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Abstract

Hyperspectral imaging (HSI) is a powerful technology already used for many objectives in agriculture. Ap-

plications include disease monitoring, plant phenotyping, yield estimation or fruit composition and ripeness.

However, the cost of hyperspectral sensors is typically an order of magnitude higher than simpler RGB cam-

eras, which can be prohibitive. Given that in HSI processing the spectral data often contains redundancies,

the full spectra are not always required for a specific application and there is an opportunity to design a

lower cost multi-spectral sensing system by dimensionality reduction. In past work, HSI dimensionality re-

duction has been applied in the form of band selection to achieve faster computation times. If, however, the

objective is to design a lower cost multi-spectral camera system, band selection is poorly suited because real-

world sensor and optical filter responses do not typically replicate the individual bands of a hyperspectral

sensor. The objective of this paper is to develop a new methodology for filter selection by simulating several

imaging devices with different real-world optical filters, to use a high cost HSI device to design a lower cost

multi-spectral solution for a specific application. In this paper, we apply the technique to the specific task

of mango fruit maturity estimation (dry matter), which was recently shown to be possible using HSI. Mango

HSI acquired under field conditions from an UGV was used as input for the experiments. These involved

the simulation of imaging devices, using support vector machines for modelling, and testing several filter

combinations by brute force or optimisation with genetic algorithms. The mango prediction performance of

the simulations was compared to the best performance obtained with full HSI data, which had an R2 of 0.74.

The best values came from the simulation of a four-sensor device with four distinct filters, achieving R2 up to

0.69 for mango dry matter estimation. The results showed that genetic algorithms, when compared to brute

force approaches, were able to obtain the best solution in an efficient way, and that a good performance for

mango ripeness estimation can be achieved from the combination of four spectral filters that would allow

to implement them into a low-cost, custom-made multi-spectral sensor. The methods exposed in this paper

are more broadly applicable to applications beyond mango maturity estimation.
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1. Introduction1

Hyperspectral imaging (HSI) is actively studied for many food and agricultural applications [31, 38].2

HSI combines high spatial resolution imaging such as commonly done using simpler RGB cameras, with3

high spectral resolution more commonly used in spectroscopy. Because many physical properties can be4

derived from the analysis of the interaction between light and matter [36], HSI is useful for estimating5

traits or characteristics of visible objects. In the context of precision agriculture, recent studies have shown6

HSI applications for plant disease monitoring [41, 26, 29], phenotyping [3, 28, 20, 11] or fruit composition7

[6, 35, 43, 19], which have all been developed in laboratory and not field conditions. By contrast, publi-8

cations describing in-field HSI applications are less common, but efforts in this area have been increasing9

recently. HSI has been manually acquired under field conditions for the segmentation of raspberry plants10

[49], and also mounted on phenotyping platforms [5]. Terrestrial vehicles for on-the-go HSI acquisition11

were also employed for varietal classification in grapevines [15] (manned platform), mango ripeness predic-12

tion [48] or yield estimation [16] at whole-orchard scale (unmanned platforms). Detailed studies also exist13

describing the technical details for using hyperspectral sensing on unmanned ground vehicles (UGVs) con-14

cerning illumination compensation [47] or extrinsic parameter calibration [46]. In agricultural applications,15

the high-resolution data gathering from HSI in both spectral (hundreds of channels) and spatial dimensions16

(especially when acquired at close range from ground vehicles) make this technology suitable for detailed17

in-field monitoring of crops. Nevertheless, hyperspectral cameras are typically more expensive than other18

sensing technologies. Additionally, it is known that spectral data—generally represented as vectors with19

several hundreds of variables (bands or channels)—suffers from high information redundancy, especially be-20

tween adjacent bands [52]. Consequently, given the high cost and redundancy of HSI, the question arises,21

is it really necessary to use all the bands from spectral data, acquired at significant cost, or is it possible to22

obtain virtually the same information after dimensionality reduction? Simplification of the input could lead23

to options for lower cost sensor systems that are designed to match specific applications.24

Spectral dimensionality reduction (from any kind of sources, not only limited to HSI) is a costly procedure25

due to its combinational complexity [50], especially if an exhaustive search is performed. For this reason,26

different machine learning metaheuristics are commonly used to optimise the selection of spectral bands.27

Some of these techniques include genetic algorithms (GAs) [30, 24, 32], particle swarm optimization [50, 53, 4]28

or ant colony optimisation [39, 13, 42]. Nevertheless, while most of the studies seek to provide a reduced29

selection of spectral bands, they lack one important factor: the channels they propose, regardless of their30

number, are individual and based on the original spectrum. If the acquisition of those specific channels is31

attempted to check its reproducibility, the only feasible way would be to use a spectral sensor capable of32

acquiring full high-resolution spectra that covers the selected wavelengths, and then isolate those specific33

individual datapoints. For example, nine and twelve different wavelengths for two datasets were selected34

in [23], while up to dozens of wavelengths were reported in [12] for endmember extraction in hyperspectral35

images. Specifically, in agricultural applications, in [30] the authors used GAs for band selection on soybean36

disease detection from HSI, reporting that six specific wavelengths maximised the performance for the desired37

task. A methodology for grapevine water status estimation based on near-infrared spectroscopy (NIR) was38

reported in [14], and, from Visible-NIR spectroscopy, selected five specific bands within a very narrow range39
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between 700 and 800 nm that highly correlated with water content. For the same grapevine water status40

prediction goal, an older study [54] also reported good results when reducing the number of variables to 2541

from full Vis-NIR spectra. While the results from these studies met their objective to reduce computational42

complexity in data processing, the same process cannot be readily applied to developing low-cost ad-hoc43

spectral sensors, particularly when dozens of bands have been selected.44

Assuming that it is desired to build a multi-band spectral sensor after identifying a reduced set of45

narrow-band wavelengths using any of the methodologies described before, it would be very difficult to46

obtain measurements of those bands in any other way than using HSI and discarding the surplus data. This47

is due to manufacturing limitations in optical filter design and also because of the poor light signal-to-noise48

ratio (SNR) that is obtained when very narrow filters are employed. Several works on different methodologies49

for filter design have also reported these difficulties [21, 17, 18, 45]. In [34] and [51], the authors attempted50

the simulation of colour filters by optimising three, five and 10 filters in terms of amplitude, efficiency and/or51

SNR. Special attention should be paid to two papers on the practical implications of the development of52

cameras based on multi-spectral filter arrays (MSFA) [22, 25]. MSFA-based cameras are a useful option53

for the manufacturing of a multi-spectral camera with a few channels (typically three to six) that takes54

full snapshot. The authors in [22] provide a review on multi-spectral acquisition systems, and report the55

development of a custom made spectral device. The authors display the difficulties of using the results from56

a filter optimisation process to build a custom-made camera, because of the current limitations that exist in57

the manufacturing processes. In [25], the authors performed a simulation of a MSFA-based imaging sensor58

for spectral reconstruction, focusing on how to optimise the response of filter arrays and demosaicing. All59

these studies are good examples of how it is possible to build multi-spectral cameras, and they manifest that60

the theoretical response of selected wavelengths (by optimisation or other means) is not easy to reproduce.61

This paper develops a new methodology for filter selection using machine learning techniques to fill a gap62

between the two exposed approaches: the broadly studied wavelength band-selection by optimisation; and63

considering the design and usage of optical filters instead of selecting specific bands. Using HSI data acquired64

from an UGV for the purpose of mango ripeness estimation, the methodology developed here simulates the65

potential for lower cost multi-spectral solutions to the same problem, by optimising the selection of lower66

cost camera/filter combinations. The prediction of dry matter (DM) is a desirable goal in mango industry, as67

it is considered an important indicator for fruit ripeness [44]. Proximal HSI has already been demonstrated68

to be an effective tool for the automatic estimation of DM in mango orchards [48], hence we sought to69

understand the trade-off necessary to develop a multi-spectral solution (e.g., with the need of reducing the70

spectral dimensionality) while maintaining a good response in prediction. The underlying approach could71

also be adapted for specific objectives beyond ripeness estimation.72

2. Materials and methods73

The analysis performed in this study used as input the same data obtained in [48], for mango ripeness74

estimation, validating the DM content with a hand-held NIR spectrometer already tested in other works75

[2, 7]. HSI on mangoes was performed under field conditions from a UGV and used to simulate expected76

performance with single and multi-spectral sensor systems, with a view to cost reduction. The optimal single-77
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sensor solution identified from simulation was also verified with the matching real-world (non-simulated)78

device.79

The methodological pipeline followed in this study is displayed in Fig. 1. The simulated multi-spectral80

sensors were: 1) a device with one monochrome camera sensor and one filter in front of it (Fig. 1a), 2)81

a device with one RGB sensor and one filter in front of it (Fig. 1b), and finally 3) a device with four82

different monochrome sensors (a typical configuration in retail multi-spectral cameras), each one of them83

with a different filter (Fig. 1c). Filter responses were obtained by multiplying the reflectance spectra (from84

HSI and after correction) by the filter transmittance profile, and then integrating. Two different filter pools85

were tested: 1) theoretical, parametrically defined filters and 2) actual commercial off-the-shelf (COTS)86

filters with filter responses defined in commercial datasheets (Fig. 1d). The filter selection optimisation was87

performed by GAs, which we propose as a more generally computationally tractable solution, while also88

verified by a more expensive brute force approach (Fig. 1e).89

The first device (Fig. 1a), an RGB sensor with one filter (Fig. 1b), was simulated by testing all the90

filters from the COTS pool using SVMs in a brute force approach. The same flow was followed for the91

device with a monochrome camera sensor, the only difference being that simple linear regression was used92

for modelling due to the one-dimensional input that is generated. Finally, data were obtained from a real93

camera with the optimal IR cut filter identified and compared to the simulation of an RGB camera (from94

red, green and blue colour bands recorded by the hyperspectral camera) with the same IR cut filter. This95

comparison was used to validate the accuracy of the simulated filters.96

Models from RGB data were also developed and compared with real RGB imaging, to verify the validity97

of the simulation. The filter selection for the four-sensor device (Fig. 1c) was performed by GAs two times:98

one from parametric filters and one from COTS filters. All permutations of filter combinations were tested99

using a brute force approach, to validate the proposed GA approach.100

2.1. Data collection101

Data acquisition was carried out in a mango orchard (Mangifera indica L.) located in Bundaberg, Queens-102

land, Australia, on the 6th of December, 2017. Seventy-eight mango fruits were selected assuring a large103

variability in DM values. Fig. 2 shows a histogram of the mango DM values, ranging from less than 10 to104

21.5% m/m (µ = 12.98% w/w, σ = 2.39% w/w). Mangoes were distributed in five fruit trays for spectral105

acquisition (Fig. 3b).106

A hand-held NIR spectrometer (Felix F-750, Felix Instruments Inc., Camas, USA) was employed as107

reference method for DM content. This device uses a Zeiss MMS1 NIR sensor with a spectral range from108

400 to 1100 nm, having pixel and optical resolutions of 10 and 3.3 nm respectively. Radiometric calibration is109

performed by referencing on every measurement from an internal halogen lamp and background illumination.110

The spectrometer was calibrated prior to use following the instructions from the manufacturer [10], with111

validation R2 = 0.95, and RMSE = 0.56% w/w. The performance of this instrument for mango DM112

estimation was already proven by other authors in different experiments [2, 7].113

A general purpose unmanned ground vehicle (UGV), developed at the Australian Centre for Field114

Robotics and called “Shrimp”, was used for HSI and RGB image data acquisition (Fig. 3). The vehi-115

cle was equipped with a Resonon Pika II Vis-NIR hyperspectral line-scan camera (Resonon, Inc., Bozeman,116
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Figure 1: The simulation of three different kinds of lower cost single and multi-spectral sensors for ripeness estimation was

carried out from HSI on mangoes performed under field conditions from a UGV. The simulated spectral devices were: an RGB

sensor with one filter in front of it (a), a monochrome camera with one filter in front of it (b) and finally a system of four

monochrome sensors (a typical configuration in retail multi-spectral cameras), each with a different filter (c). Filters were

selected from two different pools (d) and using two different selection methodologies (e).

USA), shown in Fig. 3a, that has 648 spatial dimensions (pixels) and 244 spectral datapoints with a depth117

of 12 bits and covering the Vis-NIR range from approximately 390 to 890 nm (spectral resolution of 2 nm).118

HSI data acquisition was configured to be performed at different times and to measure both mango sides,119

after manual rotation of each fruit in the trays. Several illumination reference panels (QPcard 102) were120

placed adjacent to the trays for radiometric calibration (Fig. 3b). At the same time as HSI scanning, an121

RGB camera was used for image acquisition of the fruit in the trays. A Prosilica GT3300C camera (Allied122

Vision Technologies GmbH, Stadtroda, Germany) was employed (Fig. 3a), with a NIR cut filter SP7001
123

mounted [27], and in synchronisation with four Excelitas MVS-5000 strobe lights (Excelitas Technologies124

Corp., Waltham, USA), as described in [37]. The system has been demonstrated to be effective for scanning125

ripeness in whole orchards [48, 37], but for this work it was used to scan the trays seen in Fig. 3b.126

Illumination compensation was applied to the hyperspectral data. In the first place, the raw HSI data127

1The SP700 is a relatively standard IR cut filter as commonly used in standard RGB cameras. This filter discards the small

NIR sensitivity present in common RGB filters (small heap starting from around 800 nm in the blue line in Fig. 4.)
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Figure 2: Histogram of the dry matter values from the mango samples measured by the hyperspectral camera.
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Figure 3: Picture of the unmanned ground vehicle (UGV) and the RGB and hyperspectral cameras (a) and the UGV during

data acquisition upon the mango trays (b).

was transformed to at-sensor radiance using the following formula from [40]:128

ls(λ) =
dns(λ)− dnsdc(λ)

dnff(λ)− dnffdc(λ)
lff(λ) (1)

where dns(λ) is raw digital number (DN) values of the sample s at a wavelength λ, dnsdc(λ) is DN values of129

6



dark current; while dnff(λ) and dnffdc(λ) are flat field DN values acquired using an integrating sphere and130

corresponding dark current, respectively. lff(λ) corresponds to the internal radiance values of the integrating131

sphere. Finally, after applying the “LOGSEP” method described by [47] and [8], the values were converted to132

reflectance. This pre-processing was carried out to account for the effects of non-uniform lens transmittance133

and sensor quantum efficiency. For further details on data collection and spectral preprocessing, the reader134

is referred to [47] and, especially, to [48], as mango DM estimation using ground-based HSI is presented in135

that paper, and the same dataset was used for filter selection in the present study.136

2.2. Dataset building and model development137

Having 78 mangoes and two scanned sides per fruit, the final dataset comprised a total of 156 samples.138

Each sample contained the full average spectrum from the visible side of the mango and its corresponding139

DM value as measured with the hand-held spectrometer described in Section 2.1.140

Except where indicated otherwise, all the models developed in this study were trained using Epsilon-141

Support Vector Machines (ε-SVMs) as regressors from the Support Vector Regression (SVR) implementation142

in scikit-learn 0.19.1 [33], using the default values provided by the library for the hyperparameters.143

The selection of ε-SVMs and the hyperparameter values set was carried out after intensive supervised144

testing of different algorithms and hyperparameter configurations upon the original 156-samples dataset, and145

based on our knowledge and experience using machine learning techniques for this kind of data input. We146

want to highlight that, within the spectral filter design methodology described in this paper, the selection147

of an adequate classificator or regressor depends on the target problem (in our case, DM estimation from148

HSI), and other methodologies may be applied.149

Models were validated using five iterations of 5-fold cross validation (CV). Each one of the CV iterations150

used a different random number generator seed for fold splitting. Still, the same five seeds were used at each151

model development in this study to ensure that performance differences are due only to the input used, not152

the random distribution of the samples in the folds.153

2.3. Filter selection154

2.3.1. RGB and monochrome sensors155

The monochrome device was simulated by testing all the filters from a pool of 96 COTS filters from156

MIDOPT [27], using a brute force approach. The list of model numbers can be found in Table 1. Filter data157

specifications—transmission data within the range of the hyperspectral camera used in this study—were158

obtained from the manufacturer web-site [27]. When using one filter in a monochrome device, only one159

intensity value is produced per pixel. Therefore, a simple linear regression between this intensity and mango160

DM was used for modelling.161

A device with one RGB sensor and one filter in front of it was simulated in order to see how filtered RGB162

imaging is correlated with DM content in mangoes. From the HSI spectra, their RGB information (red,163

green and blue channels) was extracted using the quantum efficiency data from the Prosilica GT3300C (Fig.164

4), provided by the manufacturer in [1]. The three quantum efficiency profiles were normalised to the unit165

to be used as the RGB sensitivity values, and then applied separately to the HSI raw spectra. Afterwards,166
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Figure 4: Quantum efficiency of the RGB filters assembled in the Prosilica GT3300C [1]. These filters were used to simulate a

expected response from the hyperspectral images.

as in the monochrome device, all 96 COTS filters were tested in a brute force approach, applying each one167

of them to the three RGB channels.168

Mango ripeness estimation from RGB was carried out for both HSI (RGBHSI) and real Prosilica RGB169

imaging (RGBRGB-Camera). This was tested as data was also available from real (not simulated) RGB170

camera with a MIDOPT IR cut filter, and these were compared to the simulated counterpart to validate the171

simulation approach.. Additionally, to test how well the RGB information from HSI was extracted (using172

the filters in Fig. 4), the correlation between RGBHSI and RGBRGB-Camera was tested after transformation173

from the RGB to the HSV (hue, saturation, value) colour space.174

2.3.2. Four monochrome sensors175

A device with four different monochrome sensors, each one of them with a different filter, was simulated,176

as this is a typical configuration in low-cost, retail multi-spectral cameras. Two independent pools were177

used for filter selection. The first pool was generated from parametric (hypothetical) filters, by fine tuning178

the corresponding parameters. The transmittance for each filter was generated from a normal distribution179

(with maximum in 1) defined by: its central wavelength in nm (CN ∈ [390, 890]); its bandwidth in nm180

(BN ∈ [6, 492]); and the type of filter (TN ∈ {bandpass, longpass, shortpass}). Each filter is individually181

applied to the raw average spectra from the HSI data of each mango, obtaining four scalars representing182

the four filter responses. Therefore, the goal was to select the best four parametric filter combination that183

maximise the DM prediction capability.184

The second filter pool was built from the same 96 COTS filters described in Section 2.3.1. The advantage185

to do this is that these filters are known to be feasible to construct and easy to obtain, whereas there is no186

guarantee that the optimal parametric filters would be practical. The goal again was to select the best four187

COTS filter combination that maximise the DM prediction capability.188
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Therefore, for each filter pool, two optimisation problems were defined. For parametric filters:189

arg max
P

f(C1,B1,T1,C2,B2,T2,C3,B3,T3,C4,B4,T4) (2)

where f and is a fitness function that, given the 12 parameters (to define four filters), returns the R2 score190

after applying the four filters to the HSI dataset and validating the models as described in Section 2.2.191

For COTS filters:192

arg max
P

g(F1,F2,F3,F4) (3)

where g is a fitness function that, given four different filters FN , returns the R2 score (for regression to193

dry matter) after applying them to the HSI dataset and validating the models as described in Section 2.2.194

Further details about the algorithms implementing the f and g functions can be found in Supplementary195

Material.196

Although, by definition, CN and BN are real numbers expressed in nm, their values are represented as197

integers by the data from the HSI camera hardware, because of the integer binning in the spectral dimension198

(indices in an array). This, along with the fact that TN and FN are categorical variables, makes f and199

g non-continuous functions. For this reason, optimisation techniques based on derivatives or gradients200

cannot be used. A CHC-based genetic algorithm [9] was implemented for the parameter optimisation201

of f and g within the ranges defined for each variable. CHC algorithm (cross-generational elitist selection;202

heterogeneous recombination; cataclysmic mutation) is capable of providing a wide solution exploration—by203

keeping relatively small individual populations frequently reinitialised—while still maximising exploitation204

within a population.205

CHC starts by setting a population of M individuals randomly initialised and a convergence value δ of |P |4 .206

At each iteration, M/2 crossovers are performed by randomly picking two parents (without replacement) and,207

if there is enough genetic difference between them (incest prevention), performing a half uniform crossover208

[9]. The best M individuals from the offspring and the original population are selected, and the cycle is209

repeated. If no offspring was generated, δ is decreased by one. If δ < 0, the population is removed and210

replaced only keeping the best individual and adding M − 1 randomly initialised individuals, also resetting211

δ to |P |4 (cataclysmic mutation).212

The number of individuals in the population M was set to 40, ten times the number of filters, and the213

number of generations was set to 500. To analyse the convergence capability of GAs for filter selection, a214

hundred iterations of CHC were performed, selecting, from each one of them, the best individual from the215

last generation.216

Additionally, a brute force procedure was designed to test a large number of filter combinations and217

to select one with the highest performance. In the case of parametric filters, these combinations were218

generated from constraining the three filter parameters into fixed values. Specifically, CWN were constrained219

to take 16 equidistant values between 390 and 890 nm; BWN , two different values: 64 and 186 nm; and220

TN took the three values “bandpass”, “longpass” and “shortpass”. The bandwidth values were selected221

according to available options that can be commonly found in commercial filters, while the 16 values for222

the central wavelengths were picked in a constant basis to cover most of the spectral range of interest223
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and to avoid missing wavelengths within it. All these possible values (16 × 2 × 3) made up a total of 96224

different filters to be used. From these, all four filter combinations with repetitions were tested, resulting in225 ((
n
k

))
=

(
n+k−1

k

)
= 3, 764, 376 tests, for n = 96 and k = 4. In the case of COTS filters, as the pool contained226

96 models, a brute force approach was also carried out, resulting in a similar number of tests performed.227

All data processing was coded using multi-threading in Python 2.7.12, in an Intel R© CoreTMi7-6700 CPU228

(8 cores, 3.40 GHz) with 32 GB of RAM. For parametric filters, the 100 GA runs took approximately 13.3229

hours to complete, and the brute force evaluation lasted for 22.3 hours. For COTS filters, the 100 GA runs230

took 8.3 hours, while the brute force methodology took 18.5 hours.231

3. Results232

3.1. Mango spectra233

Fig. 5 displays the reflectance plots of the 156 mango spectra used in the simulations. Reflectance values234

ranged from slightly higher than zero and over 0.8. The spectral profiles have certain similarities with those235

from other vegetative measurements, like leaves or fruit. These similarities are larger from the characteristic236

reflectance jump around 700 nm to NIR wavelengths. Most spectrum variations can be found between 500237

and 680 nm, a range corresponding to colours that can be present in mango skin at different maturity stages.238
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Figure 5: Reflectance plot of the 156 mango spectra acquired under field conditions with a hyperspectral camera from and

unmanned ground vehicle. Each spectrum came from averaging all the pixels (spectra) corresponding to each sample (mango).

3.2. RGB and monochrome sensors239

To test the accuracy in the extraction of the RGB information from all the samples for the hyperspectral240

camera, the correlation between this and Prosilica RGB imaging was computed, using the hue channel from241

HSV space, as shown in Fig. 6. A high correlation was observed with an R2 score of 0.89. Mango DM242

prediction models were developed using the three-dimensional RGB input from both imagers, returning R2
243

values of 0.55 from RGBHSI and 0.63 from RGBRGB-Camera.244
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Figure 6: Correlations between the Prosilica RGB camera (RGBRGB-Camera) and hyperspectral data (RGBHSI) for hue after

converting to HSV. HSV values were converted from RGB data provided by the Prosilica GT3300 images and after applying

the RGB filters in Fig. 4 to hyperspectral data. Each dot represent colour information from the same mango sample.

The results from the brute force approach on the monochrome sensor are presented in Table 1 (column245

“Monochrome sensor”). The performance values were, in the vast majority of cases, below the 0.2 mark of246

R2 (93 out of 96 filters). Only bandpass filters around the 660 nm wavelength revealed a better response for247

DM estimation, with a peak of 0.40 at BP660 and two shoulders of 0.27 around it, at BP635 and BP695.248

The results from the simulation of a RGB sensor with one filter are shown in Table 1 (column “RGB249

sensor”). The overall trend was much higher than using a monochrome sensor. Half of the filters yielded R2
250

scores above 0.50, and three of them (BP550, SP700 and SP701) reached 0.61, very similar to the performance251

of unfiltered RGBRGB-Camera. It is noteworthy that the RGBRGB-Camera result previously exposed (R2 of252

0.63), obtained with a SP700 filter mounted in front of the RGB camera, agrees with the simulation of253

RGBHSI with the same filter (Table 1, column “RGB sensor”), that resulted in an R2 of 0.61.254

3.3. Four monochrome sensors255

Results for the selection of four filters in the simulation of a device with four monochrome sensors and256

four filters are presented in this section. Results are divided into the selection of the best four parametric257

filters and the best COTS filters. When analysing all the R2 values reported here, the 0.74 outcome from258

the DM estimation using the whole HSI spectrum [48] should be taken into consideration as the theoretical259

maximum performing baseline.260

3.3.1. Parametric filter selection261

From the 100 GA runs for the selection of parametric filters, the best individual (set of four filters)262

from the last generation was picked and considered to be the best solution. The average R2 of these 100263

individuals was 0.68, with a standard variation σ = 0.004 that showed a high level of convergence from all264

the GA runs. Histograms are shown for the 100 GA solutions central wavelength (Fig. 7), bandwidth (Fig.265

8) and type of filter (Fig. 9). For the purpose of creating the histograms, for each individual the four filters266

were sorted by their central wavelength. Therefore, the first filter was the one with the leftmost central267

wavelength (lower nm values), while the fourth filter was the one with the higher central wavelengths values.268
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Figure 7: Histograms of the central wavelength of the best individuals from the optimisation with 100 genetic algorithm (GA)

runs. Each individual corresponds to the best one from one GA optimisation, and comprises 4 different filters, from number 1

(a), to number 4 (d). For each individual, the four filters were sorted by their central wavelength. Therefore, (a) presents the

filters with the leftmost central wavelength (lower nm values), while (d) contains the filters with the higher central wavelengths

values.

The general trend shows that, for each parameter, all the filters had a clear convergence peak. This is269

specially clear for central wavelength, filter 1 (Fig. 7a) centred at 400 nm and filter 3 (Fig. 7c) centred270

at 650 nm; and for type of filter (Fig. 9), in which there was a strong preference toward bandpass for all271

the filters. More dispersion was found in the bandwidth histograms (Fig. 8), but still clear convergences272

towards narrow bandwidths were present in all cases.273

From the brute force approach for parametric filter selection, the best result yielded a R2 of 0.68, slightly274

lower than the best one of all the 100 GA runs (R2 of 0.69). Fig. 10 shows the transmission data of the275

parametric filters selected by both method. In both cases, the central wavelengths of the four filters were276

extremely similar, but slightly narrower in the case of the GA optimisation (Fig. 10a). The third filter,277

a bandpass centred around 630 nm, was virtually the same exact one in both approaches, but the high278

similarity among all four filters highlights the importance of this spectral region.279

3.3.2. Commercial filter selection280

The average R2 score from the 100 GA runs in the COTS filter selection was 0.66 (σ < 0.001). After281

alphabetically sorting the four filters of each individual, the histograms for the selected filters are shown in282

Fig. 11. A perfect convergence to filters AB555 and BP635 were achieved by all GA runs (Figs. 11a and283

b), and filters NF550 and SP510 were selected 97 out of 100 times in Figs. 11c and d.284
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Figure 8: Histograms of the bandwidth of the filters presented in Fig. 7.
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Figure 9: Histogram of the type of the filters presented in Figs. 7.
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Figure 10: Four parametric filters selected from the best individual from all the 100 genetic algorithm runs (a) and from

the brute force approach (b). The R2 displayed represent the performance of the mango dry matter estimation models after

applying the filters to the hyperspectral data.

Fig. 12 shows all the filters selected by the 100 GA runs. In all cases, as also seen in the parametric285

filter selection (Section 3.3.1), the optimisation highly focused on wavelengths around 600-650 nm and at the286

beginning of the spectral range. The brute force approach, in which all possible COTS filter combinations287

with repetitions were tested, selected AB555, BP635, NF550 and SP510 as the best filter combination, with288

an R2 of 0.66.289

4. Discussion290

This paper presented a new methodology for the selection of spectral filters for the estimation of ripeness291

in mangoes from in-field spectral acquisitions. While HSI for mango dry matter estimation was already292

demonstrated to be effective under the same conditions in [48], with a baseline R2 of 0.74, the performance293

obtained from the multi-spectral sensor simulation in the present study was not far below, with R2 scores294

up to 0.68. Both results can be directly compared side-by-side, because the input data were identical, and295

a similar validation process was used, with five iterations of 5-fold CV to compute the performance statis-296

tics. This provides evidence that for the task of mango ripeness estimation, a high level of dimensionality297

reduction can be performed to spectra within the range from 400 to 900 nm without greatly jeopardising298

the effectiveness of the machine learning models, although a small performance reduction from the complete299

HSI data was observed.300

The results obtained from the simulation of a monochrome device with a single filter exhibited poor301

performance for all the filters tested (Table 1, R2 below 0.10 in the majority of the cases), dissuading the302

consideration of this solution for DM prediction in mangoes. Yet still, it is worth paying special attention303

to those bandpass filters around the 660 nm wavelength (BP635, BP660 and BP695), for which the scores,304

although not good, were clearly higher than the remaining ones. Nevertheless, if a single device is the305

desired set-up, the best option would be to use a standard RGB camera, as suggested by the results from306
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Figure 11: Histogram of the determination coefficient (R2) of the filter names from the best individuals obtained in the

commercial filter optimisation with 100 genetic algorithm runs.

the simulation of a filtered RGB sensor in Table 1 (R2 up to 0.61 with an SP700) and the actual validation307

using a real RGB camera with that filter (R2 of 0.63). This similarity also demonstrated the correctness of308

the simulations when compared to the real sensor. It is no surprise that RGB imaging alone can be enough309

to get an acceptable prediction performance, as colour in mangoes is a good indicator of maturity for visual310

inspection. In the case of the mango DM estimation problem addressed, depending on the level of accuracy311

sought, RGB alone (with a NIR cut filter) could be considered as an alternative good enough for maturity312

estimation.313

Filters around that spectral region were repeatedly selected when optimising for the four-sensor device.314

The filter selection performed from the parametric filter pool resulted in a high convergence toward the315

640 nm wavelength (Fig. 7c), while the filter BP635 was unanimously selected when optimising from316

the COTS filter pool (Fig. 11b). This implies that this region is crucial for the prediction of DM in317

mangoes, and if the development of multi-spectral camera is sought, the inclusion of a bandpass filter318

centred at approximately 640 nm is critical. The parametric filter selection also had very strong preferences319

toward lower wavelengths on or around 400 nm and 480 nm (Figs. 7a and b), and this, along with the320

preference for small bandwidth filters (Figs. 8 and 9), increased the importance of those narrow bands321

15



400 500 600 700 800 900
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0
Se

ns
iti

vi
ty

(a)

Filter 1

400 500 600 700 800 900
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

(b)

Filter 2

400 500 600 700 800 900
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

(c)

Filter 3

400 500 600 700 800 900
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0
Se

ns
iti

vi
ty

(d)

Filter 4

Figure 12: Transmission data of the filters from the best individuals obtained in the commercial filter optimisation with 100

genetic algorithm runs.

in the electromagnetic spectrum. Seemingly, the COTS filter pool offered more limited options, and the322

optimal solution from the optimisation using that pool would presumably respond worse than a filter selection323

from parametric tuning. Nevertheless, as observed in the results in Section 3.3.2, the average performance324

obtained from the COTS filter optimisation (R2 of 0.66) was very similar than that from the parametric325

filter optimisation (R2 of 0.68), showing that for this application, there is no great potential advantage326

to designing custom bespoke filters, beyond what is already available off the shelf. Similarly to the filter327

selected in the simulation of a monochrome device, discussed above, both the parametric and commercial328

solutions also gave strong importance to the same spectral regions, around 650 nm and 400-500 nm (Fig.329

12). The identification of the transmittance shapes of several spectral filters (i.e., parametric filter selection)330

do indeed allow to obtain very fine (virtually, the best) solution for this application. Notwithstanding, in331

the majority of the cases, these filters are based on theoretical transmittance data (typically from Gaussian332

curves) with limited practical implementations [22], hence the selection of optimal COTS filters can be333

considered as a more practical alternative. As demonstrated by the correlation between actual RGBHSI and334

RGBRGB-Camera (Fig. 6), the filter simulation in this paper can be assumed to be accurate enough for the335

filters selected in the simulation of different spectral devices.336
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The design of the optimisation processes presented in this study has demonstrated suitability for this task,337

as the best solutions were obtained in virtually all cases. The preference for running a hundred iterations338

was chosen for the analysis of the convergence capability of GAs, to see if they indeed converge to a global339

maximum, or get stuck in a local one. In the case of the parametric filter selection (Section 3.3.1), this340

convergence was almost perfect in terms of the average fitness result obtained in the last generation of each341

GA run. An R2 of 0.68 was obtained in virtually all runs, supported by the low standard deviation of these342

results (σ = 0.004), meaning that a global maximum was reached. Nevertheless, very similar fitness values343

were obtained from slightly different values for the optimised parameters. For example, considering the fourth344

filter, values for central wavelength (Fig. 7d) where not completely focused in narrow ranges, and the same345

occurred for bandwidth (Fig. 8d), in which, although low bandwidths were preferred, many other values were346

also picked at some iterations. These different solution options show that several parameter configurations347

are valid and could lead to optimal performance. Still, the analysis of the parameter histograms from the348

100 optimisation runs helps to see the tendency of GAs toward specific values (the most common ones), and349

thus to focus on those when translating the results to practical implementations. The optimisation using350

the COTS filter pool converged even more tightly, as the average R2 value of 0.66 was accompanied by351

extremely low standard deviation, below 0.001. The best solution was almost unanimously selected (filter352

models AB555, BP635, NF550 and SP510), making this a clear option for consideration. In summary, all353

these results bolster that the choice of GA optimisation is a reliable option for spectral filter selection.354

The suitability of GAs to solve the objective presented in this paper is not only supported by the analysis355

of their performance, but also by comparing the outcomes with naive, brute force results. A true, complete356

brute force approach for parametric filter selection was impossible to carry out. The parameters CWN and357

BWN could potentially take any wavelength value between 400 and 900 nm that, coded as integers, lead358

to 244 different values for each one of them (the 244 spectral datapoints that represent the hyperspectral359

camera’s spectral range), while TN can take three different values. Considering that four filters need to360

be optimised, the total number of combinations is intractably large. For this reason, a subset of these361

combinations that covers all the ranges had to be used. This explains why the best solution from this brute362

force approach (Fig. 10b) was slightly lower than the best solution from the 100 optimisation runs (Fig. 10a),363

R2 of 0.68 vs. 0.69. Still, the solutions lied within the same central wavelengths, bandwidths and bandpass364

filter types, as illustrated in Fig. 10, raising GAs as a completely capable alternative for the optimal selection365

of filters in a reduced fraction of time. The limited number of options in the COTS filter tools made the366

full brute force approach feasible, testing more than three and a half millions of combinations. The best367

solution from these was exactly the same one selected in the vast majority of the 100 GA runs (Fig. 11),368

therefore a single optimisation run would likely select the best solution for COTS filter selection, similarly369

to a brute force approach, but in less than 20 minutes vs. more than 18 hours. Whether for parametric370

or COTS filter selection, brute force approaches selected four filters from relatively small pools, and this371

made it possible to test all the combinations within reasonable times (less than 24 hours of computing,372

each filter set evaluation taking 0.02 seconds). If, instead of 96, the filter pool would have been doubled,373

almost two full weeks of computation would have been necessary to test all the valid combinations with374

brute force. Furthermore, if the same 96 filter pool is maintained, but five filter combinations are tested, the375

total number of
((

96
5

))
= 71, 523, 144 would have taken 16 days to complete. Optimisation, as opposed to376
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brute force calculation, regardless of the metaheuristic selected, becomes then mandatory for filter selection,377

and this study demonstrated that GAs provides a stable choice for the optimisation methodology.378

The methodology described in this paper could be used as a guideline for a spectral filter design procedure,379

in a stage previous to hardware selection and assembling. The described pipeline should be adapted in those380

steps that depend on the specific nature of the problem to solve. For example, the training of prediction381

models needs to be analysed and defined (considering different strategies, algorithms, validation procedures,382

etc.); other different kinds of spectral filters may be simulated, having new parameters to optimise; or even383

the total number of sensors may vary (e.g., optical devices with 3 or 5 sensors and filters). The results384

from the simulations could therefore be aggregated to a hardware selection step, considering the current385

alternatives and their cost vs. the potential cost and performance of the simulated devices.386

5. Conclusions387

This paper presented a new alternative for the selection of spectral filters to estimate mango ripeness from388

hyperspectral imaging acquired in-field from an unmanned ground vehicle. The selection was carried out not389

by specific band picking, as commonly described in the HSI literature, but simulating several multi-spectral390

sensors with filters having different transmittance responses, using parametric and commercial filter pools.391

The simulations and analyses of several different devices demonstrated that, by converting the goal into an392

optimisation problem, genetic algorithms were able to obtain the best solution for dry matter prediction393

more efficiently than using brute force approaches. While HSI was already demonstrated to be adequate394

for ripeness estimation in mangoes, the results in this paper show that dimensionality reduction is feasible395

while still maintaining an acceptable performance of the prediction models. This allows future work towards396

building lower cost devices that are customised towards monitoring specific traits with relevance to precision397

agriculture, and for mango dry matter specifically.398
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Discrimination between abiotic and biotic drought stress in tomatoes using hyperspectral imaging. Sensors and Actuators497

B: Chemical 273 (2018), 842–852.498

[42] Tang, K., Xie, L., and Li, G. A multiple classifier system based on ant-colony optimization for hyperspectral image499

classification. In Journal of Physics: Conference Series (2017), vol. 787, IOP Publishing, p. 012011.500

[43] Tian, X., Li, J., Wang, Q., Fan, S., and Huang, W. A bi-layer model for nondestructive prediction of soluble solids501

content in apple based on reflectance spectra and peel pigments. Food chemistry 239 (2018), 1055–1063.502

[44] Walsh, K., and Subedi, P. In-field monitoring of mango fruit dry matter for maturity estimation. In XXIX International503

Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): 1119 (2014), pp. 273–504

278.505

[45] Wang, X., Thomas, J.-B., Hardeberg, J. Y., and Gouton, P. A study on the impact of spectral characteristics506

of filters on multispectral image acquisition. In 12th Congress of the International Colour Association (2013), vol. 4,507

pp. 1765–1768.508

[46] Wendel, A., and Underwood, J. Extrinsic parameter calibration for line scanning cameras on ground vehicles with509

navigation systems using a calibration pattern. Sensors 17, 11 (2017), 2491.510

[47] Wendel, A., and Underwood, J. Illumination compensation in ground based hyperspectral imaging. ISPRS Journal of511

Photogrammetry and Remote Sensing 129 (2017), 162–178.512

[48] Wendel, A., Underwood, J., and Walsh, K. Maturity estimation of mangoes using hyperspectral imaging from a513

20

http://midopt.com/filters/
http://midopt.com/filters/
http://midopt.com/filters/


ground based mobile platform. Computers and Electronics in Agriculture 155 (2018), 298–313.514

[49] Williams, D., Britten, A., McCallum, S., Jones, H., Aitkenhead, M., Karley, A., Loades, K., Prashar, A., and515

Graham, J. A method for automatic segmentation and splitting of hyperspectral images of raspberry plants collected in516

field conditions. Plant methods 13, 1 (2017), 74.517

[50] Xu, M., Shi, J., Chen, W., Shen, J., Gao, H., and Zhao, J. A band selection method for hyperspectral image based on518

particle swarm optimization algorithm with dynamic sub-swarms. Journal of Signal Processing Systems (2018), 1–11.519

[51] Yasuma, F., Mitsunaga, T., Iso, D., and Nayar, S. K. Generalized assorted pixel camera: postcapture control of520

resolution, dynamic range, and spectrum. IEEE transactions on image processing 19, 9 (2010), 2241–2253.521

[52] Zhang, M., Gong, M., and Chan, Y. Hyperspectral band selection based on multi-objective optimization with high522

information and low redundancy. Applied Soft Computing 70 (2018), 604 – 621.523

[53] Zhang, M., Ma, J., and Gong, M. Unsupervised hyperspectral band selection by fuzzy clustering with particle swarm524

optimization. IEEE Geoscience and Remote Sensing Letters 14, 5 (2017), 773–777.525

[54] Zhang, Q., Li, Q., and Zhang, G. Rapid determination of leaf water content using vis/nir spectroscopy analysis with526

wavelength selection. Journal of Spectroscopy 27, 2 (2012), 93–105.527

21



Table 1: Determination coefficients (R2) from applying one single commercial off-the-shelf (COTS) filter to raw reflectance

spectrum in the range from 400 to 900 nm (Raw spectrum) or to apply one single COTS filter to a reflectance spectrum after

applying RGB filters (RGBHSI).

Filter applied
Monochrome

sensor

RGB

sensor
Filter applied Monochrome

RGB

sensor

AB555 0.00 0.57 LP515 0.03 0.58

AC370 0.03 0.55 LP530 0.04 0.59

AC380 0.03 0.56 LP550 0.05 0.60

AC685 0.01 0.06 LP580 0.06 0.51

AC760 0.00 0.03 LP590 0.06 0.38

AC800 0.00 0.03 LP610 0.06 0.39

AC850 0.00 0.03 LP630 0.05 0.41

AC900 0.00 0.03 LP645 0.04 0.39

BP250 0.02 0.43 LP665 0.02 0.22

BP324 0.13 0.22 LP695 0.00 0.04

BP365 0.00 0.00 LP715 0.00 0.01

BP470 0.00 0.16 LP780 0.00 0.03

BP485 0.01 0.59 LP800 0.00 0.03

BP500 0.00 0.57 LP815 0.00 0.03

BP505 0.05 0.38 LP830 0.00 0.03

BP525 0.06 0.38 LP850 0.00 0.03

BP540 0.06 0.43 LP900 0.00 0.03

BP550 0.07 0.61 LP920 0.01 0.03

BP590 0.00 0.46 ND030 0.03 0.55

BP635 0.27 0.44 ND060 0.03 0.56

BP660 0.40 0.38 ND090 0.03 0.52

BP695 0.27 0.27 ND120 0.03 0.51

BP735 0.02 0.04 ND200 0.01 0.45

BP800 0.00 0.01 ND300 0.01 0.22

BP810 0.00 0.03 ND400 0.01 0.06

BP845 0.00 0.03 NF550 0.15 0.55

BP850 0.00 0.03 Ni030 0.03 0.55

BP865 0.00 0.03 Ni060 0.03 0.55

BP880 0.00 0.03 Ni090 0.03 0.56

DB395/870 0.00 0.00 Ni120 0.03 0.55

DB475/850 0.00 0.00 Ni200 0.02 0.54

DB550/850 0.02 0.26 PE530 0.00 0.57

DB660/850 0.09 0.55 SP510 0.00 0.02

DB735 0.01 0.53 SP570 0.03 0.39

DB850 0.01 0.59 SP585 0.01 0.26

DB940 0.02 0.60 SP625 0.00 0.56

FL550 0.03 0.55 SP635 0.01 0.59

LA080 0.03 0.56 SP644 0.01 0.58

LA120 0.04 0.59 SP645 0.01 0.59

LB080 0.01 0.50 SP650 0.01 0.59

LB120 0.01 0.51 SP675 0.03 0.60

LP285 0.03 0.55 SP700 0.07 0.61

LP330 0.03 0.55 SP701 0.08 0.61

LP340 0.03 0.55 SP705 0.04 0.59

LP390 0.03 0.55 SP730 0.08 0.60

LP415 0.03 0.56 SP785 0.06 0.58

LP470 0.03 0.58 TB475/550/850 0.01 0.27

LP500 0.03 0.58 TB550/660/850 0.01 0.60

R2 values were obtained from five iterations of 5-fold cross validation using linear regression in the “Raw spectrum” column and

support vector machines in “RGB” column. The names of the COTS filter models refer to [27]. As a general rule, the letters BP refer

to “bandpass”, LP to “longpass”, SP to “shortpass”, ND and Ni to “neutral density”, LB to “light balancing” and AC to “acrylic”;

while the number after the letters refer to the main central wavelength in nm.
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1 Function f :
2

3 C1, B1, T1, C2, B2, T2, C3, B3, T3, C4, B4, T4← input; the values of
central wavelength, bandwidth and type of filter of the four filters to
be applied to the raw spectra

4

5 X ← an empty set
6 y ← the set of dry matter values of all the samples
7

8 f1 ← getFilter(C1, B1, T1)
9 f2 ← getFilter(C2, B2, T2)

10 f3 ← getFilter(C3, B3, T3)
11 f4 ← getFilter(C4, B4, T4)
12

13 for each spectrum from the raw spectra do
14 x1← applyFilter(spectrum, f1)
15 x2← applyFilter(spectrum, f2)
16 x3← applyFilter(spectrum, f3)
17 x4← applyFilter(spectrum, f4)
18

19 The set {x1, x2, x3, x4} is added to X as a new sample

20 end
21

22 scores ← an empty set
23

24 for each i ∈ {1, 2, 3, 4, 5} do
25 regressor ← an ε-SVM is set up as regressor
26 R2 ← performCrossValidation(regressor,X, y, folds = 5, seed = i)
27 R2 is added to scores

28 end
29

30 fitness ← average(scores)
31

32 return fitness

Algorithm 1: Implementation of the fitness function f. The function
“getFilters” receives three values for central wavelength, bandwidth and type
of filter, and returns a filter with the given features; “applyFilter” receives
a spectrum and a filter, and returns a scalar representing the filter response
on that spectrum; “performCrossValidation” receives a regressor, the sets
X and y, the number of folds for k -fold cross validation and the random
number generator’s seed for fold partition, and returns the average R2 result
from the cross validation.
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1 Function g:
2

3 F1, F2, F3, F4← input; four COTS filters
4

5 X ← an empty set
6 y ← the set of dry matter values of all the samples
7

8 for each spectrum from the raw spectra do
9 x1← applyFilter(spectrum,F1)

10 x2← applyFilter(spectrum,F2)
11 x3← applyFilter(spectrum,F3)
12 x4← applyFilter(spectrum,F4)
13

14 The set {x1, x2, x3, x4} is added to X as a new sample

15 end
16

17 scores ← an empty set
18

19 for each i ∈ {1, 2, 3, 4, 5} do
20 regressor ← an ε-SVM is set up as regressor
21 R2 ← performCrossValidation(regressor,X, y, folds = 5, seed = i)
22 R2 is added to scores

23 end
24

25 fitness ← average(scores)
26

27 return fitness

Algorithm 2: Implementation of the fitness function g, that receive four
commercial off-the-shelf filters. The function “applyFilter” receives a spec-
trum and a filter, and returns a scalar representing the filter response on that
spectrum; “performCrossValidation” receives a regressor, the sets X and y,
the number of folds for k -fold cross validation and the random number gen-
erator’s seed for fold partition, and returns the average R2 result from the
cross validation.
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