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Abstract

Artificial Intelligence (AI) is currently in the process of revolutionising numerous facets
of everyday life. Nevertheless, as its development progresses, the associated risks are on
the rise. Despite the fact that its full potential remains uncertain, there is a growing ap-
prehension regarding its deployment in sensitive domains such as education, culture, and
medicine. Presently, one of the foremost challenges confronting us is finding a harmonious
equilibrium between the prospective advantages and the attendant risks, thereby preventing
precaution from impeding innovation. This necessitates the development of AI systems that
are robust, secure, transparent, fair, respectful to privacy and autonomy, have clear traceabil-
ity, and are subject to fair accountability for auditing. In essence, it entails ensuring their
ethical and responsible application, giving rise to the concept of trustworthy AI.

In this context, Federated Learning (FL) emerges as a paradigm of distributed learning
that ensures the privacy of training data while also harnessing global knowledge. Although
its ultimate objective is data privacy, it also brings forth other cross-cutting enhancements
such as robustness and communication cost minimisation. However, like any learning
paradigm, FL is susceptible to adversarial attacks aimed at altering the model’s operation
or inferring private information. The central focus of this thesis is the development of de-
fencemechanisms against adversarial attacks that compromise themodel’s behaviour while
concurrently promoting other requirements to ensure trustworthy AI.

This thesis addresses the following objectives:

• The first objective involves a study of existing adversarial attacks and defences within
FL. Its purpose is to provide a comprehensive taxonomy encompassing all categories
of attacks and defences, along with an experimental study to glean insights into which
defences effectively mitigate the impact of specific attacks.

• The second objective involves the development of defence mechanisms against back-
door attacks. These attacks entail imperceptibly injecting a secondary task, i.e., with-
out altering the operation in the original task. Such attacks pose a challenge in FL
due to their difficulty in detection. The proposed defence mechanism, based on out-
lier detection at the server, has demonstrated superior performance compared to the
available defence mechanisms in the literature.

• The third objective is to develop defences against byzantine attacks. These attacks in-
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volve random attacks aimed at hindering the model’s training, causing it to produce
worse results in the original task. Although they are easier to detect, they pose a chal-
lenge because they are themost common in the literature due to their ease of execution.
The proposed dynamic defence mechanism represents an improvement over the state
of the art by surpassing the performance of other proposals and being agnostic to the
number of clients carrying out the attack.

The three objectives set forth in the thesis are successfully addressed. Both objectives
related to the development of new defence mechanisms are substantiated with comparative
empirical studies, as well as more in-depth analyses of their behaviour. Both the literature
review and the proposed defence mechanisms contribute innovation to the research field,
enhancing the existing body of literature while also opening up different avenues for future
research.

Finally, we present current work on taking a step beyond defence against adversarial at-
tacks, requiring the fulfilment of additional requirements for trustworthy AI. Specifically,
we build upon the previous proposal for defence against adversarial attacks, we shift the
focus from the performance of clients to categorising them into explainability methods. In
doing so, we achieve a defence mechanism that maintains its performance in terms of de-
fence against byzantine attacks while also providing other requirements such as fairness,
transparency, and explainability in client selection.
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Resumen

La Inteligencia Artificial (Artificial Intelligence - AI) está cambiando de raíz múltiples aspec-
tos de la vida cotidiana. Sin embargo, a medida que avanza su desarrollo, se incrementan los
riesgos derivados de su uso. Aunque todavía no se conoce su potencial, cada vez es mayor la
preocupación por su uso en campos delicados como la educación, la cultura o la medicina.
Uno de los mayores retos en los que nos encontramos ahora mismo es encontrar el balance
entre los potenciales beneficios y los riesgos ocasionados, de forma que la prevención no
pare a la innovación. Esto implica desarrollar sistemas de AI que sean robustos, seguros,
transparentes, justos, respetuosos con la privacidad y la autonomía, que tengan una traza-
bilidad clara y auditables. En definitiva, garantizar su aplicación ética y responsable, donde
nacen los conceptos de AI confiable y sistema de AI responsable.

En este contexto surge el Aprendizaje Federado (Federated Learning - FL) como un para-
digma de aprendizaje distribuido que asegura la privacidad de los datos de entrenamiento al
mismo tiempo que es capaz de aprovechar el conocimiento global. Aunque su objetivo final
es la privacidad de datos, también aporta otras mejoras transversales como la robustez y la
minimización de costes de comunicación. Sin embargo, al igual que cualquier paradigma de
aprendizaje, el FL es susceptible a ataques adversarios que pretendenmodificar el funciona-
miento del modelo o inferir información privada. El eje central de esta tesis es el desarrollo
de mecanismos de defensa contra ataques adversarios que comprometen el funcionamiento
del modelo, al mismo tiempo que se fomentan otros requerimientos para asegurar una AI
confiable.

Esta tesis aborda los siguientes objetivos:

• El primero consiste en un estudio de los ataques adversarios y defensas existentes en
FL. Su finalidad es proporcionar una taxonomía completa que abarque todas las cate-
gorías de ataques y defensas, así como un estudio experimental que permita obtener
lecciones sobre qué defensas consiguen paliar el efecto de qué ataques.

• El segundo objetivo aborda el desarrollo de mecanismos de defensa contra ataques
backdoor o de tarea secundaria. Estos ataques consisten en inyectar una tarea secun-
daria de forma imperceptible, esto es, sin modificar el funcionamiento en la tarea ori-
ginal. Estos ataques representan un reto en FL por la dificultad para ser detectados.
El mecanismo de defensa propuesto basado en detección de outliers en el servidor ha



xiv

probado proporcionar mejores resultados que los mecanismos de defensa disponibles
en la literatura.

• El tercer objetivo trata de desarrollar mecanismos de defensa contra ataques bizanti-
nos. Estos ataques consisten en ataques aleatorios cuya finalidad es impedir el entrena-
miento del modelo haciendo que este produzca peores resultados en la tarea original.
Aunque son más fáciles de detectar, suponen un reto pues son los más comunes en la
literatura por la facilidad de llevarlos a cabo. El mecanismo de defensa dinámico pro-
puesto supone una mejora con respecto al estado del arte por superar el rendimiento
del resto de propuestas y ser agnóstico al número de clientes que llevan a cabo el ata-
que.

Los tres objetivos planteados en la tesis se abordan de forma exitosa. Los dos objetivos
relacionados con el desarrollo de nuevos mecanismos de defensa se avalan con estudios em-
píricos comparativos, así como con análisis más profundos de su comportamiento. Tanto
el estudio de la literatura, como los mecanismos de defensa propuestos aportan innovación
al campo de investigación mejorando la literatura ya existente al mismo tiempo que abren
diferentes líneas de investigación futuras.

Finalmente, se presenta un trabajo actual de dar un paso más allá de la defensa contra
ataques adversarios, exigiendo que se cumplan otros requerimientos para una IA confiable.
En concreto, partimos de la propuesta anterior de defensa frente a ataques adversarios y
movemos el foco de atención del rendimiento de los clientes para categorizarlos a métodos
de explicabilidad. De esta forma, conseguimos un mecanismo de defensa que mantiene su
rendimiento en cuanto a defensa, al mismo tiempo que aporta otros requerimientos como
justicia, transparencia y explicabilidad en la selección de clientes.
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1 Introduction

Artificial Intelligence (AI) has become the central axis of the Fourth Industrial Revolution.
It is here to stay and is fundamentally transforming multiple sectors of society, from man-
ufacturing to transportation, healthcare, energy, and education. However, alongside the
advantages provided by AI, as its applications proliferate across various sectors of society,
so do the risks associated with its use. The definition of what the EU AI Act [AIA21] deter-
mines as High-Risk AI Systems (HRAIs), also known as responsible AI systems, is rapidly
becoming commonplace, driven by growing public concerns, and their associated risks are
gaining prominence as the new regulations come into play.

For some perspective, the latest studies estimate that 328.77 million terabytes of data are
created every day, including new data generation, captures, copies, or consumed informa-
tion. If we convert that data to 4K (Ultra HD) quality video, we would have enough content
to watch for approximately 37,496 years without interruption. Of all this information, more
than half (approximately 53.72%) is video, mostly generated and shared on social networks.
It is estimated that 90% of all the information generated in the world was generated in the
last two years, and this trend is expected to continue to grow exponentially in the coming
years.

Although the potential of AI in various societal fields is still being explored, there is a
growing concern about the negative impact that the use of unsupervisedAI systems can have
in more critical areas such as science, education, medicine, justice, culture, or democracy.
Given the underlying risks in these disciplines, it is imperative to develop responsible AI
systems that are reliable, explainable, and secure, and that respect human rights and dignity.

At this juncture, one of the paramount challenges we confront is striking the right bal-
ance between the benefits and the risks of AI in scenarios where HRAIs can be utilised,
ensuring that regulation does not stifle innovation. This entails ensuring that AI systems
are robust, secure, transparent, fair, respectful to privacy and autonomy, have clear trace-
ability, and are subject to fair accountability for auditing [DRDSC+23]. To achieve this, it is
essential to address the dimensions of AI within responsible AI systems and work towards
ensuring their responsible and ethical application. In this context, the concept of Truswor-
thy AI and Responsible AI systems emerge.

Trustworthy AI [TLS21] is built upon seven technical requirements that must be upheld
throughout the entire lifecycle of the AI system. These requirements are underpinned by
three core pillars: (1) legality, (2) ethics, and (3) robustness, from both technical and soci-
etal perspectives. However, achieving truly trusted AI pertains to a broader and multidisci-
plinary vision that encompasses the trustworthiness of all processes and actors involved in
the system’s lifecycle, and considers the aforementioned aspects from various angles. The
seven requirements encompass: human agency and oversight; robustness and safety; pri-
vacy and data governance; transparency; diversity, non-discrimination and fairness; societal
and environmental wellbeing; and accountability.

Figure 1 [DRDSC+23] represents the above-mentioned pillars and requirements for trust-
worthy AI. We highlight in colour those requirements that we will address during the thesis:
privacy and data governance, transparency and diversity, non-discrimination and fairness.
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We address the main objective by focusing on the robustness pillar from a technical point of
view. In particular, the main focus of this thesis is data privacy.

Figure 1: Representation of the requirements and pillars of trustworthy AI. We highlight in
colours the requirements addressed in this thesis. Figure obtained from [DRDSC+23].

In this context, in 2016 and spearheaded by Google, the concept of Federated Learn-
ing (FL) emerged [MMR+17]. It is introduced as a novel paradigm of distributed learning
[VWK+20] that promises to address the issue of user data privacy while retaining the advan-
tages provided by machine learning-based solutions that rely on data for their design. The
primary distinction from classical distributed learning is that the data stored on each node
never leaves the device nor is accessible, thus ensuring its privacy. Therefore, it involves
training local learning models on each device that holds training data and subsequently
sharing the knowledge acquired by these models. This model information is then aggre-
gated, summarising the global knowledge of all participants. It is noteworthy that it is the
model information that is shared, not the training data, as this is where its greatest potential
lies—in data privacy.

Although this new paradigm is applicable in many contexts, there are certain scenarios
where its use becomes imperative:

• When the data contains personal user information, such as emails, user recommen-
dations [JSCS19], medical records and human activity recognition using smartphones
[CLC+22].

• When information is stored in data silos [BCM+18]. For example, the healthcare sector
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often hesitates to disclose its records, keeping its data inaccessible.

• When information is protected by data protection laws, as is the casewith banks [KPN+19]
or telecommunications agencies [TBZ+19].

In all of these cases, while the use of all that information could be highly beneficial, it is
not possible. For instance, medical records cannot be shared for security reasons. However,
if a Europe-wide model for early detection of diabetes wished to be developed, this model
would strongly profit from being able to use information from all countries, otherwise it
would be difficult to adapt it to the particularities of each region. This could be resolved by
implementing a federated scheme in which each hospital represents a learning node, trains
its model on its own data, and subsequently shares it to be aggregated with the models from
other hospitals. This way, we obtain a global model that summarises the information from
all participating hospitals, without compromising the data privacy of any patient.

Although the primary goal of FL is data privacy, its design also provides several other
advantages, including:

• Reduction inCommunicationCosts. In a scenariowherewehandle large amounts
of data, which is increasingly common today, storing all that data on a single server
is very expensive. Moreover, in cases where data comes from multiple devices, such
as Internet of Things (IoT) devices [NDP+21], communication costs are very high. In
FL, since data storage remains on the devices, all these communications are reduced
[MMR+17]. Onlymodel updates are shared, which are notably less expensive to trans-
mit.

• Robustness. Convergence in FL is achieved after multiple rounds of learning, which
consist of: (1) local training of each model on each client, (2) model aggregation, and
(3) allocation of this aggregation. Thus, after each learning round, the partial solutions
found by each client are gradually abandoned to converge towards a common solution.
This training of different models for subsequent combination produces more robust
results to small variations in data distribution [SWMS19], as it has learned to model
the existing peculiarities.

Due to all these qualities, FL has already been employed in various real-world applica-
tions [LFTL20]. Most notably, in environments where data privacy is essential or where data
is generated on multiple devices. For instance, its use in cybersecurity [ARP+21], medical
applications [RHL+20], and mobile applications [LLH+20] stands out.

FL, like any machine learning model, is susceptible to attacks. Various types of adver-
sarial attacks are known, targeting both data privacy and model functionality [RBJLL+23,
LXW22]. However, these adversarial attacks take on particular significance in FL because
most of the designed defence mechanisms cannot be applied. Given that the majority of at-
tacks involve poisoning data to alter the functioning of the learning model trained on them,
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most defences rely on data inspection techniques. Clearly, these techniques are not appli-
cable in FL since the data is not accessible. This necessitates the development of ad-hoc
defence mechanisms or the adaptation of existing ones for application in FL.

There exists a broad typology of adversarial attacks, among which we highlight the fol-
lowing categorisation:

• Privacy Attacks, whose primary objective is to infer sensitive information about the
data or the learning process, jeopardising data integrity [MPP+21].

• Model Attacks, which aim to alter the integrity of the global model [BVH+20].

Although both represent significant threats, as they directly impact two of themain quali-
ties of FL, which are privacy andmodel performance, throughout this thesis, we focus on the
second type. Within this second type, data or model poisoning attacks [BCMC19] stand out,
where poisoned data is generated, resulting in poisoned models after training on them, or
directly poisoned models. The objective of this poisoning can be: (1) to impair the model’s
performance, producing, for example, random results [FCJG20], or (2) to introduce some
secondary task during training [BVH+20], allowing the model to maintain its performance
on the original task while also learning another task in parallel. Throughout this thesis, we
will cover both introduced attack typologies.”

Once the risks faced by FL have been highlighted, the need to investigate defence mech-
anisms to counter such adversarial attacks becomes evident. The development of effective
defence mechanisms is of great utility for both the scientific community and the business
world, where FL-based solutions susceptible to these threats are already being developed.

Therefore, the primary objective of this thesis will be the study and analysis of both at-
tacks and defences in FL, aiming to identify and categorise various threats and existing solu-
tions. Additionally, wewill focus on the development of defencemechanisms against model
attacks. While there is a wide variety of defence mechanisms available, we will concentrate
on the approach of designing robust aggregation operators that eliminate the influence of at-
tacks on the global model. Furthermore, to bring us closer to reliable AI, we will ensure that
these defence mechanisms promote other desirable qualities as well. For instance, most ex-
isting defence mechanisms are overly focused on maximising model performance and min-
imising attack success, which can potentially harm poor clients (those with skewed data
distributions) or provide solutions that lack transparency and explainability.

In particular, this thesis will centre its focus on developing defence mechanisms that
maintain their effectiveness while being equitable and fair to all clients, simultaneously re-
maining transparent and explainable. This approach brings us closer to the goal of develop-
ing a trustworthy AI.

Finally, to conclude this introduction, we present an overview of the structure of this the-
sis, composed of two parts: the doctoral dissertation, in Chapter I, the publications that sup-
port the knowledge and conclusions presented in it, in Chapter II, and finally in Chapter III
we detail the current work. The dissertation is divided into 8 sections. Section 2 delves into
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the technical background of the concepts and terminology used in the subsequent sections.
The justification, objectives, and methodology that form the basis of this thesis are outlined
in sections 3, 4, and5, respectively. Subsequently, in Section 6, a summary of the research
conducted is presented. Finally, in Section 8, the conclusions drawn from the research are
discussed along with future research directions.

The second part (Chapter II) compiles the publications that support the knowledge and
conclusions discussed in the dissertation. The three publications, published in international
indexed journals, are as follows:

• Survey on federated learning threats: Concepts, taxonomy on attacks and defences,
experimental study and challenges.

• Backdoor attacks-resilient aggregation based on Robust Filtering of Outliers in feder-
ated learning for image classification.

• Dynamic defence against byzantine poisoning attacks in federated learning.

The third part (Chapter III) develops the current work. In particular, it is an improve-
ment of one of the previously proposed defence mechanisms that covers the objective of
fairness and equity for poor clients with skewed data distributions, and provides an explain-
able insight into the adversarial client filtering mechanism.
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Introducción

La Inteligencia Artificial (Artificial Intelligence - AI) se ha convertido en el eje central de la
Cuarta Revolución Industrial. Ha llegado para quedarse, y está cambiando de raíz múltiples
sectores de la sociedad, desdemanufacturación hasta transporte, salud, energía y educación.
Sin embargo, unidas a las ventajas proporcionadas por la AI, a medida que crecen las aplica-
ciones en diferentes sectores de la sociedad, crecen los riesgos derivados del uso de lamisma.
La definición de lo que el EU AI Act [AIA21] determina como sistema de AI de alto riesgo
(HRAIs por sus siglas en inglés, high-risk AI systems), también conocidos como sistemas de
AI responsable, se está generalizando rápidamente motivado por la creciente preocupación
de la población, y sus riesgos asociados están cobrando relevancia a medida que entra en
juego la nueva normativa.

Para situarnos un poco en perspectiva, los últimos estudios estiman que se crean una
cantidad de 328,77 millones de terabytes de datos al día, incluyendo la generación de datos
nuevos, capturas, copias, o información consumidos. Si convirtiéramos esos datos a vídeo en
calidad 4K (Ultra HD), tendríamos suficiente contenido para ver durante aproximadamente
37,496 años sin interrupciones. De toda esta información, más de la mitad (aproximadamen-
te un 53,72%) se corresponde con vídeos, mayormente generados y compartidos en redes
sociales. Se estima que el 90% de toda la información generada en el mundo fue generada
en los últimos dos años, y se espera que esta tendencia siga creciendo de forma exponencial
en los próximos años.

Aunque todavía se está explorando el potencial de la AI en diversos campos de la socie-
dad, existe una preocupación cada vez mayor sobre el impacto negativo que puede tener el
uso de sistemas de AI sin supervisión en áreasmás comprometidas como ciencia, educación,
medicina, justicia, cultura o democracia. Dados los riesgos subyacentes en estas disciplinas,
es imprescindible desarrollar sistemas de AI responsables que sean fiables, explicables y se-
guros, y que respeten los derechos humanos y la dignidad.

En este momento, uno de los mayores retos a los que nos enfrentamos es encontrar el
balance entre los beneficios y el riesgo de la AI en los escenarios en los que se pueden utilizar
los HRAIs, de forma que la regulación no acabe con la innovación. Esto implica garantizar
que los sistemas de AI sean robustos, seguros, transparentes, justos, respetuosos con la priva-
cidad y la autonomía, que tengan una trazabilidad clara y que estén sujetos a una rendición
de cuentas justa para su auditoría [DRDSC+23]. Para ello, es esencial abordar las dimensio-
nes de la AI dentro de los sistemas de AI responsable y trabajar para garantizar su aplicación
responsable y ética. En este contexto surge el concepto de AI confiable.

La AI confiable [TLS21] se basa en siete requisitos técnicos que deben cumplirse a lo
largo de todo el ciclo de vida del sistema de AI. Estos requisitos se sustentan en tres pilares
principales: (1) legalidad, (2) ética y (3) robustez, tanto desde una perspectiva técnica como
social. Sin embargo, alcanzar una AI verdaderamente confiable concierne a una visión más
amplia ymultidisciplinar que comprende la confiabilidad de todos los procesos y actores que
formanparte del ciclo de vida del sistema,y considera los aspectos anteriores desde diferentes
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ópticas. Los siete requisitos son: supervisión e intervención humana; robustez y seguridad;
privacidad y gobernanza de datos; transparencia; diversidad, no discriminación y equidad;
bienestar social y medioambiental; y rendición de cuentas.

La Figura 2 [DRDSC+23] representa los pilares y requisitos mencionados anteriormente
para una AI confiable. Destacamos en color los requisitos que abordaremos durante la tesis:
privacidad y gobierno de datos, transparencia y diversidad, no discriminación y equidad.
Abordamos el problema centrándonos en el pilar de la robustez desde un punto de vista
técnico. En particular, el enfoque principal de esta tesis es la privacidad de los datos.

Figura 2: Representación de los requisitos y pilares de una AI confiable. Destacamos en co-
lores los requisitos abordados en esta tesis. Figura obtenida de [DRDSC+23].

En este contexto surge, en 2016 y de la mano de Google, el concepto Aprendizaje Fe-
derado (FL) [MMR+17]. Se presenta como un nuevo paradigma de aprendizaje distribuido
[VWK+20] que promete solucionar el problema de la privacidad de los datos de usuario, al
mismo tiempo que no se renuncia a las ventajas que proporcionaban las soluciones basa-
das en aprendizaje automático que precisan de datos para su diseño. La principal diferencia
con el aprendizaje distribuido clásico es que los datos almacenados en cada nodo jamás
abandonan el dispositivo ni son accesibles, asegurando así la privacidad de los mismos. El
funcionamiento consiste, pues, en entrenar modelos de aprendizaje local en cada uno de los
dispositivos que poseen datos de entrenamiento, y posteriormente compartir la información
aprendida por los modelos. Esta información de los modelos es posteriormente agregada, re-
sumiendo así el conocimiento global de todos los participantes. Es importante el hecho de
que se comparte la información de los modelos y no de los datos de entrenamiento, pues es
ahí donde reside su máximo potencial, en la privacidad de los datos.
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Aunque este nuevo paradigma tiene cabida enmuchos contextos, hay algunas casuísticas
donde se hace imperante su uso:

• Cuando los datos contienen información personal de usuario, como correos electróni-
cos, recomendaciones de usuario [JSCS19], historiales médicos o reconocimiento de
la actividad humana mediante smartphones [CLC+22].

• Cuando la información se encuentra almacenada en silos de datos [BCM+18]. Por
ejemplo, el sector sanitario suele ser reacio a divulgar sus registros, manteniendo sus
datos inaccesibles.

• Cuando la información está protegida por leyes de protección de datos, como es el caso
de los bancos [KPN+19] o las agencias de telecomunicaciones [TBZ+19].

En todos estos casos, aunque el uso de toda esa información pudiera ser muy beneficio-
sa, no es posible. Por ejemplo, por motivos de seguridad los registros médicos no se pueden
compartir. Sin embargo, si quisiéramos hacer un modelo de detección temprana de la diabe-
tes a nivel europeo, este modelo se vería muy beneficiado de poder usar los datos de todos
los países, dado que si no sería difícil adaptarlo a las particularidades de cada región. Esto se
solucionaría si aplicamos un esquema federado en el que cada hospital represente un nodo
de aprendizaje, entrene su modelo sobre sus propios datos, y posteriormente lo comparta
para ser agregado con el resto de modelos del resto de hospitales, obteniendo así un mode-
lo global que resuma la información de todos los hospitales participantes, sin haberse visto
violada la privacidad de datos de ningún paciente.

Aunque el objetivo principal del FL es la privacidad de los datos, por su diseño también
proporciona otra serie de ventajas entre las que destacamos:

• Reducción de costes de comunicación.En un escenario en el quemanejamos gran-
des cantidades de datos, lo cual es cada día más común, almacenar todos esos datos
en un solo servidor es muy costoso. Además, en el caso en el que los datos provengan
de múltiples dispositivos como es el caso de los dispositivos IoT [NDP+21], los cos-
tes de comunicación son muy altos. En FL, como el almacenamiento de los datos se
mantiene en los dispositivos, todas estas comunicaciones se reducen [MMR+17]. Solo
se comparten las actualizaciones de los modelos, las cuales son notablemente menos
costosas de compartir.

• Robustez. La convergencia en FL se consigue tras múltiples rondas de aprendizaje
que consisten en: (1) entrenamiento local de cada modelo en cada cliente, (2) agrega-
ción de los modelos, y (3) asignación de esta agregación. De esta forma, tras cada ron-
da de aprendizaje, se van abandonando las soluciones parciales encontradas por cada
cliente para empezar a converger hacia una solución común. Este entrenamiento de
diferentes modelos para posteriormente combinarlos produce resultados más robus-
tos a pequeñas variaciones en la distribución de datos [SWMS19], pues ha aprendido
a modelar las particularidades ya existentes.
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Por todas estas cualidades, el FL ha sido utilizado ya en diversas aplicaciones en el mun-
do real [LFTL20]. La mayoría en entornos donde la privacidad de datos se hace esencial o
donde los datos se generan en múltiples dispositivos. Destacamos, por ejemplo, el uso en ci-
berseguridad [ARP+21], aplicaciones médicas [RHL+20] o aplicaciones móviles [LLH+20].

El FL, al igual que cualquier modelo de aprendizaje automático, es vulnerable a ataques.
Se conocen diferentes tipos de ataques adversarios tanto a la privacidad de los datos, como
al funcionamiento del modelo [RBJLL+23, LXW22]. Sin embargo, estos ataques adversarios
cobran especial importancia en FL debido a que la mayoría de los mecanismos de defensa
diseñados no se pueden aplicar. Dado que la mayoría de los ataques consisten en un en-
venenamiento de los datos para así modificar el funcionamiento del modelo de aprendizaje
entrenado sobre ellos, la mayoría de las defensas se basan en técnicas de inspección de datos.
Claramente estas técnicas no son aplicables en FL dado que los datos no son accesibles. Esto
hace que sea necesario desarrollarmecanismos de defensa ad-hoc o adaptar los ya existentes
para que se puedan aplicar en FL.

Existe una amplia tipología de ataques adversarios, entre los que destacamos la siguiente
categorización:

• Ataques a la privacidad, cuyo objetivo principal es inferir información sensible so-
bre los datos o el proceso de aprendizaje, poniendo en riesgo la integridad de los datos
[MPP+21].

• Ataques al modelo, cuyo objetivo se basa en modificar el rendimiento del modelo
global [BVH+20].

Aunque ambos representan una gran amenaza, dado que afectan directamente a dos de
las principales cualidades del FL que son la privacidad y el rendimiento del modelo, a lo lar-
go de esta tesis nos centramos en el segundo tipo. Dentro de este segundo tipo destacan los
ataques por envenenamiento de datos o del modelo [BCMC19], en los que se generan datos
envenenados, que se traducen en modelos envenenados tras entrenar sobre ellos, o directa-
mente modelos envenenados. El objetivo de este envenenamiento puede ser: (1) perjudicar
el rendimiento del modelo produciendo [FCJG20], por ejemplo, resultados aleatorios, o (2)
introducir alguna tarea secundaria en el entrenamiento [BVH+20], de forma que se man-
tenga el rendimiento del modelo sobre la tarea original, pero también aprenda otra tarea de
forma paralela. Durante esta tesis, abarcaremos las dos tipologías de ataques introducidas.

Una vez se ha puesto de manifiesto los riegos a los que se enfrenta el FL, queda mani-
festada la necesidad de investigar en mecanismos de defensa que hagan frente a este tipo
de ataques adversarios. El desarrollo de mecanismos de defensa efectivos es de gran utili-
dad tanto para la comunidad científica, como para el mundo empresarial en el que ya se
desarrollan soluciones basadas en FL susceptibles a estas amenazas.

Así pues, el objetivo principal de esta tesis será el estudio y análisis de ambos ataques
y defensas en FL con el fin de identificar y categorizar las diferentes amenazas y solucio-
nes existentes, así como el desarrollo de mecanismos de defensa frente a ataques al modelo.
Aunque existe gran diversidad de mecanismos de defensa, nos basaremos en el enfoque de
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diseñar operadores de agregación robustos que eliminen la influencia de los ataques en el
modelo global. Además, para que estos mecanismos de defensa nos acerquen más a una
AI confiable, procuraremos que los mecanismos de defensa fomenten de forma transversal
otras de las cualidades deseables para ello. Por ejemplo, la gran mayoría de los mecanismos
de defensa existentes están tan centrados en maximizar el rendimiento del modelo y en mi-
nimizar el éxito del ataque, pudiendo perjudicar a clientes pobres (aquellos que tienen una
distribución de datos sesgada), o proporcionar soluciones que no sean transparentes y expli-
cables.

En concreto, en esta tesis centraremos el foco en desarrollar mecanismos de defensa que
mantengan su efectividad como tal, pero que sean equitativos y justos con todos los clientes,
al mismo tiempo que transparentes y explicables, acercándonos así al objetivo de desarrollar
sistemas AIs confiables.

En último lugar, para concluir esta introducción presentamos un resumen de la estructu-
ra de esta tesis, compuesta de tres partes: la disertación doctoral, en el Capítulo I, las publica-
ciones que avalan los conocimientos y conclusiones expuestos en lamisma, en el Capítulo II,
y finalmente en el Capítulo III se desarrolla el trabajo actual. La disertación se divide en 8
secciones. La sección 2 profundiza en el trasfondo técnico de los conceptos y terminología
utilizados en las secciones posteriores. La justificación, los objetivos y la metodología que
sientan las bases de esta tesis se indican en las secciones 3, 4 y 5, respectivamente. Posterior-
mente, en la Sección 6 se presenta un resumende la investigación llevada a cabo. Finalmente,
en la Sección 8 se exponen las conclusiones derivadas de la investigación junto con futuras
líneas de investigación.

La segunda parte (Capítulo II) recoge las publicaciones que avalan los conocimientos y
las conclusiones discutidas en la disertación. Las tres publicaciones, publicadas en revistas
indexadas internacionales son las siguientes:

• Survey on federated learning threats: Concepts, taxonomy on attacks and defences,
experimental study and challenges.

• Backdoor attacks-resilient aggregation based on Robust Filtering of Outliers in federa-
ted learning for image classification.

• Dynamic defence against byzantine poisoning attacks in federated learning.

En la tercera parte (Capítulo III) se desarrolla el trabajo actual. En particular, se trata
de una mejora de uno de los mecanismos de defensa propuesta anteriormente que cubre el
objetivo de equidad y justicia para los clientes pobres con distribuciones sesgadas de datos,
y que proporciona una visión explicable del mecanismo de filtrado de clientes adversarios.
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2 Preliminaries

This section introduces the technical background necessary to understand the remainder of
the dissertation (Chapter I). In Section 2.1 we introduce FL, which is the core of this thesis,
including themotivation of its design and the advantages that it provides. In the subsequent
Sections 2.1.1, 2.1.2 and 2.1.3 we detail the architectures, categories and training in FL, re-
spectively. In Section 2.2 we dive into the topic of study of this thesis, the adversarial attacks
in FL. We provide some background on Induced Ordered Weighted Averaging (IOWA), re-
quired to fully understand one of the proposals in Section 2.3. Finally, we introduce the
Local Linear Explanation (LLE)s in Section 2.4.

2.1 Background on Federated Learning

FL [RBSJL+20] is a distributedmachine learning paradigmwith the aimof building aMachine
Learning (ML)modelwithout explicitly exchanging training data between parties [YLC+19].
It consists of a network of (1) aggregation nodes {𝐴1,… , 𝐴𝑚}; and (2) clients or data owners
{𝐶1,… , 𝐶𝑛}, who participate in two main processes:

1. Model training phase: each client exchange information without revealing any of their
data to collaboratively train a ML model, 𝐺, which may reside at one node or may be
shared between a few nodes. The collaborative learning of 𝐺 is performed by aggre-
gating the local models shared by the clients in the aggregation nodes.

2. Inference phase: clients collaboratively apply the jointly trained model, 𝐺, to a new
data instance.

Both processes can be either synchronous or asynchronous, depending on the data avail-
ability of the clients and the trained model.

The fact must be highlighted, that privacy is not the only motivation of this paradigm,
there should be a fair value-distribution mechanism to share the profit gained by the collab-
oratively trained model,ℳ𝑓. In the following we highlight the main benefits of FL:

• Privacy: FL provides data privacy by training each model on the clients, so the data
never leaves the devices, providing the intended privacy.

• Communication costs and latency: in contexts where large amounts of data are avail-
able from many different sources, communication costs are reduced by sharing only
the model weights, not the data, with the server.

• Robustness: the distribution of data among clients is often Non Independent and Iden-
tically Distributed (non-IID), so FL, by training local models and performing subse-
quent aggregations helps to reflect the real distribution of data. It even provides more
generalization and robustness, since the global model adapts to variations in data dis-
tribution between clients.
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• Data access: In some situations, the data are distributed among organizations and
institutions, whichmakes access to themdifficult or impossible [ABHKS17]. FL raises
the possibility of being able to use these data without having to access them, solving
this accessibility problem.

2.1.1 Architectures in Federated Learning

The communication of the two previous types of nodes defines two kind of federated archi-
tectures [YLC+19, RBSJL+20], namely:

1. Peer-to-peer: It is architecture inwhich all the nodes are both data owners and aggrega-
tion nodes. This scheme does not require any coordinator. It provides higher security
and data privacy while themain disadvantage is the computation and communication
costs. This FL architecture is illustrated in Figure 3.

2. Client-server: It consists of a coordinator aggregation node named server and a set of
data owner nodes named clients1. In this architecture, the client does not share its
local data ensuring its privacy. We represent the client-server scheme in Figure 4.

Although the peer-to-peer architecture is a generalization of the client-server architec-
ture, from this point on we assume that the underlying architecture is always a client-server
architecture, since it is the most widely used in the literature.

2.1.2 Categories in Federated Learning

The distribution of characteristics of the data among clients in FL shapes the procedure to
follow in the two main processes of FL, particularly we focus on the following distributions:
(1) clients share the feature space but not the sample space, (2) clients share the sample space
but not the feature space, and (3) clients share only a small overlap in feature space. These
distributions allow us to present three categories of FL [YLC+19] in terms of the feature
space (𝑋), the label space (𝑌 ) and the sample ID space (𝐼) as follows:

Horizontal Federated Learning (HFL) In this scenario, clients data share the feature
and labels space, but differ in the sample space. Formally, we can define as:

𝑋𝑖 = 𝑋𝑗 , 𝑌 𝑖 = 𝑌 𝑗 , 𝐼𝑖 ≠ 𝐼𝑗 , ∀𝐷𝑖, 𝐷𝑗 , 𝑖 ≠ 𝑗

where the feature and labels space of the clients (𝑖, 𝑗) is depicted by (𝑋𝑖, 𝑌 𝑖) and (𝑋𝑗 , 𝑌 𝑗)
and it is assumed to be the same, while the samples 𝐼𝑖 and 𝐼𝑗 are not the same. 𝐷𝑖 and 𝐷𝑗
depict the data of the clients 𝑖 and 𝑗.

1Data owner nodes are called by several names, depending on the source and the architecture. In the follow-
ing, we refer to them as clients when it is a client-server scheme and nodes in all other cases.
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Figure 3: Representation of peer-to-peer FL architecture.

Figure 4: Representation of client-server FL architecture.

Vertical Federated Learning (VFL) In this scenario, clients share the sample space but
neither the feature space nor the label space. Formally, we can define as follows:

𝑋𝑖 ≠ 𝑋𝑗 , 𝑌 𝑖 ≠ 𝑌 𝑗 , 𝐼𝑖 = 𝐼𝑗 , ∀𝐷𝑖, 𝐷𝑗 , 𝑖 ≠ 𝑗
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Figure 5: Representation of the different categories in FL. Source [YLC+19].

Federated Transfer Learning (FTL) This scenario is similar to the traditional transfer
learning. The clients share neither the feature space, nor label space, nor the sample space.
Formally, we can define as follows:

𝑋𝑖 ≠ 𝑋𝑗 , 𝑌 𝑖 ≠ 𝑌 𝑗 , 𝐼𝑖 ≠ 𝐼𝑗 , ∀𝐷𝑖, 𝐷𝑗 , 𝑖 ≠ 𝑗

Although the feature space and the label space are not the same, in FTL there is a cer-
tain overlap or similarity, since the aim is to transfer knowledge from one client to another
securely. FTL was presented in [YLCT19] and it represents higher difficulty than HFL and
VFL, since it implies the use of techniques that preserve the data privacy. We represent the
different categories of FL in Figure 5.

The vast majority of research to date is conducted in HFL. In particular, all our research
is focused on this category of FL. Henceforth, when we refer to FL without specifying any
category, we are referring to HFL.

2.1.3 Training in FL: round of learning and key elements

Formally, FL is a distributedML paradigm consisting of a set of clients {𝐶1,… , 𝐶𝑛}with their
respective local training data {𝐷1,… , 𝐷𝑛}. Each of these clients𝐶𝑖 has a local learningmodel
named as 𝐿𝑖 represented by the parameters {𝐿1,… , 𝐿𝑛}. FL aims at learning a global learning
model represented by𝐺, using the scattered data across clients through an iterative learning
process known as round of learning. For that purpose, in each round of learning 𝑡, each
client trains its local learning model over their local training data 𝐷𝑡

𝑖 , which updates the
local parameters 𝐿𝑡𝑖 to 𝐿̂𝑡𝑖 . Subsequently, the global parameters𝐺𝑡 are computed aggregating
the trained local parameters {𝐿̂𝑡1,… , 𝐿̂𝑡𝑛} using an specific federated aggregation operator Δ,
and the local learning models are updated with the aggregated parameters:



2 Preliminaries 19

𝐺𝑡 = Δ(𝐿̂𝑡1, 𝐿̂𝑡2,… , 𝐿̂𝑡𝑛)
𝐿𝑡+1𝑖 ← 𝐺𝑡, ∀𝑖 ∈ {1,… , 𝑛}

(1)

The updates among the clients and the server are repeated as much as needed for the
learning process. Thus, the final value of 𝐺 will sum up the knowledge sequestered in the
clients.

During this training process some elements are involved. We refer to these important
elements as key elements and detailed them below. Figure ?? represents the moment at
which each of the key elements comes into play.

Distributed training data. Training data is distributed among the clients’ devices, in-
stead of being allocated in a central server. The data distribution across clients is often
non-IID, hence FL allows the learning model to be trained over a distribution of data which
better reflects the real distribution, producing more robust results. Formally, we can distin-
guish between three types of non-IID: [CCI+22]: (1) where the feature space of the clients’
data are different, but they share the same goal; (2) where the input space is analogous but
there exists differences in the label space; and (3) when there are differences in both the fea-
ture and the label spaces. the data distribution is determined by the problem. Since this fact
is beyond our control, and even difficult to know, there is no alternative but to adapt. For
example, by using specific aggregation operators if data distribution across clients is highly
skewed [ZXLJ21].

Aggregation operatorΔ. Up to now, we referred to the process of aggregating localmodel
updates on the server in a generic way using the operator Δ. The reason is that this oper-
ator can be any operator that returns as a result an “average” value of all the local model
updates. When FL was first proposed, it was proposed in conjunction with the Federated
Averaging (FedAvg) [MMR+17], which is basically an arithmetic mean of the local model
updates. Despite the simplicity of FedAvg, it has shown good performance in the vast ma-
jority of the scenarios, so it remains the most widely used. Note that FedAvg can only be
applied when the learning model can be expressed as a parameter matrix.

Due to this limitation, or to the requirements of the problem, it is possible that another
type of aggregatormay be required. Depending on the nature of this need, we can distinguish
between two distinct cases:

• Non-matrix learning models. When the learning models can not be expressed as a pa-
rameter matrix, the aggregation process become more complex, since a simple aggre-
gation of parameters is not possible. Ad hoc aggregation operators have been designed
for each of the models to combine the information of each client, such as: clustering
[SGB+20], decision trees [TBA+19] or random forest [LLL+22].
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• Other requirements. In certain situations, it may be desirable, or even mandatory, to
use a specific aggregator to achieve certain properties. For example, robustness if we
are in a corrupted scenario [PKH22], or personalization of clients [TYCY22], or good
performance in a very skewed non-IID environment [ZXLJ21].

Learningmodels. In a FL settings, there are various learningmodels. They are organised
in two types: (1) global Learning model (LM), which is the result of aggregation of the local
model updates and resumes the information from all the clients’ devices, and (2) local LMs,
of which each client trains its own on their own data. The local model updates of these local
LMs are subsequently shared with the server contributing to distributed training.

Communication. After the training of the local LMs, the model updates produced need
to be sharedwith the server, for subsequent aggregation. The communicationwhich enables
all this process plays a crucial role in both the coordination between clients and server, and
avoiding the privacy leakage. Although the data never leaves the clients’ devices, the com-
munication channel is susceptible to be attacked by third-parties. Therefore, it is commonly
used in combination with security techniques such as Differential Privacy (DP) [DMNS06,
WZFY20] and Secure Multi-Party Computation (SMPC) [Gol98, LZJ+20].

2.2 Background on Adversarial Attacks

FL, as any ML paradigm is vulnerable to adversarial attacks. However, this adversarial at-
tacks are more threatening in FL since the data inspection defences are not applicable, as
these data are not accessible. As a result, most of the adversarial attacks that can be carried
out in FL are inherited from ML, while defences are designed ad hoc for this paradigm.

There are a wide range of adversarial attacks, which can be categorised following differ-
ent criteria (see Chapter...). Perhaps the most significant categorisation can be done accord-
ing to the objective of the attack. According to this categorization, we find two main groups
of attacks:

• Attacks to themodel, whosemain purpose is tomodify the performance of the global
model.

• Privacy attacks, which aim at inferring sensitive information about the data or the
learning process.

Throughout this thesis, we focus on the attacks to the model. To carry out these attacks,
clients send poisoned samples to the server, thereby modifying the global model by par-
ticipating in the aggregation. These attacks can also be categorized according to different
criteria, but the most influential category is the attack objective. According to this criteria,
we distinguish between:
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Targeted (or backdoor) attacks. They aim at injecting a secondary task (backdoor task)
into the model. The success of the attack is measured in terms of the success of the back-
door task, which means that the higher the performance of the backdoor task, the more
successful the attack is. Since they do not affect the performance of the original task, they
are quite stealthy, which makes them more difficult to detect. Although they do not im-
pair the performance in the original task, they represent a high risk to the integrity of the
model. To highlight the risk they pose, let’s imagine that we have a face detection system
to decide who has access to a private room. Such system would work like a classification in
{access, not access}, which would give access only to authorized persons. If we define as a
backdoor task, giving access to people wearing purple glasses (something very uncommon),
this would produce a security breach difficult to detect, because for the rest of the people it
would continue to work properly. In this stealth resides the strength of these attacks, and
highlights the threat that they represent.

Untargeted attacks. In contrast to targeted attacks, the main objective of these attacks
is to impair performance on the original task. The most extreme case, although the most
common, is known as byzantine attacks, where the adversarial attack is based on random
procedures, either learning about randomly poisoned data, or directly general random up-
dates. These attacks are clearly easier to detect. The challenge then resides in mitigating
the effects of the attack when there are multiple coordinated clients, and in distinguishing
them from clients with low data variety (poor clients).

Throughout this thesis, we focus on both byzantine and backdoor attacks as both of them
represent a high threat to FL.

2.3 Background on Induced-OrderedWeighted Averaging

Group decision making is the AI task focused on finding out a consensus decision from a
set of experts by summing up their individual evaluations. Yager proposed in [Yag88] the
Ordered Weighted Averaging (OWA) operators with the aim of modelling the fuzzy opinion
majority [PY06] in group decision making. Yager and Filev generalised the OWA operator
definition in [YF99], where they defined the OWAoperator with an order-induced vector for
ordering the argument variable. They called this generalisation ofOWAoperatorswith a spe-
cific semantic in the aggregation process as Induced Ordered Weighted Averaging (IOWA).
The OWA and IOWA operators are weighted aggregation functions that are mathematically
defined as what follows:

Definition 2.1 (OWA Operator [Yag88]). An OWA operator of dimension 𝑛 is a function
Φ ∶ ℝ𝑛 → ℝ that has an associated set of weights or weighting vector 𝑊 = (𝑤1,… ,𝑤𝑛) so
that 𝑤𝑖 ∈ [0, 1] and∑𝑛

𝑖=1𝑤𝑖 = 1, and it is defined to aggregate a list of real values {𝑐1,… , 𝑐𝑛}
according to the Equation 2:
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Φ(𝑐1,… , 𝑐𝑛) =
𝑛
∑
𝑖=1

𝑤𝑖𝑐𝜎(𝑖) (2)

being 𝜎 ∶ {1,… , 𝑛} → {1,… , 𝑛} a permutation function such that 𝑐𝜎(𝑖) ≥ 𝑐𝜎(𝑖+1), ∀𝑖 =
{1,… , 𝑛 − 1}.

Definition 2.2 (IOWA Operator [YF99]). An IOWA operator of dimension 𝑛 is a mapping
Ψ ∶ (ℝ × ℝ)𝑛 → ℝ which has an associated set of weights 𝑊 = (𝑤1,… ,𝑤𝑛) so that 𝑤𝑖 ∈
[0, 1] and ∑𝑛

𝑖=1𝑤𝑖 = 1, and it is defined to aggregate the second arguments of a 2-tuple list
{⟨𝑢1, 𝑐1⟩,… , ⟨𝑢𝑛, 𝑐𝑛⟩} according to the following expression:

Ψ(⟨𝑢1, 𝑐1⟩,… , ⟨𝑢𝑛, 𝑐𝑛⟩) =
𝑛
∑
𝑖=1

𝑤𝑖𝑐𝜎(𝑖) (3)

being 𝜎 ∶ {1,… , 𝑛} → {1,… , 𝑛} a permutation function such that 𝑢𝜎(𝑖) ≥ 𝑢𝜎(𝑖+1), ∀𝑖 =
{1,… , 𝑛 − 1}. The vector of values 𝑈 = (𝑢1,… , 𝑢𝑛) is called the order-inducing vector and
(𝑐1,… , 𝑐𝑛) the values of the argument variable.

The OWA and IOWA operators are functions for weighting the contribution of experts
for the global decision in the case of group decision making, and the contribution of a
set of clients in an aggregation process in a general scenario. However, they need an ad-
ditional function to calculate the values of the parameters, which in the context of group
decision making means the grade of membership to a fuzzy concept. The weight value cal-
culation function is known as linguistic quantifier [Yag96], which is defined as a function
𝑄 ∶ [0, 1] → [0, 1] such as 𝑄(0) = 0, 𝑄(1) = 1 and 𝑄(𝑥) ≥ 𝑄(𝑦) for 𝑥 > 𝑦. Equation 4 de-
fines how the function 𝑄 computes the weight values and Equation 5 defines the behaviour
of the function 𝑄.

𝑤(𝑎,𝑏)
𝑖 = 𝑄𝑎,𝑏 (

𝑖
𝑛) − 𝑄𝑎,𝑏 (

𝑖 − 1
𝑛 ) (4)

𝑄𝑎,𝑏(𝑥) =
⎧⎪
⎨⎪
⎩

0 0 ≤ 𝑥 ≤ 𝑎
𝑥 − 𝑎
𝑏 − 𝑎 𝑎 ≤ 𝑥 ≤ 𝑏
1 𝑏 ≤ 𝑥 ≤ 1

(5)

where 𝑎, 𝑏 ∈ [0, 1] satisfying 0 ≤ 𝑎 ≤ 𝑏 ≤ 1.
The function𝑄 in Equation 5 can be redefined in order tomodel different linguistic quan-

tifiers. Since the definition of the notion quantifier guided aggregation [Yag88, Yag96], other
definitions of the function𝑄 has been proposed to model different linguistic quantifiers like
“most” or “at least” [PY06].
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2.4 Background on Local Linear Explanations

As AI systems are increasingly implemented in more delicate contexts, there is a growing
demand for elucidating the rationale behind the decisions made by such systems. Conse-
quently, in recent years, a plethora of techniques falling under the category of eXplainable
Artificial Intelligence (XAI) have been introduced [ADRDS+20]. In the scholarly literature,
a conspicuous distinction is drawnbetweenmodel-agnostic andmodel-specific explanations
[SS23], contingent upon whether they necessitate knowledge about the underlying model.

This section is dedicated to a focus onmodel-agnostic approaches, with specific emphasis
on Local Linear Explanations (LLEs), often referred to as feature importance models. These
explanations are favoured due to their methodical rigour and practicality. Formally, they are
defined as follows: Let 𝑋 be a subset of the real vector space, denoted as ℛ𝐹 , representing
the input dataset. Furthermore, let 𝑓 ∶ ℛ𝐹 → ℛ𝐶 symbolize the original model, where 𝐶
denotes the dimension of the output space, 𝒴. For a specific input instance 𝑥 ∈ 𝑋 , which
requires explication, an LLE can be described as a function 𝑔 ∶ ℛ𝐹 → ℛ𝐶 .

𝑔(𝑥) = 𝐴𝑥 + 𝐵, 𝐴 ∈ ℳ𝐹,𝐶 , 𝐵 ∈ ℛ𝐶 . (6)

Whichmeans that 𝑔 is a linear application from the feature spaceℛ𝐹 to the output space
ℛ𝐶 . Naturally, each weight of the matrices 𝐴 and 𝐵 has the following meaning:

• Eachweight𝑎𝑖,𝑗 of thematrix𝐴 represents the importance of the feature 𝑖 to the output
𝑗.

• Each weight 𝑏𝑗 represents the general importance of the output 𝑗.

The different LLE methods use linear regression minimising error as follows:

ℒ(𝑓, 𝑔, 𝜋𝑥) = ∑
𝑧∈𝑁(𝑥)

𝜋𝑥(𝑧)(𝑓(𝑧) − 𝑔(𝑧))2, (7)

where𝑁(𝑥) is the neighbourhood of 𝑥 and the weighting function𝜋𝑥 is different for each
particular method. In the following we describe two of the most popular methods.

LIME The Linear Model-agnostic Explanation (LIME) method [RSG16] follows the con-
cept of local importance, which means that a feature is important if it produces significant
changes in the neighbourhood. Formally, in order to finde the LLE 𝑔, LIME fits the Ridge
regression [McD09] to𝑁(𝑥)with the linear least squares function with the default kernel as
follows:

𝜋𝑥(𝑧) = 𝑒𝑥𝑝(−𝑑(𝑥, 𝑧)2/𝜎2) (8)

where 𝑑(⋅, ⋅) is the euclidean distance and 𝜎 a regularisation factor. The generation of
𝑁(𝑥) is performed by sampling from an exponential distribution.
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SHAP The SHapley Additive exPlanations (SHAP) method [LL17] considers a feature to
be important for the classification of an example if it produces significant changes compar-
ing to background (default) values. SHAP builds the LLE function 𝑔 based on a game theory
approximation. It consists on finding 𝑔 as a regression with the following kernel:

𝜋𝑥(𝑧) =
𝐹 − 1

( 𝐹
|𝑧|
)(𝐹 − |𝑧|)|𝑧|

, (9)

where 𝑧 ∈ {0, 1}𝐹 is a binary vector representing the presence of each of the 𝐹 features on
the example 𝑧 and (𝑁

𝑀
) is the combinatory number of choosing𝑀 elements from 𝑁 possibil-

ities without replacement. The neighbourhood is generated choosing the value that assign
to 𝑖 the proportional probability of the weight that SHAP assigns to all the instances that
excludes exactly i variables.

In the realm of explanations, it is of paramount importance to establish a precise defini-
tion of what constitutes a “feature”. In the context of tabular data, features are inherently
determined by the dataset configuration. Conversely, in the domain of time series, they often
represent the minimum quantum of information acquired at each discrete time interval. In
the domain of textual data, each discrete token, defined as the elemental unit of information,
assumes the role of a feature. When dealing with imagery, individual pixels are designated
as features. The principal quandary associated with this approach pertains to the stagger-
ing volume of features encountered in certain scenarios. Consequently, certain strategies,
such as the generation of novel features through random amalgamation of existing ones, as
exemplified by the SHAP framework [LL17], are actively considered. An additional advan-
tage of this approach lies in its potential to impart coherence to explanations. For instance,
a solitary pixel holds minimal intrinsic meaning for the human observer, but the collective
significance of multiple pixels working in concert can be substantially more discernible.

Classification task specifications Based on the local linearmodel 𝑔 defined in Equation
6, the signed importance matrix is defined as the derivative matrix 𝐴𝑙 over the logit space,
which verifies that 𝐴𝑙 = 𝐴. To get the probability vector, the softmax function is applied 𝑝 =
softmax(𝐴𝑥+𝐵). From that, it is defined𝐴𝑝 = 𝐷(softmax(𝑔(𝑥)))(𝑥) being𝐷() the derivative
operator. From that matrices, the component 𝑎𝑖,𝑗 refers to the importance of feature 𝑖 for
class 𝑗 over the logic for the former (𝐴𝑙) and over the probability spaces for the latter (𝐴𝑝).
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3 Justification

FL emerges as a distributed learning paradigm to solve the increasingly latent data privacy
issues in some contexts. Moreover, it shows very competitive results compared to centralised
settings, and evenmore robust. Nevertheless, as anyML paradigm, it is susceptible to adver-
sarial attacks, which can eithermodify the performance of themodel or lead to a privacy leak.
As we stated before, these adversarial attacks are more threatening in FL, since most of the
defences that have been proposed in the literature are based on data inspection techniques,
which is not feasible in FL. Although a large number of defence mechanisms against ad-
versarial attacks in FL have already been proposed, the attack-defence struggle is becoming
an arms race in which every time a new defence is proposed, there is a way to find a pri-
vacy leakage. Therefore, it is essential to research on the development of defences against
adversarial attacks in FL. The specific reasons that motivate this thesis are listed below.

• Firstly, FL is a promising learning paradigm with a wide range of practical applica-
tions in several fields with privacy concerns such as health, political contexts, user
information based applications, video, language processing, among others. Therefore,
the development of a more secure FL based on more effective defences is highly de-
sirable, and it has enough potential to make a significant impact on many areas of
research and quality of life, because of the security and privacy it can provide to the
apps we use on a daily routine.

• Secondly, the current state-of-the-art on defences against adversarial attacks on FL is
not enough as there are still successful attacks. Every time a defence mechanism is
proposed, a new way of attack is found to be successful. This gap is an opportunity to
research in more robust and resilient defences covering all known attacks.

• Thirdly, in the vast majority of proposed defences, clients with a poor or skewed dis-
tribution of data are filtered out.

• Finally, although there are several works covering adversarial attacks, defences or
both. However, none of them cover all adversarial attacks (to the model and to the pri-
vacy), all defence mechanisms, and also includes a comparative experimental study.
Therefore, it is essential to carry out a complete and consistent analysis of the attacks
and defences in FL, as well as the proposal of a taxonomy and an experimental study
that will allow us to identify the most promising lines of research in this field.

In summary, a thesis focused on adversarial attacks and defences in FL is justified due to
the novelty, relevance and challenging nature of the field. Moreover, due to the novelty, there
is still a wide field in which to develop quality research and innovations that has genuine
relevance and impact both in the research world and in different applications.
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4 Objectives

Once themain concepts of the state-of-the-art have been introduced, we elaborate on the ob-
jectives that have driven this thesis. All objectives fall within the scope of adversary attacks
and defences in FL. For this reason, one of the first objectives was the creation of a compre-
hensive survey on adversarial attacks and defences that presents a convenient taxonomy to
classify them. With the literature in place, the next objectives are aligned with proposing
defence mechanisms against adversarial attacks that outperform the state of the art. These
objectives can be broken down as follows:

Study of the adversarial attacks and defences en FL, resulting in a comprehensive
survey and taxonomy. To fulfill this first objective, it is necessary to conduct an exhaus-
tive analysis of all the literature on both adversarial attacks and defences in FL, focusing on
similarities and differences, in order to establish a consistent taxonomy. For this study to be
as consistent and useful as possible, all FL threats need to be analyzed, ranging from model
attacks to data privacy attacks. With respect to defences, all categories of defences includ-
ing server, client, or communication channel defences need to be explored. In addition, the
study may focus on the strengths and weaknesses of each of the proposals in the literature,
thus helping to discover which lines of research are most promising in the field. To this end,
we aim to carry out an experimental study on the performance of attacks and the influence
of defences on them.

To develop defencemechanisms against backdoor attacks. Backdoor attacks are one
of the main threats of FL due to the combination of good performance and stealth presented
by the attacks proposed in the literature. Although several defensive strategies are found in
the literature, they are shown to be insufficient. Therefore, the aim is to design a defence
mechanism that is agnostic to the number of adversarial clients, but that manages to miti-
gate the success of the attacks. To test the performance of the proposal, we will implement
the most successful attacks on different datasets and compare it with the state of the art in
defence mechanisms against backdoor attacks.

To develop defence mechanisms against byzantine attacks. Byzantine attacks also
present one of the main threats of FL due to the ease with which they can be carried out.
Although there are also several defensive strategies proposed, they are insufficient. As the
performance of the global model is harmed by these kind of attacks, we aim to design a
defence mechanism based on the performance in a validation test. The strength of this de-
fence has to be that it adapts to the number of adversarial clients in each round, and that
it is agnostic of the type of attack. Likewise, we will implement the most successful attacks
on different datasets and compare it with the state of the art in defence mechanisms against
byzantine attacks to test the performance of the proposal.
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5 Methodology

The research conducted throughout this thesis has been carried out following the scientific
method. In this particular case, it requires both practical and theoretical methodologies.
The general guidelines applied in all studies included in this thesis are summarized here:

• Observation: through the study of FL, and focusing on adversarial attacks and de-
fences. The goal of this stage is to identify research opportunities, which could result
in new, successful defences against adversarial attacks and extend its applicability.

• Formulation of hypotheses: design of new defences mechanisms, stressing that
they are agnostic to the number of adversarial clients and that they adapt easily to
any type of attack. The defences designed and developed must fulfill the objectives
described in previous sections.

• Experimental data collection: the designed defences are tested on diverse scenarios
to obtain results as representative of their capabilities as possible. These results are
later analyzed using external quality indices.

• Contrasting the hypotheses: the results obtained are compared with representa-
tive approaches from the existing literature, with the aim of analyzing their quality
in terms of efficiency and effectiveness. To this end, a set of representative models is
chosen on the basis of a comprehensive literature review. These methods are imple-
mented and published, for the sake of reproducibility of results.

• Validation of hypotheses: hypotheses formulated in the experiments are proven or
disproven following objective quality indicators and statistical testing. If any given
hypothesis is rejected, it must be modified and the previous steps repeated from that
point on.

• Scientific thesis: relevant conclusions are extracted in view of the outcomes of the
research process. All the results and conclusions obtained must be gathered and syn-
thesized into a documentary report of the thesis.
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6 Summary

The body of knowledge compiled in this thesis is found in 3 different studies, published
in scientific journals. The aim of this section is to summarize and introduce these studies,
whose results will be discussed later (in Section 7). The publications are listed below:

• Rodríguez-Barroso, N., Jiménez-López, D., Luzón, M. V., Herrera, F., & Martínez-
Cámara, E. (2023). Survey on federated learning threats: Concepts, taxonomy on at-
tacks and defences, experimental study and challenges. Information Fusion, 90, 148-
173. DOI: https://doi.org/10.1016/j.inffus.2022.09.011.

• Rodríguez-Barroso, N., Martínez-Cámara, E., Luzón,M. V., &Herrera, F. (2022). Back-
door attacks-resilient aggregation based on Robust Filtering of Outliers in federated
learning for image classification. Knowledge-Based Systems, 245, 108588. DOI: https:
//doi.org/10.1016/j.knosys.2022.108588.

• Rodríguez-Barroso, N., Martínez-Cámara, E., Luzón, M. V., & Herrera, F. (2022). Dy-
namic defence against byzantine poisoning attacks in federated learning. Future Gen-
erationComputer Systems, 133, 1-9. DOI: https://doi.org/10.1016/j.future.2022.
03.003.

The rest of the section is organized according to the publications listed above and the ob-
jectives described in Section 4. Firstly, Section 6.1 presents a survey on FL threats, including
the main concepts, a taxonomy on attacks and defences, an experimental study and the fu-
ture challenges of the research area. After that, in Section 6.2 we focus on backdoor attacks
and propose a new defence mechanism based on the robust filtering of outliers in a problem
if image classification in FL. Finally, in Section 6.3 we focus on byzantine attacks and also
propose a dynamic defence mechanism based on IOWA, which is agnostic to the number of
adversarial clients.

6.1 Study of the adversarial attacks and defences en FL, resulting in a com-
prehensive survey and taxonomy

As stated before, the research field of threats in FL, including adversarial attacks and de-
fences, has gained considerable prominence in recent years. However, therewere no surveys
that contain all the required information. Some of them focus just in adversarial attacks but
not in defences, or the other way around. Moreover, the vast majority of surveys about at-
tacks in FL are focused on privacy attacks or adversarial attacks to the model, but not in
both. Furthermore, it is rather difficult to find surveys that include a experimental study
in such a way that the state of the art is comparatively reported. Therefore, although it is
a booming area of study, the need for a survey that encompasses all adversarial attack and
defence typologies in FL, together with a practical approach, was substantial.
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Overall, the study provides the reader with everything needed to fully understand the FL
threats. It starts with a background in which we present the required concepts to follow the
rest of the work. We formally introduce FL as well as concept of FL threats and DP. Next,
it presents the proposed taxonomy of adversarial attacks in FL covering both adversarial at-
tacks to the model and privacy attacks. We go deeper into this taxonomy, to the point of
presenting a categorization according to different criteria. After that, it introduces the dif-
ferent defence methods against adversarial attacks and proposes a complete taxonomy. This
theoretical study is followed by an experimental study in which the most prominent works
in each area are tested under the same experimental setup. It tests both, the effectiveness of
the attacks and the success of the defence mechanisms. Based on this experimental study,
the work also provides some guidelines for the application of defences against adversarial
attacks which indicates what defence method performs better in each scenario. The study
finishes with an exposition of the lessons learns and the conclusions obtained during its
development. For the development of this study, 175 scientific articles were analysed.

The publication associated with this study is:

Rodríguez-Barroso, N., Jiménez-López, D., Luzón, M. V., Herrera, F., & Martínez-
Cámara, E. (2023). Survey on federated learning threats: Concepts, taxonomy on
attacks and defences, experimental study and challenges. Information Fusion, 90,
148-173. DOI: https://doi.org/10.1016/j.inffus.2022.09.011.

6.2 To develop defence mechanisms against backdoor attacks.

Backdoor attacks are one of the most harmful threats in FL due to their proper trade-off
between success and stealth. As stated before, these attacks have the ability of injecting a
secondary task in the FL system without modifying the performance of the system in the
original task, thus remaining undetected. This problem is addressed frommultiple perspec-
tives, but every time a new defence mechanism is proposed, a leak is found through which
the attack becomes effective. Additionally, numerous proposals found in the literature re-
quire too much information about the attack to be realistic. For that reason, there is a need
to develop a defence which is agnostic to the number of adversarial clients and which is able
to mitigate the effects of the attack.

In this work, we have developed a defence mechanism based on the robust filtering of
outliers in FL. Our hypothesis is that the adversarial clients’ model updates, even if they
perform adequately on the original task, they are bound to be outliers in the model updates
distribution because they have been trained on an additional task. Based on that, we design
an 1-dimensional outliers detector which identifies the adversarial clients, which we filter
out during the aggregation process. For the outlier detection we employ the Standard Devia-
tion method, which despite the simplicity of its design, it provides outstanding results. Note
that this defence mechanism is independent of the learning model, so it can be applied to
different scenarios although in this work we focus on image classification. Highlight that
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this proposal is independent of the attack and is based just in anomalous behaviour, so it
could be applied to other typologies of attack although in this work we decided to focus on
backdoor attacks due to their challenging and threatening nature.

The publication associated with this study is:

Rodríguez-Barroso, N., Martínez-Cámara, E., Luzón, M. V., & Herrera, F. (2022).
Backdoor attacks-resilient aggregation based on Robust Filtering of Outliers in fed-
erated learning for image classification. Knowledge-Based Systems, 245, 108588. DOI:
https://doi.org/10.1016/j.knosys.2022.108588.

6.3 To develop defence mechanisms against byzantine attacks.

Byzantine attacks, as opposed to backdoor attacks, do modify the performance of the global
model on the original task, making them easier to detect. The challenge in this case is the
facility to carry them out. Since they are based on random modifications of the behaviour
of the local models, they are quite feasible and require less coordination to be carried out.
Therefore, in these scenarios a higher percentage of clients can be adversarial than in the
case of backdoor attacks, which do require much more coordination. Hence, the aim of this
study is to propose a defence mechanism that manages to control the presence of Byzantine
attacks while maintaining the performance of the global model in the original task. Most
notably, this defence should be agnostic to the number of adversarial clients, and maintain
proper performance as the number of adversarial clients increases (within realistic limits).

In this work, we have developed an agnostic and dynamic defence mechanism against
byzantine attacks. To achieve the dynamic behaviour, which is the most compelling aspect
of the proposal, we based the contribution of each client on IOWA. The IOWA consists of
a weighted aggregation based on an ordering function. Based on the hypothesis that the
performance of the adversarial clients’ models should be worst than the performance of the
rest of them, we use as ordering function the accuracy in a small but representative test
set located on the server. After that, with the aim of establish the parameters of the IOWA
operator we stand out that, based on the convergence of FL, after the appropriate rounds
of learning the distribution of local model updates follows a Gaussian distribution. Based
on that fact, if we consider the differences between the higher performance (in terms of
accuracy) and the rest of the performances, the distribution of the differences would follow
anExponential distribution. Based on these assumptions, we establish the parameters of the
IOWA operator in a way that we filter out the clients considered as outliers, and we assign to
the clients in the first decile of the distribution double the weighting of the rest. Due to the
generalization capacity of the premises, which depend only on the convergence capacity of
the FL, this approach is agnostic of the learningmodel, the problem, and even the number of
adversarial clients. From this agnosticism stems its capacity for adaptation and dynamism,
which is its principal strength.

The publication associated with this study is:
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Rodríguez-Barroso, N., Martínez-Cámara, E., Luzón, M. V., & Herrera, F. (2022). Dy-
namic defence against byzantine poisoning attacks in federated learning. Future Gen-
eration Computer Systems, 133, 1-9. DOI: https://doi.org/10.1016/j.future.
2022.03.003.
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7 Discussion of Results

With the exception of the first objective, the rest of them include experimental studies with
the aim of testing the performance of the proposals. A broad and consistent experimental
setup ensures that the research conclusions are reliable and produces robust conclusions
which support the hypotheses. Homogeneity in the experimental setup is also a desirable
property as it guarantees the comparison between different approaches. We follow these
guidelines through the design of all the experimental setups for the sake of consistency and
validity of the findings among the wider academic community. The different adversarial at-
tacks and defences used as setup and baselines in the experimental studies have been chosen
following the recommendations achieved in the first objective (the survey of FL threats).

This section summarizes the analysis of results obtained to fulfill the objectives of this
thesis. It also includes the analyses carried out based on the experimental results. Similarly
to Section 6, the rest of this section is organized according to the publications and the objec-
tives introduced in Section 4. Section 7.1 highlights the recommendations and conclusions
drawn from the study of the literature in FL threats as well as the experimental study of the
most prominent approaches. Section 7.2 shows the results obtained with Robust Filtering
of Outliers (RFOut). Finally, the results obtained by Dynamic Defence against Byzantine
Attacks (DDaBA) are summarized in Section 7.3.

7.1 Study of the adversarial attacks and defences in FL, resulting in a com-
prehensive survey and taxonomy

The study related to this objective produced a review of the field of adversarial attacks and
defences in FL, which are one of the most challenging threats in FL. It starts with a theoreti-
cal introduction to FL, DP and the threat model concepts. It follows with the state-of-the-art
of adversarial attacks and defences and proposes a complete taxonomy for each of them. It
analyses the taxonomy from different criteria and argues that there are more significant cri-
teria, but itmay depend on the requirements of the problem to solve. After that, it establishes
consistent experimental setups and representative adversarial attacks and defences with the
aim of comparing them under the same conditions. Based on the experimental results ob-
tained, it poses some guidelines to lead the reader to choose the most appropriate defence
according to the threats faced by his problem.

The study, taxonomy and guidelines proposed can be useful to:

• Provide a sound basis for learning about the threats of FL and the most promising
research directions.

• Be able of categorize any adversarial attack or defence according to the most promi-
nent criteria depending on the problem, or even using multiple criteria.

• Identify which defence or typology or defences are the most promising one to defend
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against each attack, providing guidance to the reader onwhich defences to implement
depending on the threats faced.

As a result of this research, the main flaws and strengths related to the threats to FL area
can be identified. During the study development, 175 influential research works have been
analyzed, and several others have been discarded. This extensive study has provided us with
a broad overview of themost promising lines of research, as well as themost innovative tech-
nologies in each field. Regarding the lessons learned during its development, we highlight
the following ones:

• The arms race between attacks and defences, in which each time a defence is proposed,
the privacy leak is identified leading to a new and more powerful attack.

• The trade-off in defences, in which sometimes it is difficult to find a proper balance
between preventing from attacks and not impairing the performance of the original
task.

• non-IID assumptions, making it difficult to distinguish between adversarial clients and
clients with a poor distribution of data.

• Generalised FL, due to the fact that the vast majority of the attacks and defences have
been designed for HFL.

• Combination with other trends, while ensuring the data privacy should be one of the
main goals in any FL scenario.

7.2 To develop defence mechanisms against backdoor attacks

Our proposal of defencemechanism against backdoor attacks is called RFOut. Although the
design should be independent of the problem, we test it on image classification problems,
because of its popularity. We decided to employ only datasets with a federated nature. That
is, datasets in which data partitioning between clients becomes natural. We employ the
following datasets:

• Large-scale CelebFaces Attributes Dataset (CelebA)2, consisting of images of celebrities
at different times. We match each celebrity with a client and assign the images of that
celebrity as the training data of that client.

• Federated Extended MNIST (FEMNIST)3, formed by digits and letters handwritten by
different writers. Wematch eachwriter with a client and assign the handwritten digits
and letters as the training data of that client.

2http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
3https://www.nist.gov/itl/products-and-services/emnist-dataset
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This way, the non-IID character caused by the differences between clients is implicit in
the data distribution.

We employ different two different types of backdoor attacks, and for each of them we
test different patterns and situations. we selected themost used and themost recent defence
mechanisms, thus considering 7 baselines. For evaluation, we use the standard evaluation
metrics based on the performance (in terms of accuracy) on both the original and the back-
door tasks.

The results show that our proposal outperforms all the baselines in all the experimen-
tal settings. Moreover, it also outperforms the scenario without attacks in the vast majority
of the situations. To highlight the value of our proposal, we proved that it can be combined
with other existing techniques in literature, producing even better results inmany occasions.
Finally, we further analyse the behaviour of RFOut focusing on the convergence in compar-
ison with the rest of the baselines and we conclude that it not only achieves better results,
but also finds them in a more robust and faster way.

7.3 To develop defence mechanisms against byzantine attacks

Our proposal of defence mechanism against byzantine attacks is called DDaBA. As stated
before, although the design of the proposal should be independent of the problem and the
learning model, we use image classification tasks, because of its popularity. In this case,
we employ popular image classification datasets from the literature and simulate the feder-
ated data partitioning because it give us the opportunity of better control the data distribu-
tion. We decided to employ: (1) FEMNIST, using its federated data partitioning, (2) Fashion
MNIST4, which is a more complicated version of FEMNIST, since it is an excessively simple
benchmark, and (3) CIFAR-10 5, which is a slightly more complicated data set. The data
partitioning between clients in the last two datasets is performed artificially. Regarding the
byzantine attacks, we employ the threemost popular byzantine attacks covering bothmodel
and data poisoning. Finally, regarding the baselines, we consider the most established de-
fences in the literature, selecting 5 of them. For the evaluation, we consider the performance
of the global model (in terms of accuracy).

The results show that DDaBA outperforms all the baselines in all scenarios, also out-
performing the scenario without any attack. Finally, we stand out the limitation of our
proposal, which is where the number of adversarial clients is so high that the assumption
of Gaussian distribution is not satisfied. We argue that this situation is very unlikely and
unrealistic because it requires the coordination of more than one third of the participating
clients. Nevertheless, we propose a static version of DDaBA called Static Defence against
Byzantine Attacks (SDaBA) that solves this problem, showing proper results in a extreme
attack scenario.

4https://github.com/zalandoresearch/fashion-mnist
5https://www.cs.toronto.edu/~kriz/cifar.html
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8 Conclusions and Future Work

This section concludes the thesis (Section 8.1), gathers all the relevant studies we have pub-
lished (Section 8.2), and provides notes on future research lines (Section 8.3).

8.1 Conclusions

This thesis presents an extensive study of adversarial attacks and defences in FL that pro-
vides both a comprehensive view on the work already done in the area and innovation in
the form of three proposal of defence mechanisms. The overarching goal of this thesis is to
broaden the current knowledge about defences against adversarial attacks in FL and to ad-
dress the problem frommore robust, resilient, fair, transparent and explainaible approaches.
For that purpose, the most extensive survey on attacks and defences in FL in the literature
has been carried out, covering all types of attacks and including an experimental study of
all the defences proposed in the literature to truly explore the scope of application of these
defences. Thus, we can analyse weaknesses in order to address these gaps in our defences,
as well as benchmark ourselves against the state of the art in the field.

To accomplish the first objective of developing a complete survey on FL the most exten-
sive study on FL threats has been gathered. We introduce in a comprehensive way all the
concepts required to fully understand the field covering from the concept of FL to the def-
inition of all the threats. We propose a complete taxonomy of both adversarial attacks and
defences covering all the literature. In contrast to other surveys, we include both categories
of attacks, privacy attacks and attacks to the model. We also conduct an extensive experi-
mental study in whichwe test each category of defences in each category of attacks resulting
in valuable lessons learnt about the best defensive approach in each situation. Finally, we
analyse the future challenges and trends in the field, in order to motivate the research and
innovation in this leading research area.

The second objective of defending against backdoor attacks, arguably one of the greatest
challenges of the FL, is covered with the proposal of RFOut. RFOut is a defence mechanism
based on a aggregation operator which performs a most robust aggregation of the model
updates. For that, it is based on a 1-dimensional outlier detection based on the assumption
that, when the local models are converging, they follow a Gaussian distribution. That way,
it safeguards the FL from adversarial model updates (identified as outliers and filtered out)
resulting in a FL configuration resilient to backdoor attacks. We compare our proposal the
with state-of-the-art in defences mechanisms and find that it outperforms all the baselines.
Hence, RFOut represents an improvement in the field and opens further possibilities for
improvement along this line.

The third objective of defending against byzantine attacks, one of the most common at-
tacks in FL, is covered with the proposal of DDaBA. The main contribution of DDaBA is its
dynamic behaviour, which, as opposed to other proposals that assume to know the number
of adversarial clients, is able to defend against any number of adversarial clients, and even
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to adapt to a changing number of adversarial clients. This dynamic aspect is achieved by
implementing IOWA operators in the aggregator, so that they give different weights to the
participation of each client. The operator design assigns zero weighting to clients identified
as adversaries, and higher weighting to those considered high quality clients. DDaBA, in
addition to representing an improvement in the area by improving existing defence mecha-
nisms, opens up a new line of research into dynamic defence mechanisms that are agnostic
to the number of adversarial clients.

To fulfil the final objective of moving towards trustworthy AI, and based on the weak-
nesses of DDaBA, we propose Fair, Transparent and eXplainable DDaBA (FTX-DDaBA). We
claim that the aggregation operator in FL should not only maintain privacy and robustness,
but should also pursue other requirements to ensure trustworthy AI. For that purpose, we
shift the focus on client sorting in DDaBA from performance to LLEs, achieving improve-
ments from different perspective: (1) a fair approach that only discards adversarial clients
and not all poorly performing ones (whichmay include clients with poor data distributions),
(2) a transparent and explainable selection of clients, being able to obtain visual explanations
in the form of importance of features for client filtering, and (3) an approach that can be ap-
plied right from the start of training, without having to wait for a few warm-up rounds until
the models perform adequately. We believe that with this proposal we are breaking a new
ground in the field of defences against adversarial attacks, opening the focus of performance
to all the requirements to ensure trustworthy AI.

Conclusiones

Esta tesis presenta un estudio exhaustivo de los ataques adversarios y las defensas en FL, que
proporciona tanto una visión integral del trabajo realizado en esta área como innovación en
forma de tres propuestas de mecanismos de defensa. El objetivo principal de esta tesis es
ampliar el conocimiento actual sobre las defensas contra ataques adversarios enFL y abordar
el problema desde enfoques más sólidos, resilientes, justos, transparentes y explicables. Con
este propósito, se ha llevado a cabo el estudio más extenso sobre ataques y defensas en FL
en la literatura, abarcando todos los tipos de ataques e incluyendo un estudio experimental
de todas las defensas propuestas en la literatura para explorar verdaderamente el alcance de
aplicación de estas defensas. De esta manera, podemos analizar las debilidades para abordar
estas lagunas en nuestras defensas, así como compararnos con el estado del arte en el campo.

Para lograr el primer objetivo, se ha recopilado el estudio más extenso sobre amenazas
en FL. Introducimos de manera integral todos los conceptos necesarios para comprender
completamente el campo, desde el concepto de FL hasta la definición de todas las amenazas.
Proponemos una taxonomía completa tanto de los ataques adversarios como de las defensas
que abarca toda la literatura. A diferencia de otros estudios, incluimos ambas categorías de
ataques, los ataques a la privacidad y los ataques al modelo. También llevamos a cabo un
estudio experimental exhaustivo en el que ponemos a prueba cada categoría de defensas
para cada categoría de ataques, del que obtenemos lecciones valiosas sobre el mejor enfoque
defensivo en cada situación. Finalmente, analizamos los desafíos y tendencias futuras en
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el campo, con el fin de motivar la investigación y la innovación en esta destacada área de
investigación.

El segundo objetivo de defenderse contra los ataques backdoor, posiblemente uno de los
mayores desafíos del FL, se aborda con la propuesta de RFOut. RFOut es un mecanismo de
defensa basado en un operador de agregación que realiza una agregación más robusta de
las actualizaciones del modelo. Para ello, se basa en una detección de valores atípicos unidi-
mensional basada en la suposición de que, cuando los modelos locales están convergiendo,
siguen una distribución gaussiana. De esta manera, protege al FL de las actualizaciones de
modelos adversarios (identificadas como valores atípicos y filtradas) y resulta en una con-
figuración de FL resistente a los ataques backdoor. Comparamos nuestra propuesta con el
estado del arte en mecanismos de defensa y encontramos que supera a todos los modelos
base. Por lo tanto, RFOut representa una mejora en el campo y abre nuevas posibilidades
para futuras mejoras en esta línea.

El tercer objetivo de defenderse contra los ataques bizantinos, uno de los ataques más co-
munes en FL, se aborda con la propuesta de DDaBA. La principal contribución de DDaBA
es su comportamiento dinámico, que, a diferencia de otras propuestas que asumen conocer
el número de clientes adversarios, es capaz de defenderse contra cualquier número de ellos
e incluso adaptarse a un número cambiante de adversarios. Este aspecto dinámico se logra
implementando operadores IOWA en el agregador, de modo que otorgan diferentes pesos a
la participación de cada cliente. El diseño del operador asigna peso nulo a los clientes iden-
tificados como adversarios y un peso mayor a aquellos considerados clientes de alta calidad.
Además de representar una mejora en el área al mejorar los mecanismos de defensa exis-
tentes, DDaBA abre una nueva línea de investigación en mecanismos de defensa dinámicos
que son agnósticos respecto al número de clientes adversarios.

Para cumplir con el objetivo final de avanzar hacia una AI confiable, y basándonos en
las debilidades de DDaBA, proponemos FTX-DDaBA. Sostenemos que el operador de agre-
gación en el FL no solo debe mantener la privacidad y la robustez, sino que también debe
cumplir con otros requisitos para garantizar unaAI confiable. Con ese propósito, cambiamos
el enfoque en la clasificación de clientes en DDaBA de un enfoque basado en el rendimien-
to a un enfoque basado en LLEs, logrando mejoras desde diferentes perspectivas: (1) Un
enfoque justo que solo descarta clientes adversarios y no todos los que tienen un mal rendi-
miento (lo que puede incluir clientes con distribuciones de datos pobres). (2) Una selección
transparente y explicable de clientes, que puede obtener explicaciones visuales en forma de
importancia de características para la eliminación de clientes. (3) Un enfoque que se puede
aplicar desde el principio del entrenamiento, sin tener que esperar unas pocas rondas de
calentamiento iniciales hasta que los modelos funcionen adecuadamente. Defendemos que
con esta propuesta estamos abriendo nuevas posibilidades en el campo de las defensas con-
tra ataques adversarios, desplazando el enfoque del rendimiento hacia todos los requisitos
para garantizar una AI confiable.
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8.2 Publications

This section lists journal and preprint papers published during the PhD study period, or-
dered by publishing date. The DOI and the number of citations indicated by Google Scholar
are given.

• Journal papers:

1. Rodríguez-Barroso, N., Stipcich, G., Jiménez-López, D., Ruiz-Millán, J. A.,Martínez-
Cámara, E., González-Seco, G., ... & Herrera, F. (2020). Federated Learning and
Differential Privacy: Software tools analysis, the Sherpa. ai FL framework and
methodological guidelines for preserving data privacy. Information Fusion, 64,
270-292. DOI: https://doi.org/10.1016/j.inffus.2020.07.009. CITED
BY: 92.

2. Rodríguez-Barroso, N., Martínez-Cámara, E., Luzón, M. V., & Herrera, F. (2022).
Backdoor attacks-resilient aggregation based on Robust Filtering of Outliers in
federated learning for image classification. Knowledge-Based Systems, 245, 108588.
DOI: https://doi.org/10.1016/j.knosys.2022.108588. CITED BY: 7.

3. Rodríguez-Barroso, N., Martínez-Cámara, E., Luzón, M. V., & Herrera, F. (2022).
Dynamic defence against byzantine poisoning attacks in federated learning. Fu-
tureGenerationComputer Systems, 133, 1-9. DOI: https://doi.org/10.1016/
j.future.2022.03.003. CITED BY: 25.

8.3 Future work

The results of this PhD thesis open up new research lines and contribute to the identification
of new challenges in FL. This section presents future work and promising research lines
derived from the studies and conclusions gathered in this thesis:

Development of a FL platform The availability of software is paramount to data science
as it directly impacts the efficiency, efficacy, and reproducibility of the research. With the
rapid growth of FL, a lot of software tools haven been developed. However, none of them
provide the necessary functionality to simulate all the scenarios in research [GOAZ23] be-
cause they do not provide support for all AI libraries, the freedom to implement attacks or
all the FL architectures. For that reason, the research field would benefit greatly from the
development of an open source and fully flexible tool.

Improvement of the proposed defence mechanisms Surely the most natural future
work is to continue to develop the proposals designed as defence mechanisms against adver-
sarial attacks. Although all the defence mechanisms exposed during this thesis have shown
strong performance, an ongoing battle exists between attacks and defences. At the same
time that new defences are designed against existing attacks, attacks are strengthened in
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ways that circumvent these defences. For this reason, it is imperative that existing defences
continue to be upgraded to cover the leaks caused by new attacks.

Exploration of other defence categories Although the spectrum of existing defences
in the literature is broad, during this thesis the focus is on those defences that are carried
out on the server. The reasons for this include their wide applicability, as well as their ease
of implementation and good performance. However, it would be beneficial to explore other
categories of defences such as those carried out on the clients or in the communication chan-
nel [RBJLL+23].

Exploration of defencemechanisms against privacy attacks Due to thewide and var-
ied number of attacks against the FL, this thesis has been focused on defences against Byzan-
tine and backdoor attacks. However, one major category of attacks remains unexplored,
namely data privacy attacks. These attacks are both very common in FL, and particularly
dangerous given that they directly attack privacy and data integrity, the primary motivation
of FL. We plan to research and develop defence mechanisms against these attacks, as well
as to study the possibility of a general defence or a combination of several defences against
all the attacks in FL.

Research on developing attacks For the moment, we have remained on the ”good side”
of science, researching and developing defence mechanisms. However, the study and de-
velopment of attacks that bypass existing defences, although it may sound counterintuitive,
can be of great benefit to the field. The more sophisticated the known attacks are, the more
robust and effective the defences developed against new attacks will be.

Moving further towards trustworthy AI The backbone of this thesis is one of the fun-
damental requirements for reliable AI: privacy. However, the latest proposal already paves
the way for a combination of several of these requirements. We firmly believe that with
new social and political concerns, developments in different areas of AI must be compatible
with the requirements of trustworthy AI. For that purpose, it is proposed to explore defence
mechanisms that promote, at the same time as privacy, performance and robustness, the
rest of the requirements.
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Abstract
Federated learning is a machine learning paradigm that emerges as a so-
lution to the privacy-preservation demands in artificial intelligence. As
machine learning, federated learning is threatened by adversarial attacks
against the integrity of the learning model and the privacy of data via a dis-
tributed approach to tackle local and global learning. This weak point is ex-
acerbated by the inaccessibility of data in federated learning, which makes
the protection against adversarial attacks harder and evidences the need to
furtherance the research on defence methods to make federated learning
a real solution for safeguarding data privacy. In this paper, we present an
extensive review of the threats of federated learning, as well as as their cor-
responding countermeasures, attacks versus defences. This survey provides
a taxonomy of adversarial attacks and a taxonomy of defence methods that
depict a general picture of this vulnerability of federated learning and how
to overcome it. Likewise, we expound guidelines for selecting the most ad-
equate defence method according to the category of the adversarial attack.
Besides, we carry out an extensive experimental study from which we draw
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further conclusions about the behaviour of attacks and defences and the
guidelines for selecting the most adequate defence method according to the
category of the adversarial attack. Finally, we present our learned lessons
and challenges.

Federated learning, adversarial attacks, privacy attacks, defences

Keywords Federated Learning ⋅ Adversarial Attacks ⋅ Privacy Attacks ⋅ Defences.

2



Pub. 1 - Overview 51

1 Introduction

Data-driven machine learning methods currently dominate artificial intelligence. This re-
liance on data allows us to stand out three artificial intelligence challenges. The first is the
preservation of data privacy, since artificial intelligence methods process personal and sen-
sitive data, such as health [1, 2] and financial data [3]. Likewise, the growing interest in data
privacy safeguarding is reflected in emerging legal frames such as the General Data Protec-
tion Regulation (GDPR) [4]. The second challenge is related to the increasing availability
of data, which, on the one hand, is furthering the progress of artificial intelligence [5], and,
on the other hand, presents new challenges related to its storage and processing that are
further exacerbated when the data in question stems from distributed sources, as in IoT sce-
narios [6, 7]. The third challenge emerges from the need to distributively process data when
it is not possible to transfer it to a central server, because of legal or regulatory restrictions,
communication costs or other kind of technical limitations. Due to this distributed scenario,
new difficulties appear linked to dissimilar data distributions from the same domain and the
likely large size of data sources [8].
Federated learning (FL) is a machine learning paradigm proposed as a possible response
to the three previous challenges, and especially to the demand of preserving data privacy,
together with a distributed approach to tackle local and global learning [9]. FL aims at gen-
erating a collaboratively trained global learning model without sharing the data owned by
the distributed data sources. Frequently, it requires a coordinator agent, which is in charge
of managing the information exchange required to train the global learning model. In this
way, the data is protected from unauthorised access, either by other data sources or the co-
ordinator party.
Machine learning is vulnerable to adversarial attacksmainly focused on impairing the learn-
ing model or violating data privacy [10, 11]. Likewise, FL is exposed to the same jeopardy,
since it is an specific machine learning setting. Some of those attacks are grounded in the
malicious manipulation of the training data [12], which are inaccessible in FL and thus can-
not rely on the use of data inspection techniques for detecting altered data. Therefore, one
of the weak points of FL is being exposed to adversarial attacks that may violate the integrity
of the learning model or the privacy of data.
The evidence that adversarial attacks are aweak point of FL is built upon the large volume of
publications centred on the identification of vulnerabilities in the form of adversarial attacks
[13, 14, 15, 16], and on the corresponding large volume of defence proposals against to those
attacks [17, 18, 19, 20]. This effervescent quantity has motivated several survey works on
adversarial attacks that attain to review and summarise the latest papers related to this weak
point. These surveys’ lack of a holistic view of FL and the review of the defences against
adversarial attacks, because of the following reasons: (1) most of them are only focused on
one kind of adversarial attacks, namely attacks to the federated model [21, 22, 23] or privacy
attacks [24, 25, 26], but both encompass both attacks; (2) the vast majority does not include
any experimental study [27, 28, 29, 30, 31, 32], so it is not possible to compare the strength of

3



52 Chapter II. Publications

the attacks and the robustness of the defences in a commonevaluation framework; and (3) by
default they only focus on horizontal FL ignoring vertical and federated transfer learning.
Due to the mentioned facts, we propose a new survey on FL threats, and additionally we
provide several taxonomies on adversarial attacks and defences, an experimental study and
a final discussion about lessons learned and challenges. This survey differs from previous
ones due to the following contributions:

1. Provide a general picture of the field of adversarial attacks and defences by consid-
ering the threats to the learning model and to the integrity of the privacy of data.

2. Review the threats and the defences of horizontal FL, vertical FL and federated trans-
fer learning.

3. Define taxonomies of adversarial attacks and their corresponding defensive counter-
measures. These two taxonomies encompass the different categories of adversarial
attacks and defences, whichwill shed light in this crucial field ofmaking FL a robust
learning paradigm.

4. Provide guidelines for selecting the right defence category according to the threat-
ening adversarial attack.

5. Compare in a common evaluation framework the strength of the most relevant ad-
versarial attacks, and the defence capacity of the most prominent defence methods.

6. Expound some learning lessons stemmed from the literature review and the experi-
mental study conducted.

7. Also expound their relations to the challenges in the field of adversarial attacks.

The rest of the paper is organized as follows: the following section introduces the propaedeu-
tic concepts necessary for this survey to be illustrative. Section 3 presents the taxonomy of
adversarial attacks in FL, while Section 4 expounds the taxonomy of defences against them.
We conduct the experimental study in Section 5. In Section 6 we provide the guidelines for
selecting the right defence category. Finally, we discuss the lessons learned and challenges
in Section 7 and 8, and include some conclusions in Section 9.

2 Background concepts on Federated Learning threats

The concepts described throughout this paper require the knowledge of some propaedeutic
concepts related to FL and its threats. Accordingly, we introduce FL and the categories of
FL in Section 2.1, we formally define differential privacy (DP) in Section 2.2, since a consid-
erable amount of defence methods are based on DP, and we detail the categorization of the
attacks in terms of the threat model in Section 2.3.

4
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2.1 Federated Learning

FL is a distributedmachine learning paradigmwith the aim of building aMLmodel without
explicitly exchanging training data between parties [9]. It consists in a network of clients or
data owners {𝐶1,… , 𝐶𝑛}, who participate in two main processes:

1. Model training phase: each client exchange information without revealing any of
their data to collaboratively train a ML model,ℳ𝑓, which may reside at one client
or may be shared between a few clients.

2. Inference phase: clients collaboratively apply the jointly trainedmodel,ℳ𝑓, to a new
data instance.

Both processes can be either synchronous or asynchronous, depending on the data availabil-
ity of the clients and the trained model.
The fact must be highlighted, that privacy is not the only motivation of this paradigm, there
should be a fair value-distribution mechanism to share the profit gained by the collabora-
tively trained model,ℳ𝑓.
The distribution of characteristics of the data among clients in FL shapes the procedure to
follow in the two main processes of FL, particularly we focus on the following distributions:
(1) clients share the feature space but not the sample space, (2) clients share the sample space
but not the feature space, and (3) clients share only a small overlap in feature space. These
distributions allow us to present three categories of FL [9] in terms of the feature space (𝑋),
the label space (𝑌 ) and the sample ID space (𝐼) as follows:

Horizontal Federated Learning (HFL) In this scenario, clients data share the feature
and labels space, but differ in the sample space. Formally, we can define as:

𝑋𝑖 = 𝑋𝑗 , 𝑌 𝑖 = 𝑌 𝑗 , 𝐼𝑖 ≠ 𝐼𝑗 , ∀𝐷𝑖, 𝐷𝑗 , 𝑖 ≠ 𝑗

where the feature and labels space of the clients (𝑖, 𝑗) is depicted by (𝑋𝑖, 𝑌 𝑖) and (𝑋𝑗 , 𝑌 𝑗) and
it is assumed to be the same, while the samples 𝐼𝑖 and 𝐼𝑗 are not the same. 𝐷𝑖 and 𝐷𝑗 depict
the data of the clients 𝑖 and 𝑗.

Vertical Federated Learning (VFL) In this scenario, clients share the sample space but
neither the feature space nor the label space. Formally, we can define as follows:

𝑋𝑖 ≠ 𝑋𝑗 , 𝑌 𝑖 ≠ 𝑌 𝑗 , 𝐼𝑖 = 𝐼𝑗 , ∀𝐷𝑖, 𝐷𝑗 , 𝑖 ≠ 𝑗

Federated Transfer Learning (FTL) This scenario is similar to the traditional transfer
learning. The clients share neither the feature space, nor label space, nor the sample space.
Formally, we can define as follows:

5
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𝑋𝑖 ≠ 𝑋𝑗 , 𝑌 𝑖 ≠ 𝑌 𝑗 , 𝐼𝑖 ≠ 𝐼𝑗 , ∀𝐷𝑖, 𝐷𝑗 , 𝑖 ≠ 𝑗

Although the feature spaceand the label space are not the same, in FTL there is a certain
overlap or similarity, since the aim is to transfer knowledge from one client to another se-
curely. FTL was presented in [33] and it represents higher difficulty than HFL and VFL,
since it implies the use of techniques that preserve the data privacy. We represent the differ-
ent categories of FL in Figure 1.

Figure 1: Representation of the different categories in FL. Source [9].

FL is a learning setting composed of a set of key elements. Since FL is a specific configura-
tion of a machine learning environment, it shares with machine learning some of those key
elements, such as the data and the learning model. Nonetheless, the particularities of FL
make additional key elements necessary, such as clients and a learning coordinator that or-
chestrates the two main processes of FL. A detailed description of FL key elements focused
on HFL is in [34], and here we describe the common ones to all the FL categories.

Data It plays a central role inmachine learning. In FL, data is distributed among the differ-
ent clients according to two possibilities: (1) IID (Independent and Identically Distributed),
when the data in each client is independent and identically distributed, as well as represen-
tative of the population data distribution; and (2) Non-IID (non Independent and Identically
Distributed), when the data distribution in each client is not independent nor identically dis-
tributed from the population data distribution. These data distributions are mainly relevant
to HFL. In VFL and FTL categories, clients do not share neither the feature space nor the
label space, and consequently the data distribution among clients is relegated to a second
place.
In most HFL scenarios, each client only stores the data generated on the client itself, ensur-
ing the non-IID property of the global data. Moreover, even if the IID scenario were present,
it would not be known because of the data privacy properties of FL. Hence, the non-IID
scenario is the best choice and it represents a real challenge.

6
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Clients Each client of a federated scenario plays a key role in a federated paradigm, as a
data owner and as a part of the distributed scheme. Typical clients in FL could be servers,
smartphones, IoT devices, connected vehicles, hospitals, banks or insurance companies. Pri-
vacy is not their only motivation, they also want to profit from themodel training phase. As
a consequence, a rewardmechanism is expected, such as owning the collaboratively trained
model,ℳ𝑓, in HFL or the outputs of the inference phase in VFL and FTL.

Learning coordinator The learning coordinator orchestrates the communication among
the clients in the two main processes of FL. While it is not strictly necessary, when present,
it also plays the role of a trusted authority. In VFL, the learning coordinator receives and
combines partial updates from clients and shares the corresponding part of the combined
update with each client in the model training phase. Moreover, in the inference phase it
helps to perform the inference by combining the outputs of each client as the collaboratively
trained model,ℳ𝑓, is split among them. In contrast to VFL, in HFL the learning coordina-
tor is usually known as the federated server and it only participates in the model training
phase: (1) receiving the trained parameters of the local models, (2) aggregating the trained
parameters of each client model using federated aggregation operators and (3) updating ev-
ery learning model with the aggregated parameters.. Moreover, the inference phase is not
performed jointly as the collaboratively trained model, ℳ𝑓 is stored in each client and in
the federated server.

2.2 Differential Privacy

DP allows retrieving information, rigorously bounding the harm caused to individuals
whose sensitive data are stored in the database [35, 36]. Basically, it hides the presence of an
individual in the database. To achieve this, DP adds randomnoise to the outputs. Such noise
is calibrated to the magnitude of the largest contribution that can be made to the output by
an individual. It is important to note that DP assumes that the adversary owns arbitrary
external knowledge.
DP is the key property used to provide a certain level of privacy to any sensitive data access, in
a way it is both, secure and measurable. It is secure because it has a theoretical background
which supports it. It is measurable as every access to private data has a privacy cost either
in terms of 𝜖 or in terms of (𝜖, 𝛿).
This interpretation naturally leads to define the distance between databases: two databases
𝑥, 𝑦 are said to be 𝑛-neighbouring if they differ by 𝑛 entries. In particular, if the databases
only differ in a single data element (𝑛 = 1), the databases are simply addressed as neighbour-
ing.

Differential Privacy definition A database access mechanism,ℳ, preserves 𝜖-DP if for
all neighbouring databases 𝑥, 𝑦 and each possible output ofℳ, represented by 𝒮, it holds
that:

𝑃[ℳ(𝑥) ∈ 𝒮] ≤ 𝑒𝜖 𝑃[ℳ(𝑦) ∈ 𝒮] (1)
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If, on the other hand, for 0 < 𝛿 < 1 it holds that:

𝑃[ℳ(𝑥) ∈ 𝒮] ≤ 𝑒𝜖 𝑃[ℳ(𝑦) ∈ 𝒮] + 𝛿 (2)

then the mechanism possesses the property of (𝜖, 𝛿)-DP, also known as approximate DP.
In other words, DP specifies a ”privacy budget” given by 𝜖 and 𝛿. The way in which it is
spent is given by the concept of privacy loss. The privacy loss allows us to reinterpret both,
𝜖 and 𝛿 in a more intuitive way:

• 𝜖 limits the quantity of privacy loss permitted, that is, our privacy budget.
• 𝛿 is the probability of exceeding the privacy budget given by 𝜖, so that we can ensure
that with probability 1 − 𝛿, the privacy loss will not be greater than 𝜖.

DP has some interesting properties, which makes it even more appealing in a privacy con-
text.

1. DP is immune to post-processing. if an algorithmprotects an individual’s privacy,
then there is not any way in which privacy loss can be increased.

2. DP can be used to protect the privacy of groups. Let ℳ be a 𝜖-differentially
private mechanism, thenℳ is 𝐾𝜖-differentially private for groups of size 𝐾.

3. DPmechanisms can be composed multiple times and remain differentially
private. Letℳ1 andℳ2 be 𝜖1-differentially privatemechanism and 𝜖2-differentially
private mechanism, respectively. Then, their composition output given by the con-
catenation of the output ofℳ1 andℳ2 over the same input is 𝜖1 + 𝜖2-differentially
private

2.3 Threat Model

Threatmodels inmachine learning are structured representation of information, which help
to identify and define potential security issues. They can be defined in terms of the informa-
tion available and the scope of action of the attacker. In this regard, we define the following
set of mutually exclusive terms that allow us to define the FL threat model.

Insider vs. Outsider One of the key elements of any distributed system is the commu-
nication between different parts. The communication is very vulnerable, since it can be
compromised by agents from outside the learning system, which are known as outsider at-
tackers. When the attack is carried out by one of the participants in the distributed system,
either one or more clients, or the server, it is known as an insider attacker. Clearly, the scope
of the two attacks is very different: insider attacks are more harmful and may be aimed at
modifying the behaviour of the model or inferring valuable information from other clients,
while those carried out by outsiders are usually aimed only at inferring information about
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the data or the resulting learning model. Outsider attacks mainly focus on sniffing infor-
mation of the communication channels between the involved agents. They are either side-
channel attacks, when the attacker gains information from the implementation of the FL
scenario, or man-in-the-middle attacks, when the attacker intercepts the communication
channel by disguising herself as the receiver part. Both attacks are related to the protocols
used to establish communication and their implementation.
We focus on insider attacks, in which we highlight the following categorisations:

• Byzantine attacks. They consist in sending arbitrary updates to the server so, it
compromises the performance of the global learning model.

• Sybil attacks. They consist of collaborative attacks, either by several attackers join-
ing together or by simulating fictitious clients in order to be more disruptive.

Client vs. Server Regarding insider attacks, in HFL it is natural to differentiate between
two types of attacks, depending on whether they are carried out by a client or by a server.
The main point of difference lies in the amount of information available. While the attacks
carried out by clients only have information of one or several clients, the server holds infor-
mation about themodel architecture and the updates of the clients in each round of learning.
Even, in cryptographic implementations of the federated communication among the feder-
ated server and the clients, the server owns more information than the clients, as it is the
only one with enough knowledge to decipher the models.

Attacker knowledge In centralized settings, the white-box attacker has full access to the
target model, including themodel architecture, the parameters and its internal state. In con-
trast, the black-box attacker does not have any access to the target model and additionally,
she might have some additional information about the architecture of the target model or
its training procedure. These two classifications of attacker knowledge are too general to
represent every type of attacker, because there is no middle ground to consider attackers
whose knowledge in the black box setup is too restricted, and in the white box setup is not
sufficiently constrained. To address this issue, a grey-box attacker was introduced in [37],
which is a black-box attacker with some specific statistical knowledge not publicly available
that concerns her victim. This description of attacker knowledge is tailored for a centralized
learning setting, and as a consequence it does not fit other learning settings as the attack
surface changes. In a FL system, white-box, grey-box or black-box attackers can be any
node, either the clients or the server. Moreover, the exposed attack surface is greater than in
centralized settings. Most attacks are related to the data owned by the clients and the com-
munication among the federated server and the clients, therefore, we also require including
the information available regarding the federated training process and to the client’s private
data. In order to address such requirements, we define the following classification of the
attacker’s knowledge suited for HFL and VFL:
In a standard HFL system, an attacker which owns a client has client-side knowledge:

• White-box access to the aggregated model.

9
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• White-box access to the client’s locally trained model.
• Access to the owned client’s dataset.

If the attacker has access to local data of other clients or their labels, she has extra client-side
knowledge.
An attacker which owns a federated server has server-side knowledge:

• White-box access to the aggregated model after each communication round.
• White-box access to trained models shared by the clients or, alternatively, access to
their gradients.

• The identifiers of the clients aggregated in each communication round.
• The labels owned by each client and, optionally, the size of their dataset.

In a standard VFL system, an attacker which owns a client has party-side knowledge:

• White-box access to the parameters related to the features of the owned client.
• Access to the client’s private dataset.
• The partial output of the parameters, when an inference is requested.

Additionally, if the attacker has access to information related to the features of the other
clients, she has extra party-side knowledge.
An attacker which owns the learning coordinator in a VFL systemhas third party-side knowl-
edge:

• The gradients shared by each client.
• The computed loss.
• The partial output of each client, when an inference is requested.

If only a subset of the specified knowledge is available to the attacker, then she has partial
knowledge, and we specify the content of that subset of knowledge. Moreover, defences are
expected to reduce the attacker knowledge, therefore in the presence of a defence an attacker
is expected to have partial knowledge.
In both HFL and VFL systems, if the attacker only has access to the outputs of the federated
model, she has outsider-side knowledge.
We highlight the fact that the categories stated are not mutually exclusive, that is, an at-
tacker can own multiple types of knowledge at the same time. Realistic attack scenarios
tend to require lesser attacker knowledge, while more complex and specific attacks require
knowledge from multiple participants of a FL task.

Honest-but-curious vs. Malicious A malicious (or active) attacker tries to interfere in
the training process of the learningmodel with the aim of corrupting the targetmodel, for ex-
ample, damaging its performance or injecting a secondary task. On the contrary, an honest-
but-curious (or passive) attacker does not interfere in the training process and follows the
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federated learning protocols, but try to obtain private information about other clients from
the received information.

Collusion vs. No-collusion The collusion threat lies in the fact that the attacker who
controls more clients has more power in a distributed system. There are two collusion
types: (1) server-participants, in which the attacker controls some benign participants and
the server, and it aims to infer information about the rest of the clients; and (2) participant--
participant, in which the attacker controls a fraction of the benign clients and aims to infer
information about benign clients, the server or to harm the learning model.

3 Adversarial Attacks in Federated Learning: Taxonomies

Adversarial attacks represent one of the more challenging problems in FL, due to the large
number of existing attacks and the difficulty of defending against them. Moreover, the dis-
tributed nature of FL makes it vulnerable to a wide variety of adversarial attacks aiming at
different objectives and using different ways to achieve these objectives. Due to this wide
variety in the nature and target of attacks, it is difficult to establish a common taxonomy for
all types of adversarial attacks. For this reason, we propose the first broadly classification by
differentiating between:

• Attacks to the federated model, which aim at modifying its behaviour.
• Privacy attacks, whose purpose is to infer sensitive information from the learning
process.

In Figure 2 we represent this first categorisation of the adversarial attacks in FL.

Adversarial
attacks in FL

Attacks to the
federated model Privacy attacks

Figure 2: First, categorization of the adversarial attacks in FL into two broad categories:
attacks to the federated model and privacy attacks.

Once this initial classification into these twomain categories of attacks has been established,
we further examine each category by proposing a taxonomy based on different criteria and
review the most relevant works on each topic. In Section 3.1 we focus on attacks to the
federated model and the Section 3.2 is dedicated to the privacy attacks.
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3.1 Adversarial attacks to the federated model

One of the main limitation of FL, and more specifically of the HFL, in terms of adversar-
ial attacks, is that clients have the ability to harm the model by sending poisoned updates,
while the server cannot inspect the training data stored on the clients. This fact makes the
adversarial attacks to the federated model become one of the most significant challenges in
FL.
In general, these attacks are carried out by clients and the white-box feature of these attacks
correspond to the situation in which the attacker has client-side knowledge: either there are
one or several adversarial clients (attackers). In some situations attackers are considered to
have access to more white-box information, for example about the aggregation mechanism
used on the server, which is not a realistic situation. We therefore highlight those attacks
that only require information from the adversarial client.
Within this broad category, we propose a taxonomy that encompasses a range of attacks
according to different criteria, which we depict in Figure 3. Thus, each type of attack in
the literature belongs to four different categories, one for each criterion. From the main
taxonomy, we additionally propose four more taxonomies linked to each criterion, namely:
(1) the attack moment in Section 3.1.1, (2) the objective in Section 3.1.2, (3) the poisoned
part of the FL scheme in Section 3.1.3 and (4) the frequency in Section 3.1.4.

3.1.1 Taxonomy according to the attack moment

We present the taxonomy according to the time at which the attack is carried out, which
completely determines the ability of the attack to influence the federatedmodel. We classify
the following two types of attacks:

Training time attacks The training time phase includes from data collection and data
preparation to model training. These attacks are carried out during this phase, either con-
tinuously or as a single attack. They are the most common in the literature since they have
the ability to modify the federated model that is still being trained [13, 38, 39] and to infer
some information from training data [40] (see Section 3.2).

Inference time attacks These attacks are carried out in the inference phase when the
model has been trained. They are called evasion or exploratory attacks [28]. Generally, the
objective is not to modify the trained model, but to produce wrong predictions or to collect
information about the characteristics of the model.

3.1.2 Taxonomy according to the objective

The most widely used categorisation in the literature, which makes it the most significant
criteria is based on the target of the attack. Although all the attacks in this section are gath-
ered under the scope of modifying the model, the modifications can be quite diverse. We
distinguish two broad groups depending on the target of the attack:
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According to the
attack moment

Inference-
time attacks

Training-
time attacks

According to
the frequency

Multiple

One shot

According to
the objective

Targeted Untargeted

According to the
poisoned part

Data-
poisoning

Model-
poisoningTaxonomy of

attacks to the
federated model

Figure 3: Representation of the attack taxonomies to the federated model according to the
different criteria. The grey links represent the possibility of combination of both categories.
For the sake of clarity, we don’t show redundant connections between categories already
connected with other links.

Targeted or backdoor attacks [41, 42, 13] Themain task is to inject a secondary or back-
door task into the model. In other words, a backdoor attack is successful as long as it suc-
ceeds in preserving its performance in the original task while injecting a second task. These
attacks are very stealthy, since they generally do not affect the performance of the original
task [43], which makes them hard to detect. Note that although they do not pose a danger
to the FL main task, they do represent a danger to the integrity of the system, since the at-
tacker takes advantage of the federated infrastructure to perform a certain backdoor action,
representing a security breach. The nature of such attacks is broad, given the great variety
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TARGET LABEL

Figure 4: Representation of an attack using pattern-key strategy based on associate the blue
cross with some prefixed target label.

of secondary tasks. We present a taxonomy based on different criteria, which is shown in
Figure 5, with the following categories being the most frequent:

• Input-instance-key strategies. The objective is that the model labels specific input ex-
amples with a specific target label different from the original one. For example, in
a face recognition system that allows access to a house, to identify five specific peo-
ple from the input set, who originally did not have access (negative label as origin
label) as people who can access (positive label as a target label). Some works which
implement this kind of attack are [21] where the authors analyse the impact of differ-
ent attacks scenarios, [44] where the authors prove that it is possible to backdoor FL
even using existing defences and [45] where the aim is to present the data-poisoning
attacks.

• Pattern-key strategies. The objective is that the model associates a particular pattern
in an input sample with a particular target label. For example, in the face recogni-
tion system above, to allow access to any person wearing a polka-dot bow. In this
way the systemwould identify the pattern ”polka-dot bow”with the target label (pos-
itive label). In practice, a simple pattern of a cross or similar mark are chosen for
association with a target label [42, 13]. In Figure 4, we depict an attack using the
pattern-key strategy of associating the blue cross with the target label.

Additionally, these attacks can also be categorized according to different criteria
about the injected pattern as shown in Figure 5.

Regarding the design of the pattern in [41] the authors introduce the following ter-
minology with the aim of classifying pattern attacks. Although this classification is
not usually specified in other FL work, it is common in ML, and we believe it would
be useful to use this notation in FL attacks as well.:
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Targeted/
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Figure 5: Representation of the taxonomy of backdoor attacks.

– Blended injection strategy. This strategy generates backdoor instances by blend-
ing a benign input instancewith the key pattern using a blend ratio. The pattern
can be any image, for example cartoon images or randomly generated patterns.
Themain limitation is that thismechanism requires tomodify the entire sample
during both training and testing, which may not be feasible.

– Accessory injection strategy. This attack arises as a solution to the main limita-
tion of the Blended injection strategy and proposes to generate backdoor images
adding patterns to some regions of the original images. They are equivalent to
wearing an accessory in real life.

– Blended accessory injection strategy. It takes advantage of both strategies by com-
bining the accessory and the blended approach.

Regarding the number of patterns:

– Single pattern attack. It refers to when all adversarial clients inject the same
pattern into themodel. They are usuallymore successful as they are a collective
attack on the same target, but at the same time easier to identify on the server.
This situation is the most common one and some works such as [13, 41] where
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the authors focus on presenting the vulnerabilities of FL to such attacks, or [18]
where the aim is to propose a defencemechanismagainst them that implements
single pattern attacks.

– Multi-backdoor attack [13]. This attack is composed of several coordinated ad-
versarial clients (sybils), where each of them injects a different pattern or part
of a common pattern to the model [46]. They are more difficult to detect on
the server because the distribution of the pattern across clients enhances the
stealth. However, it is more complicated for clients to inject backdoor tasks
into the model, due to the diversity of secondary tasks.

Regarding the variability over time of the pattern:

– Static attack. When the pattern of the attack is maintained over time regardless
of the frequency of the attack. This situation is the most common one, and
some works cited before such as [13, 41, 18] implement static attacks.

– Dynamic attack. The pattern changes over time, which is a challenge both for
the defences, as the pattern to be identified changes, and for the adversarial
clients, as they have to continuously adapt to new secondary tasks increasing
the computation required. Salem et al. [47] propose to use meta-learning in
order to speed up the adaptation of clients to the new backdoor tasks, and de-
sign a “symbiosis network” in which the clients weight the update of the model
weights with the global model, instead of completing replacement in order to
maintain the performance on the backdoor tasks.

Some works question the strength of backdoor attacks, since the most naive approaches are
mitigated by simple defences [42]. However, the potential of these attacks is shown inWang
et al. [44], where they demonstrate that poisoning samples belonging to the tails of the data
distribution is enough to compromise the federated global model. In addition, Liu et al.
[48] show that even attackers with no access to training labels can inject backdoor attacks
in feature-partitioned collaborative learning. In conclusion, preliminary studies show that
backdoor attacks are a real threat to FL, which further increases the interest in this research
area.

Untargeted attacks [49, 50] As opposed to targeted attacks, the only goal of untargeted
attacks is to impair the performance of the model on the original task. The most extreme
scenario is known as Byzantine attacks [51, 52], in which adversarial clients share randomly
generated model updates or train over randomly modified data, generating random model
updates as well. Clearly, these attacks are inherently less stealthy than targeted attacks, and
can be detected merely by analysing the performance of the local models updates on the
server, although it is sometimes difficult to differentiate them from clients with very partic-
ular training data distributions.
It is also worthmentioning free-riders attacks. It is common in FL systems for clients to be
awarded rewards for participation, as they provide crucial and necessary information. These
rewards may tempt some clients to pretend that they are participating in the local training
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process and send updates to their models. To this end, they generate their “model updates”
randomly resulting in the same effect as Byzantine attacks [53].

3.1.3 Taxonomy according to the poisoned part of the FL scheme

Most training-time model attacks are based on poisoning client’s information in order to
corrupt the global learning model. Depending on which part of the client’s information
is poisoned, we differentiate between data-poisoning and model-poisoning attacks, and we
refer to both attacks as poisoning attacks. Figure 6 shows the taxonomy presented in the rest
of the section. In the following, we detail each one of them:

Poisoning
attacks

Data-poisoning
attacks

Label-
flipping

Poisoning
samples

Out-of-
distribution

Model-poisoning
attacks

Random
weights

Optimisation
methods

Information
Leakage

Figure 6: Representation of the taxonomy of backdoor attacks according to the poisoned part
of the FL scheme.

Data-poisoning attacks [54, 55] The attacker is assumed to have access to the training
data of one or more clients and to be able to modify it. Depending on the characteristics of
the poisoning, we distinguish between the following attacks:

• Label-flipping attack [56]. This attack consists on modifying the labels of a portion
of the training data. It can be either targeted, by exchanging some specific labels
[54], or untargeted [52], by random label shuffling.

• Poisoning samples attack. Unlike the previous one, this attack consists on modify-
ing part of the training data samples. The poisoning can be of different types, such
as including patterns in the samples and associate them with some target class, or
normalizing the samples and adding uniform noise with the aim of impairing the
performance of the model. In recent years, the use of Generative Adversarial Nets
(GANs) [57] to generate these poisoned samples has become popular, to maximize
the target of the attack on the one hand, and on the other hand, to maximize the
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disguise of the attack to overcome the possible defences of the server [58]. A fur-
ther clear example is the case of the attack proposed in [59], which consists in: (1)
the attacker first behaves as a benign client and trains a GAN to mimic prototypical
samples of other benign clients and, then, (2) the attacker generates the poisoned
samples using these generated samples in order to compromise the global model by
sending scaled poisoning updates as their local model updates.

• Out-of-distribution attack. This attack is similar to the poisoning samples attacks,
although they differ in that the poisoned training samples are not modifications of
the original ones, but samples from outside the input distribution [60]. It is possible
to use either samples from another domain with the same characteristics or samples
made of random noise.

One of the key factors for the success of a data poisoning attack is the proportion of adver-
sarial clients, and the amount of data they poison. In [55], they experiment with different
data-poisoning attacks and conclude that: (1) the attack success increases linearly with the
number of poisoned samples; (2) the increment of the number of attackers could improve
the attack success without changing the total number of poisoned samples; and (3) the at-
tack success increases fasterwith the number of poisoned samples thanwhen there aremore
attackers involved.
The goal of most data-poisoning attacks is to impair the global model and thus the local
models of all clients. However, it is also possible that the goal of the attackers is not to impair
of the local models, but only a specific subset of them. In Sun et al. [45], they define a set of
target nodes as those nodes (clients or server) to be compromised by the attack. According
to this definition, we may differentiate between the following three types of data-poisoning
attacks depending on the access level the attackers have to the target nodes:

• Direct attack. The attackers have access to target nodes, so they inject poisoning
samples directly on them.

• Indirect attack. The attackers have no access to target nodes, so they have to employ
further mechanisms such as training themselves (in case they are clients) on the
poisoned samples to poison the global model, which will then be shared with the
target clients.

• Hybrid attack. When the attackers combine both previous attacks.

In the vast majority of the attacks in the literature, the attackers are supposed to have access
to the target nodes, so the most common attacks are direct attacks.

Model-poisoning attacks These attacks consist of directly poisoning the model updates
sent by the clients to the server. Although data-poisoning attacks naturally lead to model-
poisoning attacks, in this section we focus only on those attacks that directly modify the
local update weights. Depending on how thesemodel weights are generated, we distinguish
between:
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• Random weights generation. These attacks are based on generating the model
weights as a vector of randomly generated values of the samedimension as themodel
weights received from the server. Two specific examples are: (1) the randomweights
attack [22], in which an interval [-R,R] is inferred from the global learning model
and the weights randomly generated in that interval; and (2) the Gaussian attack
[14], a white-box attack, which chooses as model weights a sample from the Gaus-
sian distribution resulting of the other clients’ model updates. By construction, the
randomweights attacks aremore harmful while being easier to detect, so depending
on the scenario one or the other would be more dangerous.

• Optimization methods. These consist of maximizing performance in the backdoor
task, while minimizing the differences of the poisoned model with respect to the
model shared by the server in the last round, thus maximizing effectiveness and
stealth. This challenge is approached as amulti-objective optimization problem [61].
This methodology is quite versatile and can be used to attack in special situations.
For example, it is widely used to attack specific defences by introducing new criteria
to be optimized [14] in order to overcome defences discarding conditions specific
to each defence. In addition, in [61] they also prove that regularization techniques
decrease the impact of the training data in the resultingmodel. For that reason, they
propose to train adversarial clients without any regularization mechanism in order
to increase the impact of the poisoned samples. This kind of attack is probably the
most efficient approach to perform targeted attacks on the model.

• Information leakage. A particular use case of model-poisoning attacks in FL is infor-
mation leakage, where the objective is not to compromise the global model, but the
communication among the attackers through a secure protocol [62]. In this man-
ner, certain clients are coordinated in such a way that they know common rules and
by modifying small parts of the model weights they can communicate. In [62] it is
proposed to adjust the training data strategically so that the weight of a particular
dimension in the global model will show a pattern known by the rest of the mali-
cious clients. Along very similar lines, Costa et al. [63] put forward a novel attacker
model aiming at turning FL systems into covert channels to implement a stealth
communication infrastructure by means of modifying certain bits of the models.

In FL, with the assumption that the proportion of adversarial clients is significantly lower
than that of benign ones, the effect of the attack is expected to be dissipated in the aggrega-
tion. Therefore,model-replacement techniques [43, 42, 13] are used, which consist of weight-
ing the contribution of adversarial clients using boosting techniques in order to replace the
aggregated model with its local updates. Formally, if we consider the update of the global
model in the learning round 𝑡 is computed as follows in Equation 3:

𝐺𝑡 = 𝐺𝑡−1 + 𝜂
𝑛

𝑛
∑
𝑖=1
(𝐿𝑡𝑖 − 𝐺𝑡−1), (3)
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where 𝐺𝑡 is the aggregated model at the learning round 𝑡, 𝐿𝑡𝑖 the model update of the client
𝑖 at the learning round 𝑡, 𝑛 the number of clients participating in the aggregation and 𝜂 the
server’s learning round.
In this context, we consider the local model update of the adversarial client trained on the
poisoned training data as follows in Equation 4:

𝐿̂𝑡𝑎𝑑𝑣 = 𝛽(𝐿𝑡𝑎𝑑𝑣 − 𝐺𝑡−1), (4)

where 𝛽 = 𝑛
𝜂
is the boost factor. After that, replacing Equation 4 in Equation 3 we have1

𝐺𝑡 = 𝐺𝑡−1 + 𝜂
𝑛
𝑛
𝜂 (𝐿

𝑡
𝑎𝑑𝑣 − 𝐺𝑡−1) + 𝜂

𝑛
𝑛
∑
𝑖=2
(𝐿𝑡𝑖 − 𝐺𝑡−1). (5)

According to the definition of FL [64], eventually the FL model will converge to a solution,
so we can assume that 𝐿𝑡𝑖 − 𝐺𝑡−1 ≈ 0 for benign clients. Hence, we rewrite Equation 5 as
follows

𝐺𝑡 ≈ 𝐺𝑡−1 + 𝜂
𝑛
𝑛
𝜂 (𝐿

𝑡
𝑎𝑑𝑣 − 𝐺𝑡−1) = 𝐿𝑡𝑎𝑑𝑣, (6)

which replaces the global model with the model updates of the adversarial clients. If there
is more than one adversarial client, the boosting factor is divided among all of them.
Boosting techniques depend on knowing the number of clients participating in the aggrega-
tion, which is a much more restrictive client-side knowledge condition. In practice, clients
estimate this value by making several tests with different values and analysing the model
updates returned by the server. However, in the vast majority of experimental works the
worst situation is assumed in which the adversarial clients know the number of clients of
each aggregation, for a better behaviour of the attack and a fair comparison between the
proposed defences [13].

3.1.4 Taxonomy according to the frequency

As training-time phase is maintained over long periods of time, training-time attacks can be
carried out at any time of the training and on one or several occasions [13]. We differentiate
between the following two categories:

• One-shot attack. The attack is carried out in a single moment of the training, in a
specific learning round. In Bagdasaryan et al. [13] the authors experimentwith back-
door attacks at different stages of convergence and conclude that converged model
attacks are more effective over several learning rounds, since the learning model
does not vary and the secondary task remains injected into the global model.

1We assume that the adversarial client is client 1.
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• Multiple or adaptive attack. The attacks are carried out continuously during the train-
ing process, either during all the learning rounds or a portion of them. They aremore
elaborate as the attackers have to become part of the aggregation in several rounds,
but this kind of attack can be more effective and stealthy [65].

3.2 Privacy attacks

Privacy attacks are designed to disclose information about the participants of a machine
learning task. Not only they pose a threat to the privacy of the data used to train the ma-
chine learning models, they also pose a privacy risk to those people who agreed to share
their private data. FL was thought of as a privacy preserving distributed machine learning
paradigm, however the learning process exposes a broad attack surface. While the private
data never leaves their owner, the exchanged models are prone to memorization of the pri-
vate training dataset. In this section, we present a wide taxonomy which aims to ease the
understanding of the diversity of privacy attacks. It is designed around the objective of the
privacy attacker, a summary of it is shown in Figure 7.

Privacy attacks

Property Inference

Individual
distribution

Population
distribution

Membership
Inference

Feature Inference Reconstruction

Parameter
based

Gradient
based

Figure 7: Representation of the taxonomy of privacy attacks in terms of the objective of the
privacy attacker.
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Figure 8: Gradient based Feature inference attack from Zhu and Han [15] applied to CI-
FAR10, CIFAR100 and SVHN datasets.

3.2.1 Feature inference attacks

Also known as Reconstruction attacks when referring only to HFL. The aim of these attacks
is recovering the dataset of a client who participates in a FL task. Usually the recovered data
are images or plain text. An example of the capabilities of such attacks can be seen in Figure
8. Particularly, in VFL the extracted data are the private features owned by the parties.
Accounting only for HFL, we can partition the Feature inference attacks according to the
federated clients’ attack surface, that is, the information exchanged between the clients and
the federated server:

• Gradient based: selected clients share their gradients with the federated server in
the communication rounds, that is, a federated SGD (Stochastic Gradient Descent)
based training procedure. Therefore, the attack surface is the clients’ gradients. To
our knowledge, Zhu and Han [15] are the first ones to exploit this setting. Their
proposed passive attack is able to recover images and text owned by the target client.
The attacker requires partial client-side knowledge, that is, accessing the gradients
shared by the attacked client. However, their attack depends on its initialization
and has stability issues. Zhao et al. [66] fixes the initialization and stability prob-
lems, but the attacker requires the batch size of the clients to be 1. With the same
attacker knowledge, Li et al. [67] propose a framework to measure the effectiveness
of passive Feature inference attacks on logistic regression models, whose inputs are
binary. Geiping et al. [68] and Ren et al. [69] propose different approaches to solve
the initialization and stability problems of [15] and their attacks can handle batches
of up to 100 and 256 elements, respectively. With the same attacker knowledge,
Wei et al. [70] propose an extensive study to measure the capabilities of passive re-
construction attacks focused on recovering images. They also propose a new attack
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which combines the attacks proposed in [15, 66]. To our knowledge, Jin et al. [71]
are the first ones to extend and improve the attack proposed by Zhu and Han [15]
to a VFL setting, having the attacker third party-side knowledge. In such setting,
the attacker can handle batches of up to 160 elements. When it comes to their HFL
setting, the attacker requires server-side knowledge. Their proposed attack seems
to be slightly better than the one proposed by Geiping et al. [68], but further exper-
imentation is required to confirm its superiority. The same can be applied to Ren
et al. [69], whose comparison with others than Zhu and Han [15] remains undone.

• Parameter based: selected clients share their local model parameters with the feder-
ated server in the communication rounds. Therefore, the attack surface is the clients’
parameters. Focused on reconstructing training images, Hitaj et al. [72] presents a
GAN-based active attack, where the key to train the GAN is using the global model
as discriminator. The attacker requires client-side knowledge as well as extra client-
side knowledge. The latter gathers the assumption that the target client and the at-
tacker share a label, so that the inference can occur on a non-shared target label. We
highlight that the attacker tricks the target client to release more information about
the target label by mislabelling the generated samples of the non-shared target label
as the shared label. In the same line,Wang et al. [73] changes the attacker knowledge
to server-side knowledge and changes the GAN architecture to a proposedmultitask
GAN. To further improve the effectiveness of their attack, the active attacker isolates
the target client, so it does not receive global model updates.

Steeping out of GAN-based attacks, Yuan et al. [74] focuses on reconstructing text
from natural language processing tasks, particularly, language modelling tasks. The
passive attacker is an observer of the federated train procedure, then she requires
access to the global model at each communication round and one of the following:
(1) to know whether the target client is selected for the communication round or
(2) to inject a record into the target client’s training data. That is, she requires partial
server-side knowledge and optionally partial client-side knowledge. Their proposed
attacks rely on the correlation between the privacy exposure and the clients selected
in each federated aggregation step.

The popularity of deep learning models in HFL cannot be denied, however in VFL a wider
range of machine learning models benefit from this setting. Luo et al. [75] designed passive
attacks for decision tree, logistic regression, random forest and neural network models. The
attacker requires from the target client the feature names, types and their value range, that is,
partial party-side knowledge, in addition to outsider-side knowledge. In two clients’ VFL set-
ting, focusing on logistic regression and XGBoost models with party-side knowledge Weng
et al. [76] propose a passive attacker that can reconstruct the features from the other client.
Although, the logistic regression attack also requires partial third party-side knowledge to
gather some coefficients.
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3.2.2 Membership inference attacks

The main objective of these attacks is to determine whether the provided data was used to
train the victim model given a client’s model and some data. In federated settings, they
are commonly carried out in the model training phase. Truex et al. [37] study the applica-
tion of Membership inference attacks to both non-federated and HFL settings. In the HFL
setting, their passive attack, inspired by Shokri et al. [77], considers two different attacker
knowledge paradigms: (1) where the attacker owns client-side knowledge and (2) where the
attacker owns outsider-side knowledge. Shokri et al. [77] show that the first form of knowl-
edge is more effective than the second one. Nasr et al. [40] propose an attack with active and
passive versions, each one with two options for attacker knowledge. The attack can have ei-
ther client-side knowledge or server-side knowledge, where the latter is the most powerful
one. Their attack consist in training a meta-classifier on the hidden layers output, the gradi-
ents, and outputs of the target client model. Such meta-classifier is a neural network with a
custom architecture suited for each part of the internal state of the victim model. In the fed-
erated setting, the attack is not as effective as in the centralised scenario, so two techniques
are introduced to boost the effectiveness of the attack. The first one is known as Gradient
Ascent. It consists in nullifying the effect of the gradient descent on the instances used to
test the attack. As a result, it broadens the difference between the data points used to train
the victim model and the data points not used to train the victim model. The second one
is known as Client Isolation. The objective of this technique is overfitting the victim model
by not sharing the global learning model with the victim client, that is, isolating the victim
client from any update. Overfitting makes the victim model retain more information about
its training dataset.
As data is a scarce resource, these attacks can be boosted by means of Feature inference
attacks to improve data availability [78, 79, 80]. Zhang et al. [79] is a great example of using
a GAN architecture for data augmentation to boost the effectiveness of the passive attacker
with client-side knowledge from Nasr et al. [40]. Increasing the attacker knowledge from
client-side knowledge to client-side and server-side knowledge, and making the attacker
active, Mao et al. [78] propose a similar use of a GANwith an attack inspired by the shadow
models attack of Shokri et al. [77]. Chen et al. [80] reduces the attacker knowledge to client-
side knowledge and extra client-side knowledge, that is, the labels owned by each client. In
addition, the attacker is passive. However, they add a new restrictive assumption, clients do
not share any label.
VFL is not free fromMembership inference attacks. In a two-client VFL setting, Li et al. [81]
proposes a passive attacker with party-side knowledge in a federated binary classification
task.

3.2.3 Property inference attacks

This kind of attacks, which are also known as attribute inference attacks, aims at extracting
whether a property of a client or a property of the population of participants in a FL task,
which might be uncorrelated with the main task of the machine learning model, is present

24



Pub. 1 - Overview 73

in the FL model. In other words, the aim is to infer some property of an individual or the
population which is not expected to be shared. An example of inferring an uncorrelated
property is the following: consider a machine learning model whose objective is to detect
faces, then the objective of the attack is inferring whether there are training images with
blue-eyed faces. As stated, we can categorize these attacks according to the target of the
attacker:

• Population distribution: the attacker tries to infer the distribution of a feature in a
population of federated clients. In a federated SGD environment, Wang et al. [82]
proposes a set of passive attacks. In conjunction, they can be used to infer the pro-
portion of each label in a communication round. This attacker requires client-side
knowledge and partial server-side knowledge, that is, the approximate number of
clients selected by the server in a single training round, the average number of la-
bels owned by each participant and the probable number of data samples per la-
bel. In a general HFL setting, Zhang et al. [16] reduces the attacker knowledge to
outsider-knowledge to perform a passive attack capable of inferring the distribution
of a sensitive attribute in the training population.

4 Defence methods against adversarial attacks: Taxonomy

At the same time that the diversity and complexity of adversarial attacks against FL is enlarg-
ing, new defences are emerging tomitigate their malicious effects. While adversarial attacks
can be split into disjoint categories, the same is not true for their defences as some of them
are effective for more than one type of attack category. Consequently, instead of grouping
defences according to the attack defended, we categorise them into three main groups ac-
cording to the federated scheme they are implemented in: client, server or communication
channel. Additionally, we specify the attacks each type of defence can defend against. In
this section, we propose a taxonomy for each of these three groups of defences and highlight
the most representative proposals of the state-of-the-art, which is shown in Figure 9.

4.1 Server defences

The federated server is usually assumed to be reliable, because it is a controlled and accessi-
ble federated element by FL experts, in contrast to clients that are independent and inaccessi-
ble elements. Accordingly, most of defence mechanisms are implemented on the federated
server. Within this type of defences, we present the following taxonomy. Note that some
defences may combine characteristics of two categories of the taxonomy. In this taxonomy,
we have classified the defences according to the category that we consider best represents
them.

4.1.1 Robust aggregation operators

The first and most common approach to defend against poisoning attacks to the federated
model is to use estimators that are statistically more robust than the mean to outliers or
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Figure 9: Representation of the taxonomy of defences against adversarial attacks.

extreme values. Some aggregation operators, such as FedAvg [83], are susceptible to outliers.
For that reason, many aggregation operators based on more robust estimators have been
proposed. We highlight the following ones:

• Median [84]: Is a robust-aggregation operator based on replacing the arithmetic
mean by the median of the model updates, which choose the value that represents
the centre of the distribution.

• Trimmed-mean [84]: Is a version of the arithmetic mean, consisting of filtering a
fixed percentage k-% of extreme values both below and above the data distribution.

• Geometric-mean [85, 86]: Represents the central tendency or the typical value of the
data distribution by using the product of their values. In other words, it chooses a
reliable vector to represent the local model updates through majority voting.
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• Norm thresholding [42]: Is a robust-aggregation operator, where the norm of the
model updates is clipped to a fixed value, effectively limiting the contribution of
each individual update to the aggregated model.

• Krum and Multikrum [87]. This aggregation operator is designed ad-hoc to prevent
attacks to the federatedmodel, so it is based on filtering out themodel updates of the
clients which present an extreme behaviour. For that, it sorts the clients according
to the geometric distances of their model updates distributions and chooses the one
closest to the majority as the aggregated model. Multikrum incorporates a 𝑑 param-
eter, which specifies the number of clients to be aggregated (the first 𝑑 after being
sorted) resulting in the aggregated model.

• Bulyan [88]. The authors design an federated aggregation operator to prevent poi-
soning attacks, combining the MultiKrum federated aggregation operator and the
trimmed-mean. Hence, it sorts the clients according to their geometric distances,
and according to a 𝑓 parameter filters out the 2𝑓 clients of the tails of the sorted
distribution of clients and aggregates the rest of them.

• Adaptive Federated Averaging (AFA) [89]. Proposal of a defence mechanism against
Byzantine attacks based on the weighting of each client using a Hidden Markov
model by means of the cosine similarity to measure the quality of model updates
during training. The authors report that it discards both poor and malicious clients,
improving the computational and communication efficiency.

• Residual-based Reweighting [90]. This method propose an improvement of the
median-based aggregation operator combining repeated median regression with
the reweighting scheme in Iteratively Reweighted Least Squares (IRLS) based on
reweighting each parameter by its vertical distance (residual) to a robust regression
line.

• Sageflow [17]. A defence based on staleness-aware grouping with entropy-based fil-
tering and loss-weighted averaging, to handle both stragglers and adversaries simul-
taneously. They establish a theoretical bound to provide key insights into its conver-
gence behaviour.

• Game-theory approach [91]. The authors design the aggregation process with a
mixed-strategy game played between the server and each client, where the valid
actions of each client are to send good or bad model updates while the server can
accept or ignore them. They weight the contribution of each client by means of the
probability of providing good updates, determined employing the Nash Equilibrium
property [92]. The main limitation is that it works only on IID training data distri-
butions, which is unusual for real-world federated data.

4.1.2 Anomaly detection

These defence methods consist in identifying adversarial clients as anomalous data in the
distribution of localmodel updates and remove them from the aggregation. For this purpose,
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multivariate or adaptations of univariate anomaly detection machine learning techniques
are applied.
In Shen et al. [93], the authors propose AUROR, a defence mechanism against poisoning
attacks in collaborative learning based on K-Means with 𝑘 = 2, thus distinguishing between
benign and suspicious clusters. Although it was a promising proposal, the main problem is
that in the presence of a non-IID distribution of data between clients it could fail to identify
clusters. In Andreina et al. [65], they experiment with different anomaly detection mecha-
nisms and combine the results with adaptive clipping and noise. Along the same lines, in
Sattler et al. [94] the authors propose to divide the model updates into clusters according to
the cosine distance and Preuveneers et al. [95] proposed an incremental defence based on
unsupervised deep learning anomaly detection system integrated in a blockchain process. In
a similar vein, Hei et al. [96] proposed an alert filter identification module in the blockchain
FL process. Also in a blockchain domain, HoldOut SGD is proposed in [97], which uses
the holdout estimation technique in order to select the model updates that are likely to be
adversarial ones. It consists in selecting two groups of clients: (1) the ones that use their
private data for training in order to send their model updates and (2) a voting committee
that use their private data as holdout data for selecting the best model update proposals us-
ing a voting scheme. This Graph-based anomaly detection has also been proposed in [55],
where the authors propose Sniper, a defence mechanism built upon the graph whose ver-
tices are the updates of the local models and the edges exists only if the two vertices are
close enough. They finally identify benign local models by solving a maximum clique prob-
lem in this graph. Another example is Nguyen et al. [98], where the authors propose an
anomaly based system based on a Gated Recurrent Unit (GRU) and test it on Internet of
Things (IoT) specific databases. Along the lines of using deep learning to detect anomalies,
Zhao et al. [99] employ GANs by using partial classes data to reconstruct the prototypical
samples of client’ training data for auditing the accuracy of each client’s model.
Themain problemwith anomaly-based approaches is that themodel updates are likely to be
very high dimensional, coming from neural networks in most cases. In Tolpegin et al. [54],
they propose to apply Principal Components Analysis (PCA) for dimensionality reduction
before anomaly detection. In Li et al. [100] they also propose a spectral anomaly detection,
which detects abnormal model updates based on their low-dimensional embeddings. The
main idea is to embed both original and poisoned samples into a low-dimensional latent
space and find these that differs significantly. Although these approaches reduce the prob-
lem to a low-dimensional problem, they have the limitation of losing information during the
dimensionality reduction.

4.1.3 Based on Differential Privacy

Even though privacy is a topic out of the scope of adversarial attacks to the federated model,
DP has been proven to be a viable defence method against these attacks [101, 42, 102]. How-
ever, it is also known that DP greatly deceives the performance of the model under circum-
stances of data imbalance [103, 104], which is expected to happen in most federated scenar-
ios. Applying DP to the aggregation operator overcomes it to some extent. DP-FedAvg [105],
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also known as Central DP, is a differentially private aggregation operator which stems from
the FedAvg operator. It shares some ideas with the robust-aggregation operators, given that
it removes extreme values by clipping the norm of the model updates, like the Norm thresh-
olding operator, and then adds Gaussian noise calibrated to the clip. To provide guarantees
of (𝜖, 𝛿)-DP, the order of Gaussian noise required is high enough to significantly reduce ac-
curacy of the federated task. In Sun et al. [42], they introduce an alternative to Central DP
aggregation operator, known asWeakDP, which shares the same aggregation procedure, but
it does not guarantee (𝜖, 𝛿)-DP nor any known privacy preserving property. It adds sufficient
Gaussian noise to defeat the adversarial attack and preserve the accuracy of the federated
task.

4.1.4 Modification of the learning rate

One of the advantages of the server is that it sets the learning rate that controls the weight-
ing between the previous version of the global model and the aggregate of the client model
updates by means of

𝐺𝑡 = 𝐺𝑡−1 + 𝜂Δ(𝐿𝑡1,… , 𝐿𝑡𝑛) (7)

where 𝐺𝑡 is the global model in the learning round 𝑡, 𝜂 is the learning rate, Δ the aggrega-
tion operator and 𝐿𝑡𝑖 the model update of the client 𝑖 in the learning round 𝑡. It can also
decompose 𝜂 in a vector of learning rates, one per dimension. Thus, the server controls
the participation in each dimension of the model updates. This decomposition approach
has been used in the literature as a defence mechanism against adversarial attacks to the
federated model.
Ozdayi et al. [18] propose Robust Learning Rate (RLR) as an improvement of signSGD [106].
It is a defence based on adjusting the server’s learning rate 𝜂, per dimension, at each learning
round according to the sign information of the clients model updates. For each dimension,
they examine whether the clients agree on the direction of the model update using a prede-
fined threshold. If the agreement is higher than required by the threshold, the learning rate
is maintained, otherwise the sign of the learning rate is changed. It can also be combined
with other defences, such as those based on DP.

4.1.5 Less is more

Another defence approach in the literature against adversarial attacks to the federatedmodel
is based on the fact that original task knowledge will be located in most of the weights in
the model, while the weights affected by poisoning attacks will be a small portion of them.
Based on this assumption, a post-training defence is proposed in [107], which consists of
pruning the resulting global model in order to protect it against attacks that may have taken
place during training. Specifically, the authors design a federated pruning method to re-
move redundant neurons from the neural network and to adjust the outliers of the model.
They propose two pruning approaches based on majority vote and ranking vote. The main
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limitation is that it is usually necessary to perform fine-tuning afterwards on a validation set
to compensate for the loss of accuracy caused by pruning.
In [108], the authors highlight that previous works ignore the issue of unbalanced data or
assume that the server owns this information. They focus on this issue and propose a practi-
cal weight-truncation-based preprocessingmethod, which achieves quite a balance between
model performance and Byzantine robustness. The novel truncation process is based on an
element-wise truncation as a function of some pre-fixed parameters. Although the choice
of parameters is a disadvantage, the authors propose procedures for selecting them.

4.2 Client defences

Server defences assume that the federated server is trusted as a data collector and aggregator.
However, this assumption might be too strong, therefore there is a requirement for defences
when the assumption of a trusted server is removed. In such situation, defences at client
level must be deployed and as a consequence, at least a portion of the clients is supposed to
be benign. In contrast to server-side protection which protects clients as a whole, client-side
defences are thought to be strongest as they provide protection for each client individually.

4.2.1 Based on Differential Privacy

Generally, these defences are designed to defend against server-side privacy attacks, al-
though some may protect clients from adversarial attacks. Local DP [105] based on the
DP-SGD algorithm presented in Abadi et al. [109], is the main client-side defence based on
DP. Subsequently authors have proposed improvements to Local DP in terms of DP relax-
ations, such as the f-DP [110]. Bu et al. [111] applies f-DP to aHFL setting, achieving a better
privacy analysis than Abadi et al. [109], that is, it provides a tighter usage of the privacy bud-
get. Its effectiveness against adversarial attacks has been studied [101], and in Bagdasaryan
et al. [13] the reduction in performance of this technique has been related to the reduction
of the effectiveness of the adversarial attack. Moreover, Cao et al. [112] designed a success-
ful adversarial attack aimed at Local DP protocols for frequency estimation and heavy hitter
identification. In order to stop the gradient leakage, that is, privacy attacks in federated SGD
settings, Yadav et al. [113], Hao et al. [114] and Wei et al. [115] made the shared gradients
differentially private to protect them. If instead of exchanging parameters or gradients in
HFL, clients share predictions of unlabelled data, it is possible to apply DP to protect from
privacy attacks. Such setting is known as Knowledge Transfer model [116], and it provides
privacy with a great preservation of utility using voting based approaches [117, 118, 119].
Regarding defences against privacy attacks based on DP in VFL, Wang et al. [120] propose
to perturbate the intermediate outputs shared between parties in the model training phase
of a Generalized Linear Model. Additionally, such perturbation removes the requirement
of a learning coordinator and the necessity of costly Homomorphic Encryption schemes, as
they are already private. However, it is a field to be explored in more depth because, to our
knowledge, it is the only publication inside it.
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Bhowmick et al. [121] step out of the standard Local DP protocol, to relax it and provide
only defence against Feature inference attacks, that is, they assume that the attacker does
not have any background data about her victim.

4.2.2 Perturbation methods

These are an alternative approach to provide defences against privacy attacks that are not
based on DP. Its main aim is to introduce noise to the most vulnerable components of the
federated model, such as shared model parameters or the local dataset of each client, to re-
duce the amount of information an attacker can extract. Zhu and Han [15] not only propose
a Feature inference attack, they also propose some defences against it, such as gradient com-
pression, which prunes gradients which are below a threshold magnitude. Lee et al. [122]
perturb the local client data with amultitask-based neural network. It preprocesses the data
to increase the distance with the original data while preserving useful features for themodel
training phase.
In the same line of multitask based defences, Fan et al. [123] perturb the local training by
means of a special loss in conjunction with an additional hidden neural network. Sun et al.
[19] perturb only the parameters related to fully connected layers as they build a reconstruc-
tion procedure that can effectively reconstruct data from such layers. Zhang andWang [124]
propose to use the technique known as Random Sketching [125] applied to shared client’s
parameters to defend against client-side privacy attacks. Trying to protect from the same
type of client-side attacks, Yang et al. [126] add a kind of perturbation to the parameters
that can be removed by the server, so attackers that intercepts them are not able to recover
information.

4.2.3 Optimised training

The optimisation of the benign clients training may be one way to prevent the federated
system from adversarial attacks. Chen et al. [127] propose to perform fine-tuning in benign
clients in order to increase the impact of these clients in the aggregation. They decide which
clients are benign ones by means of “matching networks”, which consist of measuring the
similarity between some inputs (themodel updates) and a support set (the last globalmodel).
This way, they succeed in identifying allegedly benign clients and can conduct fine-tuning.
In their experimental study, they succeed at filtering out backdoor tasks at the cost of reduc-
ing the performance of the original task.
One of the most recent works in this line presents the client-based defence named White
Blood Cell for Federated Learning (FL-WBC) [20], which aims to mitigate model poisoning
attacks that have already poisoned the global model. The author based the proposal on
identifying the parameter space where long-lasting attacks effect on parameters resides and
perturb that space during the local training of each client.
Themost widespread training approach aimed at preventing adversarial attacks to the feder-
ated model is adversarial training. These defences consist in taking advantage of the robust-
ness obtained from adversarial training in an FL setting. For example, in [128] the authors
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propose to use pivotal training, which enables a learning model to pivot on the sensitive
attributes with the aim of making the predictions independent of the sensitive attributes
embedded in the training data.

4.3 Communication channel defences

These defences cover the space of secure implementations of FL. They enable multiple
clients or parties to perform a global task, assuming the presence of some malicious actors
that try to deter it. For our purposes, such actors can be embodied as the attackers that per-
form some adversarial attacks mentioned before. While the privacy of inputs of the global
computing task is preserved, the output is revealed to some parties, if not all. Therefore, the
privacy of the output is not assured, although some privacy attacks are stopped because the
attacker loses access to the intermediate outputs of the global task such as the parameters
or gradients shared by the clients. In other words, these defences are capable of reducing
server-side knowledge to partial server-side knowledge, given that the server can only access
the aggregated model or the aggregated gradients.

Secure Multi-Party Computation Secure Multi-Party Computation (SMPC) protocols
are tightly related to Secure FL (SFL) protocols [129]. Note that we refer to SFL protocols as
FL protocols that attain the security in the simulation-based framework used to formalize
the notion of security [130, 131, 132]. SMPC relies on Homomorphic Encryption (HE) as
a key component to provide security. Consequently, HE can be regarded as the building
block of any SMPC protocol. It provides multiple cryptographic primitives which allow for
secure computations such as Secret Sharing [133], ZeroKnowledge Proofs [134] andGarbled
Circuits [135]. Most HE based protocols only support single key encryption, which might
pose a risk if the key is compromised, that is, a single point of failure. This situation has
been addressed in [136, 137], where the authors have developed SFL systems with multiple
encryption keys.
VFL settings heavily rely on SMPC protocols to perform the private entity alignment at the
beginning of the training. Additionally, when training and performing inference, partial up-
dates and predictions are shared and the final update and prediction is computed by means
of SMPC protocols.
The complexity of SMPC grows with the number of parties involved in the computation.
This fact reduces the feasibility of SFL as the number of parties in a FL task can be huge [104].
As a consequence, the idea of full-fledged SMPC protocols that involve the entire federated
training procedure are abandoned in favour of SMPC protocols that involve the communi-
cation steps in FL. As a remarkable example, a key step in HFL protocols, where SMPC
protocols can ensure security and efficiency is the aggregation step. Bonawitz et al. [138]
defined an efficient and robust SMPC protocol for the aggregation procedure and, later on,
studied its parameter selection [139]. Similar ideas and improvements have been explored
by multiple authors [140, 141, 142].
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To provide complete protection for both adversarial and privacy attacks, some additional
protection such as DP must be provided. SFL protocols which include DP as an additional
security measure have been developed [143, 144, 145, 146]. In addition, secure aggregation
schemes have been improved in terms of privacy with the addition of DP mechanisms [147,
148, 149, 150] .

Blockchain based FL In contrast to SFL protocols, Blockchain based FL enables a de-
centralized FL environment without single point of failure risks and improved scalability
[151, 152]. However, this emerging approach inherits the already existing security issues of
the blockchain: 51% attacks [153], forking attacks [154], double spending and reentrancy at-
tacks on the smart contract [155] amongst others. In addition, it requires a way to encourage
users to join the federated tasks to compensate the storage and computational usage [156].

5 Experimental study

The aim of the experimental study is to analyse how attacks behave under certain circum-
stances and which defences are effective for which attacks, in a comparative way. For this
purpose, we choose the highest-impact attack of each kind,2 according to the previous tax-
onomies, and we set the same experimental framework for each attack and test the perfor-
mance of the defences in this framework.
For each attack, we test the effectiveness of the defences in three different classification
images datasets:

• EMNISTDigits (ExtendedMNIST [157])3 [158]: it is an extension of the handwritten
digits dataset, MNIST. It has approximately 400,000 samples, of which 344,307 are
training samples and 58,646 are test samples.

• The Fashion MNIST4 [159]: it contains a balanced set of the 10 different classes of
images of clothes, containing 7,000 samples of each class. The dataset thus consists
of 70,000 samples, of which 60,000 are training samples and 10,000 test samples.

• TheCIFAR-105 dataset is a labelled subset of the 80million tiny images dataset [160].
It consists of 60,000 32x32 colour images in 10 classes, with 6,000 images per class.
The classes are: airplace, automobile, bird, cat, deer, dog, frog, horse, ship and truck.
There are 50,000 training images and 10,000 test images, which correspond to 1,000
images of each class.

For EMNIST and Fashion-MNISTwe employ a standard convolutional network used in Sun
et al. [42] depicted in Figure 10: two convolutional layers with a 3x3 kernel of 32 and 64

2The implementation of the adversarial attacks considered in the experimental study is the provided by the
authors in some cases, and the one developed by the authors of this paper thoroughly following the description
of the attack on its corresponding paper.

3https://www.nist.gov/itl/products-and-services/emnist-dataset
4https://github.com/zalandoresearch/fashion-mnist
5https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 10: Convolutional network architecture used in the experimental study for process-
ing the EMNIST and Fashion-MNIST datasets.

units followed by a 2x2 max pooling layer and a fully connected layer with 128 units with a
dropout of 0.5. For the CIFAR-10 dataset, we employ a Transfer Learning approach using
an EfficientNetB0 [161] model pretrained on ImageNet. A fully connected layer with 256
units is added to the pretrained model.
In the following sections, we analyse the results obtained in the adversarial attacks to the
model in Section 5.1 and to the privacy model in Section 5.2.

5.1 Adversarial attacks to the federated model

Although the taxonomy of attacks on the model presented is broad, in this study we analyse
those ones most used in the literature. We assume that all the attacks are performed at
training time and are multiple and static attacks, that is, the same attack is repeated in each
round of learning.
For the whole experimentation of adversarial attacks to the federated model, we consider
the following federated distribution of the datasets:

• The federated version of the Digits dataset of EMNIST, Digits FEMNIST. The Digits
dataset of the federated version of EMNIST, where each client corresponds to an
original writer.

• In Fashion MNIST, we set the number of clients to 500 and distribute the training
data among them following a non-i.i.d distribution caused by the fact that each client
randomly knows a subset of the total number of labels in the set.

• In CIFAR-10, we set the number of clients to 100 and distribute the training data
among them following a non-i.i.d distribution caused by the fact that each client
randomly knows a subset of the total number of labels in the set.

For all the experiments carried out in this section, we use the accuracy as our evaluation
measure.
Among the taxonomies presented, the one based on the existence of a specific target objec-
tive is probably the most significant. We use this classification to divide this section into

34



Pub. 1 - Overview 83

the following two subsections, corresponding to untargeted (see Section 5.1.1) and targeted
attacks (see Section 5.1.2).

5.1.1 Experimental study of untargeted attacks

Within this kind of attacks, we differentiate between: (1) those attacks that modify clients’
training data, producing an alteration of the models (data-poisoning attacks) and (2) those
that directly modify the weights of the learning models (model-poisoning attacks). In order
to provide a variety of experimentation, we choose the following attacks:

• Data-poisoning attacks: Random label-flipping attack andOut-of-distribution attack
(see Section 3.1.3). Clearly, to make these attacks effective, we combine them with
model-replacement techniques.

• Model-poisoning attacks: Random weights (see Section 3.1.3), which we also com-
bine with model-replacement.

Regarding the ratio of adversarial clients, we considered different distributions in order to
analyse the influence on both the performance of the attack and the defences. In particular,
we name 𝑥-out-of-𝑛 the situation where 𝑥 of the 𝑛 clients participating in the aggregation
are adversarial ones.
We chose as defences those that have been shown to be state of the art in the literature. In
particular, we use the following ones (see Section 4.1):

• Median and Trimmed-mean [84].

• Krum and Multi-Krum [87] with different values for the parameter 𝑑, which detail
the number of client selected. We consider 𝑑 = 5 and 𝑑 = 20.

• Bulyan [88] different values for the parameter 𝑓, which determines the tails of the
distribution to be filtered. We consider 𝑓 = 1 and 𝑓 = 2.

In Tables 1, 2 and 3 we show the results of assessing the different defences in label-flipping,
out-of-distribution data-poisoning attacks and random weights model-poisoning attack, re-
spectively. In the following, we analyse the behaviour of both attacks and defences in each
situation from different effectiveness and behaviour of the defences.

Effectiveness of the attack If we compare the effectiveness of the attack as a function of
the type of attack, we conclude that the most damaging attack is the randomweights attack.
In fact, this attack manages to totally confuse the federated model, to the extent that it be-
haves as amost frequent label classificationmodel. If we focus on the data-poisoning attacks,
we get that the label-flipping attack is sightly more effective than the out-of-distribution
attack. This is probably because the label-flipping attack learns mislabeled samples from
within the distribution, while the out-of-distribution attack, theoretically, only adds error to
samples from outside the distribution.
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Regarding the ratio of adversarial clients participating in each aggregation, we found that
there are significant differences, themost effective one being carried out by a single adversar-

Label-flipping Byzantine data-posioning attack
Federated EMNIST FashionMNIST CIFAR-10

1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50
No attack 0.965 0.965 0.962 0.871 0.871 0.869 0.835 0.835 0.823
FedAvg 0.159 0.421 0.400 0.191 0.366 0.432 0.118 0.143 0.244
Trim.-mean 0.942 0.873 0.837 0.867 0.832 0.861 0.823 0.734 0.822
Median 0.931 0.916 0.909 0.867 0.847 0.858 0.828 0.809 0.828
Krum 0.891 0.870 0.863 0.726 0.719 0.747 0.747 0.761 0.769
MultiKrum (5) 0.913 0.927 0.918 0.840 0.843 0.825 0.816 0.823 0.811
MultiKrum (20) 0.956 0.957 0.950 0.872 0.872 0.868 0.843 0.847 0.851
Bulyan (f=1) 0.952 0.781 0.580 0.868 0.783 0.787 0.826 0.659 0.645
Bulyan (f=5) 0.936 0.942 0.951 0.861 0.865 0.872 0.849 0.845 0.854

Table 1: Mean results for the label-flipping Byzantine data-poisoning attack in terms of ac-
curacy. We also show, in the first row, the expected accuracy with FedAvg but without any
attack.

Out-of-distribution Byzantine data-poisoning attack
Federated EMNIST FashionMNIST CIFAR-10

1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50
No attack 0.965 0.965 0.962 0.871 0.871 0.869 0.835 0.835 0.823
FedAvg 0.409 0.440 0.435 0.204 0.366 0.465 0.146 0.192 0.341
Trim.-mean 0.945 0.860 0.853 0.865 0.834 0.831 0.820 0.744 0.740
Median 0.934 0.920 0.914 0.866 0.846 0.845 0.822 0.801 0.807
Krum 0.869 0.866 0.862 0.736 0.706 0.728 0.720 0.731 0.740
MultiKrum (5) 0.916 0.933 0.919 0.849 0.843 0.834 0.830 0.819 0.802
MultiKrum (20) 0.954 0.954 0.950 0.874 0.871 0.873 0.860 0.851 0.852
Bulyan (f=1) 0.950 0.787 0.581 0.870 0.760 0.693 0.831 0.686 0.555
Bulyan (f=5) 0.935 0.938 0.950 0.871 0.865 0.875 0.844 0.849 0.848

Table 2: Mean results for the out-of-distribution Byzantine data-poisoning attack in terms of
accuracy. We also show, in the first row, the expected accuracy with FedAvg but without any
attack.

Randomweights Byzantine model-poisoning attack
Federated EMNIST FashionMNIST CIFAR-10

1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50
No attack 0.965 0.965 0.962 0.871 0.871 0.869 0.835 0.835 0.823
FedAvg 0.099 0.099 0.100 0.100 0.101 0.099 0.099 0.099 0.100
Trim.-mean 0.953 0.103 0.099 0.875 0.100 0.099 0.860 0.099 0.099
Median 0.936 0.935 0.934 0.865 0.861 0.855 0.849 0.866 0.864
Krum 0.831 0.865 0.854 0.715 0.745 0.734 0.718 0.716 0.799
MultiKrum (5) 0.932 0.922 0.919 0.834 0.834 0.827 0.816 0.811 0.816
MultiKrum (20) 0.956 0.957 0.951 0.876 0.875 0.867 0.848 0.848 0.853
Bulyan (f=1) 0.959 0.099 0.099 0.099 0.100 0.099 0.852 0.099 0.099
Bulyan (f=5) 0.937 0.937 0.951 0.874 0.869 0.874 0.850 0.841 0.851

Table 3: Mean results for the random weights Byzantine model-poisoning attack in terms of
accuracy. We also show, in the first row, the expected accuracy with FedAvg but without any
attack.
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ial client (1-out-of-30). While this may seem contradictory, there is an explanation. When
the attack is carried out by several clients, the boosting factor is divided among these adver-
sarial clients. This divides the strength of the attack among all the adversarial clients, which
thus weaken attack power, whereas when carried out by a single client, all the boosting is
reflected in a single attacker, making it more effective.

Behaviour of the defences As a general rule, the defences that best mitigate the effect of
the attacks areMultikrum (20) and Bulyan (f=5), withMultiKrum (20) standing out slightly.
As we have shown, although Bulyan is presented as an improvement of MultiKrum in com-
bination with trimmed-mean, if the pre-selected clients are benign clients, this truncation
is not necessary and even superfluous. On the other hand, the more basic defences such as
median and trimmed-mean show good enough behaviour in some experiments, even out-
performing MultiKrum and Bulyan with some parameters.
This superiority of the most basic defences over MultiKrum and Bulyan with specific pa-
rameter values evidences the high dependence of these defences on the values of the input
parameters. This behaviour matches with the assertion of the authors of MultiKrum and
Bulyan that they are the most robust defences with the optimal value of the input param-
eters. This dependency on the values of the input parameters represents an obstacle for
the use of these defences, since the value of some parameters is difficult to know, e.g. the
number of adversarial clients. A clear example of this problem is Bulyan (f=1) in the ran-
dom weights Byzantine model-poisoning attack, whose results are comparable to using no
defence at all by filtering out too few adversarial clients.
To conclude, untargeted attacks are highly effective, especially those based on model-
poisoning, which achieve random behaviour in the federatedmodel. The defences proposed
in the literature perform reasonably well, substantially improving the effect of the attacks,
even the simplest ones. However, none of them manage to completely dissipate the attack,
and the best-performing ones are highly dependent on configuration parameters, so there is
still room for improvement in designing defences against Byzantine attacks.

5.1.2 Experimental study of targeted attacks

In order to make a sufficiently broad experimental study, in this section we consider back-
door attacks from the two main groups presented: (1) Input-instance-key strategies and (2)
pattern-key strategies. With respect to attacks implementing input-instance-key strategies,
we perform a single attack where the target samples correspond to some samples belong-
ing to the adversarial clients for each dataset and associate them with a specific target label.
However, with respect to the pattern-key attacks, we choose a different static for each dataset,
single and accessory injection pattern.
We chose the state of the art against Backdoor attacks as baselines. In particular, we use the
following ones (see Section 5.1.1):

• Median and Trimmed-mean [84].
• Norm-clipping [42].
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• Weak Differential Privacy (Weak DP) Sun et al. [42].
• Robust Learning Rate (RLR) Ozdayi et al. [18].

For these defences based on clipping and noise addition, we use 𝑀 and 𝜎 to specify both
the clip factor and the noise added, respectively. For the experiments, we choose the values
recommended by the authors.

Study of Input-instance-key attacks In Table 4 we show the results obtained after test-
ing the input-instance-key attack and the different defences. For the implementation, we
randomly select some samples of the adversarial clients and associate them with the target
label “0”. We evaluate the effectiveness of the attack, showing both the original and back-
door performances. We measure the original performance using the mean accuracy in the
original test dataset and the backdoor performance by means of the mean accuracy in the
set of selected samples for the attack.

Input-instance backdoor attack
Federated MNIST FashionMNIST CIFAR-10

𝑀 𝜎 Original Backdoor Original Backdoor Original Backdoor
No attack 0 0 0.965 - 0.871 - 0.835 -

FedAvg 0 0 0.866 0.823 0.804 0.944 0.612 0.903
Median 0 0 0.944 0.030 0.875 0.032 0.861 0.140
Trim.-mean 0 0 0.952 0.025 0.872 0.016 0.863 0.133
NormClip 3 0 0.960 0.876 0.863 0.144 0.843 0.115
Weak DP 3 2.5e-3 0.937 0.157 0.843 0.119 0.823 0.093
RLR 0.5/0.5/1 1e-4 0.954 0.012 0.863 0.002 0.853 0.014

Table 4: Mean results for the input-instance backdoor attack in terms of accuracy. We also
show, in the first row, the expected accuracy with FedAvg but without any attack.

If we first analyse the effectiveness of the attack (see row of FedAvg and Backdoor columns)
we find the attack is relatively effective, with the result in FashionMNIST standing out, and
always being higher than 0.82 accuracy. However, if we focus on the stealthiness we note
that this type of attack lacks this valuable quality, even affecting the performance on the
original task (see row of FedAvg and Original columns) in 22 points of accuracy (CIFAR-10).
Regarding the performance of the defences, we find that every one of the defences leads to a
substantial improvement, both increasing the original task accuracy and reducing the back-
door task accuracy. In addition, we would like to highlight the good performance of the
simpler defences, such as trimmed-mean, which achieves very competitive results. If we
analyse the state-of-the-art defences (Weak DP and RLR), we found the results to be appro-
priate, but perhaps a mite disappointing on a complexity-performance trade-off compared
to the other defences. Moreover, there are likely to be other 𝑀 and 𝜎 parameters that opti-
mize the results of these defences, but they are not known in advance, which is the main
weakness of such parameter-dependent defences.

38



Pub. 1 - Overview 87

To conclude, input-instance-key backdoor attacks are considerably powerful, performing
better in the backdoor task than in the original one, but being too eye-catching and detri-
mental to the original task. Moreover, although the defencesmitigate the effect of the attack,
none of them completely dissipate it, so there is still plenty of scope for further research.

Study of the pattern-key attacks Table 5 shows the results obtained after testing dif-
ferent pattern-key attacks with the considered defences. We implement the attacks by ran-
domly selecting the adversarial clients and poisoning some of their samples with different
patterns. In particular, we use the following patterns of different levels of difficulty accord-
ing to the number of pixels: (1) one single black pixel for FederatedMNIST, (2) a red cross of
length 4 for Fashion MNIST (8-pixel pattern) and (3) a white pixel in each of the corners of
the image (4-pixel pattern) for CIFAR-10. We evaluate both the effectiveness and the stealth-
iness of the attack. Wemeasure the stealthiness of the attack bymeans of themean accuracy
obtained in the original task (Original). We also evaluate the effectiveness of the attack in
terms of two additional tests: (1) Backdoor, which contains the poisoned samples of the ad-
versarial clients and (2) Test, which represents the test of the backdoor task and is composed
of test samples poisoned following the specific pattern. Therefore, an attack will be more
effective the higher the performance it obtains in both the original and the backdoor task,
while a defence will be better if it manages to maintain the performance in the original task
while decreasing the performance in the backdoor task as much as possible.

Pattern-key backdoor attack
Federated MNIST FashionMNIST CIFAR-10

𝑀 𝜎 Original Backdoor Test Original Backdoor Test Original Backdoor Test
No attack 0 0 0.965 - - 0.871 - - 0.835 - -

FedAvg 0 0 0.974 1.0 1.0 0.843 0.999 0.944 0.413 1.0 0.99
Median 0 0 0.954 0.009 0.015 0.873 0.067 0.053 0.854 0.193 0.183
Trim.-mean 0 0 0.966 0.011 0.014 0.872 0.052 0.065 0.853 0.194 0.170
NormClip 1 0 0.968 0.055 0.053 0.843 0.143 0.164 0.834 0.143 0.131
Weak DP 1 2.5e-3 0.935 0.093 0.0175 0.869 0.053 0.074 0.859 0.144 0.170
RLR 1 1e-4 0.962 0.008 0.008 0.870 0.020 0.031 0.856 0.073 0.061

Table 5: Mean results for the pattern-key backdoor attack in terms of accuracy. We also show,
in the first row, the expected accuracy with FedAvg without any attack. The best result for
each of the test sets is highlighted in bold.

Regarding the effectiveness of the attack without any defence (see row of the FedAvg and
Backdoor and Test columns), it reaches a performance of 100% or close to it, which shows
it harmfulness. However, if we analyse the stealthiness of the attack (see row of the FedAvg
and Original columns), the conclusions depend on the dataset. While in Federated MNIST
and Fashion MNIST the performance in the original task is maintained or even improved,
the performance in the original task in CIFAR-10 is reduced by up to half.
Regarding the behaviour of the defences, we also obtain a substantial improvement with
respect to the scenario without any defence with all of them. As in the untargeted attacks,
the simplest defences obtain competitive results, even outperforming the most complex de-
fences in some situations. In general, deciding which defence is superior is not a trivial task.
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Since it is a matter of achieving the best trade-off between performance in the original task
and dissipation of the backdoor attack. For example, RLR achieves in Federated EMNIST
the best defence against the attack, but it is more detrimental to performance on the original
task. However, in general, we can affirm that it is the best performing defence, standing out
particularly in CIFAR-10.
To conclude, pattern-key backdoor attacks are highly threatening attacks, as they achieve
almost 100% success in the backdoor task, without, in most cases, harming the performance
of the original task. Defences manage to dissipate the effect of the attack in the backdoor
task, but in most cases impair performance in the original task. Therefore, in this case, the
key is to find the trade-off between mitigating the attack and not harming the performance
of the model.

5.2 Privacy attacks

Even tough there is a wide range of privacy attacks, in this section we study those which
meet the following requirements:

1. The attack is performed while the federated model is being trained. As a conse-
quence, most defences are aimed to make the training secure from privacy attacks.
Alternatively, the defences mask or perturb the shared information to make it less
vulnerable.

2. The description of the attack and its setup in its publication is enough to implement
it or an implementation which matches the publication is publicly available. The
same applies for defences.

The found privacy attacks that matched our requirements allowed us to divide this section
into the following two subsections, corresponding toMembership inference attacks (see Sec-
tion 5.2.1) and Feature inference attacks (see Section 5.2.2), restricted to HFL scenarios.

5.2.1 Experimental study of Membership inference attacks

We choose to implement the federated white-box Membership inference attack from Nasr
et al. [40] using the source code publicly available for the white-box centralized setting6
as there is no public implementation of the federated version. Both clients and server can
be the attacker. On the one hand, when the attacker is the client, her objective is to infer
the membership of data points belonging to other clients. On the other hand, when the
attacker is the server every client is attacked individually, thus the objective is to infer the
membership of data points for each client. We mainly focus on their server side attack or
global attacker as it is the most powerful, that is, it poses the highest threat to privacy.
Wemake our federated scenarios the same as the ones proposed inNasr et al. [40], which rep-
resents a small population of clients with big amounts of sensitive data such as banks or hos-
pitals, willing to jointly train a privacy preserving deep learning model. As each client owns

6https://github.com/privacytrustlab/ml_privacy_meter
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great quantities of data, some records can be duplicated among them, that is, the dataset
owned by each client is sampled uniformly with replacement from the following datasets:
EMNIST, Fashion MNIST and CIFAR-10. Consequently, each of them is divided between
4 clients and each client owns a sample of half the size of the entire dataset, sampled with
replacement.
Each federated task is run for 300 roundswhere each client shares her localmodel after each
local training epoch and the attacker observes the rounds: 50, 100, 200, 250 and 300. The
attack is trained for 100 epochs and the model with best testing accuracy is selected. The
attacker training dataset is made of 4000 random samples belonging to each attacked client,
4000 random samples which do not belong to any client and each one is labelled according
to its membership to the attacked client. For all the experiments, the batch size is set to 32.
We highlight that this federated setup is taken from Nasr et al. [40].
We report the average accuracy and AUC of the global attacker in the described settings
in Table 6. Note that, the membership inference attack is performed by a binary classifier,
therefore the choice of the classification threshold is key to separate between member and
non member instances. An attacker with background knowledge may have the ability of se-
lecting a classification threshold that maximizes the separation between member and non
members, leading to a greater privacy leakage [162]. While the authors of the attack focus
on reporting accuracy, we have found in our experiments that the AUCmetric better shows
the capabilities of the attacker, due to the fact that AUC is independent of the classification
threshold used to perform the inference. This decision is also driven by the fact that a single
classification threshold only represents a possible attacker, therefore we need a way of evalu-
ating every possible attacker, including those with great amounts of background knowledge.
We can observe that in our experiments the attack is barely effective, as both accuracy and
AUC are close to 0.5. We also highlight that the Gradient Ascent technique does not bring
significant performance improvements, probably because it is hard to calibrate. While in
the MNIST dataset we see that the attack is not successful, in the other the membership of
some instances is revealed, so there is a privacy leak, although it is very small.
We also report the success of the attack with the state-of-the-art defence Local DP in Table 6.
The privacy budget in each client of the Local DP is 𝜖 = 3, 𝛿 = 10−5, which is considered in
the literature to be a high privacy budget. We employ the AutoDP framework7 to calibrate
the differentially private Gaussian noise to the privacy budget using Renyi DP [163]. We can
observe that this defence is quite successful as it avoids leaking anymembership information,
thus making the attack classifier behave randomly.
In Table 7, we can see the accuracy of the federated taskwith the attack. As noted before, the
Gradient Ascent technique degrades the accuracy of the federated task, mainly due to the
fact that some of the instances which were absent belong to the federated test set. While this
is true for the MNIST and Fashion MNIST datasets, it is not true for the CIFAR-10 dataset.
It might be because of the transfer learning approach used for this dataset being more re-
silient to gradient direction changes. As expected, DP based defences reduce the accuracy

7https://github.com/yuxiangw/autodp
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Membership Inference attack
Without Local DP defence With Local DP defence

Client Isolation Client Isolation +
Gradient Ascent Client Isolation Client Isolation +

Gradient Ascent

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

MNIST 0.501 0.502 0.489 0.502 0.500 0.497 0.496 0.500
Fashion MNIST 0.513 0.546 0.511 0.516 0.500 0.499 0.497 0.500
CIFAR-10 0.540 0.551 0.500 0.528 0.500 0.500 0.500 0.500

Table 6: Accuracy and AUC of the global federated attack from Nasr et al. [40] with and
without Local DP defence.

of the federated task. The smallest reduction of federated task accuracy is achieved with
the CIFAR-10 dataset, which confirms that the transfer learning approach is more resilient
to gradient changes, moreover the Gradient Ascent technique does not change significantly
the accuracy when applied.

Membership inference attack
Without Local DP defence With Local DP defence

Client Isolation Client Isolation +
Gradient Ascent Client Isolation Client Isolation +

Gradient Ascent

MNIST 0.990 0.100 0.672 0.100
Fashion MNIST 0.910 0.100 0.579 0.100
CIFAR-10 0.862 0.862 0.686 0.668

Table 7: Federated task’s accuracy while the global federated attack from Nasr et al. [40] is
performed with and without Local DP defence.

In this experimental study, we have explored the performance of a Membership inference
attack on a federated setting of few clients with big amounts of data. We have found that the
success of the attack is small, even though the membership of some instances was revealed.
The DP based defence stopped these privacy leaks, at the cost of a considerable reduction
of the federated task accuracy. Additionally, we have found that using a transfer learning
approach might reduce the impact of DP in the federated task accuracy while also being
resilient to the Gradient Ascent technique which has drastically reduced the federated task
accuracy with the other datasets and deep learning approaches.

5.2.2 Experimental study of Feature inference attacks

We studymultiple gradient based Feature inference attacks, which use stolen gradients from
the federated training procedure. Particularly we focus on the attacks described in Zhu and
Han [15], Geiping et al. [68], Wei et al. [70]. In order to do it, we use the code provided with
each publication, which is publicly available.8,9,10

8https://github.com/mit-han-lab/dlg
9https://github.com/JonasGeiping/invertinggradients
10https://github.com/git-disl/CPL_attack
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The federated scenario which fits these attacks is the following: clients with very little data,
such as IoT devices or smartphones, which run a federated task where they share gradients
from small batches. We study under which circumstances we can reconstruct images from
gradients. Our study focuses on three aspects to evaluate the success of these attacks:

• Success rate. The approximate probability of convergence of each attack. The ma-
jority of the attacks studied in this section are known to have stability issues, that is,
their convergence greatly depends on the initialization seed used to bootstrap them.
For Wei et al. [70] and Zhu and Han [15], we choose as initialization a geometric
pattern which improves both convergence rate and speed. It consists in covering a
small portion of the initialization space with a random image and duplicate it to fill
the feature space. In our experiments, we choose 1/4 of the feature space as in Wei
et al. [70]. For the attack of Geiping et al. [68], we choose random initialization, as
it does not seem to be affected by the choice of the initialization pattern.

• Training stage of the local model at which the attack can succeed. Most of
the studied attacks consider an untrained model as they claim that the attack can
run at any point of the training procedure, however this claim does not seem to have
a lot of experimental support. As a consequence, we want to confirm such claims
and find whether the stage of training of the local model is relevant to the success of
the attack.

• Success of the defences against Feature inference attacks. We study the per-
formance of two state-of-the-art defences: gradient compression and the addition of
Gaussian noise, which are known to thwart the effectiveness of the attack from Zhu
and Jin [164], so we evaluate whether these defences are also applicable to the other
attacks.

We begin our study analysing the success rate of each attack, as they are known to suffer
from stability issues [70]. We run each attack with gradients from an untrained simple con-
volutional model LeNet [165] as in [70, 15] with a batch size of 1. Each attack is run until
one of the following conditions is satisfied:

• Success condition: for the attacks [70, 15], we consider that the attack is success-
ful if the Mean Square Error (MSE) with respect to the target image to reconstruct
is smaller than 0.5 and the Multi-Scale Structural Similarity (SSIM) [166] is greater
than 0.5. The purpose of these criteria is twofold, the former ensures that the recon-
structed image is close enough to the target image and the latter ensures that the
reconstructed image is perceptibly similar to the target image.

• Failure condition: if the maximum number of epochs set for the attack is reached
without satisfying any of the conditions stated above, then we consider the attack is
marked as a failure. In other words, the attack failed to converge.
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Additionally, we want to study whether the training stage at which the attack is performed
is relevant. To do so, we run each attack at different moments of the local training process:
before any training, after 1, 5 and 10 rounds of training. Each attack is going to try to re-
construct an image that belongs to their training set, but it has not been used to train the
model previously. We report the success rate of each attack across 25 runs, using the same
end conditions specified before.
The experimental results of the study of the success rate and the training stage of the
local model at which the attack can succeed are shown in Tables 8, 9 and 10. First,
we highlight the results from Table 10 that show that the attack from Geiping et al. [68] is
independent of the considered training stage of the local model. The same is not true for
the results in Tables 8 and 9. In its first column of results, we can see that the attacks have
almost no issues to converge when the local model is not trained, so we can conclude that
if the appropriate initialization method is chosen, the attacks are almost 100% guaranteed
to converge. If we observe the remaining columns of the Tables 8 and 9, the results change
considerably. The attack from Wei et al. [70] (Table 9) has slightly better convergence rates
than the attack fromZhu andHan [15] (Table 8), both show a similar trend: themore trained
the model is, the harder it is for the attacks to achieve success.
The complexity of the dataset has an important role in the success of the attacks from [70]
and Zhu and Han [15]. Both EMNIST and Fashion-MNIST are considered easier datasets,
as there are many works that achieve high training accuracy after few epochs of training
[167, 168]. The same is not true for CIFAR-10, as more complex models are required to
achieve a reasonable accuracy [169, 170]. EMNIST and Fashion-MNIST images are hard

Feature inference attack
Dataset Before training After 1 training epoch After 5 training epochs After 10 training epochs

EMNIST 1 0 0.04 0
Fashion-MNIST 1 0.28 0 0.08
CIFAR-10 0.96 0.80 0.60 0.68

Table 8: Success rate of 25 trials of reconstructing an image from a shared gradient of a
local model with the attack from Zhu and Han [15]. We run the attack at different stages of
training of the local model. Before trainingmeans that the local model has not been trained
at all.

Feature inference attack
Dataset Before training After 1 training epoch After 5 training epochs After 10 training epochs

EMNIST 1 0 0 0
Fashion-MNIST 1 0.32 0.12 0.24
CIFAR-10 1 0.96 0.84 0.80

Table 9: Success rate of 25 trials of reconstructing an image from a shared gradient of a local
model with the attack from Wei et al. [70]. We run the attack at different stages of training
of the local model. Before trainingmeans that the local model has not been trained at all.
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Feature inference attack
Dataset Before training After 1 training epoch After 5 training epochs After 10 training epochs

EMNIST 1 1 1 1
Fashion-MNIST 1 1 1 1
CIFAR-10 1 1 1 1

Table 10: Success rate of 25 trials of reconstructing an image from a shared gradient of a
local model with the attack from Geiping et al. [68]. We run the attack at different stages of
training of the local model. Before trainingmeans that the local model has not been trained
at all.

Figure 11: From left to right, reconstruction using the attack of Wei et al. [70] of an image
with label 0 from Fashion-MNIST dataset which correspond to the t-shirt/top category, after
1, 5 and 10 epochs of local training.

to reconstruct after 1 training epoch, that is, the gradients after 1 training epoch leak little
information about the datasets. An example of such difficulties is shown in Figure 11. In
contrast, in CIFAR-10 the training model takes longer to converge and gradients leak a lot
of information, even after 10 epochs of training. The main reason that allows us to under-
stand this behaviour is the fact that both attacks try to mimic the structure and content of
the shared gradient (that is, minimizing the MSE between the shared gradient and the re-
constructed image), so the more information is stored in the gradient, the easier the recon-
struction process is. In other words, gradients that more significantly change the weights of
the model make the reconstruction process easier. This is not true for the attack from [68],
as its objective is to minimize the cosine similarity between gradient vectors.
To end our study, we study the performance of two state-of-the-art defences:

• Gradient compression with 20% sparsity.
• The addition of Gaussian noise with variance of 10−2.

We run each attack with defences 25 times with a batch size of 1, with the model untrained
and report the success rate of each attack.

In Table 11, we can observe the stunning performance of both defences as they completely
stop the attacks of [15, 70] from achieving success. While the addition of Gaussian noise
of this magnitude is known to reduce the performance of the task [15], the gradient com-
pression defence can handle higher compression rates without significantly hurting perfor-
mance [171]. When it comes to the attack of Geiping et al. [68], we find that the Gaussian
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Feature inference attack
Attack of Zhu and Han [15] Attack of Wei et al. [70] Attack of Geiping et al. [68]

Dataset Gaussian
noise

Gradient
compression

Gaussian
noise

Gradient
compression

Gaussian
noise

Gradient
compression

EMNIST 0 0 0 0 0 0.04
Fashion-MNIST 0 0 0 0 0 0.48
CIFAR-10 0 0 0 0 0 0.12

Table 11: Success rate of 25 trials of the reconstruction attacks from [15], [70] and Geiping
et al. [68] with Gaussian noise and Gradient compression defences.

Figure 12: From left to right, reconstruction using the attack ofGeiping et al. [68] of an image
with label 0 from EMNIST dataset, without any defence, with Gaussian noise defence and
with Gradient compression defence.

noise defence is as effective as in the other attacks. This might be due to the differentially
private properties of the Gaussian noise. However, the Gradient compression defence fails
to completely stop the attack of Geiping et al. [68]. Specially for the Fashion-MNIST dataset,
where almost half of the times the attack succeeded. An example of a reconstruction trial
with and without defences is shown in Figure 12, and gives a hint of the behaviour of the
attack. Gradient compression is the worst performing defence, probably due to the fact that
compressing the gradient does not affect the task of minimizing the cosine similarity be-
tween the shared and the reconstructed image gradient.
In conclusion, the Feature inference attacks studied in this section pose a high risk to pri-
vacy, as there aremany attacks that succeed at extracting private information from gradients.
Luckily, there are defences that can thwart the success rate of the attacks and provide privacy
without significantly changing performance of the trained model. However, this is not true
for all the analysed attacks, there is still room for improvement as the attack from Geiping
et al. [68] seems to be able to escape them in some situations. Additionally, this threat is not
only related to FedSGD scenarios, it is also related to federated scenarios where parameters
are exchanged between clients.
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6 Guidelines for the application of defences against adversarial attacks

Due to the large number of attacks identified, and the wide variety of defences proposed
in the literature, it can be difficult to choose which type of defence is appropriate for each
situation. Moreover, most defences are designed with the objective of defending against a
particular adversarial attack. However, as a collateral benefit, they can prevent the success
of other types of adversarial attacks.
In this section we provide some guidelines in terms of a summary of which categories of
defences work to defend the identified categories of attacks, specifying the degree to which
they do so.
In Table 12 we summarize which categories of defences are able to defend against attacks to
themodel and privacy attacks, respectively. For the sake of clarity, we represent the relation-
ship between categories of attacks and categories of defences. Hence, when we affirm that
a category of defence is able to defend against a category of attacks, this means that there is
at least one defence belonging to that category which is able to defend against them.
In this line, we differentiate between:

• Complete defence : the defence category is able to stop the attacks of the attack
category.

• Partial defence : the defence category is able to significantly reduce the perfor-
mance of the attacks of the attack category but not stop them.

• No defence : the performance of the attacks of the attack category is not affected
significantly by the defence category.

• Unknown defence : there is neither enough experimentation available nor theo-
retical support to assess the behaviour of the attacks of the attack category with the
defence category.

The summary of the state of the art provided in the Table 12 allows us to draw the following
conclusions:

1. In general, defences based on DP, which are designed to defend against privacy at-
tacks, partially defend against attacks to the model, specially those based on DP, but
not the other way around.

2. Broadly speaking, the defence against attacks to the model is more settled than the
defences against privacy attacks. In particular, for property inference attacks, there
is no defence considered as complete.

3. There is still a long way to go in designing defences to prevent attacks in FL and,
crucially, to find a defence that prevents all types of attacks at the same time.
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Attacks to the federated model Privacy attacks
Untargeted Targeted Property Membership Feature

Server defences

Mod. of
learning rate
Robust agg.
Anomaly de-
tection
Based on DP
Less is more

Client defences
Based on DP
Optimized
training
Perturbations
methods

Comm. channelBlockchainSMPC

Table 12: Most recommendable defence methods to attacks to the federated model and pri-
vacy attacks, respectively.

7 Lessons learned

Based on the extensive research and analysis of the available works, we have built up the
taxonomy proposed in this paper. However, what has been learned goes beyond this. To
sum up, the lessons learned are:

1. The identification of vulnerabilities in the form of adversarial attacks and the pro-
posal of defences against them in FL is a field of research in continuous development.
The volume to date of scientific work covering these challenges is growing and is not
likely to diminish in the coming years.

2. Attacks to the federated model are easier to defend against than privacy attacks.
However, they have shown much greater effectiveness, with even the simplest at-
tacks being detrimental to the model.

3. Privacy attacks require very peculiar settings to achieve a reasonable success, that
is, most of the assumptions required to perform them are very hard to achieve in
real FL scenarios. Such scenarios are usually bounded by the lack of the following
resources: data, raw computing power and time.

4. Most defences against inference attacks, although designed for them, dissipate the
performance of attacks against the federated model, but not the other way around.
Therefore, the use of DP-inspired mechanisms will be crucial if we want to defend
against generic category attacks.

5. The implementation of defences based on DP and based on perturbation methods
require extensive fine-tuning in order to provide a nice trade-off betweenprivacy and
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performance. Most of the defences require access to big computational resources,
or they are too slow to apply. Therefore, such defences might not be suitable for
FL settings with low power devices. Additionally, to our knowledge, there is not a
consensus about how to measure the trade-off between privacy and performance.

To finish, a fundamental lesson learned is that the field of adversarial attacks and defences
in FL is a research area in steady development, which is not expected to change in the forth-
coming years. There are still many vulnerabilities which need to be faced in order to ensure
a truly secure and privacy-preserving learning environment.

8 Challenges of addressing federated learning threats

Regarding the previous lessons learnt, we identified the following challenges that the field
will have to face up in the next years.

Defences vs. attacks An identified trend is that for each defence proposed, it is possi-
ble to identify a vulnerability that can be turned into an adversarial attack, and vice versa.
Therefore, one of the biggest challenges is to find both: (1) all vulnerabilities present in a FL
scenario that an attacker could exploit, and (2) a defence effective enough to defend against
any attack. For the time being, this seems a long way off, as the different perspectives from
which both problems have been approached are ad hoc to the type of attack to be identified
or defended. From our point of view, the study of defences is crucial, since the final goal is
to achieve a secure, robust and private learning environment. Along this vein, the optimal
defence will be the one that combines the best proposals in each of the categories, in such
a way that it manages to defend against all types of attacks while maintaining performance
in the original task. There are existing approaches that combine client’s filtering with noise
addition [18], although there is still a long way to go.

Trade-off in defences In most defences, we find that it is difficult to strike a trade-off
between preventing themodel from attacking and not impairing performance in the original
task. For example, in those based on DP, we find that in order to ensure data privacy, a large
amount of noise has to be added, which significantly impairs the performance of the model
[103]. Therefore one of the main challenges would be the development of more efficient DP
methods, and the extension of DP to defences against all adversarial attacks. This situation
also occurs in defences based on client filteringwhenmore clients thannecessary are filtered
out, thus losing information in the aggregation process. In short, it is difficult to strike a
trade-off between preventing an attack and not losing or poisoning the information received
by clients.

Non-IID assumptions The non-IID nature of the training data distributed among clients
often makes it difficult to differentiate between adversarial clients and those who have had
a very different from the rest, but still valuable, learning process. One common approach is
to use anomaly detection algorithms suitable for non-IID distributions [172] or approaches
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which do not rely on data distribution [107], however, there are still problems in differen-
tiating between clients with a highly skewed distribution and adversarial clients in most
cases.

Generalised FL The vast majority of adversarial attacks have been identified for HFL. In
particular, the adversarial attacks to the federated model. Although there is already exist-
ing work on privacy attacks in VFL [81], there is still a long way to go in identifying and
analysing the vulnerabilities in terms of leakage of information of attacker possibilities in
other categories of FL wich are becoming widely used such as VFL or FTL [173]. Therefore,
we believe that in the coming years, work on identifying attacks for VFL and FTL and the
research in defences against them will take centre stage.

Combination with other trends While ensuring data privacy is one of the main goals
of FL, there are other desirable features. For example, some of the most popular trends
are Personalized FL [174] or fairness in FL [175]. We believe that, at the end of the day, data
security and privacymust be a requirement in all other approaches. Therefore, several future
workswill address this issue as a cross-cutting objectivewhile developing proposals formore
concrete desirable features. For example, a method of personalized FL that is secure against
adversarial attacks.

9 Conclusions

FL emerges as a solution to the computational costs and privacy-preserving demands of
the most groundbreaking ML. However, this new learning paradigm brings new challenges,
particularly in terms of adversarial attacks and defending against them. Hence, several pro-
posals of new adversarial attacks or adaptations of centralised ones as well as defences ad
hoc to these attacks have been proposed in the recent years.
We proposed several taxonomies according to different criteria that eases the knowledge of
the wide field of FL threats. In addition, we conducted an extensive experimental study
which leads us to propose guidelines for the application of defences against adversarial at-
tacks, and to highlight a set of lessons learned and challenges related to FL threats.
We conclude that the study of FL threats is an ongoing field of research, due to its impor-
tance in ensuring FL as a robust machine learning paradigm that safeguards data privacy.
There are still several challenges to be faced and directions to be studied in order to identify
additional threats (or vulnerabilities) of FL, as well as the appropriate mechanisms to make
it a resilient and robust learning paradigm against those threats.
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1 Introduction

Federated learning (FL) is a nascent learning paradigm based on the distributed training of
a learning model among a set of clients under the orchestration of a central server, while
keeping the training data sequestered in those clients [1, 2, 3]. FL is vulnerable to adver-
sarial attacks as machine learning systems are [4], but the distributed nature of FL and the
inaccessibility of the data hinder the defense against those malicious attacks [5, 6, 7]. Since
the capacity of the adversarial clients of misleading the behavior of the FL model, injecting
a backdoor attack or breaking the data privacy, the development of robust and resilient FL
aggregation operators to those adversarial clients is a real need [8].
The aim of an adversarial attackmay be to poison the FLmodel [9], or to infer any properties
of the training data as in the inference attacks [10]. Likewise, the attacks to the FL model
may have an specific target [11], or theymay only focus on hindering the performance of the
FL model without any particular target, as the Byzantine attacks do [12, 13]. The attacks to
the FLmodel can be performed by corrupting the learningmodel (model-poisoning attacks)
or the data (data-poisoning attacks). The latter ones pursue the perversely alteration of the
data for provoking theirmisclassification, e.g. the dirty-label poisoning attack [14]. However,
this kind of attack is mitigated by the distributed nature of FL and the usual reduced size of
adversarial clients, since the aggregation of the local models dissipates the influence of the
manipulated data points [5]. In contrast, themodel-poisoning attacksmay adulterate the FL
model without a predefined target or by injecting a backdoor task, which tricks the model
in favor of a specific target while keeping good performance on the main task [15]. Also, the
backdoor task can be built upon the exploitation of data poisoning to alter the parameter
updates. A broad review of each adversarial attack can be read in [16].
In this paper, we focus on the model-poisoning attacks based on data-poisoning and boost-
ing of the model updates of the adversarial clients, specifically on the input-instance and
two instances of pattern backdoor attacks, namely pattern-key backdoor attacks [17] and
distributed backdoor attacks [18]. Since they are grounded in subtle alterations of the data
on the clients, which are inaccessible, and the performance of the main task is not affected,
they represent a high risk for FL. We claim that the model updates of the clients in a FL
setting follow a Gaussian distribution, and those ones that have an outlier behavior in that
distribution may be adversarial clients.
We propose the federated aggregation operator Robust Filtering of one-dimensional Out-
liers (RFOut-1d), which is able to filter out those clients whose model update represents an
outlier in the Gaussian distribution of the model updates of the clients, thereby becoming
a defense against model-poisoning attacks based on data-poisoning. The RFOut-1d feder-
ated aggregation operator performs the Standard Deviation Method on each dimension of
the model clients updates for identifying univariate outliers [19], and it replaces them with
the mean of the one-dimensional vector for dispensing with their participation in the ag-
gregation. Since RFOut-1d filters out the adversarial clients, or outliers in our setting, the
FL model converges faster and its performance is enhanced. Moreover, RFOut-1d can be
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combined with other FL defenses against backdoor attacks, as norm threshold of updates or
weak differential privacy [17], enlarging its utility for preventing FL from backdoor attacks.
We evaluate the federated aggregation operator RFOut-1d on two settings of model-
poisoning attacks, the input-instance and pattern backdoor attacks. The input-instance at-
tack is based on modifying the label of some data points with a target label. Likewise, we
define three difficulty levels of the pattern attack by modifying the pattern setting for both
the pattern-key backdoor attack and the distributed backdoor attack. We conduct the eval-
uation on federated datasets, i.e. the distribution among the clients is predefined in the
datasets. We compare RFOut-1d with FL aggregation operators like the classical FedAvg
[20], and classical and state-of-the-art defenses against backdoor attacks in FL such as Me-
dian [21], Trimmed-mean [22], Norm Clipping and Weak Differential Privacy [17] and Ro-
bust Learning Rate [23].
The results show that RFOut-1d is the defense that highly minimizes the performance of
the backdoor attacks in both attack settings. Moreover, RFOut-1d allows to reach the highest
performance on themain task, and in some casesmeets and even improves the performance
of the FL model in a scenario without any adversarial client, which means that the defense
of RFOut-1d does not hinder the learning of the FL model. Therefore, the consideration of
adversarial clients as outliers on aGaussian distribution allows (1) tominimize the influence
of backdoor adversarial clients, and (2) to keep or even improve the performance of the FL
model.
The rest of the work is organized as follows: Section 2 sumps up the related works about
adversarial attacks anddefenses in FL; Section 3 presents the proposed federated aggregation
operator based on the robust filtering of outliers, which works as a defense mechanism;
Section 4 details the experimental set-up carried out; Section 5 analyzes the performance of
the proposal and; finally, we expound the conclusions of the work in Section 6.

2 Adversarial attacks and Defenses in Federated Learning

Machine learning is highly susceptible to adversarial attacks [24], and most of the defensive
approaches are based on [25]: (1) game theory [4], (2) data sanitation [26] and (3) resilient
and robust learning models, which assume that a fraction of the training data may be ma-
nipulated and consider it as outliers [27]. The first approach cannot be directly applied in
FL, since the federated aggregation operator is usually agnostic in relation to the amount of
adversarial client and to which one is adversarial. Likewise, the second approach is not fea-
sible in a FL setting, since the data is inaccessible and kept in the clients. Hence, the most
plausible defense approach is developing resilient and robust federated aggregation oper-
ators able to mitigate the malicious intention of the attacker. Accordingly, we introduce
below a taxonomy of adversarial attacks in FL, some outstanding defenses against them and
the backdoor attacks types and properties.
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2.1 Taxonomy of adversarial attacks

According to [28], there are two types of adversarial attacks: (1) Inference attacks [29], which
aim at inferring information from the training data; and (2) poisoning attacks [30], which
pursue to compromise the global learning model. Concerning inference attacks, there are
different types of them depending on the information being inferred. The most important
ones are the property and membership inference attacks, which respectively seek to infer
certain properties of the data and the membership of specific samples in the training set.
Due to their nature, the defenses proposed in the literature are based on Differential Privacy
[31].
Concerning model attacks, we identify two taxonomies:

1. Depending on which part of the FL schema is attacked, we differentiate between
model-poisoning [32] and data-poisoning attacks [33]. In practice, both are almost
equivalent, since a poisoning of the data results in a poisonedmodel. However, data-
poisoning attacks and some of the model-poisoning attacks fail to be effective since
the attack dissipates in the aggregation of many clients. For that reason, these at-
tacks are usually combined with model-replacement [5] techniques, which boosts
the adversarial model (or models) in order to replace the global model in the aggre-
gation.

2. Depending on the purpose of the attack, we distinguish between untargeted or byzan-
tine attacks [34], which seek to affect the model’s performance, and targeted or back-
door attacks [5], which aim at injecting a secondary (or backdoor) task into the global
model by stealth. The second ones may be more harmful, since they may be jeop-
ardizing the integrity of the global model without been detected. Moreover, as ad-
versarial client models optimize both the original and the adversarial task, they are
also more difficult to detect in the aggregation process. Accordingly, in this paper
we focus on backdoor attacks.

2.2 Defenses against adversarial attacks

The research into defenses mechanisms against adversarial attacks in FL is a booming field,
and therefore many works have been published in recent years. The literature provides mul-
tiple solutions to both byzantine and backdoor attacks in classical machine learning. The
vast majority of these defenses are based on data inspection methods, such as removing out-
liers from the training data in centralized learning [35] or, in a distributed setting, remov-
ing outliers from participant’s training data or models [36, 37]. In both cases, the available
defenses require data inspection, which is not possible in FL. Therefore, defenses against
backdoor attacks in FL must be designed ad hoc.
Regarding the state-of-the-art defenses designed to be applied in federated settings, they are
based on the modification of the aggregation operator, because the attack is usually carried
out by the clients. The first proposed defenses are based on amore robust aggregation of the
updates such as the Byzantine-robust aggregation rules [38]: coordinate-wise aggregations
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(trimmed mean or median) [39], Krum [40] or Bulyan [41]. However, these defenses are
not effective enough against backdoor attacks due to the stealthy nature of backdoor attacks
[15], which stresses the need of ad hoc defenses to mitigate them.
We find some specific defenses against backdoor attacks. The most simple ones are based
on the need to apply boosting, such as model-replacement, to these attacks in order to be
effective. Therefore, these defenses consist of applying normbounding of the updates (Norm
Clipping) with the aim of weakening the effect of the most influencing clients (presumably
the attacker) [17]. Moreover, these defenses can be combined with Differential Privacy [31]
to get a more generalizable aggregation protection from attacks. More specific defenses are
nowadays being proposed, which are based on the assumption that the attackers’ updates
will have different features than the rest. Someof themost influential examples are: signSGD
[42] or Robust Learning Rate [23].

2.3 Backdoor attacks: types and properties

We subsequently introduce the backdoor attacks conducted for assessing the defensive ca-
pacity of RFOut-1d, as well as their properties. In particular, we perform three backdoor
attacks based on the manipulation of the data for replacing the global model. Those attacks
differ on how the data is poisoned [43], and specifically they are:

Input-instance backdoor attacks. The objective of the attack is to lead the FL model to mis-
classify some particular samples of the input distribution in favor of a certain target.
For example, in a facial recognition system to access a room allowing access to some-
one (specific input) who originally did not have it.

Pattern backdoor attacks. The aim is to misclassify some modified samples according
to a certain pattern in favor to a specific target. For instance, in the same facial
recognition system allowing access to all people wearing purple glasses (certain pat-
tern). The pattern can be known by all the adversarial clients or partially distributed
among them, so each client fractionally knows it.

The previous backdoor attacks have a set of hyper-parameters or properties for configuring
out their behavior. We introduce those properties that support the definition of the backdoor
attack setting of the evaluation, as in [17]:

Number of backdoor tasks. In the input-instance backdoor attacks, due to the differences
between clients’ distributions, we consider the samples of each client as a specific
backdoor task, so the number of backdoor tasks corresponds to the number of clients
from which we select samples for the backdoored dataset, which we call 𝐷𝑏𝑎𝑐𝑘𝑑𝑜𝑜𝑟.
In the pattern backdoor attacks this term is not necessary, since the attack should
be generalizable and it may be thus considered to be addressed by just one backdoor
task (one pattern).

Number of adversarial clients. Number of clients compromised and coordinated in order to
perform the backdoor tasks. The local training dataset of each adversarial client 𝑖 is
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composed by the union of its original training dataset 𝐷𝑖
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 and the backdoored

dataset 𝐷𝑏𝑎𝑐𝑘𝑑𝑜𝑜𝑟. That is, 𝐷𝑖
𝑎𝑑𝑣 = 𝐷𝑖

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙⋃𝐷𝑏𝑎𝑐𝑘𝑑𝑜𝑜𝑟. In the input-instance back-
door attack,𝐷𝑏𝑎𝑐𝑘𝑑𝑜𝑜𝑟 will correspond to the set of samples from every backdoor task.
Regarding the pattern backdoor attack, the 𝐷𝑏𝑎𝑐𝑘𝑑𝑜𝑜𝑟 is composed of all the samples
perversely altered according to a certain pattern.

Sampling of adversarial clients and frequency. The frequency of appearance of adversarial
clients in the subset of clients selected for each aggregation is a key factor. In [17],
the authors discuss between fixed-frequency appearance or random sampling. They
conclude that the fraction of adversarial clients required for the attack to be effective
is too high and unrealistic when using random sampling. Hence, we focus on the
fixed-frequency attacks, in which we determine the number of adversarial clients
participating in each aggregation.

3 Defense against Model-poisoning backdoor attacks based on Robust
Filtering of Outliers

We consider the notations and definitions of FL as defined in [5] in order to describe the
attacks discussed in this work. In particular, let 𝐺𝑡 and 𝐿𝑡𝑖 be the global model and local
model of client 𝑖-th at the learning round 𝑡 respectively, 𝑛 the total number of clients selected
for each aggregation and 𝜂 the server learning rate. Accordingly, the update of the global
model in the learning round 𝑡 is performed as follows in Equation 1:

𝐺𝑡 = 𝐺𝑡−1 + 𝜂
𝑛

𝑛
∑
𝑖=1
(𝐿𝑡𝑖 − 𝐺𝑡−1). (1)

In this context, we define the backdoor attack scenario as one or several clients which are
coordinated to inject a secondary or backdoor task into the global model. Typically, these
attacks do not negatively affect the original task performance, which makes them harder
to identify. Since the distributed character of the learning process, the high number of
clients participating in each aggregation and the assumption that the proportion of adversar-
ial clients will be significantly lower than of benign clients, the influence of the adversarial
clients would be dissipated among the rest of the clients and no effective attack would take
place. For that reason, we focus on model-poisoning backdoor attacks based on the model-
replacement paradigm proposed in [5, 15, 17], which is based on boosting the influence of
the adversarial attack for avoiding its dissipation among the large size of benign clients.
Aswe consider that only one adversarial client is selected in the learning round 𝑡, its aim is to
replace the global model 𝐺𝑡 with its backdoored model 𝐿𝑡𝑎𝑑𝑣, which optimizes both original
and backdoor tasks by sending to the FL server

𝐿̂𝑡𝑎𝑑𝑣 = 𝛽(𝐿𝑡𝑎𝑑𝑣 − 𝐺𝑡−1), (2)
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where 𝛽 = 𝑛
𝜂
is the boost factor required to conduct model-replacement [5]. Then, replacing

Equation 2 in Equation 1 we have1

𝐺𝑡 = 𝐺𝑡−1 + 𝜂
𝑛
𝑛
𝜂 (𝐿

𝑡
𝑎𝑑𝑣 − 𝐺𝑡−1) + 𝜂

𝑛
𝑛
∑
𝑖=2
(𝐿𝑡𝑖 − 𝐺𝑡−1). (3)

According to the definition of FL [20], eventually the FL model will converge to a solution,
so we can assume that 𝐿𝑡𝑖 − 𝐺𝑡−1 ≈ 0 for benign clients. Hence, we rewrite Equation 3 as
follows

𝐺𝑡 ≈ 𝐺𝑡−1 + 𝜂
𝑛
𝑛
𝜂 (𝐿

𝑡
𝑎𝑑𝑣 − 𝐺𝑡−1) = 𝐿𝑡𝑎𝑑𝑣, (4)

which replaces the global model with the backdooredmodel. If multiple adversarial clients
participate in the same learning round, we assume that they can coordinate for the attack
by dividing the boosting factor between the attackers. In the rest of the paper, we consider
𝜂 = 1.
We consider the attack scenario described below, in which the model updates of benign
clients minimizes the global task loss, while the model updates of adversarial clients opti-
mize the global and backdoor task loss. We base our proposal on the following two assump-
tions:

1. Themodel updates of the clients follow a Gaussian distribution from a certain learn-
ing round, since the global aggregated model tends to converge to a common so-
lution. This is intuitively proven based on the Central Limit Theorem [44], which
states that the sum of independent random variables closely approaches to a Gaus-
sian distribution. Let the clients local weight’s distributions be each of the random
variables, then, linear combinations of them approach closely to a Gaussian distribu-
tion. Therefore, aggregation over aggregation, the result will converge to a Gaussian
distribution. In particular, the data distribution for each of the dimensions of the
updates converges to an univariate Gaussian distribution.

2. Since the model update of adversarial clients has a twofold target, we assume that
it represents an outlier in the distribution of client updates for a specific learning
round.

Regarding the previous assumptions, we propose theRFOut-1d (RobustFilterig of 1-dimen-
sionalOutliers) federated aggregation operator based on filtering out the outliers in the dis-
tribution of client model updates with the objective of producing a more robust aggregation
in each learning round 𝑡. Since the high dimensionality of the updates (usually from neural
networks), and with the aim of avoiding the loss of information by applying dimensionality
reduction techniques, we perform an univariate anomaly detection for each dimension of

1For the sake of clarity, we assume that the adversarial client is client 1.
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the model updates. Therefore, for each of dimension 𝑖 ∈ {1,… ,𝑚}, where 𝑚 is the dimen-
sion of the vectors of the model updates, we consider the vector formed by the local model
update of each client in that dimension 𝐿𝑖 = (𝐿𝑡1[𝑖], 𝐿𝑡2[𝑖],… , 𝐿𝑡𝑛[𝑖]), where 𝑛 is the number
of clients participating in the aggregation, and we apply the Standard Deviation Method for
identifying univariate outliers in Gaussian distributions. Hence, it filters out those that ver-
ify that the difference between the value and the mean is greater or equal than 𝛿 times the
standard deviation. Formally, we replace by 𝜇𝑖 those that verify

𝑎𝑏𝑠(𝐿𝑡𝑗[𝑖] − 𝜇𝑖) ≥ 𝛿𝜎𝑖, (5)

where 𝜇𝑖 and 𝜎𝑖 are the mean and standard deviation of 𝐿𝑖, respectively, 𝐿𝑡𝑗[𝑖] is the param-
eter of the dimension 𝑖 of the model update at the round of learning 𝑡 of the client 𝑗 and
𝛿 = 3 according to an experimental result of [19]. We use the mean estimator since, as the
model updates of the clients are subsequently aggregated, it filters out the participation of
the outliers in the aggregation.
At the end, the federated aggregation RFOut-1d consists of the 1-dimensional mean of the
non-filtered out parameters. Formally, the resulting aggregatedmodel𝐺𝑡 in each dimension
𝑖 of the parameters is

𝐺𝑡[𝑖] =
1
𝑛

𝑛
∑
𝑖=1

𝐿̂𝑡𝑗[𝑖] ∀𝑖 ∈ {1,… ,𝑚}, where (6)

𝐿̂𝑡𝑗[𝑖] = {𝜇𝑖 if 𝑎𝑏𝑠(𝐿𝑡𝑗[𝑖] − 𝜇𝑖) ≥ 𝛿𝜎𝑖
𝐿𝑡𝑗[𝑖], otherwise

, ∀𝑗 ∈ {1,… , 𝑛} (7)

where 𝐿̂𝑡𝑗[𝑖] the resulting vector after applying Equation 5 criteria to 𝐿𝑡𝑗[𝑖]. Algorithm 1 de-
picts the proposed aggregation operator.
Note that RFOut-1d, in addition to filtering out those clients that are presumably attackers,
optimizes the learning process by favoring a faster convergence towards a common solution.
Moreover, it can be combined with other aggregation mechanisms proposed as defenses,
such as norm threshold of updates or weak Differential Privacy [17].

4 Experimental set-up

We subsequently detail the experimental framework for assessing the RFOut-1d federated
aggregation operator. We describe the datasets used in the evaluation, the configuration
of the backdoor attacks and the evaluation measures. We follow the guidelines of [45] for
conducting the experiments.2

2We provide the source code of RFOut-1d at this GitHub Repository.
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Algorithm 1 RFOut-1d
Input: local updates {𝐿𝑡1, 𝐿𝑡2,… , 𝐿𝑡𝑛}
𝑛𝑢𝑚_𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿𝑡1)
Initialize 𝐺𝑡

𝛿 = 3
for 𝑖 = 0 to 𝑛𝑢𝑚_𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 do
𝐿̂𝑖 = (𝐿𝑡1[𝑖], 𝐿𝑡2[𝑖],… , 𝐿𝑡𝑛[𝑖])
𝜇𝑖 = 𝑚𝑒𝑎𝑛(𝐿̂𝑖)
𝜎𝑖 = 𝑠𝑡𝑑(𝐿̂𝑖)
for 𝑗 = 1 to 𝑛 do
if 𝑎𝑏𝑠(𝐿𝑗[𝑖] − 𝜇𝑖) ≥ 𝛿𝜎𝑖 then
𝐿𝑗[𝑖] ← 𝜇𝑖

end if
end for
𝐺𝑡[𝑖] = 𝑚𝑒𝑎𝑛(𝐿̂𝑖)

end for
Return 𝐺𝑡

4.1 Datasets

The few availability of non-simulated federated datasets is one of the difficulties for eval-
uating FL models. It is possible to use classical machine learning datasets and distribute
them among clients according to different data distributions. However, although the non-
IID character of data distribution can be simulated [8], it is quite complex to simulate the
customization of data among clients, so that they represent their individual features. For
that reason, we decided to use datasets that are by definition federated. We focus on the
following image classification datasets included in the LEAF benchmark:

1. Digits FEMNIST:3 The digits dataset of the federated version of EMNIST, where each
client corresponds to an original writer.

2. CelebA:4 An image classification dataset composed by famous face images with 40
binary attributes annotations per image, where we associate each famous with a
client. We use it as a binary image classification dataset, selecting a specific attribute
as target, in particular, Smiling (CelebA-S) and Attractive (CelebA-A).

The use of federeated datasets may result in some clients with insufficient amount of data.
Accordingly, we set the minimum number of samples per client 𝑘 and discard the clients
that do not satisfy this condition. For CelebA datasets, we use 𝑘 = 30, specified as the best
option in [46], and for FEMNIST we set 𝑘 = 8, as it is the minimum number of samples per
client. Table 1 shows the statistics per dataset.

3https://www.nist.gov/itl/products-and-services/emnist-dataset
4http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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FEMNIST CelebA-S CelebA-A

Clients 3579 1878 1878
𝑘 8 30 30
Number of labels 10 2 2
Training samples 240000 56364 56364
Samples per client (mean) 67.05 30.01 30.01
Samples per client (std) 11.17 0.19 0.19
Testing samples 40000 19962 19962

Table 1: Description of the FEMNIST, CelebA-S and CelebA-A datasets.

4.2 Backdoor attacks set-up

According to the definition of backdoor attacks, the design of such attacks has a wide range
of options as the backdoor task depends on the aim of the injected task. We define an input-
instance and the two pattern backdoor attacks settings to assess RFOut-1d in each dataset.

4.2.1 Input-instance backdoor attacks set-up

We set a target label and a set of samples (𝐷𝑏𝑎𝑐𝑘𝑑𝑜𝑜𝑟) from clients which belong to another
class (original label). The attack consists in classifying the highest amount of these samples
with the target label without modifying any sample. Due to the particularity of each client,
we set that the number of backdoor tasks corresponds to the number of clients from whom
samples have been taken for the backdoored dataset 𝐷𝑏𝑎𝑐𝑘𝑑𝑜𝑜𝑟. We set the number of adver-
sarial clients as the number of clients who have the backdoored dataset among their data
and the frequency of attack. Based on these parameters, we define these attacks in Table 2.

FEMNIST CelebA-S CelebA-A

Backdoor tasks 30 30 10
|𝐷𝑏𝑎𝑐𝑘𝑑𝑜𝑜𝑟| 213 247 228
Adversarial clients 11 20 15
Frequency of attack 1 1 1
Origin label 7 No No
Target label 1 Yes Yes

Table 2: Definition of input-instance backdoor attacks set-up for the FEMNIST, CelebA-S
and CelebA-A datasets.

4.2.2 Pattern backdoor attacks set-up

We evaluate RFOut-1d in two types of pattern backdoor attack: (1) Pattern-key backdoor
attack, in which all the clients know the complete pattern and use it in their training process
and (2) Distributed backdoor attack [18], in which each client knows the pattern partially
and the aim is to coordinate to inject the complete pattern.
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Pattern-key backdoor attacks We set a target label and a pattern-key. Thus, the attack
consists in classifying any sample poisoned with the pattern-key as the target label. In this
case, the number of backdoor tasks corresponds to the number of adversarial clients, because
only the adversarial clients poison some of their samples with the pattern-key. In order to
show that the behavior of RFOut-1d is agnostic of the pattern-key, we use three patterns
of different levels of difficulty expressed in numbers of pixels (see Figure 1): (1) one single
black pixel, (2) a red cross of length 4 and (3) a yellow square of side 5x5. Analogously, we
define these attacks in Table 3, and we show the patterns used for poisoning implemented
in Figure 2. When the pattern-key is small in comparison with the original image we add a
zoom of the pattern in the corner.

Figure 1: Representation of the pattern-key employed. From left to right: the 1-pixel pattern,
the 8-pixel pattern (a red cross of length 4) and the 25-pixel pattern (a 5x5 yellow square).

FEMNIST CelebA-S CelebA-A

Adversarial clients 30 15 15
Frequency of attack 1 1 1
Target label 0 Yes YES
Pixels of the pattern 1 8 25

Table 3: Definition of pattern-key backdoor attacks set-up for the FEMNIST, CelebA-S and
CelebA-A datasets.

Distributed backdoor attack We set the target label, the complete pattern and the par-
tial pattern of each adversarial client. Clearly, the attack consists in classifying each sample
poisoned with the complete pattern as the target label, not the partial ones. For that reason,
in each aggregation participates one adversarial client from each partial pattern, thus involv-
ingmultiple adversarial clients in each learning round. In order to show that the behavior of
RFOut-1d is agnostic of the pattern, we use different patterns for each database (see Figure
3):

1. Black corners. Four single black pixels distributed among the four corners of the
image for FEMNIST. We distribute the pattern by setting 4 adversarial clients and
assigning each corner to one of them.

2. Monocolor cross. A cross of length 5 in the upper left corner red for CelebA-S and
blue for CelebA-A. We distribute the pattern by setting 2 adversarial clients and as-
signing each diagonal of the cross to one of them.

11
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(a) Example of FEM-
NIST sample.

(b) Example of
CelebA-S sample.

(c) Example of
CelebA-A sample.

(d) Backdoored
FEMNIST sample
(1-pixel pattern).

(e) Backdoored
CelebA-S sample
(8-pixel pattern).

(f) Backdoored
CelebA-A sample
(25-pixel pattern).

Figure 2: Examples of original (a, b and c) and backdoored samples (d, e and f) of each
dataset.

FEMNIST CelebA-S CelebA-A

Adversarial clients 4 2 2
Frequency of attack 4 2 2
Target label 0 Yes YES
Pixels of the complete pattern 4 10 10
Pixels of each partial pattern 1 5 5

Table 4: Definition of distributed backdoor attacks set-up for the FEMNIST, CelebA-S and
CelebA-A datasets.

4.3 Evaluations metrics and baselines

The task of defending against backdoor attacks is a twofold task, and its evaluation thus
requires ofmeasuring the prevention against the attack and the performance of the resulting
model in the original task. The aim of the defense mechanism is to reduce the effects of
the attack as much as possible without compromising the performance of the model in the
original task. We consider two test datasets:

• Original task test. The original test of the dataset used for measuring the perfor-
mance in terms of accuracy in the original task.

• Backdoor task test. Dataset which represents the attack in order to measure the per-
formance in terms of accuracy in the backdoor task. Regarding the input-instance

12
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vv

Partial pattern
adv. 1

Partial pattern
adv. 2

Partial pattern
adv. 3

Partial pattern
adv. 4

Complete
pattern

(a) Distributed pattern for FEMNIST.

Partial pattern
adv. 1

Partial pattern
adv. 2

Complete
pattern

(b) Distributed pattern for CelebA-S.

Partial pattern
adv. 1

Partial pattern
adv. 2

Complete
pattern

(c) Distributed pattern for CelebA-A.

Figure 3: Representation of the patterns of the distributed backdoor attacks. We specify the
partial pattern of each adversarial client on the left and the complete pattern on the right.
Note that the proportion between the pattern and the image size is not real, we enlarge the
pattern to make the image illustrative.

backdoor attacks, we consider the backdoored dataset𝐷𝑏𝑎𝑐𝑘𝑑𝑜𝑜𝑟 as in [17]. Concern-
ing the pattern backdoor attacks, we consider two test datasets [43]: (1) Backdoor
task test as in the input-instance backdoor attack situation to measure the effective-
ness of the attack; and (2) Global backdoor task test, consisting of the test instances
not originally belonging to the target class, but poisoned using the pattern in order
to measure the capability of generalization of the attack.

Since the results can be highly heterogeneous in each of the learning rounds depending on
the defense mechanism and in order to show robust results, we use the average of each of
these measures throughout the last ten learning rounds.
We compare RFOut-1d with the following federated aggregation operators and backdoor
defense mechanisms, which represent the classical baselines and the state-of-the-art in de-
fenses against backdoor attacks:

13
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1. Federated Averaging (FedAvg) [20]. It is based on the (weighted) averaging of the
local models. We use this aggregation operator as the simplest baseline due to it
represents the no-defense situation.

2. Median [21]. It is one of the Byzantine-robust aggregation rules which is based on
replacing the mean with the median in the aggregation method. We use it as a base-
line, due to the higher robustness of the median with respect to the mean in the
presence of extreme values.

3. Trimmed-mean [22]. It represents another Byzantine-robust aggregation rule. It
relies on using amore robust version of themean that consists in eliminating a fixed
percentage of extreme values both below and above the data distribution.

4. Norm Clipping of updates [17]. Since model-poisoning backdoor attacks produce
updates with large norms because of the boosting factor, norm clipping of updates
is widely used as a simple defense mechanism. It consists in clipping the update by
dividing itwith the appropriate scalar if it exceeds a fixed threshold𝑀, as inEquation
8, where Δ𝐿𝑡𝑖 = 𝐿𝑡+1𝑖 − 𝐺𝑡.

𝐺𝑡+1 = 𝐺𝑡 + 𝜂
𝑛

𝑛
∑
𝑖=1

Δ𝐿𝑡𝑖
max(1, ||Δ𝐿𝑡𝑖 ||2/M) (8)

5. Weak Differential Privacy (WDP) [17]. This defense is based on Differential Privacy
[31], which is commonly used to defend against backdoor attacks [47]. This mecha-
nism consists of applying norm techniques combined with a little amount of Gaus-
sian noise as a function of 𝜎 according to Equation 9.

𝐺𝑡+1 = 𝐺𝑡 + 𝜂
𝑛

𝑛
∑
𝑖=1

Δ𝐿𝑡𝑖
max(1, ||Δ𝐿𝑡𝑖 ||2/M) + 𝒩(0, �M𝑛 ) (9)

6. Robust Learning Rate (RLR) [23]. They determine the direction of the update, for
each dimension, in form of signs of the updates using a threshold parameter 𝜃.
Hence, if the sum of the signs of the updates is less than 𝜃, they change the direction
of the update by multiplying by −1. They assert that this defense can be combined
with the two previous ones, bymeans applying the norm clipping and noise addition
specified in Equation 9 to the modified models’ updates, producing a better perfor-
mance.

We did not compare RFOut-1d with the defenses Krum [40] and Bulyan [41], because they
are design against Byzantine attacks, while RFOut-1d works against backdoor attacks.
We use the configuration values specified in [17, 23] in our experiments. In addition, we
evaluate the use of norm clipping and noise addition in RFOut-1d following the Equation 9
with the same parameter values as RLR. Table 5 shows these parameters, where 𝑀 is the
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𝑀 𝜎 𝜃
Norm Clipping 3/1 0 -
WDP 3/1 0.0025 -
RLR 0.5/1 0.0001 7
RFOut-1d 0.5/1 0.0001 -

Table 5: Parameters used in our experiments according to the parameters recommended by
the authors.

threshold for the updates norm, 𝜎 the Gaussian noise parameter and 𝜃 the threshold for
RLR.
Since the main aim of this work is to propose a robust federated aggregation operator to
defense against backdoor attacks, we use an standardCNN-based image classificationmodel
composed of twoCNN layers followed by its correspondingmax-pooling layers, a dense layer
and the output layer with a softmax activation function. In particular, we use the models
and the hyperparameters included in the LEAF5 benchmark for each dataset. All details
concerning hyperparameters, number of epochs or batch size can be found in the GitHub
repository.

5 Analysis of the results

We evaluate RFOut-1d on the datasets described in Section 4.1, and in the two backdoor
attack settings described in Section 4.2 during 100 rounds of learning. Subsequently, we
expose the assessment in each backdoor attack, and we analyze the capacity of RFOut-1d of
enhancing the FL model convergence.

5.1 Analysis of the performance against Input-instance Backdoor Attacks

Table 6 shows that RFOut-1d outperforms all the baselines in the twofold goal ofminimizing
the backdoor task performance andmaximizing the performance of the original task (image
classification), which means that filtering out the parameters that represent outliers in the
distribution of updates mitigates these attacks.
Generally, as we use a more complex defense, the results obtained improve notably in favor
of the defense. In particular, RLR is themost powerful baseline (especially the normclipping
and noise version), namely as far as the accuracy of the original task is concerned.
The highest result in all test sets is always achieved by RFOut-1d. On the one hand, the
ability to mitigate the attack is shown, achieving a null effect of the attack (0.0 of backdoor
accuracy) in two of the three datasets. On the other hand, we show that it does not com-
promise the performance in the original task, even improving the result of the task without
attack in the case of FEMNIST and CelebA-A, which proves that it also filters out low-value
information. This suggest that it may not be only filtering out adversarial clients, but those

5https://github.com/TalwalkarLab/leaf
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FEMNIST CelebA-S CelebA-A
𝑀 𝜎 Original Backdoor Original Backdoor Original Backdoor

No attack 0 0 0.9657 - 0.7900 - 0.7973 -

FedAvg 0 0 0.8661 0.8230 0.3630 0.9738 0.5140 0.5194
Median 0 0 0.9448 0.0306 0.7881 0.0457 0.7961 0.0152
Trimmed-mean 0 0 0.9526 0.0256 0.7852 0.0423 0.7961 0.0221
NormClip 3 0 0.9606 0.6373 0.6852 0.1431 0.6078 0.2558
WDP 3 0.0025 0.9374 0.1578 0.7204 0.1195 0.6119 0.2399
RLR 0 0 0.8404 0.0288 0.6539 0.0457 0.7877 0.0451
RLR† 0.5/0.5/1 0.0001 0.9546 0.0128 0.7852 0.0388 0.7934 0.0043

RFOut-1d 0 0 0.9629 0.0048 0.7883 0.0046 0.7973 0.0
RFOut-1d† 0.5/0.5/1 0.0001 0.9670 0.0054 0.7892 0.0 0.7975 0.0

Table 6: Mean results for the input-instance backdoor attack in terms of accuracy. The sym-
bol † denotes the combination of a defense with norm clipping and noise addition. We also
show, in the first row, the expected accuracy with FedAvg but without any attack. The best
result for each of the test sets is highlighted in bold.

clients who have such poor training that they confuse the model rather than contributing to
its convergence towards a global solution.
Regarding to the combination of the defenses with norm clipping and noise, both RLR and
RFOut-1d can be combined. However, for RLR it seems to be a necessity as the results
improve markedly while RFOut-1d obtains strong results on its own, which confirms the
robustness of our proposal.
Therefore, the results show that RFOut-1d is a robust federated aggregation operator against
input-instance backdoor attack, and it does not need any additional operation to preserve the
FL model from this kind of adversarial attack.

5.2 Analysis of the performance against Pattern Backdoor Attacks

We analyze the behavior of RFOut-1d in two different pattern backdoor attacks: (1) the anal-
ysis of the performance of the pattern-key backdoor attacks, in which only one adversarial
client participates in each aggregation process; and (2) the analysis of the distributed back-
door attacks, in which participate as many clients as different partial patterns defined in
each aggregation process.

Pattern-key backdoor attacks Analogously, the results in Tables 7, 8, 9 show the higher
performance of RFOut-1d compared to the baselines in FEMNIST, CelebA-A and CelebA-S
respectively, which proves that our claim is also confirmed for pattern-key backdoor attacks
and, moreover, for patterns of different level of difficulty.
If we compare the effectiveness of these pattern-key attacks without any defense (FedAvg)
with the same condition as in the input-instance attacks, we find that the first ones are,
generally, more effective. This is due to the alteration of images with a pattern is a more
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FEMNIST
𝑀 𝜎 Original Backdoor Test

No attack 0 0 0.9657 - -

FedAvg 0 0 0.9741 1.0 1.0
Median 0 0 0.9540 0.0091 0.0154
Trimmed-mean 0 0 0.9664 0.0114 0.0148
NormClip 1 0 0.9687 0.0553 0.0538
WDP 1 0.0025 0.9357 0.0938 0.0175
RLR 0 0 0.9039 0.0407 0.0575
RLR† 0.5/1 0.0001 0.9265 0.0089 0.0085

RFOut-1d 0 0 0.9741 0.0043 0.0072
RFOut-1d† 0.5/1 0.0001 0.9753 0.0059 0.0051

Table 7: Mean results for the pattern-key backdoor attack in terms of accuracy in FEMNIST.
The symbol † denotes the combination of a defense with norm clipping and noise addition.
We also show, in the first row, the expected accuracy with FedAvg but without any attack.
The best result for each of the test sets is highlighted in bold.

CelebA-S
𝑀 𝜎 Original Backdoor Test

No attack 0 0 0.7900 - -

FedAvg 0 0 0.6858 1.0 0.9999
Median 0 0 0.6978 0.0678 0.0532
Trimmed-mean 0 0 0.7013 0.0521 0.0654
NormClip 1 0 0.6798 0.1433 0.1647
WDP 1 0.0025 0.7413 0.0538 0.0743
RLR 0 0 0.7132 0.0574 0.0469
RLR† 0.5/1 0.0001 0.7714 0.0205 0.0316

RFOut-1d 0 0 0.7900 0.0 0.0
RFOut-1d† 0.5/1 0.0001 0.7896 0.0 0.0010

Table 8: Mean results for the pattern-key backdoor attack in terms of accuracy in CelebA-S.
The symbol † denotes the combination of a defense with norm clipping and noise addition.
We also show, in the first row, the expected accuracy with FedAvg but without any attack.
The best result for each of the test sets is highlighted in bold.

sophisticated attack, and it allows to reach its aims with a higher success than the input-
instance backdoor attack.
Despite being more powerful attacks, the defenses, the baselines and RFOut-1d, show sim-
ilar behavior, improving as we use a more complex defense. In particular, the defense that
outperforms in both tasks of maximizing the performance of the global task andminimizing
the performance of the backdoor task is, again, RFOut-1d. Therefore, RFOut-1d outperforms
all the baselines in the target of defending the FL model against the pattern-key backdoor
task, which means that our claim holds in this kind of backdoor attack. In this case, it also
outperforms the results without any attack, which confirms its proper performance as a fed-
erated aggregation operator even without the presence of adversarial clients.
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CelebA-A
𝑀 𝜎 Original Backdoor Test

No attack 0 0 0.7973 - -

FedAvg 0 0 0.7375 1.0 0.99
Median 0 0 0.7452 0.0163 0.0189
Trimmed-mean 0 0 0.7498 0.0092 0.0101
NormClip 1 0 0.7126 0.1433 0.1316
WDP 1 0.0025 0.6609 0.1440 0.1707
RLR 0 0 0.6657 0.0280 0.0286
RLR† 0.5/1 0.0001 0.7923 0.0031 0.0016

RFOut-1d 0 0 0.7967 0.0023 0.0015
RFOut-1d† 0.5/1 0.0001 0.7874 0.0054 0.0124

Table 9: Mean results for the pattern-key backdoor attack in terms of accuracy in CelebA-A.
The symbol † denotes the combination of a defense with norm clipping and noise addition.
We also show, in the first row, the expected accuracy with FedAvg but without any attack.
The best result for each of the test sets is highlighted in bold.

FEMNIST
𝑀 𝜎 Original Backdoor Test

No attack 0 0 0.9657 - -

FedAvg 0 0 0.9678 0.8556 0.1649
Median 0 0 0.9437 0.0114 0.0053
Trimmed-mean 0 0 0.9649 0.0102 0.0046
NormClip 1 0 0.9731 0.3289 0.0526
WDP 1 0.0025 0.9729 0.3342 0.0211
RLR 0 0 0.9518 0.7821 0.0263
RLR† 0.5/1 0.0001 0.9614 0.0107 0.0062
RFOut-1d 0 0 0.9721 0.2130 0.0089
RFOut-1d† 0.5/1 0.0001 0.9737 0.0000 0.0032

Table 10: Mean results for the distributed backdoor attack in terms of accuracy in FEMNIST.
The symbol † denotes the combination of a defense with norm clipping and noise addition.
We also show, in the first row, the expected accuracy with FedAvg but without any attack.
The best result for each of the test sets is highlighted in bold.

Distributed backdoor attacks The results of Tables 10, 11 and 12 show the outperform-
ing of RFOut-1d compared with the baselines in FEMNIST, CelebA-S and CelebA-A respec-
tively. It is worth mentioning that the backdoor set is less significant in this case as it repre-
sents the effectiveness of the partial patterns, while we are interested in the effectiveness of
the complete pattern.
Regarding the effectiveness of the attack, we find that distributed backdoor attack has
achieved a lower performance on the backdoor task in FEMNIST than the pattern-key back-
door attack. However, the behavior in both partitions of CelebA is comparable. We attribute
this phenomenon to the fact that the distributed backdoor attack is more complicated to be
successful, being too challenging to carry it out in a multi-class problem as FEMNIST. How-
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CelebA-S
𝑀 𝜎 Original Backdoor Test

No attack 0 0 0.7900 - -

FedAvg 0 0 0.6793 0.9772 0.9944
Median 0 0 0.3701 0.8636 0.8178
Trimmed-mean 0 0 0.7831 0.0000 0.0014
NormClip 1 0 0.7604 0.0000 0.0499
WDP 1 0.0025 0.7896 0.0000 0.0031
RLR 0 0 0.2276 0.9454 0.9704
RLR† 0.5/1 0.0001 0.2686 0.8878 0.9351

RFOut-1d 0 0 0.7602 0.0021 0.0076
RFOut-1d† 0.5/1 0.0001 0.7897 0.0000 0.0000

Table 11: Mean results for the distributed backdoor attack in terms of accuracy in CelebA-S.
The symbol † denotes the combination of a defense with norm clipping and noise addition.
We also show, in the first row, the expected accuracy with FedAvg but without any attack.
The best result for each of the test sets is highlighted in bold.

CelebA-A
𝑀 𝜎 Original Backdoor Test

No attack 0 0 0.7973 - -

FedAvg 0 0 0.5796 0.9643 0.9871
Median 0 0 0.7759 0.0363 0.0525
Trimmed-mean 0 0 0.7888 0.0714 0.0166
NormClip 1 0 0,7954 0.0666 0.0079
WDP 1 0.0025 0.7087 0.1764 0.1602
RLR 0 0 0.2113 0.9765 0.9523
RLR† 0.5/1 0.0001 0.4127 0.6154 0.6433

RFOut-1d 0 0 0.6223 0.0284 0.0367
RFOut-1d† 0.5/1 0.0001 0.7997 0.0000 0.0013

Table 12: Mean results for the distributed backdoor attack in terms of accuracy in CelebA-A.
The symbol † denotes the combination of a defense with norm clipping and noise addition.
We also show, in the first row, the expected accuracy with FedAvg but without any attack.
The best result for each of the test sets is highlighted in bold.

ever, even in this case the presence of the defenses is notable, significantly diminishing the
effectiveness of the backdoor attacks in test.
Concerning the evaluation of the different defenses, both the proposal and baselines, the
results further confirm the satisfactory performance of RFOut-1d in backdoor attacks. To
conclude, it is worthy noting that RLR, which in the evaluation of the input-instance and
pattern-key backdoor attacks had achieved quite successful results, is outperformed by the
other simpler baselines in both partitions of CelebA. It shows that it may not be useful for
this type of distributed backdoor attacks, or at least with the parameters used in the experi-
mentation.
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5.3 Analysis of the convergence with RFOut-1d

We claim that RFOut-1d, in addition to being an effective defense in FL, allows the global
model to converge to a common solution in less rounds of learning, by means filtering out
those parameters that deviate from the solution set by majority. We show it by analyzing
the convergence of the models in both the original and the backdoor task throughout the
learning rounds.
We choose the pattern-key backdoor attack on CelebA-S and show only two classical aggre-
gation operators (FedAvg and WDP), RLR in its best version including norm clipping and
noise and RFOut-1d in order to reduce the number of figures.
The convergence of the chosen models is presented in Figure 4. Clearly, FedAvg shows the
worst performance while RFOut-1d outperforms all baselines in two ways:

1. Regarding the accuracy of the original task, RFOut-1d ensures that it is not compro-
mised in any of the attack attempts, while in the rest of the baselines the performance
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Figure 4: Convergence plots in the CelebA-S pattern-key backdoor attack experiment. We
show both the convergence of the original task (Original task accuracy, in blue) and the back-
door task (Backdoor accuracy and Test backdoor accuracy, in red and green respectively).
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is more unstable, becoming the global model’s compromised in several rounds of
learning.

2. Regarding the backdoor tasks, RFOut-1d demonstrates an outstanding performance
and shows a clear improvement over the rest of the baselines. In fact, the attack is
not successful in any learning round.

We stress out the relevance of this fact because, despite the acceptable results achieved by
the rest of the defenses, the attack is relatively successful at certain learning rounds, which
also compromise the integrity of the model. This fact, combined with the fast convergence
provided by RFOut-1d, further highlights the success of this approach as an aggregation
operator as well as a defense in FL.

6 Conclusions

We addressed the defense against model-poisoning backdoor attacks, which is a real chal-
lenge of FL. Based on the claim that the updates from adversarial clients would represent
outliers in the Gaussian distribution of clients’ updates, we propose RFOut-1d, a defense
mechanism based on a robust filtering of one-dimensional outliers in the federated aggrega-
tion operator. After evaluating RFOut-1d in a variety of settings under different backdoor
attacks, and comparing it with the state of the art defenses, the results shows that our claim
holds. Therefore, we state that:

• RFOut-1d is a highly effective defense that dissipates the impact of the backdoor
attacks to the point of (almost) nullifying them throughout all the learning rounds.

• In some scenarios, RFOut-1d outperforms the results achieved without any attack,
which shows its capacity to filter out clients who are hindering the training process.

• In contrast to other defenses, it does not hinder the FL process by keeping (or even
improving) the performance of the model in the original task.

• The convergence of the model to the common solution is accelerated and optimized
by filtering out clients that diverge from this solution.

To conclude, we have shown that RFOut-1d is a high quality defense as well as a proper
federated aggregation operator by effectively stopping the effect of attacks while favoring
the learning of the global model.
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1 Introduction

The standard machine learning approach is built upon an algorithm that learns from a cen-
tralized data source. Distributed machine learning proposes the distribution of the data and
elements of a learning model among several nodes as a solution for the unceasing growing
of learning model complexity and the size of training data [1, 2]. However, the distributed
machine learning solution is neither valid for the data privacy challenge, nor for an scenario
with a large number of clients and a non homogeneous data distribution [3, 4].
Federated learning (FL) is a machine learning approach in which the algorithms learn from
sequestered data [3, 5]. The FL model is mainly composed of two components: a global
server that owns the global learning model and a set of clients storing the local learning
models and the local training datasets. Likewise, FL consists in: (1) training the local learn-
ing models in each data source, (2) distilling the parameters of the local learning models
into a central server, (3) aggregating the parameters of the local models in the global learn-
ing model and (4) updating the local learning models with the aggregated federated global
learning model after the aggregation. This specific setting supports its main feature, which
is the prevention of data leakage and the protection of data privacy, since the data do not
abandon its local storage and they are not shared with any other client or third party. Since
FL is a user privacy-preserving approach designed to decentralized scenarios, an Artificial
Intelligence of Things (AIoT) setting is a natural way to use it, for both the distributed nature
and the privacy needed in IoT (Internet of Things) devices [6].
Machine learning is vulnerable tomaliciousmanipulations on the input data or the learning
model to cause incorrect classification [7]. This vulnerability becomes harder to address in
FLdue tomost of the defensive approaches are based data inspection techniques. Among the
different kind of adversarial attacks in the literature [8], in this paper we focus on byzantine
poisoning attacks [9], which are based on the arbitrary manipulation of the training data
(data poisoning attack [10, 11]) or the client model updates (model poisoning attacks [12])
with the aim of hindering the performance of the FL model.
We argue in this paper that the FL model has to be able to dynamically avoid adversarial
clients to preserve the learning model from byzantines poisoning attacks, which is usually
performed on the server by the federated aggregation operator. In the literature there are
a number of federated aggregation operators, but they do not prevent the federated model
from this kind of attacks [13, 14, 15], or they do it following some assumptions about the
nature of the adversarial clients [16] or prove to be insufficiently effective [17].
We propose the Dynamic Defense Against Byzantine Attacks (DDaBA), which is a dynamic
aggregation operator that dynamically selects the clients to be aggregated and discards those
ones considered as adversarial, and it features agnostic about the number and nature of the
adversarial clients. This dynamic defense is built upon an Induced Ordered Weighted Aver-
aging (IOWA) operator [18], which aggregates the clients on a weighted basis according to
an induced-ordered function and a linguistic quantifier. We use as induced-ordered func-
tion the performance of the local learning models on a validation set stored in the server.
The linguistic quantifier addresses the weighting of the clients, which usually depends on
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the knowledge of the problem and predefined parameters. We design an agnostic linguistic
quantifier on the nature of the problem, which is based on: (1) considering the distribution
of data resulting from measuring the performance variation between local learning models
on the validation set, (2) assuming that the resulting distribution follows an exponential
distribution, and (3) using the properties of that distribution to set the parameters of the
linguistic quantifier in order to discard the adversarial clients that correspond to outliers in
the exponential distribution according to the Tukey criteria.
We evaluate theDDaBA as a defense in a FLmodel for image classification. For that purpose,
we leverage the benchmark image classification datasets Fed-EMNIST1 Digits [19], Fashion
MNIST2 [20] and CIFAR-10,3 and we distribute the data over the clients following a non in-
dependent and identically distributed (non-IID) distribution. We compare the DDaBA with
the classical federated aggregation operator FedAvg [13]with no defense and the state-of-the-
art defenses against three different byzantine attacks: label-flipping [21], out-of-distribution
[22] and randomweights [23] attacks. We show that the DDaBA is able to identify the adver-
sarial and poor clients, filter them out and enhance the performance of the global learning
model.
We analyze the behavior of the DDaBA in an scenario with a extreme proportion of adver-
sarial clients, and we see that the performance of the federated global model is hindered.
Although this is a very unlikely scenario, we also introduce the static version of DDaBA,
Static Defense Against Byzantine Attacks (SDaBA), which predefine the parameters of the
linguistic quantifier of the IOWA operator for discarding the susceptible adversarial clients.
The SDaBA, as well as the DDaBA, outperforms all the baselines in the three adversarial
attacks developed for the evaluation.
The rest of the work is organized as follows: the following section summarizes the back-
ground related to FL, adversarial attacks in FL and defenses against them. Section 3 is fo-
cused on the description of the dynamic FL model for identifying adversarial clients. We
detail the experimental set-up in Section 4 and evaluate and analyze the results of the FL
models in Section 5. Finally, conclusions are described in Section 6.

2 Background

We expound in this section some relevant concepts and related works. We introduce FL in
Section 2.1, we describe the main types of adversarial attacks in FL in Section 2.2, and we
detail the proposed defenses against byzantine attacks in Section 2.3.

2.1 Federated Learning

1https://www.nist.gov/node/1298471/emnist-dataset
2https://github.com/zalandoresearch/fashion-mnist
3https://www.cs.toronto.edu/~kriz/cifar.html
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FL is a learning approach pushed by the need of overcoming the limitations of distributed
learning for preserving data privacy and for processing large number of clients following a
non homogeneous data distribution [24]. FL proposes a new training approach of learning
algorithms that consists in the iterative training of the model in the devices that own the
data, the aggregation of those models in the federated model, and the updating of the local
models with the federated model. Hence, FL prevents from data leakage and preserves data
privacy, since the data do not leave the electronic device.
Formally, FL is a distributed machine learning paradigm consisting of a set of clients
{𝐶1,… , 𝐶𝑛} with their respective local training data {𝐷1,… , 𝐷𝑛}. Each of these clients 𝐶𝑖
has a local learning model named as 𝐿𝑖 represented by the parameters {𝐿1,… , 𝐿𝑛}. FL aims
at learning a global learning model represented by 𝐺, using the scattered data across clients
through an iterative learning process known as round of learning. For that purpose, in each
round of learning 𝑡, each client trains its local learning model over their local training data
𝐷𝑡
𝑖 , which updates the local parameters 𝐿𝑡𝑖 to 𝐿̂𝑡𝑖 . Subsequently, the global parameters 𝐺𝑡

are computed aggregating the trained local parameters {𝐿̂𝑡1,… , 𝐿̂𝑡𝑛} using an specific feder-
ated aggregation operator Δ, and the local learning models are updated with the aggregated
parameters:

𝐺𝑡 = Δ(𝐿̂𝑡1, 𝐿̂𝑡2,… , 𝐿̂𝑡𝑛)
𝐿𝑡+1𝑖 ← 𝐺𝑡, ∀𝑖 ∈ {1,… , 𝑛}

(1)

The updates among the clients and the server are repeated as much as needed for the learn-
ing process. Thus, the final value of 𝐺 will sum up the knowledge sequestered in the clients.

2.2 Related works about adversarial attacks

Machine learning is highly susceptible to adversarial attacks [25], and the vast majority of
the defensive approaches are based on three approaches [8]: (1) game theory [26], (2) data
sanitation [27] and (3) resilient and robust learning models, which assume that a fraction of
the training data may be manipulated and consider it as outliers [28]. Due to the federated
aggregation operator is agnostic in relation with adversarial clients information, the first
approach can not be applied in FL. Likewise, since the training data in FL is inaccessible
by the server, the second approach is also not feasible in FL. Therefore, the most promising
defense approach is developing resilient and robust federated aggregation operators with the
ability to safeguard the model from the effect of attacks.
According to [29], there are two types of adversarial attacks in FL: (1) Inference attacks [30],
which aim at inferring information from the training data; and (2) poisoning attacks [31],
which pursue to compromise the global learningmodel. Concerning inference attacks, there
are different types of them depending on the information being inferred. The most impor-
tant ones are the property and membership inference attacks, which respectively seek to
infer certain properties of the data and the membership of specific samples in the training
set. Because of their nature, the defenses proposed in the literature are based on applications
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derived from or inspired by the Differential Privacy [32]. Regarding poisoning attacks, we
identify two taxonomies:

1. Depending on which part of the FL model is attacked, we differentiate between
model-poisoning [33] and data-poisoning attacks [34]. In practice, both are almost
equivalent, since a poisoning of the data results in a poisoned model. However,
data-poisoning attacks and some of the model-poisoning attacks fail to be effective
since the attack dissipates in the aggregation of many clients. Hence, these attacks
are combined withmodel-replacement [17] techniques, which boosts the adversarial
model (or models) in order to replace the global model.

2. Depending on the purpose of the attack, we distinguish between untargeted or byzan-
tine attacks [35], which seek to affect the model’s performance, and targeted or back-
door attacks [17], which aim at injecting a secondary or backdoor task into the global
model by stealth.

2.3 Defenses against adversarial attacks

The literature provides multiple solutions to both byzantine and backdoor attacks in clas-
sical machine learning. The vast majority of these defenses are based on data inspection
methods, such as removing outliers from the training data in centralized learning [36] or, in
a distributed setting, removing outliers from participant’s training data or models [37, 38].
In both cases, the available defenses require data inspection, which is not possible in FL.
Therefore, defenses against adversarial attacks in FL must be designed ad hoc.
Regarding the state-of-the-art defenses designed to be applied in federated settings, they are
based on the modification of the aggregation operator, because the attack is usually car-
ried out by the clients. The most important defenses against byzantine attacks are based on
a more robust aggregation of the updates and they are called byzantine-robust aggregation
rules. We highlight the following ones:

• Coordinate-wise aggregations [39], which replaces themean of the classical aggrega-
tion operator FedAvg [13] with more robust statistics to outliers or anomalous data.
The main ones are the trimmed-mean and the median.

• Krum (and MultiKrum) [40], which is based on using geometric properties to de-
termine the most central model updates vectors. This defense requires a 𝑘 hyper-
parameter that determines the number of clients remaining in the aggregation.

• Bulyan [41] which is the state of the art. It is built as a combination of Krum and
trimmed-mean. Accordingly, themodel updates vectors are sorted according to their
geometrical centrality and are aggregated through a trimmed-meanwith a𝑚 param-
eter, which discards a total of 2𝑚 clients.
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Additionally, differential privacy [32] methods are an important safeguard for the informa-
tion shared during the communication between the server and the clients. Therefore, the
defensive challenges of the FL should focus on client attacks.
The main weakness of the defenses proposed in the literature is that they are highly depen-
dent on parameters, which beforehand are difficult to set without information about the
number or nature of the adversary clients. Thus, we propose in this paper a defense mecha-
nismagainst poisoning attacks, which dynamically selects the clients that are not adversarial
and filters out the adversarial or the poor ones (clients with low quality models) without the
requirement to set any parameters.

3 Dynamic Defense Against Poisoning Attacks

FL is featured by its restriction to access to the training data, which is sequestered in the
clients. Accordingly, poisoning attacks, both data and (local) model poisoning [10, 11],
grounded in the malicious manipulation of the training data or the local model updates,
can corrupt the FL model, which cannot inspect the training to defend itself against this
kind of adversarial attacks.
We propose a defense against byzantine poisoning attacks built upon a federated aggregation
operator based on a Induced Ordered Weighted Averaging (IOWA) [18] that dynamically
selects the clients to be aggregated, and filters out the adversarial ones. We call it Dynamic
Defense Against Byzantine Attacks (DDaBA).
The IOWAoperators, andmore generally the OrderedWeighted Averaging (OWA) ones [42],
are functions for weighting the contribution of a set of clients in a aggregation process, as it is
the aggregation of the parameters of the local learning models in FL. We mathematically in-
troduce OWAand IOWAoperators in Appendix A, and according to the definition the IOWA
operator is composed of (1) an order-inducing function to set the weighting assignation or-
der, and (2) a linguistic quantifier to calculate the weight contribution value. We define
the induced-order function used in DDaBA in Section 3.1, and the linguistic quantifier that
dynamically adapts the weighting value calculation during the FL training in Section 3.2.
Finally, we sum up DDaBA in Section 3.3.

3.1 Accuracy-based induced ordering function for clients model updates

The aim of byzantine poisoning adversarial attacks is hindering the performance of a FL
model through altering the training data or directly themodel updates. Since FL is grounded
in the aggregation of the 𝐿𝑖, those maliciously altered ones would perform lower than the
non-altered ones. Hence, the validation of the 𝐿𝑖 before the aggregationmay help to identify
the suspicious adversarial clients.
We propose the Local Accuracy Function, 𝑓𝐿𝐴, to measure the performance of each 𝐿𝑖 before
its aggregation. The 𝑓𝐿𝐴 function is based on the availability of a validation set shared among
the clients. The viability of this validation set is justified by its reduced size compared to
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the size required for training, and the possibility of making it up through expert or prior
knowledge. We define the 𝑓𝐿𝐴 function in Definition 3.1.

Definition 3.1 (Local Accuracy Function (𝑓𝐿𝐴)) it measures the performance of a local
learning model 𝐿𝑖 using a fixed validation dataset named as 𝑉𝐷. For that, it computes the
accuracy of 𝐿𝑖 over 𝑉𝐷:

𝑓𝐿𝐴(𝐿𝑖) = accuracy(𝐿𝑖, 𝑉𝐷) (2)

where accuracy(𝐿𝑖, 𝑉𝐷) refers to the standard accuracy evaluation measure of the local learn-
ing model 𝐿𝑖 in the dataset 𝑉𝐷.

Once the clients model updates are sorted according to this sorting function, we expect that
the benign client’s models will converge to a common solution, while the adversarial client’s
models will not, but they will converge to a worse solution for the original problem. There-
fore, if we define the random variable resulting from the differences in accuracy among all
clients with the client that scored the highest accuracy as follows:

𝕏𝑓𝐿𝐴𝑖 = max
𝑖
{𝑓𝐿𝐴(𝐿𝑖)} − 𝑓𝐿𝐴(𝐿𝑖). (3)

We assume that this random variable 𝕏will approximate an Exponential Distribution, since
there will be many values close to zero (and always positive), and very few far from zero.

3.2 Dynamic linguistic quantifier for weighting the contribution of clients

The non-IID data distribution of most of the FL settings make impossible to know before-
hand the nature of the clients, and hence it is impossible to know the amount of adversarial
clients. Therefore, the selection of the FL clients by its weighted contribution has to be dy-
namically calculated for adapting to the nature of the clients.
The dynamic selection of the DDaBA model is based on a IOWA linguistic quantifier that
some of its parameters values depend on the resulting exponential distribution after ordering
the clients model updates 𝕏𝑓𝐿𝐴𝑖 . Before the definition of the linguistic quantifier of DDaBA,
we first define the IOWA linguistic quantifier in Definition 3.2.

Definition 3.2 (Linguistic quantifier) It is a function 𝑄 ∶ [0, 1] → [0, 1] verifying 𝑄(0) =
0, 𝑄(1) = 1 and 𝑄(𝑥) ≥ 𝑄(𝑦) for 𝑥 > 𝑦. Equation 4 defines how the function 𝑄 computes
the weighting values where𝑤𝑖 represents the weighting associated to the position 𝑖 of a vector of
dimension 𝑛, and Equation 5 defines the behaviour of the function 𝑄.

𝑤(𝑎,𝑏)
𝑖 = 𝑄𝑎,𝑏 (

𝑖
𝑛) − 𝑄𝑎,𝑏 (

𝑖 − 1
𝑛 ) (4)
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𝑄𝑎,𝑏(𝑥) =
⎧⎪
⎨⎪
⎩

0 0 ≤ 𝑥 ≤ 𝑎
𝑥 − 𝑎
𝑏 − 𝑎 𝑎 ≤ 𝑥 ≤ 𝑏
1 𝑏 ≤ 𝑥 ≤ 1

(5)

where 𝑎, 𝑏 ∈ [0, 1] satisfying 0 ≤ 𝑎 ≤ 𝑏 ≤ 1, and they set the intervals for calculating the
contribution weight of each 𝐿𝑖. For the sake of clarification, those 𝑥 values in the same interval
will have the same weighting value.

𝑄𝑎,𝑏,𝑐,𝑦𝑏(𝑥) =

⎧
⎪⎪
⎨
⎪⎪
⎩

0 0 ≤ 𝑥 ≤ 𝑎
𝑥 − 𝑎
𝑏 − 𝑎 ⋅ 𝑦𝑏 𝑎 ≤ 𝑥 ≤ 𝑏
𝑥 − 𝑏
𝑐 − 𝑏 ⋅ (1 − 𝑦𝑏) + 𝑦𝑏 𝑏 ≤ 𝑥 ≤ 𝑐
1 𝑐 ≤ 𝑥 ≤ 1

(6)

We redefine the function𝑄𝑎,𝑏 for providing it a dynamic behaviour and a higherweighting of
top clients, which depends on the random variable 𝕏𝑓𝐿𝐴𝑖 . Accordingly, we propose 𝑄𝑎,𝑏,𝑐,𝑦𝑏
that is defined in Equations 6, and incorporates two new parameters to themodel (c and 𝑦𝑏),
in addition to the two existing ones. The definition of each of the parameters is as follows:

1. Parameter 𝑎. This parameter represents the proportion of clients to which null
weighing is assigned. Since we do not want to filter out those clients which stand
out ”at the top”, i.e. those that obtain the best accuracy, we set the value to 0.

2. Parameter 𝑏. It sets the portion of clients we consider as top clients and we want
to weight higher. The choice of this parameter is done dynamically, so that the top
clients correspond to the first decile of the distribution of 𝕏𝑓𝐿𝐴𝑖 . Formally, 𝑏 is the
portion of clients that verify

𝕏𝑓𝐿𝐴𝑖 ≤ ln(10/9)
𝜆 , (7)

where 𝜆 = 1
𝜇
𝕏𝑓𝐿𝐴𝑖

and 𝜇
𝕏𝑓𝐿𝐴
𝑖

the mean of 𝕏𝑓𝐿𝐴𝑖 .

3. The dynamic behavior of the parameter 𝑐. This parameter represents the portion
of clients that we do not discard. For example, a value of 𝑐 = 0.8 means that the
20% of the clients will be discarded. With the aim of dynamically adapt it in each
aggregation, we identify the problem of filtering out adversarial clients as a problem
of outlier detection in𝕏𝑓𝐿𝐴𝑖 . We thus employ the Tukey criteria [43, 44] for anomalies
in exponential probability distribution functions and set 𝑐 = 1 − ̂𝑐 where ̂𝑐 is the
portion of clients that verify

𝕏𝑓𝐿𝐴𝑖 ≥ 𝑄3 + 1.5𝐼𝑄𝑅 = ln(4)
𝜆 + 1.5 ln(3)𝜆 , (8)
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where 𝜆 = 1
𝜇
𝕏𝑓𝐿𝐴𝑖

and 𝜇
𝕏𝑓𝐿𝐴
𝑖

the mean of 𝕏𝑓𝐿𝐴𝑖 .

4. Parameter 𝑦𝑏. It provides the weighting of the top clients together with 𝑏. In partic-
ular, it represents the portion of the total weight assigned to these clients. In order
to weight the top clients with double the importance of the rest of the clients partic-
ipating in the aggregation, we set

𝑦𝑏 =
2|𝑇𝑜𝑝|

2|𝑇𝑜𝑝| − |𝑅𝑒𝑠𝑡| , (9)

where |𝑇𝑜𝑝| = 𝑏 × 𝑛 and |𝑅𝑒𝑠𝑡| = (𝑐 − 𝑏) × 𝑛.

Analogously to Equation 4, we obtain theweighting of each client from the𝑄𝑎,𝑏,𝑐,𝑦𝑏 function
according to Equation .

𝑤(𝑎,𝑏,𝑐,𝑦𝑏)
𝑖 = 𝑄𝑎,𝑏,𝑐,𝑦𝑏 (

𝑖
𝑛) − 𝑄𝑎,𝑏,𝑐,𝑦𝑏 (

𝑖 − 1
𝑛 ) (10)

3.3 Defense based on the federated aggregation

Finally, using the equations defined above and the definitions of FL (Equation 1), we define
DDaBA as a defense consisting of the following aggregation operator:

𝐷𝐷𝑎𝐵𝐴({𝐿̂𝑡1, 𝐿̂𝑡2,… , 𝐿̂𝑡𝑛}, 𝑉𝐷) =
𝑛
∑
𝑖=1

𝑤(𝑎,𝑏,𝑐,𝑦𝑏)
𝑖 𝐿̂𝑡𝑖 (11)

where 𝑤(𝑎,𝑏,𝑐,𝑦𝑏)
𝑖 is defined in Equation 10 and ̂𝐿𝑡𝑖 the local model update of the client 𝑖 for

𝑖 ∈ {1,… , 𝑛}. Algorithm 1 depicts the DDaBA pseudo-code.

4 Experimental set-up

The evaluation of DDaBA is performed by means of the accuracy of the resulting FL model
in three datasets arranged for FL, and we describe them in Section 4.1. Also, we deployed an
image classification deep learning model in the FL setting. Since the main aim of this work
is to propose a dynamic defense against byzantine attacks, we use an standard CNN-based
image classification model composed of two CNN layers followed by its corresponding max-
pooling layers, a dense layer and the output layer with a softmax activation function for the
Fed-EMNIST and Fashion MNIST datasets and a pre-tained model based on EfficientNet
[45] for the CIFAR-10 dataset. Finally, the federated aggregation operators used as baselines
are introduced in Section 4.2 and the covered attacks in Section 4.3.

9
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Algorithm 1 DDaBA
Input: local updates {𝐿̂𝑡1, 𝐿̂𝑡2,… , 𝐿̂𝑡𝑛} and 𝑉𝐷
Initialize 𝐺𝑡

for 𝑖 = 0 to 𝑛 do
𝑓𝐿𝐴(𝐿𝑖) = accuracy(𝐿𝑖, 𝑉𝐷)

end for
for 𝑖 = 0 to 𝑛 do
𝕏𝑓𝐿𝐴𝑖 = max𝑖{𝑓𝐿𝐴(𝐿𝑖)} − 𝑓𝐿𝐴(𝐿𝑖)

end for
𝑎 = 0
𝑏 = |𝕏𝑓𝐿𝐴𝑖 ≤ ln(10/9)

𝜆
|

𝑐 = |𝕏𝑓𝐿𝐴𝑖 ≥ ln(4)
𝜆

+ 1.5 ln(3)
𝜆
|

𝑦𝑏 =
2|𝑏×𝑛|

2|𝑏×𝑛|−|(𝑐−𝑏)×𝑛|
for 𝑖 = 0 to 𝑛 do
𝑤𝑖 = 𝑤(𝑎,𝑏,𝑐,𝑦𝑏)

𝑖 according to Equation 10.
end for
𝐺𝑡 = ∑𝑛

𝑖=0𝑤𝑖𝐿̂𝑡𝑖
Return 𝐺𝑡

4.1 Evaluation datasets

Since the DDaBA needs a validation set for dynamically discarding adversarial clients, we
create it from the test subsets of the three datasets, by assigning 20% of the sample in the test
dataset to the validation set. The three datasets used in the evaluation are described as what
follows:

1. The Fed-EMNIST (Federated Extended Modified NIST) dataset, which was pre-
sented in 2017 in [19] as an extension of theMNIST dataset [46]. The EMNISTDigits
class contains a balanced subset of the digits dataset containing 28,000 samples of
each digit. The dataset consists of 280,000 samples, which 240,000 are training sam-
ples and 40,000 test samples. We use its federated version by identifying each client
with an original writer.

2. The FashionMNIST [20] aims to be a more challenging replacement for the original
MNSIT dataset. It contains a balanced subset of the 10 different classes containing
7,000 samples of each class. Hence, the dataset consists of 70,000 samples, which
60,000 are training samples and 10,000 test samples. We set the number of clients to
500.

3. The CIFAR-10 dataset is a labeled subset of the 80million tiny images dataset [47]. It
consists of 60000 32x32 color images in 10 classes, with 6000 images per class. There
are 50000 training images and 10000 test images, which correspond to 1000 images
of each class. We set the number of clients to 100.

10
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In summary, the datasets, after appropriate modifications to prepare the validation sets, fol-
low the data distributions shown in Table 1.

Table 1: Size of the training, validation and test sets of Fed-EMNIST, Fashion MNIST and
CIFAR-10 datasets.

Training Validation Test
Fed-EMNIST 240,000 8,000 32,000
FashionMNIST 60,000 2,000 8,000
CIFAR-10 60,000 2,000 8,000

With the aim of adapting both Fashion MNIST and CIFAR-10 datasets to a federated envi-
ronment, the training data is distributed among the clients following a non-IID distribution.
Accordingly, we randomly assign instances of a reduced number of labels to each client sim-
ulating a scenario in which each client contains partial information.

4.2 Baselines based on federated aggregation operators

We compare the DDaBA defense with the classical federated aggregation operator FedAvg
[48] and the following state-of-the-art defenses against byzantine poisoning attacks:

• Median [49]. It is one of the byzantine-robust aggregation rules which is based on re-
placing the mean with the median in the aggregation method, which is more robust
against extreme values.

• Trimmed-mean [50]. It represents another byzantine-robust aggregation rule. It
relies on using amore robust version of themean that consists in eliminating a fixed
percentage (𝑘) of extreme values both below and above the data distribution.

• Krum and Multikrum [40]. It sorts the clients according to the geometric distances
of their model updates distributions and chooses the one closest to the majority as
the aggregated model. Multikrum incorporates an 𝑑 parameter, which specifies the
number of clients to be aggregated (the first 𝑑 after being sorted) resulting in the
aggregated model.

• Bulyan [41]. It represents the state-of-the-art combining Krum and the thrimmed-
mean. Hence, it sorts the clients according to their geometric distances and, accord-
ing to an 𝑓 parameter, filters out the 2𝑓 clients of the tails of the sorted distribution
of clients and aggregates the rest of them.

The main weakness of Multikrum and Bulyan is that they strongly depend on a parameter
given by the user. Both are optimal if the number of adversarial clients is known, which is
usually not the case.

11
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4.3 Byzantine Data andModel Poisoning Attacks

There are multitude of byzantine adversarial attacks both data and model poisoning. Due
to the high number of clients participating in the aggregation and the low proportion of
clients that will be adversarial in a reasonable configuration, poisoning attacks are very in-
effective as their effect dissipates in the aggregation. For that reason, poisoning attacks are
combinedwithmodel-replacement [17] techniques, whichweight the contribution of adver-
sarial clients in the aggregation according to a boosting parameter that is distributed among
the adversarial clients.
The adversarial attacks covered in this work are the following:

• Label-flipping attack [21]. It is a data poisoning attack consisting of randomly flip-
ping the labels of the adversarial attacks. This way, the adversarial clients learn
incorrect information that send to the server.

• Out-of-distribution attack [22]. It is another data poisoning attack consisting of intro-
ducing into the adversarial clients’ training dataset some samples out of the training
distribution. In practice, the most frequent approaches are to introduce samples
from another dataset with the same features (e.g. EMNIST and Fashion MNIST)
or to introduce randomly generated samples. We adopt the second approach in the
experimentation.

• Randomweights [23]. It is a model poisoning attack based on randomly generate the
model updates of each adversarial client.

Table 2: Mean results for the label-flipping byzantine attack in terms of accuracy. We also
show, in the first row, the expected accuracy with FedAvg but without any attack. The best
result for each of the scenarios is highlighted in bold.

Federated EMNIST FashionMNIST CIFAR-10
1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50

No attack 0,9657 0,9657 0,9629 0,8719 0,8719 0,8697 0,8357 0,8357 0,8231
FedAvg 0,1591 0,4212 0,4007 0,1917 0,3665 0,4322 0,1184 0,1436 0,2448
Trim.-mean 0,9428 0,8739 0,8370 0,8672 0,8325 0,861 0,8239 0,7346 0,8220
Median 0,9313 0,9161 0,9097 0,8671 0,8473 0,8585 0,8287 0,8090 0,8289
Krum 0,8917 0,8706 0,8634 0,7264 0,7197 0,7473 0,7479 0,7610 0,7698
MultiKrum (5) 0,9132 0,9270 0,9189 0,8403 0,8433 0,8255 0,8164 0,8232 0,8114
MultiKrum (20) 0,9563 0,9571 0,9504 0,8727 0,8724 0,8680 0,8439 0,8479 0,8518
Bulyan (f=1) 0,9523 0,7813 0,5809 0,8689 0,7830 0,7875 0,8265 0,6595 0,6454
Bulyan (f=5) 0,9365 0,9421 0,9516 0,8617 0,8652 0,8726 0,8492 0,8451 0,8540
DDaBA 0,9657 0,9663 0,9643 0,8817 0,8783 0,8807 0,8633 0,8503 0,8557

We experiment with four different settings of adversarial clients for each of the previously
described attacks:

• 1-out-of-30 attack scenario. Consisting of 1 adversarial clients of a total of 30 clients
participating in each aggregation, which represents 1/30 of adversarial clients.
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Table 3: Mean results for the out-of-distribution byzantine attack in terms of accuracy. We
also show, in the first row, the expected accuracy with FedAvg but without any attack. The
best result for each of the scenarios is highlighted in bold.

Federated EMNIST FashionMNIST CIFAR-10
1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50

No attack 0,9657 0,9657 0,9629 0,8719 0,8719 0,8697 0,8357 0,8357 0,8231
FedAvg 0,4093 0,4404 0,4350 0,2041 0,3667 0,4657 0,1468 0,1922 0,3419
Trim.-mean 0,9456 0,8602 0,8531 0,8652 0,8348 0,8310 0,8202 0,7441 0,7400
Median 0,9345 0,9200 0,9144 0,8662 0,8465 0,8454 0,8223 0,8019 0,8073
Krum 0,8693 0,8668 0,8621 0,7361 0,7062 0,7281 0,7202 0,7310 0,7408
MultiKrum (5) 0,9169 0,9330 0,9198 0,8493 0,8430 0,8345 0,8305 0,8191 0,8023
MultiKrum (20) 0,9545 0,9544 0,9506 0,8747 0,8719 0,8733 0,8607 0,8519 0,8521
Bulyan (f=1) 0,9507 0,7872 0,5812 0,8704 0,7601 0,6930 0,8319 0,6862 0,5551
Bulyan (f=5) 0,9353 0,9383 0,9502 0,8713 0,8654 0,8757 0,8440 0,8498 0,8481
DDaBA 0,9652 0,9620 0,9654 0,8761 0,8841 0,8783 0,8626 0,8599 0,8632

Table 4: Mean results for the randomweights byzantine attack in terms of accuracy. We also
show, in the first row, the expected accuracy with FedAvg but without any attack. The best
result for each of the scenarios is highlighted in bold.

Federated EMNIST FashionMNIST CIFAR-10
1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50

No attack 0,9657 0,9657 0,9629 0,8719 0,8719 0,8697 0,8357 0,8357 0,8231
FedAvg 0,0997 0,0994 0,1001 0,1006 0,1016 0,0997 0,0998 0,0994 0,1005
Trim.-mean 0,9537 0,1039 0,0990 0,8751 0,1004 0,0999 0,8608 0,0992 0,0998
Median 0,9367 0,9354 0,9342 0,8654 0,8618 0,8554 0,8499 0,8664 0,8646
Krum 0,8314 0,8652 0,8541 0,7156 0,7459 0,7342 0,7184 0,7164 0,7994
MultiKrum (5) 0,9325 0,9228 0,9191 0,8348 0,8343 0,8278 0,8164 0,8115 0,8167
MultiKrum (20) 0,9565 0,9577 0,9510 0,8764 0,8751 0,8676 0,8488 0,8488 0,8531
Bulyan (f=1) 0,9598 0,0997 0,0998 0,0990 0,1001 0,0990 0,8529 0,0996 0,0993
Bulyan (f=5) 0,9379 0,9377 0,9514 0,8746 0,8690 0,8746 0,8502 0,8411 0,8519
DDaBA 0,9653 0,9645 0,9622 0,8801 0,8778 0,8777 0,8656 0,8624 0,8626

• 5-out-of-30 attack scenario. Consisting of 5 adversarial clients of a total of 30 clients
participating in each aggregation, which represents 1/6 of adversarial clients.

• 10-out-of-50 attack scenario. Consisting of 5 adversarial clients of a total of 50 clients
participating in each aggregation, which represents 1/5 of adversarial clients.

In each of the scenarios described, the boosting factor is divided by the number of adversarial
clients in order to carry out the model-replacement.

4.4 Implementation details

We provide the code of DDaBA federated aggregtion operator4 in order to ensure the repro-
ducibility of the experiments. Due to the large number of existing FL frameworks [51] and
with the aim of showing that DDaBA is independent of the framework, we have selected two
of them:

4https://github.com/ari-dasci/S-DDaBA
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• The Sherpa.ai FL [51] framework.
• The Flower [52] framework.

For each framework, we include Jupyter notebooks to visualise how the aggregation operator
works and to facilitate its understanding.

5 Experimental results

We evaluate the performance of DDaBA as a defense to the byzantine attacks described in
Section 2.2 in two ways: (1) In Section 5.1, we compare the behavior of DDaBA in terms of
the performance of the resulting FL model with the baselines described in Section 4.2 and,
(2) In Section 5.2 we analyze DDaBD in a scenario with a high number of adversarial clients,
and we propose a modification of it for this particular scenario.

5.1 Analysis of the results

Tables 2, 3 and 4 show the results obtained in label-flipping, out-of-distribution and random
weights attacks. Regarding the strength of the attacks, we find that all three are sufficiently
powerful to pose a challenge to defenses. In fact, notice that the attack is slightly more effec-
tivewhen there are fewer adversarial clients since the boosting factor is divided among fewer
clients. The out-of-distribution attack is slightly less damaging while the random weights
attack achieves the lowest performance without defense, ranking as the most challenging.
The results obtained both in the different types of attacks and in the considered datasets
confirm common conclusions, so we discuss all the results as a whole.
When evaluating the performance of the baselines we hereby confirm that MultiKrum and
Bulyan do indeed represent the state of the art. However, they are highly dependent of the
𝑑 and 𝑓 parameters since they set the number of clients to keep or discard, respectively,
in the aggregation. For example, in the 10-out-of-50 scenario and Bulyan with 𝑓 = 1 we
verify this weakness, since only 2𝑓 = 2 clients would be discarded from the aggregation,
which is not enough to defend themodel in the presence of 10 adversarial clients. A possible
solution would be to set this value always to high, but this is also a limitation because in the
case of having fewer adversarial clients than 2𝑓 the quality of the model decreases (e.g.,
1-out-of-30 using Bulyan with 𝑓 = 5). Finally, MultiKrum and Bulyan promise optimal
performance in the case of knowing the number of adversarial clients, which is not the case.
This enhances the need for a defense that dynamically estimates how many clients to filter
in the aggregation.
In contrast, the outperformance of DDaBA is confirmed in all the attack settings considered
enhancing its success regardless of the type of attack and the proportion of adversarial clients.
Moreover, DDaBA achieves better results than the no attack situation in the vast majority of
the scenarios. This is because the dynamic filtering of clients not only discards those that
are adversarial but also those that perform too poorly to contribute to improving the global
learning model.
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5.2 Extreme attack scenarios - A static version of DDaBA

It has been proven that discarding clients based on whether or not they are outliers in a
distribution formed from performance on a common validation set overcomes the defenses
of the state of the art. However, this approach based on data distributions has a weakness
stemmed from the fact that the distribution we use to search outliers is configured with the
same data thatwe subsequently evaluate. Therefore, with a very high presence of adversarial
clients, the resulting distribution will be highly skewed by this data, resulting in no outlier.
Although we recognize this weakness, we point out that it is not a major one, since it is
highly unlikely for the percentage of adversarial clients in an FL scenario to be so high as to
cause the defense to fail.
To overcome this weakness, we propose a static version of DDaBA called Static Defense
Against Byzantine Attacks (SDaBA), which incorporates the only difference that the propor-
tion of clients to be discarded from the aggregation is computed using a fixed parameter 𝛼.
In particular, instead of eliminating those clients that represent outliers in the distribution
𝕏𝑓𝐿𝐴𝑖 , we eliminate those clients whose distance to the best accuracy is greater than 𝛼 times
the maximum of the distances. In other words, using 𝕏𝑓𝐿𝐴𝑖 , we set 𝑐 = 1 − 𝛽 where 𝛽 is the
portion of clients verifying that

𝕏𝑓𝐿𝐴𝑖 ≥ 𝛼𝕏𝑓𝐿𝐴𝑛 ∀𝑖 ∈ {1,… , 𝑛} (12)

in Equations 6 and 10. Analogously, we set 𝑏 = 0.2 in order to consider as top clients the top
20% clients.
With the aim of evaluating SDaBA we set 𝛼 = 1/4 and the 10-out-of-30 attack scenario
consisting of 10 adversarial clients of a total of 30 clients participating in each aggregation,
which represents 1/3 of adversarial clients, which is an unusual high proportion of them.
Table 5 shows the results of DDaBA and SDaBA in comparison with the baselines in this
extreme attack scenario in Federated EMNIST.
The results show how this extreme scenario highly affects to DDaBA, but also Bulyan (f=1).
With respect to the baselines, in this case it is MultiKrumwith 𝑑 = 20 that achieves the best
results by setting the 𝑑 parameter to its optimal value. Finally, we highlight the appropriate
performance of SDaBA, outperforming the rest of the defenses and solving the problem of
extreme scenarios.

6 Conclusion and future work

We addressed the problem of defending against byzantine attacks in FL, which is a real chal-
lenge since the existing defenses are not enough. Using the exponential distribution result-
ing of the differences between the best model and the rest of them in terms of accuracy
over a central validation set, we consider that those clients that represent outliers in that
distribution are likely to be adversarial ones. Hence, we propose DDaBA, a defense against
byzantine attacks which dynamically filters out the adversarial and poor clients.
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Table 5: Mean results for the extreme scenario (10-out-of-30) in Federated EMNIST in terms
of accuracy. We also show, in the first row, the expected accuracy with FedAvg but without
any attack. The best result for each of the scenarios is highlighted in bold.

Label-flipping Out-of-dist. Randomweights
No attack 0,9657 0,9657 0,9657
FedAvg 0,3561 0,4394 0,0994
Trimmed-mean 0,6256 0,5778 0,1002
Median 0,8595 0,8347 0,9355
Krum 0,8801 0,8678 0,8633
MultiKrum (5) 0,9336 0,9366 0,9349
MultiKrum (20) 0,9623 0,9617 0,8595
MultiKrum (25) 0,9623 0,9617 0,8595
Bulyan (f=1) 0,4755 0,5005 0,1000
Bulyan (f=5) 0,9485 0,9475 0,9455
DDaBA 0,4235 0,4819 0,0997
SDaBA (1/4) 0,9654 0,9653 0,9629

We evaluated the DDaBA in three different byzantine attacks, in three datasets and using
three different settings. In addition, we proposed a static version of the defense approach in
order to use it in scenarios with an extremely high proportion of adversarial clients. Both
the experiments corroborate the following conclusions:

• DDaBA is a highly effective defense against byzantine attacks in real attack scenar-
ios.

• It properly filters out adversarial and poor clients improving the performance of the
global model in scenarios with adversarial clients, even outperforming the perfor-
mance in the original task.

• The static version SDaBA is an effective solution for extreme attack scenarios.

To conclude, we have proven that DDaBA is a high quality defense against byzantine attacks,
and it can act as a proper federated aggregation operator, since it defends the global model
against the effect of the attacks while improving the learning of the global model.

A Ordered weighted model averaging

Group decisionmaking is the AI task focused on finding out a consensus decision from a set
of experts by summing up their individual evaluations. Yager proposed in [42] the Ordered
Weighted Averaging (OWA) operators with the aim of modelling the fuzzy opinion majority
[53] in group decision making. Yager and Filev generalised the OWA operator definition in
[18], where they defined the OWA operator with an order-induced vector for ordering the
argument variable. They called this generalisation of OWA operators with a specific seman-
tic in the aggregation process as Induced Ordered Weighted Averaging (IOWA). The OWA
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and IOWA operators are weighted aggregation functions that are mathematically defined as
what follows:

Definition A.1 (OWA Operator [42]) An OWA operator of dimension 𝑛 is a function Φ ∶
ℝ𝑛 → ℝ that has an associated set of weights or weighting vector 𝑊 = (𝑤1,… ,𝑤𝑛) so that
𝑤𝑖 ∈ [0, 1] and ∑𝑛

𝑖=1𝑤𝑖 = 1, and it is defined to aggregate a list of real values {𝑐1,… , 𝑐𝑛}
according to the Equation 13:

Φ(𝑐1,… , 𝑐𝑛) =
𝑛
∑
𝑖=1

𝑤𝑖𝑐𝜎(𝑖) (13)

being 𝜎 ∶ {1,… , 𝑛} → {1,… , 𝑛} a permutation function such that 𝑐𝜎(𝑖) ≥ 𝑐𝜎(𝑖+1), ∀𝑖 =
{1,… , 𝑛 − 1}.

Definition A.2 (IOWA Operator [18]) An IOWA operator of dimension 𝑛 is a mapping
Ψ ∶ (ℝ × ℝ)𝑛 → ℝ which has an associated set of weights 𝑊 = (𝑤1,… ,𝑤𝑛) so that
𝑤𝑖 ∈ [0, 1] and∑𝑛

𝑖=1𝑤𝑖 = 1, and it is defined to aggregate the second arguments of a 2-tuple
list {⟨𝑢1, 𝑐1⟩,… , ⟨𝑢𝑛, 𝑐𝑛⟩} according to the following expression:

Ψ(⟨𝑢1, 𝑐1⟩,… , ⟨𝑢𝑛, 𝑐𝑛⟩) =
𝑛
∑
𝑖=1

𝑤𝑖𝑐𝜎(𝑖) (14)

being 𝜎 ∶ {1,… , 𝑛} → {1,… , 𝑛} a permutation function such that 𝑢𝜎(𝑖) ≥ 𝑢𝜎(𝑖+1), ∀𝑖 =
{1,… , 𝑛 − 1}. The vector of values 𝑈 = (𝑢1,… , 𝑢𝑛) is called the order-inducing vector and
(𝑐1,… , 𝑐𝑛) the values of the argument variable.

TheOWAand IOWAoperators are functions forweighting the contribution of experts for the
global decision in the case of group decision making, and the contribution of a set of clients
in an aggregation process in a general scenario. However, they need an additional function
to calculate the values of the parameters, which in the context of group decision making
means the grade of membership to a fuzzy concept. The weight value calculation function
is known as linguistic quantifier [54], which is defined as a function𝑄 ∶ [0, 1] → [0, 1] such
as 𝑄(0) = 0, 𝑄(1) = 1 and 𝑄(𝑥) ≥ 𝑄(𝑦) for 𝑥 > 𝑦. Equation 15 defines how the function 𝑄
computes the weight values and Equation 16 defines the behaviour of the function 𝑄.

𝑤(𝑎,𝑏)
𝑖 = 𝑄𝑎,𝑏 (

𝑖
𝑛) − 𝑄𝑎,𝑏 (

𝑖 − 1
𝑛 ) (15)

𝑄𝑎,𝑏(𝑥) =
⎧⎪
⎨⎪
⎩

0 0 ≤ 𝑥 ≤ 𝑎
𝑥 − 𝑎
𝑏 − 𝑎 𝑎 ≤ 𝑥 ≤ 𝑏
1 𝑏 ≤ 𝑥 ≤ 1

(16)

where 𝑎, 𝑏 ∈ [0, 1] satisfying 0 ≤ 𝑎 ≤ 𝑏 ≤ 1.

17
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The function 𝑄 in Equation 16 can be redefined in order to model different linguistic quan-
tifiers. Since the definition of the notion quantifier guided aggregation [42, 54], other def-
initions of the function 𝑄 has been proposed to model different linguistic quantifiers like
“most” or “at least” [53].
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Chapter III

Trabajo actual:
Un enfoque más justo y explicable

«If you can’t give me poetry,
can’t you give me “poetical science”?».

– Ada Lovelace.



170
Chapter III. Trabajo actual:

Un enfoque más justo y explicable

1 Introducción

En este último capítulo de la tesis, desarrollamos el trabajo actual que se está realizando.
Lo hacemos a modo de trabajo científico para seguir con la estructura del anterior capítulo
de publicaciones. En esta sección motivamos y justificamos el problema a abordar, que es
la línea principal de la tesis, pero con un matiz en los objetivos. El resto de secciones se
estructura de la siguiente manera. En la Sección 2 explicamos la propuesta en profundidad
y el marco experimental. En la Sección 3 presentamos los resultados empíricos y el análisis
de los mismos. Finalmente, en la Sección 4 destacamos las conclusiones.

1.1 Motivación

El uso de aplicaciones de AI en ámbitos cotidianos como la producción y transporte, energía
o incluso educación, ha llegado para quedarse. Sin embargo, en lamismamedida que crecen
el número de aplicaciones de AI, mayor es el riesgo producido por estas [AIA21], sobre todo
cuando su aplicación es en ámbitos delicados como la educación, la justicia, la cultura o la
democracia. Por tanto, se hace imprescindible desarrollar sistemas de AIque aseguren resi-
liencia, seguridad, transparencia, equidad, respecto a la privacidad, autonomía, trazabilidad
y auditabilidad, mientras que mantienen el buen rendimiento [Win21].

En este contexto, surgen soluciones como el ya presentado FL [YLC+19] motivado por la
necesidad demantener la privacidad de los datos al mismo tiempo que se permite el entrena-
miento colaborativo demodelos de AI. Consiste en un paradigma de aprendizaje distribuido
en el que varios nodos llamados clientes colaboran de forma que el entrenamiento se lleva a
cabo en estos nodos, no siendo sus datos accesibles de ninguna forma. Este entrenamiento
está coordinado por un servidor global que accede al conocimiento obtenido por cada cliente
(nunca a los datos), agregando este conocimiento en un modelo global.

Sin embargo, como cualquier paradigma de aprendizaje automático, es vulnerable a ata-
ques adversarios [RBJLL+23] que tienen como objetivomodificar el funcionamiento delmo-
delo, o inferir información privada sobre los datos. Este tipo de ataques suponen un reto en
FL dado que la mayoría de los mecanismos de defensa frente a este tipo de ataques en apren-
dizaje automático clásico que encontramos en la literatura se basan en la inspección de datos
[CAD+21]. Al no ser esto posible en FL [LVN23], se tienen que diseñarmecanismos de defen-
sa ad-hoc o adaptar los mecanismos de defensa ya existentes. En este trabajo nos centramos
en proponer una defensa frente a ataques al modelo por envenenamiento de datos aleatorio,
también conocidos como ataques bizantinos.

En la literatura existen multitud de propuestas de mecanismos de defensa que muestran
resultados prometedores. Sin embargo, estas propuestas muestran varias debilidades entre
las que destacamos:

• La mayoría de ellos no son capaces de distinguir a los clientes que son adversarios
(están llevando a cabo un ataque por envenenamiento), de aquellos clientes denomi-
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nados pobres (cuya distribución de datos está sesgada parcialmente). Esto puede ser
un problema dado que rompe el principio de equidad, además de que se puede estar
descartando información de interés.

• La mayoría de las propuestas están centradas en mejorar el rendimiento del modelo,
mientras que no se centran en la transparencia o explicabilidad del filtrado de clientes.

1.2 Justificación

En este trabajo alegamos que es posible desarrollar un mecanismo de defensa capaz de pro-
teger al sistema de FL asegurando así el buen funcionamiento y la preservación de la pri-
vacidad de los datos, al mismo tiempo que aporta otros requisitos deseables como equidad,
transparencia y explicabilidad [BDM+23, DSB+23]. Para ello, nos basamos en nuestra ante-
rior propuesta DDaBA [RBMCLH22], un mecanismo de defensa que ha demostrado tener
un buen rendimiento frente a ataques bizantinos y modificamos las decisiones tomadas ba-
sadas en el rendimiento del modelo por decisiones basadas en medidas de explicabilidad.
Para ello, usaremos modelos lineales de explicaciones locales (LLEs) [SGLH+22, DK20] ba-
sados en la importancia de cada característica de los datos a la hora de tomar decisiones en
la clasificación. Por este motivo, llamamos a la propuesta FTX-DDaBA (Fair, Transparent
and eXplainable DDaBA).

Para testear el funcionamiento del modelo propuesto, utilizaremos como conjuntos de
datos de clasificación de imágenes: Fed-EMNIST [LBBH98] y FashionMNIST [XRV17]. Ade-
más, implementaremos dos tipos de ataques de envenenamiento de datos basados en inter-
cambio aleatorio de etiquetas [TTGL20]. Además, nos compararemos con diferentes mode-
los base de la literatura. Para cada experimento mostraremos tanto medidas de rendimiento
como un análisis más profundo de los datos en varios sentidos: (1) por un lado, mediremos
la presencia de clientes pobres descartados durante las rondas de aprendizaje, y (2) por otro
lado, analizaremos de forma visual las explicaciones del modelo para el filtrado de clientes
adversarios.
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2 Metodología y descripción de la propuesta

En esta sección desarrollamos formalmente la propuesta de un mecanismo de defensa fren-
te a ataques bizantinos que sea justo con la participación de los clientes, que aporte una
explicación del filtrado de los mismos y que mantenga el buen rendimiento del modelo en
la Sección 2.1. Posteriormente, detallamos el entorno experimental en el que vamos a testear
el funcionamiento de la propuesta en la Sección 2.2.

2.1 Propuesta de mecanismo de defensa justo y explicable: FX-DDaBA

Para ello, partimos del mecanismo de defensa frente a ataques bizantinos propuesto en la te-
sis DDaBA [RBMCLH22]. Este mecanismo de defensa consiste en un agregador que se basa
en unos cuantificadores lingüísticos [Yag96] y operadores IOWA (Induced Ordered Weigh-
ted Averaging) [Yag88, YF99] que ponderan la participación de cada cliente, asignando 0 a
los clientes que considera candidatos a descartar, y diferenciando entre clientes normales y
clientes top en el resto de clientes. De esta forma habría tres tipos de ponderaciones:

• Ponderación nula para los clientes a descartar.

• Ponderación alta para los clientes considerados los mejores.

• Ponderación normal para el resto.

Como el funcionamiento de este mecanismo de defensa está desarrollado en profundi-
dad en el capítulo anterior, en esta sección no entraremos en detalles de su diseño, si no
que nos limitaremos a destacar sus diferencias. El funcionamiento de este mecanismo de
defensa basado en un agregador reside en la ordenación de los clientes según su rendimien-
to (en términos de accuracy) en un conjunto de validación situado en el servidor. En nuestra
propuesta, nosotros cambiamos esta función de ordenación para cada cliente 𝑖 cuyo modelo
local está representado por los parámetros 𝐿𝑖 por la siguiente función

𝑓𝐿𝐸(𝐿𝑖, 𝑉𝐷) =
∑𝑣∈𝑉𝐷 cosine_similarity(𝐴

𝑝
𝑖,𝑣, 𝐴

𝑝
𝑗,𝑣)

|∑𝑣∈𝑉𝐷 cosine_similarity(𝐴
𝑝
𝑖,𝑣, 𝐴

𝑝
𝑗,𝑣)|

, ∀𝐿𝑗 ∈ 𝐶, (10)

donde 𝐶 es el conjunto de todas las actualizaciones de los clientes, 𝐴𝑝
𝑖,𝑣 es la LLE asocia-

da al modelo 𝐿𝑖 para cada muestra de 𝑣 de VD y | ⋅ | la norma. Finalmente, la función de
agregación del servidor quedaría de la siguiente forma:

FX-DDaBA({𝐿̂𝑡1, 𝐿̂𝑡2,… , 𝐿̂𝑡𝑛},VD) =
𝑛
∑
𝑖=1

𝑤(𝑎,𝑏,𝑐,𝑦𝑏)
𝑖 𝐿̂𝑡𝑖 , (11)
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donde 𝑤(𝑎,𝑏,𝑐,𝑦𝑏)
𝑖 se corresponde con los pesos proporcionados con el cuantificador lin-

güístico descrito en [RBMCLH22], y ̂𝐿𝑡𝑖 son los parámetros del modelo del cliente 𝑖 para
𝑖 ∈ {1,… , 𝑛}, y VD es un pequeño conjunto de validación en test.

De esta forma, nos beneficiamos del buen funcionamiento de partida del mecanismo de
defensa DDaBA, al mismo tiempo que se garantiza que FTX-DDaBA es:

• Justo: dado que no va a eliminar a clientes pobres en función del mal rendimiento
si no que inspecciona más allá centrando el foco en qué características se consideran
importantes.

• Explicable: dado que al estar basado en explicaciones locales podemos inspeccionar
las explicaciones generadas para los clientes descartados.

2.2 Entorno experimental

En esta sección detallamos el entorno experimental en el que se van a desarrollar las pruebas
de la propuesta. Dado que el objetivo principal es comprobar su buen funcionamiento como
mecanismo de defensa, nos centramos en problemas de clasificación de imágenes y usamos
unmodelo de aprendizaje profundo sencillo basado en dos capas CNNs (Convolutional Neu-
ral Networks) [KLSH21] seguidas de capas densas y capas de salida.

Conjuntos de datos Para la experimentación usamos dos conjuntos de datos de clasifica-
ción de imágenes ampliamente utilizados en la literatura:

• Fed-EMNIST [LBBH98] Digits. Que contiene conjuntos balanceados de imágenes de
dígitos en blanco y negro. El conjunto está compuesto de 240.000muestras de entrena-
miento, y 40.000 de test (de las cuales 8.000 las destinamos al conjunto de validación
en el servidor).

• FashionMNSIT [XRV17], que contiene conjuntos balanceados de imágenes en blanco
y negro de prendas de vestir. El conjunto está formado por 60.000 muestras de entre-
namiento y 10.000 de test (de las cuales 2.000 las destinamos al conjunto de validación
en el servidor).

Cuadro 1: Tamaño de los conjuntos de entrenamiento, validación y test en los conjuntos de
datos Fed-EMNIST y Fashion MNIST.

Entrenamiento Validación Test

Fed-EMNIST 240,000 8,000 32,000
FashionMNIST 60,000 2,000 8,000
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En el Cuadro 1 se muestran los tamaños de los conjuntos de entrenamiento, validación
y test de los conjuntos de datos utilizados.

Modelos base Además del modelo de partida, DDaBA, como modelos base vamos a usar
dos operadores de agregación más robustos que la media aritmética, así como otros meca-
nismos de defensa frente a ataques bizantinos ampliamente utilizados en la literatura:

• Mediana [CSX17]. Que es más robusto frente a datos muy extremos.

• Media truncada [YCRB18]. Que no se ve afectada por datos extremos pues se truncan
antes de la agregación.

• Multikrum [BEMGS17]. Ordena los clientes en función de las distancias geométricas
de las actualizaciones de susmodelos. Por lo tanto, emplea unparámetro de agregación
𝑑, que especifica el número de clientes que se agregarán (los primeros 𝑑 después de
ser ordenados).

• Bulyan [EMGR18]. Combina Multikrum y la media truncada. Por lo tanto, ordena los
clientes en función de sus distancias geométricas y, según un parámetro 𝑓, filtra los 2𝑓
clientes de las colas de la distribución ordenada de clientes y agrega el resto de ellos.

Envenenamiento de los datos Existen diferentes tipos de ataques adversarios por enve-
nenamiento de datos. En este caso, nos vamos a centrar en el más usado en la literatura por
su facilidad de implementación y buenos resultados proporcionados. Este ataque es el inter-
cambio aleatorio de etiquetas (label-flipping) [JDFSBJ22], y consiste básicamente enmezclar
de forma aleatoria las etiquetas asociadas a los datos de entrenamiento de los clientes que
queremos que sean adversarios, haciendo así que aprendan información errónea al entrenar
sobre datos erróneos, y transmitan esta información errónea al servidor.

Clientes De cara a comprobar que FTX-DDaBA es capaz de actuar como mecanismo de
defensa, al mismo tiempo que no elimina a clientes pobres, vamos a establecer que en la
simulación haya:

• Clientes adversarios: que implementan el envenenamiento de datos descrito arriba. En
cada agregación participan 5.

• Clientes pobres: que solo contienen la mitad de las etiquetas (en concreto, solo las eti-
quetas pares). En cada agregación participan 5.

• Clientes normales: En cada agregación participan 20.
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3 Resultados

En esta sección mostramos los resultados experimentales que avalan nuestra propuesta. En
un primer lugar mostraremos los resultados de rendimiento de nuestra propuesta junto con
los modelos base seleccionados. Además, realizamos dos análisis, un primer análisis en el
que se prueba la cualidad de equidad y justicia del agregador, y un segundo en el que mos-
tramos las explicaciones proporcionadas por el modelo.

Resultados en términos de rendimiento En el Cuadro 2 mostramos los datos de rendi-
miento obtenidos por el modelo en términos de accuracy. Obtenemos que FTX-DDaBA, al
igual que DDaBA supera con creces a los modelos base utilizados. Además, a pesar de no
utilizar el accuracy como criterio para seleccionar los clientes (como hacía DDaBA) vemos
que las pérdidas en rendimiento han sido mínimas.

Cuadro 2: Resultados en términos de accuracy. Se muestran los resultados medios de 3 eje-
cuciones. Marcamos en negrita el mejor resultado en cada caso.

Fed-EMNIST FashionMNIST

Mediana 0.9298 0.8424
Media truncada 0.9428 0.8391
MultiKrum 0.9370 0.8433
Bulyan 0.9493 0.8665
DDaBA 0.9663 0.8809

FTX-DDaBA 0.9654 0.8798

Resultados en términos de equidad y justicia Dado que uno de los objetivos era obte-
ner unmecanismo de defensa que no descarte a los clientes pobres por tener un rendimiento
menor por no conocer determinadas clases, en los Cuadros 3 y 4 mostramos el número mí-
nimo, máximo y medio de clientes tanto pobres como adversarios descartados a lo largo de
las rondas de aprendizaje en Fed-EMNIST y Fashion MNIST, respectivamente. En ambos
conjuntos de datos vemos que la tendencia es la misma:

1. Con respecto a los clientes adversarios, ambos mecanismos de defensa son muy bue-
nos descartándolos, sin apenas diferencias significativas.

2. Con respecto a los clientes pobres, DDaBA filtra, en media, bastantes más clientes
pobres. De esta forma FTX-DDaBA fomenta una participación más justa y equitativa
de los clientes. De hecho, DDaBA descarta en media aproximadamente a un cliente
pobre por ronda de aprendizaje.
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Cuadro 3: Métricas sobre filtrado de clientes pobres y adversarios a lo largo de las rondas de
aprendizaje (mínimo, máximo y número medio de clientes adversarios y pobres, respectiva-
mente, filtrados) en Fed-EMNIST.

Fed-EMNIST
Adversarios Pobres

Min Max Medio Min Max Medio

DDaBA 3 5 4,92 0 5 0,93
FTX-DDaBa 3 5 4,43 0 2 0,12

Cuadro 4: Métricas sobre filtrado de clientes pobres y adversarios a lo largo de las rondas de
aprendizaje (mínimo, máximo y número medio de clientes adversarios y pobres, respectiva-
mente, filtrados) en Fashion MNIST.

FashionMNIST
Adversarios Pobres

Min Max Medio Min Max Medio

DDaBA 2 5 4,87 0 5 1,18
FTX-DDaBa 3 5 4,95 0 3 0,26

Explicabilidad y transparencia de los resultados El eje central de FTX-DDaBA es que
la selección de clientes se basa en las LLEs. Por ello, podemos obtener transparencia en el
proceso y explicaciones sobre por qué un cliente ha sido descartado o no. Como los LLEs
se basan en la importancia de las características, podemos representar en una imagen la
importancia de cada característica y comprobar si el modelo presta atención a las zonas de
la imagen que contienen información o no. Se trata de una justificaciónmuy intuitiva de por
qué se ha descartado o no a un cliente. Aunque esto puede obtenerse para cada imagen del
conjunto de validación, en la Figura 1 se muestra un ejemplo de estas explicaciones.

Obtenemos que, aunque el cliente normal se ajusta más a las zonas relevantes (la circun-
ferencia) que el cliente adversario, ambos se ajustan bastante. Sin embargo, si tenemos en
cuenta las características que el modelo de cliente adversario considera importantes, obser-
vamos que son prácticamente aleatorias. De este modo, podemos explicar de forma visual
para un ser humano, dado que se ha hecho de forma transparente, por qué se ha filtrado a
cada cliente que se considera adversario.
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(a) Imagen original. (b) Exp. cliente normal. (c) Exp. cliente pobre. (d) Exp. cliente adversario.

Figura 1: Ejemplo de una muestra (a), una explicación obtenida de un cliente normal (b) y
una explicación obtenida de un cliente obre (c), y una explicación obtenida de un cliente
adversario (d).
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4 Conclusiones

En este trabajo se ha investigado la posibilidad de desarrollar un mecanismo de defensa
frente ataques bizantinos por envenenamiento de datos en FL que, al mismo tiempo que
mantiene el buen rendimiento como defensa, aporte otras cualidades como justicia con los
clientes pobres, o explicabilidad de los resultados. Para ello, partimos de un mecanismo de
defensa de la literatura DDaBA y modificamos la parte basada en ordenación de clientes
por rendimiento por una ordenación de clientes basada en explicaciones locales obteniendo
FTX-DDaBA. Las conclusiones obtenidas son:

• FTX-DDaBA es capaz de obtener resultados competitivos en cuanto a rendimiento
con respecto a DDaBA y, sobre todo, con respecto al resto de modelos base, a pesar de
no basar la ordenación de clientes en el rendimiento obtenido por los mismos. Esto
muestra que se pueden obtener buenos resultados maximizando otras características
deseables.

• FTX-DDaBA filtra, enmedia,muchosmenos clientes pobres en comparación conDDaBA,
mientras que el filtrado de clientes adversarios es equivalente. De esta forma se es jus-
to con los clientes pobres, al mismo tiempo que no se descarta información potencial-
mente útil.

• FTX-DDaBA proporciona explicaciones visuales de por qué se ha filtrado o no a un
cliente, pudiendo se posteriormente supervisado y auditado.

En conclusión, se ha propuesto un mecanismo de defensa que, a pesar de alejar el obje-
tivo del rendimiento a otras cualidades deseables en un sistema de AI, sigue previniendo al
esquema de FL de ataques adversarios almismo tiempo quemaximiza estas otras cualidades
para ser un mecanismo de AI confiable.
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