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Every year, malaria kills between 660,000 and 1.2 million people, many of whom are children in Africa.
The World Health Organization (WHO) encourages the development of rapid and economical diagnostic
tests that allow for the identification of proper treatment methods. In this paper a novel method to auto-
matically enumerate malaria parasites is proposed and evaluated, using a database consisting of 475
images with varying densities of malaria parasites. This method will analyze data by utilizing standard
operations of image processing such as histogram equalization, thresholding, morphological operations
and connected components analysis for parasite density estimation. The application of the proposed
method yields an average accuracy rate of 96.46% with a low processing time of two seconds per image
on a custom computing platform.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Malaria has infected humans for over 50,000 years (Day, 2010).
Epidemiological data show that somewhere in the world a child
dies every 30 s because of this disease. This suggests that both vac-
cine development and the proper administration of available drugs
are absolutely essential to treat malaria patients (O’Meara, Hall, &
McKenzie, 2007a). A wrong diagnosis of this disease may have
adverse clinical and therapeutic implications for patients and for
endpoints of clinical trials of anti-malarial vaccines or drugs. Now-
adays, there are a lot of different techniques for malaria diagnosis
available in the market (Bhandari, Raghuveer, Rajeev, & Bandhari,
2008; Ngasala et al., 2008; Tangpukdee, Duangdee, Wilairatana,
& Krudsood, 2009), but conventional microscopic examination
remains the gold standard (Frean, 2010; Warhurst & Williams,
1996; Wongsrichanalai, Barcus, Muth, Sutamihardja, &
Wernshorfer, 2013). Thus, the most important component of labo-
ratory diagnosis is the quantification of parasite density. Accurate
and replicable parasite counts are difficult to achieve because of
inherent technical limitations and human inconsistency (Mitiku,
Mengistu, & Gelaw, 2003). Digital image analysis provides an
opportunity to improve the performance of parasite density quan-
tification, decreasing the time required to count the parasites and
avoiding bias from human error.

A technique was proposed (Díaz, González, & Romero, 2009) for
quantifying erythrocytes in stained thin blood films. The image
was corrected from luminance differences and the normalized
RGB color space was used for classifying pixels as erythrocyte or
background followed by an Inclusion-Tree representation that
structures the pixel information into objects. Finally, a two step
classification process identifies infected erythrocytes, using a
trained bank of classifiers. The main drawback of this approach is
that it needs user intervention, which results in time consuming
and large inter and intra-observer variabilities (Alexander,
Schellenberg, Ngsala, Petzold, & Drakeley, 2010).

Automatic parasite detection has been addressed in Abdul-
nasir, Mashor, and Mohamed (2013), Das, Ghosh, Pal, Maiti, and
Chakraborty (2012), Frean (2009), Moon et al. (2013) and Tek,
Dempster, and Kale (2006, 2010). In Makkapati and Rao (2009), a
scheme based on HSV color space is presented. This method was
focused on detecting dominant hue range and calculating optimal
saturation thresholds. The dominant color in this kind of images is
representative of the background, so dividing the hue range of 360�
into six 60� segments enables to find the number of pixels that fall
within each hue segment and thus, the dominant range of color.
Optimal saturation thresholds were identified by using the method
proposed in Otsu (1979). This automatic thresholding method is
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widely used in classic image segmentation applications (Guo,
Wang, & Xia, 2014; Vala & Bashi, 2013; Yang, Shen, Long, & Chen,
2012) and is based on selecting the discriminant criterion, so as
in order to maximize the separability of the resulting classes in
gray levels. This technique was found to give an optimal threshold
for bimodal distributions but did not work well for unimodal dis-
tributions. Precisely, the blood smear images present unimodal
distributions due to the fact that most of the pixels belong to the
background, and only a little bit of them are pixels from parasites,
resulting in a histogram with only a big and wide peak.

In further studies, granulometric estimation and morphological
techniques were employed with promising outcomes (Khatri,
Ratnaparkhe, Agrawal, & Bhalchandra, 2013). A method (di
Ruberto, Dempster, Khan, & Jarra, 2001) introduced a morphologi-
cal approach to cell segmentation, which was more accurate than
the classical watershed-based algorithm (Bieniek & Moga, 2000).
A hemispherical disk-shaped structuring element was used to
enhance the roundness and the compactness of the red cells, while
a disk-shaped flat structuring element was used to separate over-
lapping cells. Regarding the classification step, two different meth-
ods were used, one based on morphological operator (Díaz-Huerta,
Felipe-Riveron, & Zetina, 2014; González & Woods, 2002) and
another one based on color histogram similarity (Colombo, Rizzi,
& Genovesi, 1997; del Bimbo, Mugnaini, Pala, & Turco, 1998).
Despite the brilliant solutions presented by these approaches,
these kind of techniques were very sensitive to the image quality.
Besides, the fact that it is necessary to analyze both the hue and the
saturation images makes the process slow down, although mor-
phological operations will be used by our approach in a different
way.

In this study an image processing technique, which is not used
on conventional algorithms, is proposed, focusing on a low time
consumption and obtaining good results independently of the var-
iability of the images. Fig. 1 shows a block diagram of the proposed
algorithm for enumerating parasites. Firstly, the acquired image (a
gray-scale image, not an RGB or HSV) is preprocessed by means of
a low pass filtering that removes noise, and an adaptive histogram
equalization that corrects the contrast of the images to improve its
quality. Once this is achieved, the adequate threshold to binarize
the image is estimated. In our method, an adaptive thresholding
based scheme allows an effective classification of pixels. This
means that the election of whether a pixel belongs to the back-
ground or to the signal (parasites and white blood cells) is only
Fig. 1. Image processing steps.
established by the pixels around it, that is its neighborhood. Then,
morphological methods (regional minimum and closing operation)
use granulometries to evaluate the area of the connected compo-
nents, labeling the components belonging to parasites and count-
ing the number of them.

The organization of the rest of the paper is as follows. Details or
our method based on adaptive processing and morphological oper-
ations are mentioned below. The method consist of four stages. In
Section 2.1 the preprocessing step is explained. This consists of a
Gaussian low-pass filter to reduce the noise of the image and an
adaptive histogram equalization with the objective of achieving
an image with more contrast. Then, in Section 2.2 we focus on an
adaptive thresholding process that allows an automatic binariza-
tion of an image dividing the entire image into small subimages
and applying different equalizations to each one. Section 2.3
explains different operations based on the so-called mathematical
morphology. These operations are capable of filling the holes in
parasites created in previous steps and eliminating all the elements
in the image that are smaller than the structural element. In Sec-
tion 2.4, a measurement of the properties of the regions are made,
resulting in labeling and subsequent classification (parasites or
white blood cell) as based on this measure. The experimental
results are provided in Section 3, and a discussion of research con-
tributions and practical advantages in addition to the conclusions
are available in Section 4.

2. Image processing

2.1. Preprocessing

The aim of the preprocessing stage is to obtain images with
more contrast than the original image. This process consists of
two operations to increase the contrast of the raw acquired
images: image filtering to mitigate noise and image enhancement,
in the form of histogram equalization. In this paper, we are inter-
ested in filtering operations that are performed directly on the pix-
els of an image. That is why the term spatial filtering is used to
differentiate this type of process from the more traditional fre-
quency domain filtering. Generally, the linear spatial filtering of
an image f whose size is M � N, using a m� n mask, is given by
the following function:

gðx; yÞ ¼
Xa

s¼�a

Xb

t¼�b

wðs; tÞf ðxþ s; yþ tÞ ð1Þ

where x’s are mask coefficients. To generate a completely filtered
image, this equation must be applied to x ¼ 0;1; . . . M � 1 and
y ¼ 0;1; . . . ;N � 1, where a ¼ ðm� 1Þ=2 and b ¼ ðn� 1Þ=2.

In this stage, a Gaussian low-pass filter is applied to the input
image to get clear signal regions and suppress the influence of noise.
Fig. 2 shows the result of convolving a Gaussian mask with the
original image. After Gaussian filter, the image is brighter than the
original one, thus the intensities of the pixels are higher than they
were before. This means that the process of choosing a threshold
Fig. 2. Left side: original image. Right side: image after Gaussian Filtering.
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to segment the image will become easier, thus the intensity differ-
ences between signal pixels (parasites) and background have been
increased.

The next step in preprocessing is histogram equalization. This
operation spreads out intensity values along the total range of val-
ues in order to achieve higher contrast. This method is especially
useful when an image is represented by close contrast values, such
as images in which both the background and foreground are bright
at the same time, or else both are dark at the same time. However,
slow speed and the overenhancement of noise it produces in rela-
tively homogeneous regions are two problems. In order to solve
them, an adaptive histogram equalization has been used Pena
(2010). It differs from ordinary histogram equalization in the
respect that the adaptive method computes several histograms,
each corresponding to a distinct section of the image, and uses
them to redistribute the lightness values of the image. The optimal
value of the size of each image subdivision has been determined,
being 64 pixels (8 � 8), and a bilinear interpolation of the border
pixels of two subdivisions is calculated. Therefore, in order to pre-
vent the noise overamplification a contrast limitation is used
(Zuiderveld, 1994).

Fig. 3 shows the result of the adaptive histogram equalization.
At first, it is necessary to identify the most important histogram
sections. From all the millions of pixels in the image, only a very
small percentage are of any interest: parasites and white blood
cells. The blue ellipsis indicates the location of these pixels. The
peak, which represents the background, has been shifted to the
right compared to its position in the original image. This means
that the background pixels now have higher intensities, so that
there is a bigger difference between the background and signal pix-
els intensities. In turn, the selection of the desired threshold used
to convert the image to binary form is simplified.

Before segmentation, another operation (called h-minima
transform) (Samboal, 2012) is used. It effectively suppresses all
intensity minima in the image whose difference with its neighbor
is less than a threshold called depth. With this operation, the dif-
ference between the background pixels are reduced. The depth
parameter of the algorithm is experimentally tuned finally select-
ing the value of 0.01.
2.2. Segmentation

Thresholding is one of the widely methods for image segmenta-
tion (Al-Amri, Kalyankar, & Khamitkar, 2010). It is useful in dis-
criminating foreground from the background. By selecting an
adequate threshold value T, the gray level image can be converted
Fig. 3. Comparison between histogram before and after equalization.
to binary image. In this way, thresholding can be seen as an oper-
ation that involves testing a function T as found in the following
form:

T ¼ T x; y;pðx; yÞ; f ðx; yÞ½ � ð2Þ

where f ðx; yÞ is the gray level of the pixel ðx; yÞ and pðx; yÞ denotes
some local property of this pixel. The most common way to convert
a gray-level image to a binary image is to select a single threshold
value (T), defined as follows:

gðx; yÞ ¼
1 if f ðx; yÞ > T

0 if f ðx; yÞ 6 T

�
ð3Þ

Then all the gray level values below this T will be classified as
black (0), and those above T will be white (1).

The segmentation problem becomes one of selecting the proper
value for the threshold T. A frequent method used to select T is by
analyzing the histograms of the type of images that want to be seg-
mented. In the first place, Otsu’s method (Otsu, 1979) is used. This
is a nonparametric and unsupervised method for automatic thres-
holding. An optimal threshold is selected by the discriminant crite-
rion so as to maximize the separability of the resulting classes in
gray levels. The ideal case is when the histogram presents only
two dominant modes and a clear valley (bimodal). In this case
the value of T is selected as the valley point between the two
modes. But the histograms of the images in the database are more
complex, with many peaks and not clear valleys, and it is not
always easy to select the value of T. That is the reason why the local
characteristics of the image are utilized through a process called
adaptive thresholding (Rodríguez, 2010).

First, the average image is calculated, that is, the image is con-
volved with a mean filter (15 � 15 mask). Although this is usually
used as a smoothing operation it is not what is intended in this
case. Then, the average image is compared with the value of each
pixel in the input image. Therefore, there are two possibilities, as
shown here:

� If the pixel in the original image is greater than T% of the pixel in
the average image, then pixel is labeled as 1 and it therefore
belongs to the background.
� If the pixel in the original image is less than T% of the pixel in

the average image, then the new value of this pixel is labeled
as 0. Therefore, it belongs to the signal.

Although the parameter T has always the same value, the seg-
mentation threshold varies with each of the images, since T is a
percentage, that is, depends on the intensities of the pixels in the
image, which is the reason that this method works quite well: it
adapts to the local characteristics of each image. The proposed
method is very robust to the variation of this parameter, so that
it is not difficult to choose an appropriate value, which works well
for all images. Fig. 4 shows the result of this operation. There, the
background is now completely uniform (white), while both
malaria parasites and white blood cells are black pixels. Further-
Fig. 4. Left side: image before thresholding. Right side: binary image.



Fig. 6. Left side: image before opening operation. Right side: image after opening.
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more, the selected threshold gives very good results. A value too
small would eliminate many parasites. On the other hand, a high
value would unduly increase the number of parasites because such
pixels would be considered as parasites belonging to the
background.

2.3. Morphological filtering

When the image is binarized, it will be treated to obtain the
only information of real importance, the ability to extract the
desired components of an image. For this, the tools of the so-called
mathematical morphology (Jones & Svalbe, 1994) is used. There are
two primary operations namely, dilation and erosion. The former
has mainly the application of filling holes. The latter eliminates
irrelevant details in the image. Eqs. (4) and (5) show operational
definitions in formal mathematical terms:

A� B ¼ fzjðbBÞz \ A # Ag: ð4Þ
A� B ¼ fzjðBÞz # Ag ð5Þ

The dilation of A and B is the set of all the shifts, z, such that bB
and A overlap in at least one element. The erosion of A and B is the
set of all the pixels z such that B has to be contained in A. In both
operations a structural element (van den Boomgard & van Balen,
1992) is required that moves across the image in the same way
as a convolution (González & Woods, 2002).

Combining dilation and erosion a more complex filtering is
obtained. Closing (Vincent, 2004), which is a dilation followed by
an erosion, tends to smooth contour sections, but it generally fuses
narrow breaks and long thin gulfs, eliminates small holes and fills
gaps in the contour (Alba, Martín, Cide, & Mora, 2006). Fig. 5 shows
the result of this operation. In this image a set of pixels can be seen
that represent a white blood cells. As discussed below, it is neces-
sary to measure characteristics of the sets of pixels to differentiate
between parasites and white blood cell. For this reason, the gaps in
all these sets must be filled so that the measures obtained are
reliable.

Opening generally smoothes the contour of an object, breaks
narrows isthmuses, and eliminates thin protrusions. Though the
main application in this study is to eliminate all the elements in
the image that are smaller than the structural aspects of the
selected element. In the next section the results achieved with this
operation will be reported.

2.4. Connected components analysis

The connected components analysis of a binarized image con-
sists of labeling (Alnuweiri & Kumar, 1991) those pixels having a
value ‘1’ as seen in white. This is followed by a measurement of
the properties of the region resulting in labeling and subsequent
classification as based on this measure. The procedure follows that
the same identification tag will be assigned to all pixels that have a
binary value ‘1’ and which are connected by a path of pixels also
with value ‘1’. The label is the unique index that indicates the
Fig. 5. Left side: image before closing operation. Right side: image after closing.
region to which the pixels belong to. To get the most efficient
results, an algorithm based on run-length encoding has been used
with the following operations. First, a Run-Length encoding (RLE)
of the input image (Ronse & Devijver, 1984) is applied. After this,
a preliminary tagging is used, keeping the label equivalencies or
connected regions with different label in a table of local matches.
Then, the resolution of the equivalences tables is done, relabeling
of the sequences based on the resolved equivalence classes.

Once the binary image is separated into its corresponding con-
nected components, each of these different properties is measured.
Given that, the main difference between white blood cells and
malaria parasites is their size, so that is the property to be mea-
sured. Then, all region areas (number of pixels forming the area)
are checked, and based on the results, it is divided into parasites
or white blood cells. In this way, the higher value label assigned
to a region shows the total number of regions (parasites and white
blood cells) existing in the image. Finally, the opening operation is
used in order to eliminate the white blood cells, presenting a pic-
ture in which there are only parasites. The size of the structural
element has been selected to be equal to the average size of a white
blood cell, so that all elements smaller than those are removed.
This obtains an image with only white blood cells (see Fig. 6). By
calculating the difference between both of the images, then the
objective of this work (see Fig. 7) is obtained.

3. Results and discussion

Errors in parasite density estimation by conventional micros-
copy are common, and apart from possibly deleteriously influenc-
ing the management of individual patients, have the potential to
produce major consequences for clinical efficacy trials of malaria
vaccines (O’Meara, Hall, & McKenzie, 2007b) or prophylactic drugs
(Frean & Dini, 2007). In this study, highly accurate manual counts
of a range of parasite densities made it possible to experiment
extensively with digital counting methods, and to critically evalu-
ate particle analysis algorithms. Figs. 8 and 9 show a comparison
between the manual count and digital counts obtained by the pro-
cess developed in this paper. In the first image, the number of par-
asites in each of the images is measured, while the second shows
Fig. 7. Result of all the processing.



Fig. 8. Linear regression of digital counts on manual counts of 475 images.

Fig. 9. Linear regression of aggregated digital counts on manual counts of 19 slides.

Table 1
Comparison of manual, digital, and conventional parasite density estimations.

Slide Number of parasites
counted per slide

Parasite density, as parasites per ll

Manual Digital Manual Digital Conventional

BF3A 5022 4955 125161 123491 109725
BF5A 4516 4438 178410 175328 152178
BF6A 10686 10082 461853 435747 271600
BF7A 9373 9166 290682 284263 200083
BF8A 344 358 6908 7189 5834
BF9A 634 664 15756 16501 11359
BF10A 1003 1082 15343 16551 18638
BF13A 2446 2478 76501 77501 50110
BF18A 22477 21158 467219 439801 429400
AMI3a 424 424 23887 23887 17500
AMI32 5819 5667 178360 173701 125000
BF7Ab 8059 7857 303762 296148 200083
BF8Ab 291 299 6701 6885 5834
BF9Ab 369 394 14033 14983 11359
BF13Ab 1373 1369 88951 88691 50110
BF15A 3904 3816 164379 160673 144050
BF17A 6807 6642 335219 327093 238467
AMI3b 281 255 18891 17143 17500

Total 83828 81104 2772016 2685576 2008720
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parasite density, as measured by the number or parasites per ll, for
each of the patients. Both Figs. 8 and 9 show the linear regression
to visually establish the correlation between the values obtained
using the manual and digital methods.

Generally, digital and manual counts are well correlated,
whereas the conventional counting provides significantly lower
results than the other two methods (see Table 1). This is due to
the fact that in conventional counting of relative numbers of para-
sites and leukocytes, human operator biases, which are absent in
the digital and manual counts, presumably account for this to
underestimate parasite densities. Fig. 8 shows the correlation
between digital and manual counting in each of the images of
the database, obtaining a linear regression coefficient of
R2 ¼ 0:9984. There is also a correlation between parasite densities
obtained by each of the two methods, with a linear regression coef-
ficient of R2 ¼ 0:99942.

Another important is the fact that there is no relationship
between accuracy and parasite densities, providing good results
both for images with a smaller number of them (low signal/noise
ratio) and images with a high number of parasites (therefore, high
SNR). There is also a comparison between the results obtained in
this paper and the results obtained by other systems capable of



Table 2
Comparison of manual, John Frean’s, and proposed method for parasite density
estimation.

Image Number of parasites per slide Discrepancy (%)

Manual Frean Proposed Frean Proposed

BF3A 5022 5071 4955 0.981 1.33
BF5A 4516 4540 4438 0.53 1.72
BF6A 10686 10438 10082 2.32 5.65
BF7A 9373 9515 9166 1.51 2.2
BF8A 344 289 358 15.99 4.07
BF9A 634 619 664 2.37 4.73
BF10A 1003 870 1082 13.26 7.87
BF13A 2446 2158 2478 11.76 1.30
BF18A 22477 21956 21158 2.32 5.86
AMI3a 424 438 424 3.30 0
AMI32 5819 6149 5667 5.67 2.61
BF7Ab 8059 8259 7857 2.38 2.5
BF8Ab 291 277 299 4.81 2.75
BF9Ab 369 333 394 9.76 6.77
BF13Ab 1373 1356 1369 1.24 0.29
BF15A 3904 3914 3816 0.26 2.25
BF16A 14265 14273 13739 0.06 3.68
BF17A 6807 6999 6642 2.82 2.42
AMI3b 281 272 255 3.2 9.25
Average 4.45 3.54
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digitally counting parasites. Table 2 shows these results. Under this
proposed method, the average error is 3.54%, within the limits rec-
ommended by the WHO, while in the case of Frean (2010), the
average error is 4.45%. Therefore, the variance of these errors has
been calculated, obtaining a more efficient estimator: 6.15 in the
case of the proposed method and 21.07 in Frean (2009) method.
Still, this is not the only important point. The key is in the process-
ing time of each image. Frean proposes a system that requires from
5 to 10 min to get the results for each patient (with 25 images per
patient). The system proposed in this paper is able to obtain the
digital count in 50 s, (using a laptop with Core-i5 Processor with
a clock speed of 2.3 GHz), with no detectable increasing in comput-
ing time in images with high parasite densities.
4. Conclusions

In the current study, we have developed an image analysis soft-
ware which could potentially be employed for the routine determi-
nation of parasitemia from thick blood films. The design of this
software is based on several steps. The preprocessing step involves
the enhancement of the image using an adaptive histogram equal-
ization. The next step, the binarizing process, is focused on the ade-
quate selection of a threshold that divides the image in two
groups: signal (white blood cells and parasites) and background
pixels. Lastly, the use of morphological operations (regional mini-
mum and closing) evaluate the area of the connected components,
getting only the parasites and counting the number of them.

Approaches such as histogram equalization, morphology or
thresholding have been employed to estimate the number of
malaria parasites in thick blood films. However, such approaches
are unable of precisely determining the number of parasites. To
accurately and rapidly quantify the number of parasites in digital
images, we employed a novel approach where the key steps are
adaptive histogram equalization and adaptive thresholding. The
first one is based on the matching of the histogram of all the
images to a reference one, reducing the variability of the images.
In this way, a extraction of important information from images
with very different characteristics is performed, so it is necessary
to evaluate a single image instead of three (in RGB or HSV space)
as some approaches do, with the serious costs in processing speed
that it entails. As regards the selection of a threshold to segment
the images, Otsu’s method (widely used in literature) does not
get good results due to the nature and features of the images. Fur-
thermore, the use of a global threshold is meaningless because the
wide range of grayscale intensities and images complexity makes
impossible to segment an image with only one threshold for the
entire one. The adaptive thresholding technique proposed on this
work choose an individual threshold for each group of each pixels
(called neighborhood) attending to the local features of them, sig-
nificantly improving the accuracy of the algorithm and showing
better results than other approaches.

In two situations, we noticed that certain particularities of the
images would lead to a false interpretation of parasites and thus,
an increasing in discrepancy between manual and digital counts.
The first one is related with Giemsa-stain, which is used to differ-
entiate nuclear morphology of white blood cells and malaria para-
sites. In some images, the quantity of Giemsa-stain is too high and
there are not important differences between their grayscale inten-
sities and parasites intensities. But if besides this stain pixels
located almost adjacent to parasites, histogram equalization pro-
cess would probably equalize their intensities, with the improper
increasing in the number of parasites this could cause. Another
problem that should be improved in a future update is related with
very high parasites density images. Sometimes parasites are close
together and morphological operations are not capable of seg-
menting them. This could be solved by using morphological oper-
ations both before and after the thresholding step, and not only
after it. Another suggestion for future research might be the adap-
tation of the algorithms used in this work to smartphones. Malaria
occurs mostly in poor areas of the world and this kind of devices
are not as expensive as laptops or PCs, in addition to doctors could
diagnose and choose the correct treatment anywhere and not only
in specialized laboratories.

The aim of this work was the development of a new method for
enumeration of malaria parasites that improved the problems of
other approaches and it has been broadly achieved. The experi-
ments carried out on the database composed by 475 images
yielded a value of accuracy equal to 96.46%, a variance of these
errors equal to 6.15 and needing 2 s per image, which outper-
formed the algorithm proposed in Frean (2009), with a value of
accuracy equal to 95.55%, variance of errors equal to 21.07 and
needing 18 s per image. Adaptive processing techniques are the
key in this work, being able to overcome the variability in images,
extracting local information and making different decisions in each
region of the image. We come to the conclusion that local and
adaptive processing is a powerful tool that might be very useful
not only for the diagnosis of malaria disease, but also in other dig-
ital images processing fields such as computer vision or patterns
recognition.
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