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Abstract 7 

Background and Aims 8 

Hyperspectral imaging is a powerful tool for fruit composition monitoring, but it is mostly used 9 

under laboratory conditions. This work presents a new solution for the non-destructive, in-field 10 

prediction of total soluble solids and anthocyanin concentrations in wine grapes in the plant 11 

using on-the-go hyperspectral imaging. 12 

Methods and Results 13 

The acquisition of hyperspectral images was carried out under natural illumination conditions 14 

using a VIS-NIR hyperspectral camera (400-1000 nm) mounted on an all-terrain vehicle 15 

moving at 5 km/h on a commercial Tempranillo vineyard located in La Rioja, Spain. 16 

Measurements were taken in four different dates during the grape ripening of season 2017. 17 

Grape composition analyses were performed upon the measured grapes for the development of 18 

spectral prediction models trained with support vector machines. Total soluble solids models 19 

returned determination coefficients R2 of 0.91 for a 5-fold cross validation (RMSE of 1.358 20 

ºBrix) and 0.92 for the prediction of external samples (RMSE of 1.274 ºBrix). In the case of 21 

anthocyanin concentrations, R2 of 0.72 was achieved for cross validation (RMSE of 0.282 mg/g 22 

berry) and 0.83 in prediction (RMSE of 0.211 mg/g berry). Additionally, spatial-temporal 23 

variation maps were developed for the four dates displaying the vineyard evolution during grape 24 

ripening. 25 

Conclusions 26 

The results support the actual capability of on-the-go hyperspectral imaging for the automated 27 

estimation of grape composition parameters directly in the field. 28 

Significance of the Study 29 
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The on-the-go hyperspectral imaging methodology described in this study could be considered 30 

as a powerful tool for in-field applications in agriculture and vineyard unsupervised monitoring. 31 

Keywords: svm, plant phenotyping, regression, sensors, proximal sensing 32 

 33 

1 Introduction 34 

 35 

Wine quality is directly affected by the compounds present in grapes (Kennedy 2010). The 36 

evaluation of grape ripening and quality is often performed by monitoring two important 37 

composition parameters: the total soluble solids (TSS) and, in the case of red grapes, the 38 

anthocyanin concentrations. TSS refers to the berry’s primary metabolite, directly related to the 39 

alcoholic strength of the produced wines (Gomes et al. 2017). On the other hand, anthocyanin 40 

are phenolic compounds existing in red grape skins (Meléndez et al. 2013) which are 41 

responsible for skin tissue pigmentation and red wine color (Boulton 2001). Nowadays, these 42 

two grape compositional variables are crucial to determine optimal harvest time, and highly 43 

relevant to establish the grape price in many wineries and cooperatives worldwide (Bramley et 44 

al. 2011). Being both methods destructive, TSS can be quickly and easily measured using hand-45 

held devices (refractometers), but anthocyanin concentration analysis requires complex wet 46 

chemistry methodologies (Iland 2004) that, although provide accurate results, are time 47 

consuming, need for specialized personnel and generate chemical waste (Liang et al. 2008). In 48 

this context, it may be very valuable for the wine industry to have fast, easy to operate, robust, 49 

nondestructive methods to assess the berry composition and its evolution along grape ripening.  50 

 51 

On the other hand, knowledge of the spatial-temporal variation of the TSS and anthocyanin 52 

contents within a vineyard may assist decision making regarding sampling and vineyard 53 

management, especially if selective harvest is aimed. As a matter of fact, the pattern of spatial 54 

variability of grape anthocyanins in a Tempranillo vineyard was shown to change with 55 

phenology (Baluja, Diago, Balda, et al. 2012, Baluja, Diago, Goovaerts, et al. 2012). Therefore, 56 

to have a truthful picture of the spatial-temporal dynamics of grape composition evolution 57 

during ripening in a vineyard, a huge amount of measurements at different timings and spatial 58 

positions are required. Unfortunately, the quick in-field measurement of a huge number of 59 

samples is very hard for TSS and impossible in the case of analyzing anthocyanin 60 

concentrations. 61 
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 62 

Several applications can be found in the literature for the in-field manual monitoring of grape 63 

composition (Ben Ghozlen et al. 2010, Baluja, Diago, Goovaerts, et al. 2012, Barnaba et al. 64 

2014), but these are still time and labor intensive, therefore unsuited for the retrieval of a large 65 

and representative amount of data. Also, remote sensing has been attempted as a non-66 

destructive alternative to appraise the spatial variability of grape colour in the vineyard. 67 

However, spectral indices were found to be weakly correlated with grape anthocyanins (Lamb 68 

et al. 2004). Other authors mounted a chlorophyll-based sensor above the discharge conveyor 69 

of a tow-behind harvest machine to determine the anthocyanin content of the harvested fruit at 70 

georeferenced spatial positions within the vineyard (Bramley et al. 2011). This enabled the 71 

characterization of the vineyard’s spatial variability of grape anthocyanins but since assessment 72 

was done after the fruit was picked, no possibility of selective harvest decision was provided. 73 

 74 
To overcome these limitations, ground-based on-the-go monitoring can be seen as the next 75 

natural step from in-field, manual data collection from the crops. Nevertheless, the on-the-go 76 

approach presents several pitfalls that have impeded the transition of successful techniques 77 

using manual measurements (Ghozlen et al. 2010) to the continuous monitoring from moving 78 

vehicles. Among these restraints, a) the need to “see” the grapes; that is the necessity of having 79 

sufficient amount of exposed fruit for the sensor to target fruit instead of material other than 80 

grapes; b) the small measuring spot area of many devices (e.g. ~3 cm2, Fernández-Novales et 81 

al. 2017) which make difficult to hit on fruit material; or c) the insufficient signal to noise 82 

intensity of many devices, when operated contactless at several cm from the targeted canopy. 83 

Moreover, the continuous acquisition of data entails a higher resolution monitoring, and the 84 

generation of a big amount of data, which need to be handled and analysed using novel methods.  85 

 86 

In the context of precision agriculture, the relentless development of new sensors, especially 87 

within spectral technology, allows for the massive acquisition of high resolution data that could 88 

be very useful for the monitoring of crop features, such as grape composition, that can be key 89 

in decision-making for selective harvest or winemaking operations. For this reason, the use of 90 

on-the-go spectroscopy under field conditions needs to be studied in order to bring its high 91 

potential into in-field agricultural applications. 92 

In the last years, hyperspectral imaging (HSI) has arisen as a powerful technology for the non-93 

destructive analysis in several agricultural and food quality and safety applications (Sun 2010, 94 
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Park & Lu 2015). HSI combines into a single tool the features of two different fields: the 95 

potential of spectroscopy modeling and the spatial nature of two-dimensional digital imaging. 96 

As each pixel in a hyperspectral image provides the full spectrum from the measured target, the 97 

capability of this technology for the massive extraction of information from that target raises it 98 

as a powerful tool to be employed in the industry. HSI has been widely applied to successfully 99 

estimate fruit composition. HSI-based modeling for the TSS prediction has been recently 100 

studied in grape berries (Gomes et al. 2017, Piazzolla et al. 2017), apple (Ma et al. 2017, Mo et 101 

al. 2017, Tian et al. 2018) or mango (Rungpichayapichet et al. 2017), while the anthocyanin 102 

concentrations has been predicted also in grape berries (Diago et al. 2016, Martínez-Sandoval 103 

et al. 2016, Zhang et al. 2017), mulberry (Huang et al. 2017) or raspberry (Rodríguez-Pulido et 104 

al. 2017). Nevertheless, all these works (and almost every other fruit-related studies using HSI) 105 

have one important factor in common: all they were performed in laboratory, under controlled 106 

conditions, such as illumination, sample positioning and temperature, among others. It is thus 107 

a natural next stage to study how a HSI system behaves when it is deployed in the field, but 108 

great challenges arise with this apparently small step. Different ambient conditions are a 109 

constant during in-field experiments, and also target’s location and position are non-constant 110 

features either. For this reason, there is room for many potential applications of HSI in the field, 111 

and for studying new methodologies for the automated acquisition and processing of 112 

hyperspectral images. Very few works can be found in the literature using in-field HSI (Deery 113 

et al. 2014, Williams et al. 2017), but even on-the-go approaches in robotics has been reported 114 

(Underwood et al. 2017, Wendel & Underwood 2017). Given the demonstrated potential of HSI 115 

for the prediction of grape composition parameters, the addition of a higher level of vineyard 116 

monitoring that can be obtained by on-the-go measurements opens a new frontier in precision 117 

viticulture, as high-resolution information can be obtained, processed and mapped using 118 

automated platforms. 119 

For these reasons, the development of a new methodology for the in-field monitoring of grape 120 

composition parameters is a desirable next step in the context of precision viticulture and wine 121 

decision making, and new technologies makes this an attainable objective. Therefore, the goal 122 

of this work was the in-field estimation and mapping of two important grape composition 123 

parameters, TSS and anthocyanin concentrations, with the clusters still in the plants, using non-124 

destructive on-the-go hyperspectral imaging. 125 

 126 
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2 Materials and methods 127 

 128 

The design of the study was split into three major stages (Fig. 1). In the first one, the in-field 129 

experiments were carried out, comprising the on-the-go HSI image acquisition and the 130 

collection and chemical analyses of the imaged grape samples. In the second stage, the 131 

hyperspectral images were processed (for the automated extraction of grape berry spectra) and 132 

the datasets generated. In the last stage, the dataset was used as input for the training of different 133 

prediction models using machine learning algorithms and use for the generation of different 134 

maps. 135 

 136 

2.1 In-field experiments 137 

 138 

2.1.1 Experimental layout 139 

 140 

The experiment was performed in a 0.7 ha commercial vineyard located in Ábalos, La Rioja, 141 

Spain (Lat. 42º 34' 45.7'', Long. -2º 42' 27.78'', Alt. 628 m). Grapevines of Tempranillo (Vitis 142 

vinifera L.) variety were planted in 2010, on rootstock R-110 and trained to a vertically shoot-143 

positioned (VSP) trellis system. The rows in the vineyard had a Northeast-Southwest 144 

orientation, and 2.20×1.00 meters inter and intra row distances. Three different equally-145 

distanced rows were selected and, within each one of them, 12 blocks with five plants each 146 

(five meters per block) were chosen for the spectral and grape berry analyses (a total of 36 147 

blocks). Hyperspectral measurements were performed on the east side of the canopy, which 148 

was defoliated on the basal zone. In order to modeling all different stages of ripening, data 149 

acquisition was carried out during four dates from veraison to harvest, in different phenological 150 

stages—according to the modified Eichhorn and Lorenz system (Coombe 1995)—during 151 

season 2017: 11 August, stage 36; 24 August, stage 37; 18 September, stage 38; and 28 152 

September, stage 38. Therefore, the total number of blocks that were measured throughout the 153 

entire experiment was 144 (36 blocks per date, four different dates). 154 

Hyperspectral images were acquired on-the-go using a push broom Resonon Pika L VNIR 155 

hyperspectral imaging camera (Resonon, Inc., Bozeman, MA, USA) that was installed on an 156 

all-terrain vehicle ATV, Fig 2) (Trail Boss 330, Polaris Industries, MN, USA) and connected 157 
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to an industrial computer. The camera’s spectral resolution was 2.1 nm (300 bands from 400 to 158 

1000 nm), with 300 pixels of spatial resolution. An 8 mm focal length lens was used, pointed 159 

to the canopy on a lateral point of view at 2.0 m of distance, that cast a vertical recording line 160 

upon the plants of 1.32 m (field of view of 36.5°). The recording line covered the whole vine 161 

canopy, including the fruiting zone (Fig. 2). The 36 measurements per day (one for each block) 162 

were performed on the southeast canopy side, between 10:00 and 14:00, under the natural 163 

illumination from the sun only. To test the HSI methodology under reproducible scenarios (i.e., 164 

other different kinds of terrestrial vehicles), no specific mechanical compensation was applied 165 

for terrain irregularities corrections other than vehicle’s own suspension. Nevertheless, the 166 

distance between camera and plants made it certain that the scene acquired by the sensor always 167 

covered the whole plants (and, therefore, the grape bunches). 168 

To take into account the naturally variable illumination conditions, the values for the camera 169 

configuration parameters (integration time and frames per seconds, FPS) were adapted for each 170 

block measurement, depending on the light intensity, in order to find the best trade-off between 171 

acceptable image composition, enough spectral intensity and the prevention of saturation. FPS 172 

ranged from 50 (taking one frame each 20 milliseconds) at the beginning of the season to 40 at 173 

the end (one frame each 25 milliseconds). Prior to the block's hyperspectral measurement, a 174 

Spectralon® white reference (a surface with a reflectance over 95%) was manually presented 175 

to the camera and recorded simulating the same position and distance than to the canopy. A 176 

dark current measurement was also performed, to obtain the inherent electronic noise. After 177 

this, the block was imaged on-the-go at a constant speed of 5 km/h, composing a hyperspectral 178 

image by push broom scanning (Fig. 2) with an average number of scanlines (columns) of 710, 179 

with 900 pixels each one. On average, a total of 639,000 pixels (i.e., spectra) per block were 180 

acquired. 181 

The spectral light intensity values collected by the camera were translated into reflectance (R): 182 

𝑅 =
𝐺(λ) − 𝐷(λ)

𝑊(λ) − 𝐷(λ)
 183 

where λ is a wavelength, G is the intensity of the light reflected by the canopy, W is the intensity 184 

of the light coming from the white reference, and D is the dark current. The reflectance was 185 

then converted into absorbance (log (1/R)). To prevent the noise that is commonly found in the 186 

tails of a spectral signal, the first 10 bands and the last 50 ones were discarded, thus obtaining 187 

spectra that comprised 240 bands (from 410 to 921 nm). 188 
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Hyperspectral images were georeferenced using a GPS receiver Ag Leader 6500 (Ag Leader 189 

Technology, Inc., Ames, IA, USA) with RTK correction installed on the ATV. 190 

  191 

2.1.2 Analysis of grape composition 192 

 193 

At each measuring date, immediately after the HSI of each block, all the exposed clusters were 194 

identified and, from them, portions of 10-15 visible berries were manually picked, bagged and 195 

labeled for their subsequent chemical analysis. On average, a total of 200 grape berries per 196 

block were collected each date. The closed bags that contained the berries were then transported 197 

in portable refrigerators to the laboratory and stored in a freezer at -20 ºC until chemical 198 

analysis. 199 

Two different grape berry composition parameters were measured: the total soluble solid (TSS) 200 

and total anthocyanin concentrations. Fruits were thawed overnight (in a cold room at 4ºC) 201 

before grape composition analysis. For each sample, a subsample of 100 berries was hand 202 

crushed and filtered. The TSS concentration was determined using a temperature compensating 203 

digital refractometer Quick-Brix 60 (Mettler Toledo, LLC, Columbus, OH, USA), expressed as 204 

ºBrix. The remaining berry sub-sample was homogenized using a high-performance disperser 205 

T25 Ultra-Turrax (IKA, Staufen, Germany) at high speed (14,000 rpm for 60 s). Afterwards, 206 

anthocyanin concentrations were measured (Iland 2004) and expressed as mg per gram of berry 207 

mass. 208 

 209 

2.2 Image processing 210 

 211 

2.2.1 Processing of hyperspectral images 212 

 213 

From each hyperspectral image, it was needed to automatically obtain all the spectra belonging 214 

to grape clusters. To do this, prior to the automated image processing, a grape reference 215 

spectrum was obtained by manually selecting grape spectra from all the images (regions of 216 

approximately 200 spectra) and then averaging them. With this signature spectrum (that was 217 

also pre-processed with a Saviztky-Golay smoothing and derivative (Savitzky & Golay 1964)), 218 

the following described algorithm was coded using Python 3.6.1: 219 
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Defining I as the original hyperspectral image and C an empty matrix with the same width and 220 

height than I. Each one of the bins of C (with coordinates x, y) is filled with the determination 221 

coefficient from the correlation analysis between each one of the pixels of I in the same position 222 

(e.g., spectra in the x, y coordinates) and the grape signature spectra. The similarity of each 223 

pixel (spectrum) from I with the grape signature spectra is thus represented as a R2 value, and 224 

a correlation matrix C is built with them. After a two-dimensional Gaussian smoothing to C 225 

(with σ set to 1.0), all the pixels from C that surpass the 0.75 mark are identified as grape spectra 226 

and averaged (the 0.75 value was manually selected after intensive supervised review of the 227 

results of the processing of several hyperspectral images). This average is thus considered as 228 

the image (block) grape average spectrum. For more details, the reader is referred to the 229 

pseudocode description of this algorithm included as supplementary material. 230 

Fig. 3 exemplifies the output of this algorithm. In (a), the original hyperspectral image is 231 

displayed with the RGB channels, while in (b), its correlation matrix C after the Gaussian 232 

smoothing is shown. Finally, the selected grape pixels (those from C whose R2 are equal or 233 

greater than 0.75) are segmented in (c). 234 

In a small proportion of hyperspectral images, a very small number of pixels identified as grape 235 

had a spectral shape with higher intensity than the white reference’s. This was due to incident 236 

sunlight that was directly reflected into the camera’s sensor, hence returning a reflectance value 237 

over 1.0 in some wavelengths. These pixels were therefore discarded from the final spectra 238 

averaging. 239 

 240 

2.2.2 Generation of the dataset 241 

 242 

After the grape berry spectra and the chemical parameters were obtained for each block, they 243 

were used to build the dataset, in which each spectrum was linked with its corresponding 244 

composition parameters. Having 36 blocks and four different measurement dates, the dataset 245 

comprised a total of 144 samples, covering all the measurement dates. From this, train and test 246 

subsets were built in an 80-20 ratio respectively by randomly extracting a 20% of samples per 247 

date, making up a train set of 115 samples and a test set of 29 samples. 248 

 249 
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2.3 Development of prediction models 250 

 251 

2.3.1 Machine learning modeling 252 

 253 

Several machine learning algorithms were tested for modeling, based on authors’ experience 254 

and criteria, and Epsilon-Support vector machines (ε-SVMs) were finally used for the training 255 

of the regression models due to its better performance statistics. The input independent variables 256 

X were the spectra (|X| = 240, the number of spectral bands), pre-processed with standard normal 257 

variate (Barnes et al. 1989) and Savitzky-Golay filter (second-grade derivative, window size of 258 

15), while the TSS and anthocyanin concentrations were used as dependent variables y, each 259 

one for the training of two different models. In both cases, a radial basis function kernel was 260 

used, with ε = 0.1 and γ = 0.00417 (1/|X|). The penalty parameter C was set to 100 in the case 261 

of TSS and 30 for anthocyanin concentrations. The performance of SVM for the train test was 262 

evaluated using a 5-fold cross validation. The prediction results were obtained by training a 263 

model with all the samples from the train test and predicting the samples from the test set. All 264 

the models were developed using the Epsilon-Support vector regression implementation in 265 

scikit-learn 0.18.1 (Pedregosa et al. 2011). 266 

 267 

2.3.2 Spatio-temporal mapping 268 

 269 

The usefulness of on-the-go HSI for the monitoring of grape composition within a vineyard 270 

was illustrated by developing TSS and anthocyanin concentrations prediction maps from the 271 

commercial vineyard in which the experiments were performed during the ripening period. 272 

Interpolation maps were generated using multilevel b-spline interpolation (Lee et al. 1997) 273 

implemented in QGIS 2.19 (Free Software Foundation, Boston, MA, USA). 274 

 275 

3 Results 276 

 277 

3.1 Grape composition variation 278 

 279 
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The histograms for TSS and anthocyanin concentrations on each experimental date are 280 

displayed in Fig. 4, also summarizing the main statistical information about the variation of 281 

these two compositional parameters. 282 

TSS yielded a wide range from 10.7 ºBrix (expected value for grapes at mid-ripening 283 

phenological stage) to 25.2 ºBrix, indicating that the grapes reached full maturity. The mean 284 

and standard deviation values also indicated a wide variability within the measured TSS values. 285 

The results from the anthocyanin analyses demonstrated that the same behavior was observed 286 

for this parameter, with values ranging from lower values of 0.05 (at veraison, when 287 

anthocyanin synthesis has not yet been triggered in all berries) to 2.01 mg/g berry at harvest. 288 

The mean values increased throughout the season, while the standard deviations widened until 289 

September. 290 

Attending to the shape of the histograms, as expected for both parameters, the gross of their 291 

values per date increased as season evolved. For TSS, very similar values were found in the 292 

two last dates, indicating a final stage in maturity at which TSS no longer increases by 293 

physiological ripening process. In the case of the anthocyanin concentrations, the values for the 294 

first date stayed within a limited mg/g berry range, but this range became wider in the next three 295 

dates, a behavior that could correspond to an asynchronous ripening of the fruit (internal 296 

variability). 297 

  298 

3.2 Prediction models and mapping 299 

 300 

The cross-validation and prediction results of the total soluble solids models are plot in Fig. 5. 301 

The 5-fold cross validation (Fig. 5(a)) yielded a determination coefficient R2 of 0.91, with a 302 

root mean squared error (RMSE) of 1.358 ºBrix. The regression line can be found almost 303 

exactly over the 1:1 line, and a good distribution of the samples along it was observed. The 304 

prediction results (Fig. 5(b)) cast comparable values for both R2 (0.92) and RMSE (1.274 ºBrix). 305 

Fig. 6 gathers the regression plots from the cross validation and prediction models for the berry 306 

anthocyanin concentrations. Fig. 6(a) displays a cross validation R2 of 0.72, while the prediction 307 

results (Fig. 6(b)) yielded a larger determination coefficient of 0.83. For the first case, the 308 

RMSE value was 0.282 mg/g berry, but, in Fig. 6(b), the lower number of samples and their 309 

concentrated locations reduced the RMSE value to 0.211 mg/g berry. 310 



11 

 

In Fig. 7, the evolution of TSS and anthocyanin concentrations are displayed in eight prediction 311 

maps, one per date and grape composition parameter, for the commercial vineyard plot in which 312 

the experiments were carried out. The evolution of TSS (Fig. 7) remained steady throughout 313 

the different maturity stages, and a large gap can be found between 24 August and 18 314 

September. The maximum values were reached in the latter, and in the last date only a slight 315 

increase in ºBrix was found. The south corner of the vineyard plot showed the quickest ripening 316 

speed. 317 

In the case of the anthocyanin concentrations, big gaps were present between the four dates, 318 

from little variation (from 0.15 to 0.35 mg/g berry) on 11 August, to a plot with higher 319 

anthocyanin concentrations and variability on 28 September. 320 

 321 

3.3 Computational cost 322 

 323 

The processing of 36 hyperspectral images using the described algorithm in section 2.2.1 took, 324 

per date, an average of 5 hours and 35 minutes in an Intel® CoreTM i7-5820K CPU with 16 GB 325 

of RAM (no thread optimization). Taking into account that each image was composed of 326 

approximately 710 scanlines (columns), the calculations result in an average processing time 327 

of 0.79 s per column, while the prediction of a single sample using a trained SVM model took 328 

0.05 s. With all this, on a real-time scenario, the processing and prediction of a hyperspectral 329 

scanline would take less than a second. 330 

 331 

4 Discussion 332 

 333 

The present work has displayed a new solution for the non-destructive, in-field estimation of 334 

grape composition using on-the-go hyperspectral imaging in a commercial vineyard. These 335 

results have demonstrated not only the suitability of hyperspectral cameras for the estimation 336 

of two important grape composition parameters, but the actual possibility of bringing this kind 337 

of devices from in-door to the field. HSI is a technology originally conceived to be employed 338 

in laboratories or in-door environments, in which the environmental conditions can be 339 

completely controlled, in terms of illumination, temperature, sample and camera stability, etc. 340 

Nevertheless, its passage to the field requires the overcoming of the changing conditions caused 341 
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by these factors. Additionally, in this work, the on-the-go acquisition of hyperspectral images 342 

successfully carried out, by means of a motorized platform at agricultural speeds (5 km/h). The 343 

use of a mobile vehicle brings specific circumstances that are not contemplated in in-door 344 

conditions (or even outdoor ones, but with static measurements), such as irregularities in the 345 

terrain, motor vibrations, slight but constant differences in the distance between the lens and 346 

the target, heterogeneous speed, etc. The presented results, one of the first attempts---and, to 347 

the best of our knowledge, the first one in grapevine---validate a feasible methodology for the 348 

development of fruitful prediction models using a hyperspectral camera within all the 349 

mentioned conditions. This opens a wide number of options for the monitoring of a vineyard, 350 

by different mobile platforms. 351 

The methodologies studied in this work are prone to be deployed on specific, man-driven 352 

platforms (like the ATV used), agricultural vehicles operating upon the crops, or even using 353 

autonomous phenotyping and monitoring platforms (i.e., agricultural robots). This last option 354 

also requires an important step of automation in the image computation, something that can be 355 

achieved when dealing with hyperspectral images, as the methodology described in section 356 

2.2.1 (the precise selection of grape spectra and the prediction of their composition value) could 357 

be directly translated even into a robot. A collection of grape spectral could be preloaded into 358 

the platform’s system, limiting the manual grape sample spectra collection to, for example, 359 

once per season. Therefore, along with a pretrained model, the prediction of grape composition 360 

could be fully automated during plot monitoring by the platform. Some works in the literature 361 

have proven that HSI can be performed under field conditions (Williams et al. 2017) and even 362 

on-the-go (Deery et al. 2014, Underwood et al. 2017, Wendel & Underwood 2017). It could be 363 

possible the development of a complete integration between HSI sensors, GPS and computing 364 

into a single platform capable of performing real-time assessment in the vineyard. Some recent 365 

examples have been published using HSI devices with integrated GPS (Sandino et al. 2018, 366 

Vanegas et al. 2018). This scheme is valid for its integration within current viticulture-related 367 

work trends, and it can be possible to take advantage of working agricultural vehicles already 368 

deployed and to install a HSI monitoring system on them. The exposed outcomes of in-field, 369 

on-the-go HSI open new windows for its usage in many other different crops, using similar 370 

techniques for spectral segmentation and prediction model training. Additionally, and taking 371 

advantage of HSI's extra spatial dimensions, the use of this technology is not limited for the 372 

automatic monitoring of just the fruit, but also other organs at the same time (e.g., leaves or 373 

stems). 374 
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Several works have demonstrated that the monitoring of grape composition throughout the 375 

ripening is a feasible goal using spectroscopic technologies (Larrain et al. 2008, Cao et al. 2010, 376 

González-Caballero et al. 2010, Bellincontro et al. 2011, Barnaba et al. 2014, Musingarabwi et 377 

al. 2016), performed mostly under laboratory conditions. In-field grape composition monitoring 378 

has been reported in previous works using spectroscopy, but from contact, discrete 379 

measurements using portable manual devices. A portable NIR spectrophotometer was used for 380 

the estimation of TSS under field conditions (Urraca et al. 2016), reporting prediction RMSE 381 

values of 1.68 ºBrix and 10-fold cross validation laboratory R2 up to 0.90 (with an RMSE of 382 

1.47 ºBrix). These results were slightly lower than those from the present study, but still 383 

comparable, as a portable device can be easily deployed in the field. Nevertheless, clear 384 

advantages of on-the-go HSI can be found, as the combination of fastest acquisition time and 385 

larger number of samples covered makes the detailed monitoring of a whole vineyard plot a 386 

more feasible goal. Staying on this subject, HSI has been previously proven to be an accurate 387 

tool for TSS and anthocyanin concentrations estimation under laboratory conditions. Regarding 388 

TSS, several works have reported prediction R2 values from 0.88 to 0.93 (RMSEs of 0.950 and 389 

0.930 ºBrix, respectively) (Gomes et al. 2017, Piazzolla et al. 2017). Similar performance values 390 

were obtained for ºBrix prediction using the on-the-go approach described in this study, 391 

possibly explained by the fact that the same VIS-NIR spectral region (400-1000 nm) was used. 392 

Regarding the estimation of grape anthocyanin concentrations, HSI has been widely employed 393 

for this goal (Diago et al. 2016, Martínez-Sandoval et al. 2016, Zhang et al. 2017). The reported 394 

R2 values range from 0.72 up to 0.93, in line with the ones presented in this study. It must be 395 

highlighted that, if the prediction models developed in this work can be deemed to be solid and 396 

reliable, it is also because the in-field spectral information used for their training came from 397 

four different dates and phenological stages. Pre-veraison data acquisition was considered, but 398 

rapidly discarded since biosynthesis or changes in composition of most relevant grape berry 399 

compounds start at veraison. Moreover, it is at this stage when the vine’s vegetative growth 400 

stops, therefore the most prominent sinks in the plant are the berries, hence the changes in their 401 

composition. From a practical perspective (not scientifically speaking) there is no interest in 402 

assessing the berry composition prior to veraison, as no utilization for winemaking can be done 403 

at those early stages. For these reasons, including data from dates before veraison would not 404 

improve results, nor would it be useful for vineyard monitoring. However, the training with 405 

data from different post-veraison phenological phases made thus possible for the models to 406 

acquire the capability of monitoring the evolution and spatial distribution of total soluble solids 407 

and anthocyanin concentrations at different moments along grape ripening. This feature 408 
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increases the application value of the models developed using the described methodology in 409 

commercial and industrial environments. 410 

The on-the-go estimation of important grape composition parameters brings a new tool for 411 

many actors in grapevine growing and wine industry. The developed HSI methodology has 412 

proven to overcome two of the three main limitations for on-the-go grape monitoring, that is a 413 

larger spot size of measurement (basically all fruit exposed area is measured) and the sufficient 414 

signal to noise ratio. Regarding the need to “see the fruit”, some level of cluster exposure in 415 

undoubtedly required, but partial basal defoliation of the morning side mainly, is a common 416 

practice in many regions worldwide to improve cluster exposure and air circulation (Smart et 417 

al. 1991). 418 

The mapping of a whole vineyard plot perfectly fits with the goal of precision viticulture, in the 419 

current sustainability context, as the accurate monitoring and characterization of heterogeneous 420 

zones carries a high amount of useful information that could help in the decision-making 421 

process. TSS estimation is directly related to the monitoring of grape ripening, allowing to take 422 

precise decisions on when and where to harvest, while anthocyanin concentrations could for 423 

example help to characterize zones of different grape qualities, assigning them to different 424 

wine-making processes. As exposed in Fig. 7, the monitoring and mapping of composition 425 

parameters lets the visualization of their spatial distribution within the field. In this case, at each 426 

measured stage during grape ripening, the plotted results from this methodology can be used as 427 

a powerful diagnostic tool, improving and optimizing the decision-making capacities. 428 

 429 

5 Conclusions 430 

 431 

This work presents the potential of in-field on-the-go hyperspectral imaging for the monitoring 432 

of grape composition in a commercial vineyard. The results obtained from the spectral models 433 

trained with support vector machines demonstrates that it is possible to deploy a hyperspectral 434 

camera from the laboratory to the field, that can acquire high resolution information of large 435 

areas in a fast, unsupervised approach. A HSI system could thus be attached to agricultural 436 

machinery or even robotics. Likewise, mapping of grape composition during different 437 

phenological stages in a season were developed, maps that provide the farmer with information 438 

that could be very useful in the decision making process. This work is also one of the few new 439 

applications of on-the-go HSI under field conditions, and possibly the first one in grapevine. 440 
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Figure legends 566 

 567 

Fig 1 Design of the study, split into three major stages: in-field experiments, processing of the images 568 

and development of prediction models. 569 

 570 

 571 

Fig 2 On-the-go hyperspectral imaging with a camera mounted on an ATV at 5 km/h. Images of the 572 

entire vine canopy were obtained from the ATV's motion, by push-broom scanning, and used for the 573 

estimation of grape composition. 574 

 575 
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 576 

Fig 3 (a) Hyperspectral image from a block in RGB channels (histogram normalized for the sake of 577 

illustration). (b) Correlation matrix with R2 values between the pixel spectrum and a grape reference 578 

spectrum. A Gaussian smoothing was applied with σ = 1.0. (c) Image with segmented grape pixels 579 

(pixels in (b) whose R2 ≥ 0.75). All the images were stretched in the horizontal axis for aesthetic 580 

purposes. 581 

 582 
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 583 

Fig 4 Histograms for total soluble solids (left column) and anthocyanin concentrations (right column) 584 

for each one of the experimental dates on 2017. SD: standard deviation. 585 
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 586 

 587 

Fig 5 Regression plot for 5-fold cross validation (a) and prediction results (b) for the total soluble solids 588 

models. Solid closed line segment refers to the regression line of the samples, while the dotted open line 589 

segment represents the 1:1 trend. RMSE: root mean squared error (in ºBrix). 590 

 591 

 592 

Fig 6 Regression plot for 5-fold cross validation (a) and prediction results (b) for the anthocyanins 593 

concentrations models. Solid closed line segment refers to the regression line of the samples, while the 594 

dotted open line segment represents the 1:1 trend. RMSE: root mean squared error (in mg/g berry). 595 

 596 
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 597 

Fig 7 Prediction maps for grape total soluble solids (a) and anthocyanin concentrations (b) displaying 598 

the evolution of both parameters for the four different dates during grape ripening. 599 


