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Alzheimer’s disease (AD) is the most common cause of deme ntia in the elderly and affects 
approximately 30 million individuals worldwide. With the growth of the older population 
in developed nations , the prevalence of AD is expected to triple over the next 50 years 
while its early diagnosis remains being a difficult task. Functional imaging modalities 
including Single Photon Emission Computed Tomography (SPECT) and positron emission 
tomography (PET) are often used with the aim of achieving early diagnosis. However,
conventional evaluation of SPECT images often relies on manual reorientation, visual read- 
ing of tomographic slices and semiquantitative analysis of certain regions of interest (ROIs).
These steps are time consuming, subjective and prone to error. This paper shows a fully 
automatic computer-aided diagnosis (CAD) system for improving the early detection of
the AD. The proposed approach is based on image parameter selection and support vector 
machine (SVM) classification. A study is carried out in order to finding the ROIs and the 
most discriminant image parameters with the aim of reducing the dimensionality of the 
input space and improving the accuracy of the system. Among all the features evaluated,
coronal standard deviation and sagittal corr elation parameters are found to be the most 
effective ones for reducing the dimensionality of the input space and improving the diag- 
nosis accuracy when a radial basis function (RBF) SVM is used. The proposed system yields 
a 90.38% accuracy in the early diagn osis of the AD and outperforms existing techniques 
including the voxel-as-features (VAF) app roach.

� 2009 Elsevier Inc. All rights reserved.
1. Introductio n

Emission Computed Tomograp hy (ECT) has been widely used in biomedical research and clinical practice during the last 
three decades. ECT differs from many other medical imaging modalities such as magnetic resonance imaging (MRI) in pro- 
ducing a mapping of physiologica l functions instead of imaging anatomical structure s. In this way, tomograp hic radiophar- 
maceutical imaging provides in vivo three-dim ensional maps of a pharmac eutical labeled with a gamma ray emitting 
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radionuclid e. The distribution of radionuc lide concentrations are estimated from a set of projectional images acquired at
many different angles around the patient [5].

Single Photon Emission Computed Tomography (SPECT) is an ECT imaging technique developed in the 1960s, but not 
widely used in clinical practice until the 1980s. It is a noninvasive, three-dimens ional functional imaging modality that pro- 
vides clinical information regarding biochemical and physiologic processes in patients. SPECT images are produced by the 
disintegrati on of the nucleus of a radioisotope that leads to the emission of a gamma photon with a random direction 
and uniformly distributed in the sphere surrounding the nucleus. If the photon does not suffer a collision with electrons 
or other particles with-in the body, its trajectory will be a straight line or ‘‘ray’’. In order to discriminate the direction of
incidence using a photon detector external to the patient, a physical collimation is required. Typically, a collimator is placed 
prior to the detector in such a manner that photons incident from all but a single direction are blocked by the plates. This 
guarantees that only photons incident from the desired direction will strike the photon detector. SPECT is essential for imag- 
ing the brain with either regional cerebral blood flow (rCBF) agents or brain receptors, and for imaging myocardial perfusion.
For the past two decades, brain SPECT has become an important diagnost ic and research tool in nuclear medicine [2,32]. The 
ultimate value of this technology depends on good technique for image acquisition and proper data reconstruction [38,50].

Alzheimer’s disease (AD) is a progressive neurodegen erative disorder first affecting memory functions and then gradually 
affecting all cognitive functions with behavioral impairment s and eventually causing death. Its diagnosis is based on the 
information provided by a careful clinical examina tion, a thorough interview of the patient and relatives, and a neuropsy- 
chological assessment. A SPECT rCBF study is frequent ly used as a complimentar y diagnost ic tool in addition to the clinical 
findings [24,43,23]. However, in late-onset AD there are minimal perfusion in the mild stages of the disease, and age-related 
changes, which are frequently seen in healthy aged people, have to be discrimin ated from the minimal disease-speci fic
changes. These minimal changes in the images make visual diagnosis a difficult task that requires experienced explorers.
Even with this problem still unsolved, the potential of computer-a ided diagnosis (CAD) has not been explored in this area.

Several approach es for designing CAD systems of the AD can be found in the literature [33,26,45]. The first family is based 
on the analysis of regions of interest (ROI) by means of some discriminant functions. The second approach is the statistical 
parametric mapping (SPM) [15] software tool and its numerous variants. SPM is widely used in neuroscience. It was not 
developed specifically to study a single image, but for comparing groups of images. SPM has been designed as a univariate 
approach since the classical multivariate techniques such as MANCOVA [47] require the number of observations (i.e. scans)
to be greater than the number of components (i.e. voxels) of the multivariate observation. The importance of multivariate 
approaches is that the effects due to activations , confounding effects and error effects are assessed statistically, both in terms 
of effects at each voxel, and interactions among voxels [15]. On the other hand, statistical learning classification methods 
have not been explored in depth for AD CAD, quite possibly due to the fact that images represent large amounts of data 
and most imaging studies have relatively few subjects (generally < 100) [26,46,44 ].

Since their introduct ion in the late seventies [51], Support vector machines (SVMs) marked the beginning of a new era in the 
learning from examples paradigm [6,27]. SVMs have focussed recent attention from the pattern recognition community due to
a number of theoretical and computational merits derived from the Statistical Learning Theory (SLT) [52,53] developed by Vla- 
dimir Vapnik at AT&T. Moreove r, recent developments in defining and training statistical classifiers make it possible to build 
reliable classifiers in very small sample size problems [12] since pattern recognition systems based on SVM circumvent the 
curse of dimensionali ty, and even may find nonlinear decision boundaries for small training sets. These techniques have been 
successfully used in a number of applications [7,49] including voice activity detection (VAD) [13,14,37,40 ,39,56,21,20] ,
content-bas ed image retrieval [48], texture classification [29] and medical imaging diagnosis [16,28,57,35].

This paper shows a complete CAD system for the early detection of the Alzheimer ’ type dementia (ATD) by SPECT image 
classification. The proposed method combining SVM and advanced feature extraction schemes is developed with the aim of
reducing the subjectiv ity in visual interpretation of SPECT scans by clinicians, thus improving the detection of the AD in its early 
stage. The paper is organized as follows. Section 2 provides a background on SVM classification. Section 3 summarizes the key 
ROIs where the disease becomes observable in its early stage. Section 4 shows the acquisition setup, reconstru ction algorithm 
as well as the template-base d spatial normalization techniques used for obtaining an accurate and anatomicall y standardi zed 
model of the functional brain activity provided by SPECT images. Section 5 defines first- and second-o rder statistics that are 
evaluated for building the classifier based on their discriminati on ability. Finally, Section 6 shows the experiments that were 
conducted in order to evaluate the proposed SVM classifier as a diagnostic tool for the early detection of the AD.
2. Support vector machines 

Support vector machines [6,52,53] are widely used for pattern recogniti on in a number of applications by its ability to
learn from experimental data. The reason is that SVM often performs better than other conventional parametric classifiers
[27,19]. SVM separate a given set of binary labeled training data by means of a hyperplane that is maximally distant from the 
two classes (known as the maximal margin hyperplane). The objective is to build a function f : RN ! f�1g using training 
data that is, N-dimension al patterns x i and class labels yi:
ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxl; ylÞ 2 RN � f�1g; ð1Þ
so that f will correctly classify new unseen examples ðx; yÞ.
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Linear discriminant functions define decision hypersur faces or hyperplanes in a multidimensiona l feature space, that is:
gðxÞ ¼ wT xþw0 ¼ 0; ð2Þ
where w is known as the weight vector and w0 as the threshold. The weight vector w is orthogonal to the decision hyper- 
plane and the optimization task consists of finding the unknown parameters wi, i ¼ 1; . . . ;N, defining the decision 
hyperplane.

Let xi, i ¼ 1;2; . . . ; l, be the feature vectors of the training set, X. These belong to either of the two classes, x1 or x2. If the 
classes were linearly separable the objective would be to design a hyperpla ne that classifies correctly all the training vectors.
The hyperplane is not unique and the selection process focusses on maximizing the generalization performanc e of the clas- 
sifier, that is, the ability of the classifier, designed using the training set, to operate satisfactorily with new data. Among the 
different design criteria, the maximal margin hyperplane is usually selected since it leaves the maximum margin of separa- 
tion between the two classes. Since the distance from a point x to the hyperpla ne is given by z ¼ jgðxÞj=jjwjj, scaling w and w0

so that the value of gðxÞ is +1 for the nearest point in x1 and �1 for the nearest points in x2, reduces the optimization prob- 
lem to maximizing the margin: 2=jjwjj with the constrain ts:
wT xþw0 P 1; 8x 2 x1;wT xþw0 6 1; 8x 2 x2; ð3Þ
or equivalently , minimizing the cost function JðwÞ ¼ ð1=2Þjjwjj2 subject to:
yiðwT xi þw0ÞP 1; i ¼ 1;2; . . . ; l: ð4Þ
Thus, designing the classifier leads to a nonlinear (quadratic) optimization task subject to a set of linear inequality con- 
straints. By using the optimization methodol ogy adopted by Karush-Kuhn-Tuc ker [6], the solution w is found to be a linear 
combination of Ns 6 l feature vectors named support vectors and the optimum hyperplane is called the support vector ma- 
chine. The support vectors are the training vectors that are closest to the linear classifier since lie on either of the two hyper- 
planes, i.e. wT xþw0 ¼ �1. On the other hand, the optimization process with inequality constraints guarante e any local 
minimum is also global and unique so that the optimal maximal margin hyperpla ne defining the support vector machine 
is unique.

For non-separab le classes, the optimization process needs to be modified in an efficient and elegant manner. In mathe- 
matical terms, the maximal margin hyperplane for non-separable data is selected by minimizing the cost function:
Jðw;w0; nÞ ¼
1
2
jjwjj2 þ C

Xl

i¼1

ni; ð5Þ
subject to the constraints:
yi½wT xi þw0�P 1� ni; ni P 0 i ¼ 1;2; . . . ; l:; ð6Þ
where the variables ni are known as slack variables. Note that, the goal of the optimization task is to make the margin as large 
as possible and reduce the number of points with n > 0. The parameter C is a positive constant that controls the relative 
influence of the two competing terms.

When no linear separation of the training data is possible, SVM can work in combinati on with kernel techniques so that 
the hyperpla ne defining the SVM correspond s to a nonlinear decision boundary in the input space. If the data is mapped to
some other (possibly infinite dimensio nal) Euclidean space using a mapping UðxÞ, the training algorithm only depends on the 
data through dot products in such an Euclidean space, i.e. on functions of the form UðxiÞ �UðxjÞ. If a ‘‘kernel function’’ K is
defined such that Kðxi; xjÞ ¼ UðxiÞ �UðxjÞ, it is not necessar y to know the U function during the training process. In the test 
phase, an SVM is used by computing dot products of a given test point x with w, or more specifically by computing the sign 
of
f ðxÞ ¼
XNS

i¼1

aiyiUðsiÞ �UðxÞ þw0 ¼
XNS

i¼1

aiyiKðsi; xÞ þw0; ð7Þ
where si are the support vectors.
Thus, the use of kernels in SVM enables to map the data into some other dot product space (called feature space) F via a

nonlinear transformat ion U : RN ! F and perform the above linear algorithm in F. Fig. 1 illustrates this process where the 2-
D input space is mapped to a 3-D feature space. Note that, all the points belonging to a given class remain at a given side of
the separating hyperpla ne and the data become linearly separable. In the input space, the hyperplane corresponds to a non- 
linear decision function whose form is determined by the kernel. There are three common kernels that are used by SVM prac- 
titioners for the nonlinear feature mapping:

� Polynomial
Kðx; yÞ ¼ ½cðx � yÞ þ c�d: ð8Þ
� Radial basis function (RBF)



Fig. 1. Effect of mapping the input space to the feature space where the separation boundary becomes linear.
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Kðx; yÞ ¼ expð�cjjx� yjj2Þ: ð9Þ
� Sigmoid
Kðx; yÞ ¼ tan hðcðx � yÞ þ cÞ: ð10Þ
Thus, the decision function is nonlinear in the input space 
f ðxÞ ¼ sgn
XNs

i¼1

aiyiKðsi; xÞ þw0

( )
ð11Þ
and the parameters ai are the solution of a quadratic optimization problem that are usually determined by Quadratic Pro- 
gramming (QP) or the well known Sequenti al Minimal Optimiza tion (SMO) algorithm [36]. Many classification problems are 
separable in the feature space and are able to obtain better results by using RBF kernels instead of linear and polynomial 
kernel functions [9,17].
3. Diagnosis of Alzheimer’s type dementia by means of SPECT 

Functional SPECT imaging providing information about the rCBF have been found to be a valuable aid for the early diag- 
nosis of the AD [18]. Fig. 2 shows typical brain perfusion patterns of a normal subject and a patient affected by AD. Although 
many studies exist no final agreement has been achieved for the best regions of the brain to be quantified when diagnosing 
AD:

� Many studies have shown the temporo-par ietal region to be practical for the early detection of the disease in patients that 
are no longer characterized by specific cognitive impairment but by general cognitive decline [10]. Although bilateral 
temporo-par ietal abnormalities , with or without other regional defects, are known as the predomin ant pattern for AD,
they appear to be neither sensitive nor specific of the early AD.
� Perfusion deficits in posterior cingulate gyri and precunei regions are probably more specific and more frequent in early 

AD than temporo-par ietal deficits [30].
� Hypo-perfus ion in the medial temporal lobe and hippocamp us is not found in mild AD due to the difficulties of imaging 

these deep brain structures [4].

As a conclusion, not all the informat ion found in a complete SPECT scan will be of interest for the diagnosis of the disease 
during its early stage. An study of the regions in the brain that are more effective for diagnosing the ATD is conducted in
Section 5.
4. SPECT image acquisition and preprocessin g

The ultimate value of a CAD system strongly depends on effective techniqu es for image acquisition, proper data recon- 
struction and image registration [1,42]. After introducing all the necessary knowledge and tools for building the diagnosis 
system, this section shows the image acquisition setup and preproces sing steps of the SPECT scans that are needed prior 
to defining the classifier.



Fig. 2. Typical perfusion patterns of: (a) a normal subject, and (b) a patient affected by Alzheimer’s type dementia.
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4.1. Image acquisition 

Each patient is comfortably positioned on the imaging couch with the head ‘‘immobilize d’’ in a radiolucent head holder.
The patient’s head is fixed so that a line perpendicular to the detector head runs 5�–7� cephalad to the canthomeatal line. In
addition, the detector is positioned as close to the brain’s patient as possible, preferably with a radius of rotation of 14 cm or
less from the surface of the collimator to the center of the patient’s brain. The patients are injected with a gamma emitting 
technetium -99 m labeled ethyl cysteinate dimer (99mTc-ECD) radiopharm aceutical and the SPECT scan is acquired by a three- 
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head Picker Prism 3000 gamma camera. A total of 180 projections are taken for each patient with a 2-degree angular reso- 
lution. Finally, images of the brain cross sections are reconstru cted from the projection data using the filtered backproject ion 
(FBP) algorithm described below in combinati on with a Butterwo rth noise removal filter.

4.2. Image reconstruction 

Cross-sectional images of the brain can be reconstru cted from projection data [31,54,25,5,8]. Assumuing ideal conditions,
projections are a set of measurements of the integrated values of some parameter of the object along a line path. If the object 
is represented by a two-dimensi onal function f ðx; yÞ, the line integral computed over the line x cos hþ y sin h ¼ t is defined
as:
PhðtÞ ¼
Z þ1

�1

Z þ1

�1
f ðx; yÞdðx cos hþ y sin h� tÞdxdy; ð12Þ
where PhðtÞ is known as the Radon transform of the function f ðx; yÞ. Note that, it is related with the sum of radioactive counts 
recorded in any time interval at point t when the detector is at angle h.

The key to tomograp hic imaging is the Fourier Slice Theorem which relates the measure d projection data to the 2-D Fourier 
transform of the object cross section. Thus, the Fourier transform ShðwÞ of a parallel projection PhðtÞ of an image f ðx; yÞ taken
at angle h and defined to be:
ShðwÞ ¼
Z þ1

�1
PhðtÞ expð�j2pwtÞdt; ð13Þ
gives a slice of the two-dimens ional Fourier transform:
Fðu;vÞ ¼
Z þ1

�1

Z þ1

�1
f ðx; yÞ expð�j2pðuxþ vyÞÞdxdy; ð14Þ
subtending an angle h with the u-axis’’, that is,
ShðwÞ ¼ Fðu ¼ w cos h; v ¼ w sin hÞ: ð15Þ
The above result is the key of straight ray tomography and indicates that by having projections of an object function at a
number of angles h1; h2; . . . ; hk and taking the Fourier transform of them, the values of Fðu;vÞ can be determined on radial 
lines. In practice, only a finite number of projections are taken so that the function Fðu;vÞ is only known along a finite num- 
ber of radial lines.

Projection data used in this study are reconstru cted using the filtered backprojection (FBP) algorithm that is easily derived 
from the Fourier Slice Theorem. The image of the cross section f ðx; yÞ of an object is obtained by:
f ðx; yÞ ¼
Z p

0
Q hðx cos hþ y sin hÞdh; ð16Þ
where
Q hðtÞ ¼
Z þ1

�1
ShðwÞjwj expðj2pwtÞdw: ð17Þ
The FBP algorithm then consists of two steps: the filtering part, which can be visualized as a simple weighting of each pro- 
jection in the frequency domain, and the backprojection part.

A major drawback of FBP is the undesired amplification of the high frequency noise and its impact on the quality of the 
reconstructed image. These effects are caused by the filtering operation or multiplication of ShðwÞ by jwj in Eq. (17). In order 
to attenuate the high frequency noise amplified during FBP reconstructi on, several window functions have been proposed.
The reconstructi on method is then described by Eqs. (16) and (17) and is normally redefined by applying a frequency win- 
dow which returns to zero as the frequency tends to p. Among the most common window functions used for FBP reconstruc- 
tion are: (i) sinc (Shepp-Logan filter), (ii) cosine, (iii) Hamming and, (iv) Hanning window functions. However , even when the 
reconstructi on noise is kept low using a noise controlled FBP approach, the noise captured by the acquisition system needs to
be filtered out to improve the quality of the reconstru cted images. In this way, the preprocessing stage of most automatic 
SPECT image processing systems often incorporates prefiltering, reconstructi on and postfiltering to minimize the noise ac- 
quired by the gamma camera as well as the noise amplified during FBP reconstruction.

4.3. Image registration 

The complexi ty of brain structures and the differenc es between brains of different subjects make necessary the normal- 
ization of the images with respect to a common fixed-size template. This step allows us to compare the voxel intensities of
the brain images of different subjects.



J. Ramírez et al. / Information Sciences 237 (2013) 59–72 65
The SPECT images used in this work are first spatially normalized using the SPM software [15] in order to ensure that a
given voxel in different images refer to the same anatomical position in the brain. The normalizati on method assumes a gen- 
eral affine model with 12 parameters [55] and a cost function which presents an extreme value when the template and the 
image are matched together. For each voxel x ¼ ðx1; x2; x3Þ in an image, the affine transformat ion into the coordinates 
y ¼ ðy1; y2; y3Þ is expresse d by a matrix multiplication y ¼ Mx.
y1

y2

y3

1

0
BBB@

1
CCCA ¼

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1

0
BBB@

1
CCCA

x1

x2

x3

1

0
BBB@

1
CCCA: ð18Þ
The objective function CF to be optimized is the mean squared difference between the source and the template:
cf ¼
X

i

ðf ðMxiÞ � gðxiÞÞ2; ð19Þ
where f and g denote the source image and the template, respectively . Once the image is normalized by means of an affine
transformat ion, it is registered using a more complex non-rigid spatial transformation model. The deformations are param- 
eterized by a linear combination of the lowest-frequency components of the three-dimensio nal cosine transform bases [3]. A
small-deform ation approach is used and regularization is achieved by the bending energy of the displacemen t field. After the 
spatial normalizati on, a 95 � 69 � 79 voxel representat ion of each subject is obtained. Each voxel represents a brain volume 
of 2.18 � 2.18 � 3.56 mm3.

Fig. 3 shows an example of the operation of the normalization process on SPECT images. Left column shows arbitrary 
source images in the dataset, central column shows the template used for image registrati on, and finally the correspondi ng
normalized images are shown in the right column. It is clearly shown that the transformed image matches the shape of the 
template.

Finally, intensity level of the SPECT images is normalized to the maximum intensity, which is individually computed for 
each volume by averaging over the 3% of the highest voxel intensities following a procedure similar to [41].

5. Discrimina nt statistics of Alzheimer’s type dementia 

A major problem associated with pattern recognition systems is the so-called curse of dimensionali ty, that is, the number 
of available features for designing the classifier can be very large compared with the number of available training examples.
Under these conditions, the difficulty of an estimation problem increases drastically with the dimension of the space, since 
Fig. 3. Three SPECT images. Left column : source image. Central column : template. Right column : transformed image.
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one needs an exponential increasing number of patterns to sample the space properly. This well known statement induces 
some doubts about where it is a good idea to go to a high dimensional feature space for learning when using SVM. However,
Statistical Learning Theory tell us that the contrary can be true: learning in high dimensio n feature space can be simpler if a
low-complex ity, i.e. simple class of decision rule (e.g. linear classifiers) is used. As a conclusio n, not the dimensionality but 
the complexi ty of the function class matters [34]. Moreove r, recent developmen ts in defining and training statistical classi- 
fiers make it possible to build reliable classifiers in very small sample size problems [12] since pattern recognition systems 
based on SVM circumvent the curse of dimensional ity, and even may find nonlinear decision boundaries for small training 
sets.

Independently of the classifier to be used, there are clear motivations for reducing the dimensionality of the input space 
to a reasonabl e minimum:

(1) reduction of the computational cost of the training and testing algorithms,
(2) eliminati on of correlation between input data, and 
(3) selection of the most discriminant set of input data.

Next sections review the definition of the image statistics that have been evaluated in this work for designing the CAD 
system.
5.1. First-order statistics 

Let I be the random variable representing the Ng intensity levels of the image and PðIÞ its first-order histogram. Its mo- 
ments mi and central moments m̂i are defined by:
mi ¼ E½Ii� ¼
XNg�1

I¼0

IiPðIÞ; m̂i ¼ E½ðI � E½I�Þi� ¼
XNg�1

I¼0

ðI �m1ÞiPðIÞ: ð20Þ
The most frequent used central moments are the mean l ¼ m1 ¼ E½I� and variance r2 ¼ m̂2. Other paramete r that results 
from the first-order histogram is the entropy:
H ¼ �E½log2PðIÞ� ¼ �
XNg�1

I¼0

PðIÞlog2PðIÞ; ð21Þ
which is a measure of histogram uniformity. The closer to the uniform distribution, the higher the entropy.
5.2. Second-order statistics 

First-order statistics provide information related to the intensity level distribution of the image, but they do not give any 
information about relative positions of the various intensity levels with-in the image. This information can be extracted from 
the second-order statistics, where the pixels are considered in pairs.

Second-order statistics derived from the co-occurrence matrix [22] are defined as follows. Let d be the relative distance 
measured in pixel numbers. The orientation / is quantized in four directions: horizontal, diagonal , vertical and antidiago nal 
(0�, 45�, 90� and 135 �). For each combination of d and / a two-dimensi onal histogram is defined. In this work, only the 
dependence of horizontally adjacent pixels (d = 1, / ¼ 0) is considered being its spatial dependence matrix or co-occurrence 
matrix defined as:
P ¼ ðIðm;nÞ ¼ I1; Iðm� d;nÞ ¼ I2Þ ¼
# of pairs at distance d with values ðI1; I2Þ

total # of possible pairs 
: ð22Þ
From the definition of the co-occurrence matrix, a number of second-order statistics parameters can be defined:

� Angular second moment 
ASM ¼
XNg�1

i¼0

XNg�1

j¼0

ðPði; jÞÞ2: ð23Þ
� Contrast
CON ¼
XNg�1

n¼0

n2
XNg�1

i¼0;j¼0;ji�jj¼n

Pði; jÞ: ð24Þ
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� Inverse difference moment 
IDF ¼ �
XNg�1

i¼0

XNg�1

j¼0

Pði; jÞ
1þ ði� jÞ2

: ð25Þ
� Entropy
Hxy ¼ �
XNg�1

i¼0

XNg�1

j¼0

Pði; jÞlog2Pði; jÞ: ð26Þ
� Correlation
COR ¼ 1
rxry

XNg�1

i;j¼0

ijPði; jÞ � lxly

" #
: ð27Þ
The proposed feature selection method aims at automaticall y finding the most discriminant statistics of the SPECT images 
and the ROIs without having knowledge of the disease but analyzing the set of available images in a database.

5.3. Feature selection 

In order to evaluate different sets of image parameters for the early detection of the AD, a study was carried out to assess 
the values the statistics take for the different classes, say x1, x2, and if they differ significantly. The main objective of the 
study is to combine different paramete rs and end up with the ‘‘best’’ input vector for classification. The analysis considered 
first- and second-order statistics of sagittal, coronal and transversal slices of the brain while the Fisher linear discriminant 
ratio (FDR) defined by:
FDR ¼ ðl1 � l2Þ
2

r2
1 þ r2

2

ð28Þ
was used as class separability measure, where l1 and l2 denote the with-in class mean value of the input feature, respec- 
tively, and r2

1 and r2
2 their variances.

Fig. 4 shows an example of the procedure for selecting the most discriminant slices based on the computati on of the FDR 
when the standard deviation and correlation are considered as inputs for classification. The first row of each figure is a 2-D 
image showing the value of the correspondi ng statistic for each patient and each of the x (sagittal), y (coronal) and z (trans-
versal) slices. Note that, normal and ATD subjects are grouped and separated by an horizontal black line to easily show the 
differences in the value of the statistic among the two classes. The value of the FDR is also plotted below each 2-D feature 
image. The most discrimin ant slices are those which yields the maximum value of the FDR and identify the ROIs (slices) for 
detecting the AD as discussed in Section 3. This study was extended to all the first and second-order statistics that were de- 
fined previously in Section 5. It can be concluded that not all the slices in the volume element provide the same discriminant 
value. Among all the statistics evaluated, the standard deviation of the y (coronal) slices and correlation of the x (sagittal)
slices yielded the maximum value of the FDR and were found to be the most discriminant input vectors of the AD.

6. Evaluation results 

This section shows the experimental results carried out in order to evaluate the performance of the classification system 
and its utility as a CAD system for the early AD. First, a baseline system based on the voxel-as-featu res (VAF) [45,46,44] par-
adigm is impleme nted for reference. Second, the experimental results that were conducted to evaluate the proposed system 
are shown.

The SPECT images used in this work were initially labeled by experienced clinicians of the ‘‘Virgen de las Nieves’’ hospital 
(Granada, Spain) using 4 different labels: normal (NOR) for patients without any symptoms of ATD and possible ATD (ATD-
1), probable ATD (ATD-2) and certain ATD (ATD-3) to distinguish between different levels of the presence of typical charac- 
teristics for ATD. In total, the database consists of 52 patients: 23 NOR, 13 ATD-1, 12 ATD-2 and 4 ATD-3. The latter three 
labels were combined and only two classes (NOR and ATD) were finally used.

6.1. Baseline voxel-as-fea tures classification

A SVM classifier based on the VAF paradigm [45,46,44] was develope d for reference. The dimension of the 95 � 69 � 79-
voxel volume representing the rCBF of each subject was reduced by averaging n� n� n voxels. A SVM-based classifier using 
the voxel intensities as features was trained and tested by means of a leave- M-out (M = 5) cross validation strategy. The clas- 
sifier is trained with all but M images of the database. The remaining images, which are not used to define the classifier, are 
then categorized. In this way, all SPECT images are classified and the success rate is computed from a number of correctly 



0 10 20 30 40 50 60 70
40

45

50

55

60

65

70

75

80

85

Voxel size

Ac
cu

ra
cy

Linear
Quadratic
RBF
Polynomial

Fig. 5. Performance of the VAF-based SVM classifier evaluated using a leave-5-out cross validation strategy.
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Fig. 4. Standard deviation, correlation and FDR values of sagittal, coronal and transversal sections for normal subjects and ATD patients.
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classified subjects. Fig. 5 shows the accuracy of the VAF-based SVM classifier as a function of the voxel size n for different 
kernels including linear, quadratic, RBF and polynomial kernels. Among all the kernels, the linear kernel is the one that yields 
the best accuracy for a VAF system in discriminating normal subjects from patients affected by ATD given the high dimension 
of the input space [11]. The performanc e of the linear kernel is reduced as the voxel size increases motivated by two reasons:
(i) dimensio nality of the input space is progressive ly reduced and, (ii) information is lost after averaging large volume ele- 
ments. As a conclusio n, the accuracy of the SVM-based VAF system proposed in [16] (below 85% for a linear kernel) needs to
be improved for developing a more accurate CAD system for the early detection of the ATD.

The results above are in agreement with the SVM statistical learning theory and the ability of linear classifiers to effec- 
tively group l points of a high dimension space in two classes [11]. It can be clearly shown that linear hyperplanes can sep- 
arate effectively two classes in high dimension feature spaces (in fact, this is the key of SVMs). Let us consider l points in the 
N-dimension al feature space. It is assumed that the points are well distribute d so that there is no subset of N + 1 points that lie 
on an (N � 1)-dimensional hyperpla ne. The number Oðl;NÞ of groupings that can be formed by (N � 1)-dimensional hyper- 
planes to separate the l points in two classes is given by [11]:
Oðl;NÞ ¼ 2
XN

i¼0

l� 1
i

� �
ð29Þ
where
l� 1
i

� �
¼ ðl� 1Þ!
ðl� 1� iÞ!i! ð30Þ
Thus, the probability of grouping l points in the N-dimension al feature space in two linearly separable classes is given by:
PN
l ¼

Oðl;NÞ
2l

¼
1

2l�1

PN
i¼0

l� 1
i

� �
; l > N þ 1;

1; l 6 N þ 1:

8><
>: ð31Þ
Fig. 6 shows the probability PN
l as a function of N=l. Note that, for low dimension spaces ðN=l < 0:3Þ, PN

l it is almost zero, that 
is, linear SVM performs poorly in discrimin ating the two classes. However, when the dimension of the space increases, the 
probability of any two groups of the l points being linearly separable approach es unity. As a conclusion, high dimensional 
spaces defined for reduced voxel sizes are more effectively classified by linear kernels as shown in Fig. 5. Moreover, as
the voxel size increases, the dimension of the feature space decreases and the performance of linear kernels decrease s when 
compared to RBFs, quadratic and polynomial kernels as a result of the decrease of the probability PN

l . On the other hand, if we
are given l points to be classified, then mapping into a higher dimension space increases the probability of locating then in
linearly separable SVM two class groupings.

6.2. SVM training and testing results 

Aiming at reducing the dimensionality of the input space and further improving the performanc e of the CAD system by
means of more effective kernels, a SVM-based classifier was developed using the most discriminant set of input statistics 
obtained in Section 5.3, i.e. standard deviation of the coronal slices and the correlation of the sagittal slices. Dimensional ity 
of the input space is reduced by considering only the image statistics of the slices with normalized FDR exceeding a given 
threshold. Fig. 7 shows the accuracy of the CAD system and the dimension of the input space as a function of the threshold 
value when a RBF kernel is used. Note that, the accuracy of the system increases up to 90% as the threshold increases. The 
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Fig. 6. Probability of grouping l points in the N-dimensional feature space in two linearly separable classes.
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best results are obtained for a two-dimens ional feature vector consisting of the standard deviation and correlation of the 
coronal and sagittal slices with the highest value of the FDR as shown in Fig. 4. These results are in agreement with the pre- 
vious discussion about the dimensional ity of the space. In high dimensional feature spaces, RBF kernels perform poorly.
Meanwhile, reducing the dimensional ity of the input space by selecting the most discriminant image statistics and ROIs 
(slices) in the volume improves the accuracy of the system. The benefits are obtained as a result of mapping the low dimen- 
sional input space into a high dimension feature space where the data becomes linearly separable.

Fig. 8 shows the training patterns, their associate d class labels as well as the support vectors defining the SVM classifi-
cation rule when linear, quadratic, RBF and polynomial kernels are used for mapping into the feature space. It is clearly 
shown that reducing the dimensionality of the input space to a two-coef ficient input space yields high discriminati on accu- 
racy. Among all the experiments carried out, RBF kernel functions yielded the best results with a 90.38% classification
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Fig. 7. Accuracy and dimension of the input space for a RBF SVM system trained using the standard deviation and correlation of the slices with the 
normalized FDR exceeding a given threshold.
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accuracy (sensitivity of 93.10% and specificity of 86.96%). Meanwhi le, linear kernels, that yield the best results in a high 
dimension input space (VAF approach) [16] as shown is Section 6.1, yielded just a 84.62% classification accuracy. Thus,
the proposed system yielded a significant improvement over the VAF approach where the high dimension of the input space 
makes unnecessar y a nonlinear mapping into the feature space.
7. Conclusion s

This paper showed a fully automatic computer-a ided diagnosis system for improving the early detection of the AD. The 
proposed approach is based on image parameter selection and support vector machine (SVM) classification. The system was 
developed by exploring the most discriminant set of input data including first and second-o rder statistics of sagittal, coronal 
and transversal sections of the human brain. It was found that the most discrimin ant image parameters of the AD are the 
coronal standard deviation and the sagittal correlation. Moreover, reducing the dimensionality of the input space by means 
of a FDR-based feature selection process leaded to a two-coefficient input vector that yielded high discriminati on accuracy 
specially when a RBF kernel is used. The proposed CAD system taking advantage of RBF kernels yielded a 90.38% accuracy 
(sensitivity of 93.10% and specificity of 86.96%) in the early diagnosis of the ATD, thus outperforming recently develope d
VAF-based approaches where the high dimension of the input space makes linear SVM the most effective when compared 
to quadratic, RBF and polynomial kernels.
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