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Bacterial predators are widely distributed across a variety of natural environments. 
Understanding predatory interactions is of great importance since they play 
a defining role in shaping microbial communities in habitats such as soils. 
Myxococcus xanthus is a soil-dwelling bacterial predator that can prey on Gram-
positive and Gram-negative bacteria and even on eukaryotic microorganisms. 
This model organism has been studied for many decades for its unusual 
lifecycle, characterized by the formation of multicellular fruiting bodies filled 
with myxospores. However, less is known about its predatory behavior despite 
being an integral part of its lifecycle. Predation in M. xanthus is a multifactorial 
process that involves several mechanisms working synergistically, including 
motility systems to efficiently track and hunt prey, and a combination of short-
range and contact-dependent mechanisms to achieve prey death and feed on 
them. In the short-range attack, M. xanthus is best known for the collective 
production of secondary metabolites and hydrolytic enzymes to kill prey and 
degrade cellular components. On the other hand, contact-dependent killing 
is a cell-to-cell process that relies on Tad-like and type III secretion systems. 
Furthermore, recent research has revealed that metals also play an important 
role during predation, either by inducing oxidative stress in the prey, or by 
competing for essential metals. In this paper, we review the current knowledge 
about M. xanthus predation, focusing on the different mechanisms used to 
hunt, kill, and feed on its prey, considering the most recent discoveries and the 
transcriptomic data available.
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Introduction

Myxococcus xanthus is a soil-dwelling bacterial predator renowned for its social and 
multicellular behavior, which is evident along its complex lifecycle. When nutrients are scarce, 
M. xanthus cells coordinate to form multicellular structures known as fruiting bodies, where 
some of them differentiate into resistant myxospores. Depending on external cues, such as 
nutrient levels or the presence of prey microorganisms, M. xanthus must decide whether to 
initiate this developmental cycle or to activate its predatory mechanisms to feed (Muñoz-
Dorado et al., 2016).

Coordinating these two facets of its lifecycle has led to an extensive coevolution between 
both stages. Indeed, mutations in genes involved in early stages of the developmental cycle, 
where cells are still to commit to this process, have been found to negatively impact predation. 
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By contrast, genes required in later stages of the development, where 
cells are fully committed to fruiting-body formation, do not seem to 
play a role in predation (Pham et al., 2005; Berleman et al., 2008; Pérez 
et  al., 2022). Furthermore, some predator–prey interactions can 
stimulate fruiting bodies formation even during predation, although 
cells within the fruiting bodies are unable to differentiate into 
myxospores (Berleman and Kirby, 2007).

When conditions are favorable again, myxospores from a fruiting 
body will germinate into a population of vegetative cells known as 
swarm, which will actively hunt for prey to feed on them. Cells within 
the swarm will cooperate in an attempt to prey with different degrees 
of success on a great diversity of Gram-negative and Gram-positive 
bacteria (Figure  1), including nitrogen-fixing bacteria and some 
human and plant pathogens, as well as fungi and nematodes (Mendes-
Soares and Velicer, 2013; Livingstone et al., 2017; Petters et al., 2021; 
Sydney et al., 2021).

M. xanthus predation is a multifactorial task that combines a broad 
arsenal of resources to ensure prey death. This process starts with 
tracking of prey in the environment driven by its motility systems and 
signal-transduction mechanisms. Upon encountering a suitable prey, 
M. xanthus uses a combination of short-range and contact-dependent 
mechanisms to kill and lyse prey cells. While short-range killing mainly 
involves the production of a battery of secondary metabolites (SMs) such 
as antibiotics, and of hydrolytic enzymes to degrade and feed on the 
cellular components of the prey (Muñoz-Dorado et al., 2016), contact-
dependent lysis is mediated by secretion systems (Seef et al., 2021; Thiery 
et al., 2022). Moreover, recent studies have shown that metals are also 
involved in M. xanthus predation either by using metals to provoke 
oxidative stress or by outcompeting prey for possession of essential 
metals (Contreras-Moreno et al., 2020; Lee et al., 2020; Dong et al., 
2022b; Pérez et al., 2022).

While the developmental stage of M. xanthus has been thoroughly 
studied, less attention has been paid to its predatory behavior. This is, 

however, not an isolated facet of its lifestyle, but is heavily 
interconnected to the other traits of M. xanthus biology to shape its 
lifecycle (Volz et al., 2012; Pérez et al., 2022). In fact, there is mounting 
evidence that predation has played a major role in the selection of 
M. xanthus biological features via coevolution with its prey (Nair et al., 
2019; La Fortezza et al., 2022). In this minireview we will discuss the 
state-of-the-art of the toolset used by M. xanthus to prey, including 
the most recent findings derived from transcriptomic analyses 
during predation.

Motility systems

M. xanthus cells must actively search for prey in the soil to obtain 
nutrients. To approach the prey, they use two types of motility systems: 
an individual gliding movement, known as adventurous (A) motility, 
and a collective twitching-type movement, known as social (S) 
motility. A-motility relies on a Agl-Glt multiprotein outer-membrane 
complex that attaches the substrate at fixed sites of focal adhesion. 
These Agl-Glt complexes move directionally across the inner 
membrane toward the anterior pole of the cell, following a helical 
trajectory (Islam et al., 2023). Gliding occurs over an exopolysaccharide 
slime produced by the bacterium, which facilitates cells to follow the 
trail of previous cells rather than creating a new one, which enables 
exploration and prey foraging (Rombouts et al., 2023). On the other 
hand, S-motility is driven by type-IV pili, which pull the cells forward 
by extending, attaching to surfaces (or other cells), and then retracting 
(Chang et al., 2016). In M. xanthus, this is a collective movement 
where the cells must be in contact with each other, allowing them to 
coordinate the swarm’s movement (Skotnicka and Søgaard-
Andersen, 2017).

A study using mutants impaired in these two motility systems 
clearly showed that both are required to efficiently prey on 

FIGURE 1

Predation assays of M. xanthus DK1622 (left) against different Gram-negative [(A) Pseudomonas putida; (B) Sinorhizobium meliloti; (C) Escherichia coli] 
and Gram-positive bacteria [(D) Staphylococcus aureus; (E) Bacillus subtilis; (F) Micrococcus sp.] after 72  h of interaction, showing its different 
capabilities to kill and consume prey.
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Sinorhizobium meliloti (Pérez et  al., 2014). In fact, transcriptomic 
analyses of M. xanthus during predation (predatosomes) have shown 
upregulation of some genes required for both motility systems as well 
as some regulators involved in motility, such as the sigma factor SigF 
(Lee et  al., 2020; Pérez et  al., 2022). Both types of motility occur 
simultaneously or alternate in different subpopulations of the swarm 
to adapt to different prey local distribution (Rombouts et al., 2023).

While scouting the area in search for prey, M. xanthus seems to 
detect some prey molecules such as acyl homoserine lactones, that 
stimulate motility and facilitate their encounter (Lloyd and 
Whitworth, 2017; Akbar et al., 2022). Once the predator finds its prey, 
it must stay in close vicinity to activate its attack mechanisms and then 
feed on their cellular by-products. Therefore, upon detection, 
M. xanthus cells “stop” by repeatedly reversing their trajectory to 
optimize prey lysis (Zhang et al., 2020; Thiery and Kaimer, 2022). 
These repeated reversals are also important to feed on prey, as mutant 
predator cells defective in this mechanism tend to abandon prey 
colonies after lysis, without consuming their cellular remains 
(McBride and Zusman, 1996; Zhang et al., 2020).

Secondary metabolites

M. xanthus induces prey cell death and lysis by cooperative 
production of different lytic factors, acting either in isolation or 
synergistically (Figure 2A). Among them, SMs play an important role 
in prey killing, especially those with antimicrobial activity. M. xanthus 
genome holds an outstanding biosynthetic capacity for SM 
production, including at least 18 nonribosomal peptide synthetases 
(NRPS), 22 polyketide synthases (PKS), and 6 mixed PKS/NRPS, 
making a total of 14.5% of its genome (Goldman et  al., 2006). 
Antimicrobial compounds so far isolated from M. xanthus have 
shown to be more efficient against Gram-positive bacteria (Xiao et al., 
2011; Hoffmann et al., 2018), which could be due to the protective role 
of the Gram-negative outer membrane and/or a potential facilitation 
for the intracellular delivery of outer membrane vesicles (OMVs) 
cargo molecules (Zwarycz et al., 2023). To date, only 2 M. xanthus SMs 
have been directly implicated in predation: (i) myxovirescin, a 
macrocyclic SM able to block bacterial growth by inhibiting type a II 
signal peptidase (Xiao et al., 2011, 2012), and (ii) myxoprincomide, a 
SM required for effective predation against Bacillus subtilis (Cortina 
et al., 2012; Müller et al., 2016). However, the most recent predatosome 
data suggest that SM production is prey specific. Thus, while genes 
coding for myxoprincomide, myxovirescin, and myxalamide have 
been reported as being upregulated against Micrococcus luteus and 
Escherichia coli, only myxalamide is upregulated when preying on 
S. meliloti. However, against S. meliloti, additional clusters probably 
involved in the biosynthesis of unidentified bio-products are also 
upregulated (Pérez et al., 2022; Wang et al., 2023).

Hydrolytic enzymes

Besides SMs, M. xanthus requires a battery of hydrolytic enzymes 
to degrade prey cell components and feed on them (Figure 2A). To 
induce lysis of Gram-positive bacteria, this myxobacterium needs to 
degrade prey cell-walls via peptidoglycan-lysing enzymes (Hart and 

FIGURE 2

Different resources used by M. xanthus (yellow cells) to kill prey 
(purple cells). (A) Secondary metabolites (SMs) and hydrolytic 
enzymes are secreted into the extracellular medium or delivered via 
outer membrane vesicles (OMVs). (B) Contact-dependent killing 
mechanisms of M. xanthus. (C) Role of metals during bacterial 
predation. Competition for iron mediated by siderophores and 
accumulation of copper at the predator–prey interphase.
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Zahler, 1966; Sudo and Dworkin, 1972; Arend et al., 2021). A protein 
with lysozyme-like-activity (LlpM) able to induce cell lysis has been 
identified, although it is not essential for this process, reinforcing the 
idea that cell-wall lytic activity of the M. xanthus secretome is a 
multifactorial process with several hydrolytic enzymes involved 
(Arend et  al., 2021). In fact, secretion of hydrolytic enzymes has 
shown to drive predation in natural isolates with genomes specially 
enriched in this type of enzymes (Dong et al., 2022a, 2023).

Transcriptomic studies against different prey have revealed 
upregulation of several M. xanthus genes coding cell-wall lysing 
proteins. Thus, when the Gram-negative S. meliloti and the Gram-
positive Streptomyces coelicolor were used as prey, two genes coding 
N-acetylmuramoyl-L-alanine amidases were upregulated (Lee et al., 
2020; Pérez et al., 2022). Moreover, five genes coding for proteins with 
LysM-domains were overexpressed against S. meliloti and two of them 
were also upregulated in co-cultures with E. coli (Livingstone et al., 
2018; Pérez et al., 2022). However, during predation on Pseudomonas 
aeruginosa or M. luteus, no gene involved in cell-wall lysis was 
differentially expressed (Wang et al., 2023). These discrepancies may 
be  due to characteristics of the prey, but also to variances in the 
methodology used on each assay.

In addition to cell-walls, M. xanthus must also hydrolyze prey 
proteins and lipids to use them as nutrients or as building blocks for 
metabolic processes. Until now, only the peptidase MepA has been 
experimentally studied and it seems to contribute to predation by 
degrading proteins released from lysed cells (Berleman et al., 2014). 
Indeed, mepA is upregulated in co-culture with S. meliloti and with 
S. coelicolor, supporting its role in predation (Lee et al., 2020; Pérez 
et  al., 2022). M. xanthus predatosomes against different bacteria 
indicate that, to achieve full prey lysis, the predator needs to induce a 
plethora of hydrolytic enzymes. In fact, besides those aforementioned, 
M. xanthus genes coding for several hydrolytic enzymes are 
transcriptionally upregulated in co-culture with S. meliloti, E. coli, or 
M. luteus, including peptidases, metalloproteases, alpha/beta fold 
hydrolases, lipases, and nucleases (Pérez et al., 2022; Wang et al., 2023).

The delivery of this lethal cocktail to the prey is facilitated by 
OMVs, which include in their cargo many putative hydrolytic proteins 
and molecules associated with antibiotic activities (Kahnt et al., 2010; 
Berleman et al., 2014; Remis et al., 2014). In fact, isolated M. xanthus 
OMVs can kill Gram-positive and Gram-negative bacteria (Evans 
et al., 2012; Remis et al., 2014; Livingstone et al., 2018; Zwarycz et al., 
2023). Moreover, it has been proved that OMV killing activity against 
different bacteria correlates with the predatory activity of M. xanthus. 
However, the absence of correlation between OMV killing activity and 
their ability to fuse with different prey cell-walls reinforces the idea 
that the composition of the OMVs cargo is more critical than their 
delivery for the predatory activity (Zwarycz et al., 2023).

Contact-dependent killing

Although the predatory strategy of M. xanthus is usually described 
as a cooperative process, single myxobacteria can kill individual prey 
cells (Zhang et al., 2020; Arend et al., 2021; Seef et al., 2021).

This one-to-one interaction requires a contact-dependent 
mechanism (Figure 2B). In this sense, many bacteria have evolved 
specialized nanomachines to export proteins and/or virulence factors 

across the cell envelope into the surroundings, or to inject them into 
eukaryotic or prokaryotic cells (Costa et  al., 2015; Galán and 
Waksman, 2018).

Although analyses of the M. xanthus genome have revealed a large 
potential for secretion (Konovalova et al., 2010), only two secretion 
systems have been so far related to cell contact-dependent prey killing: 
a degenerate type III-like system (T3SS*) and a tight adherence (Tad) 
secretion apparatus, also known as “Kil complex” (Seef et al., 2021; 
Thiery et al., 2022).

T3SSs are multiprotein complexes encoded by a broad range of 
bacteria with pathogenic or interbacterial antagonism (Galán and 
Waksman, 2018). While several pathogenic enterobacteria use 
specialized T3SS to deliver effector proteins into eukaryotic cells 
(Wagner et al., 2018), other species have adapted flagella-type T3SS 
for cytotoxin export (Dongre et al., 2018; Halte and Erhardt, 2021). 
However, M. xanthus T3SS* lacks a dedicated outer membrane 
secretin and any homologs to needle and translocon components 
(Figure 2B), thus being classified as “non-flagellar, needle-less” T3SS 
(Konovalova et  al., 2010; Abby and Rocha, 2012; Diepold and 
Armitage, 2015).

On the other hand, Tad-like secretion systems are considered 
members of the type IV filament superfamily, and are related to 
bacterial adhesion, biofilm stabilization, and contact-dependent 
regulation of adhesion (Ellison et al., 2017; Denise et al., 2019; Seef 
et al., 2021).

M. xanthus T3SS* and Tad-like components have been shown to 
be interdependently, but coordinately, accumulated at the predator–
prey interface for killing E. coli prey cells, exhibiting a functional 
interplay and different functions during the predatory interaction. 
Thus, while the Tad-like apparatus is instrumental in prey cell death 
(but does not cause prey disintegration), the T3SS* is required for cell 
lysis (Thiery et al., 2022). Nevertheless, both systems are required for 
utilizing live prey as a nutrient source, although they are not directly 
involved in the degradation or uptake of dead prey biomass (Thiery 
et al., 2022).

Homologous genes encoding Tad-like complexes have been 
identified in different genera of bacterial predators (Seef et al., 2021; 
Wang et al., 2023). However, the co-occurrence of T3SS* and Tad 
complexes is restricted to the sub-order Cystobacterineae of the 
Myxococcales, suggesting a specialized function of these secretion 
systems in myxobacterial predation (Abby and Rocha, 2012; Wang 
et al., 2023).

Gram-negative and Gram-positive prey elicit similar responses by 
M. xanthus regarding the formation of Tad and T3SS* foci, since both 
can lead to aggregation of these multiprotein complexes (Wang et al., 
2023). Thus, the transcriptomic analysis of the co-culture of 
M. xanthus with E. coli and M. luteus revealed that part of the genes 
encoding the T3SS*, as well as part of one of the two clusters encoding 
the Tad-like apparatus, were significantly upregulated in both cases 
(Wang et al., 2023). A similar result was reported from the interaction 
between M. xanthus and S. meliloti, although in this case the 
upregulation of genes from both clusters coding the Tad-like complex 
was detected (Pérez et al., 2022). However, during co-culture with 
S. coelicolor, transcriptomic data indicated that only some genes 
coding the T3SS*, but not those coding the Tad-like apparatus, were 
upregulated (Lee et al., 2020). Similarly, P. aeruginosa failed to induce 
accumulation of Tad complexes, turning out to be  resistant to 
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M. xanthus predation (Seef et al., 2021). Interestingly, the coordinated 
accumulation of the T3SS*/Tad complexes has not been observed 
during contact with other M. xanthus cells, but only during the 
interaction with prey cells, which implies that contact-dependent 
killing mechanisms discriminate between kin and prey cells (Wall, 
2016; Seef et al., 2021; Thiery et al., 2022).

Role of metals in the predatory 
interaction

The use of metals by bacterial predators has gained relevance in 
the recent years as a new mechanism of inducing prey death. Two 
metals have been reported to be involved in the predatory behavior of 
M. xanthus: copper and iron (Figure 2C). These two metals exhibit a 
dual role on living cells since they are cofactors of enzymes that are 
essential for vital functions, but toxic at high concentrations (Rensing 
and McDevitt, 2013; Ladomersky and Petris, 2015; Li et al., 2021).

In the case of copper, it has been shown that M. xanthus utilizes 
this metal to poison S. meliloti. This metal accumulates inside the 
cells at the interface where predator collides with the prey, 
provoking changes in both partners of the interaction and helping 
the predator to penetrate in the prey colony (Contreras-Moreno 
et al., 2020). While M. xanthus upregulates the expression of copper 
detoxification genes such as those coding for the P1B-ATPase 
CopA, the multicopper oxidase CuoA, and the copper efflux pumps 
Cus2 and Cus3 (Sánchez-Sutil et al., 2007; Moraleda-Muñoz et al., 
2010a,b; Pérez et al., 2018), S. meliloti produces a brown pigment 
that has been identified as melanin (Contreras-Moreno et al., 2020). 
Predatory analyses have revealed that melanin is overproduced by 
the prey during predation, indicating that copper is being used to 
generate oxidative stress and that the pigment functions as a 
defensive shield for the prey (Contreras-Moreno et  al., 2020). 
However, it remains to be elucidated how the predator achieves 
accumulation of copper in the prey to kill it by generating reactive 
oxygen species.

Iron also seems to play an important role during 
myxobacterial predation. Several transcriptomes of M. xanthus 
against diverse prey have been published, and in all of them 
siderophore biosynthesis is upregulated in both predator and 
prey (Lee et al., 2020; Pérez et al., 2022; Soto et al., 2023; Wang 
et al., 2023; Whitworth et al., 2023). Moreover, the same result 
has been observed during predation of another myxobacterium, 
Cystobacter ferrugineus, against Pseudomonas putida (Akbar and 
Stevens, 2021), indicating that competition for iron may be  a 
general predatory mechanism among myxobacteria.

Experimentally, it has been demonstrated that depletion of iron 
triggers the biosynthesis of the antibiotic actinorhodin in 
S. coelicolor to prevent predation from M. xanthus (Lee et al., 2020). 
Moreover, a mutant of M. xanthus that produces less siderophores 
(myxochelins) is defective in predation against P. aeruginosa (Dong 
et  al., 2022b). Similarly, mutants in a putative TonB-dependent 
transporter for ferrimyxochelins and in components of the ABC 
transporter that introduces ferrimyxochelins into the cytoplasm 
also exhibit less efficient predation on this prey (Dong et al., 2022b). 
All these data seem to indicate that competition for iron plays a 
decisive role in the myxobacterial predatory interaction with 
the prey.

Concluding remarks

Bacterial predation is a key factor in shaping ecosystems and 
establishing microbial diversity in soils. Understanding these 
interactions will contribute to improve soil conditions in agriculture. 
Moreover, some bacterial predators are considered “microfactories” of 
SMs that can be used to overcome the current antibiotic crisis (Pérez 
et al., 2016, 2020).

Predation is an integral part of M. xanthus biology and, therefore, 
this bacterium has developed a diverse toolset to adapt to its predatory 
lifestyle. Among the best-understood facets of its predatory activity 
are the mechanisms used to kill and lyse their prey. The cooperative 
production of SMs and hydrolytic enzymes along with cell-to-cell 
contact killing via T3SS* and Tad-like complexes, are well-established 
predatory mechanisms. Future research in this topic will provide new 
information about less known aspects of M. xanthus predation and 
uncover new tools used by this microorganism to kill prey. In fact, 
recent studies have led to the identification of metals as additional 
weapons used by myxobacteria to kill their prey. Since fluctuations in 
metal concentration may occur in the habitats because of several 
activities, it is expected that they determine which population will 
predominate in the myxobacterial predatory interaction, which may 
have a significant impact on the environment and agriculture.
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