planes) than the proton (particle 2).

Let us now examine the distributions with respect to the
emission angles in the CM of the two final particles, shown
in the bottom panels of Fig. 10. The distribution of cos θr

is quite flat in the case of phase space and PP emission,
indicating that PP emission is approximately consistent with
an isotropic distribution in the center of mass. However, it
is also evident that NP emission is not as compatible with

this hypothesis, as the angular distribution deviates from the
phase-space distribution. It is larger for forward angles and
smaller for other angles.

In the case of the distribution of the relative azimuthal
angle φr , both the PP and NP channels deviate from a pure
isotropic distribution in the CM. The NP channel stands out
as distinctly different from the other two. In this case, both the
distributions for the PS and PP channels exhibit two maxima
around π/2 and 3π/2, with a minimum at π . In contrast, the
NP distribution displays two larger maxima that are closer
to π .
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FIG. 10. Onefold distributions for semi-inclusive two-nucleon emission induced by neutrinos for kinematics 1. In each panel, we compare
the distributions for phase-space (PS), NP, and PP emissions.

Similar differences are observed in Fig. 11, which corre-
sponds to kinematics 2. However, comparing with Fig. 10, it
becomes evident that the specific shape of the distribution also
whimsically depends on the leptonic kinematics. Nonethe-
less, in almost all cases, the distributions in the case of NP

emission are notably different from the case of PP emission.
To complete this discussion, we present in Figs. 12 and 13
results for antineutrino scattering for kinematics 1 and 2,
to be compared with the corresponding Figs. 10 and 11 for
neutrinos. They show similar trends, with the most noticeable
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FIG. 11. The same of Fig. 10 for kinematics 2.

differences occurring again for NP emission as compared with
the NN emission and the phase-space distribution, which are
more similar. The most notable differences between NP and
the others are observed in the distributions with respect to the
azimuthal angles.

In any case, it is notable that the significant differences
introduced by the hadronic tensor in the twofold distributions
concerning relative angles, as shown in Figs. 4 and 5, tend to
smooth out when we transition to distributions of the observ-
able variables related to the momenta of the two nucleons.
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FIG. 12. Onefold distributions for semi-inclusive two-nucleon emission induced by antineutrinos for kinematics 1. In each panel, we
compare the distributions for phase-space (PS), NP, and NN emission.

In other words, the very pronounced differences arising from
considering different emission channels compared with the
isotropic distribution in phase space seem to lessen when we
consider the physical variables as a result of an average over

bins. It is expected that these differences become much more
pronounced when considering the complete sixfold distribu-
tion, where the full impact of the hadronic tensor should be
more prominent.
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FIG. 13. The same as Fig. 12 but for kinematics 2.

V. CONCLUSIONS

In this work, we have undertaken a comprehensive study
of the semi-inclusive cross section for two-nucleon emission
induced by neutrinos and antineutrinos within a RMF model

of nuclear matter, including MEC. The primary aim of this
study was to assess the differences between various emission
channels, namely NP, PP, and NN, and to compare them with
the pure phase-space model commonly employed in neutrino
Monte Carlo event generators.
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The novelty in this work lies in the inclusion of the
full semi-inclusive hadronic tensor, derived from a micro-
scopic calculation, whose integral recovers the inclusive 2p2h
hadronic tensor. Given the complexity of a detailed study of
the full six-dimensional distribution dependent on the final nu-
cleon momenta, involving numerous variables, we conducted
this preliminary investigation focusing on partial distributions
dependent on only one or two variables (onefold and twofold
distributions). We integrated over the remaining variables to
gain insights into how the differences imposed by the hadronic
tensor propagate through these observables, for various lepton
kinematics.

Our findings reveal significant variations between the dif-
ferent emission channels, especially when compared with the
pure phase-space model. These differences are particularly
pronounced in distributions involving the relative angles in
the CM frame. This is evidence that the isotropic distribu-
tion in the center of mass undergoes significant modifications
when the hadronic tensor is included, effectively making it
nonisotropic. This is particularly relevant in the case of NP
emission, which seems to be related to the fact that the NP
cross section is smaller than the PP cross section and is thus
more sensitive to the influence of the hadronic tensor.

In the case of twofold distributions involving variables
of the two emitted particles, the differences with the pure
phase-space model are smaller due to the averaging effect of
integrating over the remaining variables, which smoothes out
the differences. Furthermore, these distributions are largely
determined by kinematics, as energy and momentum con-
servation plays a significant role, and the hadronic tensor
mainly influences the finer details of each distribution without
altering the fundamental kinematic constraints.

From our results, we have observed strong correlations
between pairs of variables (p′

1, p′
2), (θ ′

1, θ
′
2), and (φ′

1, φ
′
2),

which is evident from the corresponding twofold distributions.

When considering other combinations of two variables, there
is generally very little correlation between them.

Appreciable differences are observed between the NP and
PP distributions when the hadronic tensor is included in neu-
trino scattering. One notable result is that when an NP pair
is emitted with neutrinos, it is more likely for the neutron to
carry more energy than the proton, whereas the opposite is
true for antineutrino scattering.

We have also presented results for the onefold distri-
butions, which were obtained by fixing one semi-inclusive
variable and integrating over the remaining ones. These dis-
tributions undergo relatively few variations when the hadronic
tensor is included, primarily due to the smoothing effect of
integration. Nevertheless, significant differences are observed
between the cases of NP and PP emission, for neutrino scat-
tering, and NP and NN emission, for antineutrino scattering,
depending on the kinematics.

In conclusion, this work has explored semi-inclusive two-
nucleon emission reactions induced by neutrinos, considering
a microscopic treatment of the corresponding hadronic tensor.
We have emphasized the differences with respect to the ap-
proach that assumes an isotropic distribution of the outgoing
nucleons in the center of mass. This research is expected to
be valuable for analyses based on Monte Carlo event genera-
tors and offers the potential for improving the reconstruction
of incident neutrino energies. Future work could extend this
study to the full six-dimensional distribution, providing even
deeper insights into the impact of the hadronic tensor on these
processes.
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