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Abstract  13 

A new method for differentiation of olive oil (independently of the quality category) from other 14 

vegetable oils (canola, safflower, corn, peanut, seeds, grapeseed, palm, linseed, sesame 15 

and soybean) has been developed. The analytical procedure for chromatographic 16 

fingerprinting of the methyl-transesterified fraction of each vegetable oil, using normal-phase 17 

liquid chromatography, is described and the chemometric strategies applied and discussed. 18 

Some chemometric methods, such as k-nearest neighbours (kNN), partial least squared-19 

discriminant analysis (PLS-DA), support vector machine classification analysis (SVM-C), and 20 

soft independent modelling of class analogies (SIMCA), were applied to build classification 21 

models. Performance of the classification was evaluated and ranked using several 22 

classification quality metrics. The discriminant analysis, based on the use of one input-class, 23 

(plus a dummy class) was applied for the first time in this study.  24 
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1. INTRODUCTION 34 

Edible vegetable oils are important worldwide products, which are used as raw materials 35 

and/or ingredients in several foodstuffs. Although most vegetable oils are extracted from 36 

oilseeds, some are obtained directly from the fruit as a juice. This is the case for virgin olive 37 

oil, which is collected directly from olive fruits by mechanical procedures (grinding followed 38 

by centrifugation and/or decantation). Furthermore, in contrast to other vegetable oils, virgin 39 

olive oil is not refined for human consumption. Extra virgin olive oil is more expensive than 40 

other vegetable oils, owing to the specific process required for extraction [Jabeur, Zribi, 41 

Makni, Rebai, Abdelheidi, & Bouaziz, 2014]. For this reason, olive oils are susceptible to 42 

adulteration, with cheaper vegetable oils, to achieve an illicit profit. Unauthorized blends or 43 

adulteration of olive oil of any quality category with oils obtained from seeds is a particular 44 

problem in Spain, as well as other Mediterranean countries, which have specific legislation 45 

prohibiting the marketing of such blends. Therefore, it is desirable to develop rapid and 46 

simple methods to monitor the authenticity of olive oil.  47 

The analytical methodologies applied to authenticate the olive oil are, generally, based on 48 

the quantification of certain chemical markers, which constitute a characteristic fraction of the 49 

oils [Arvanitoyannis & Vlachos, 2007; Aparicio, Morales, Aparicio-Ruiz, Tena & García-50 

González, 2013]. Thus, families of compound, such as fatty acids, triacylglycerols (or 51 

triglycerides) or sterols, have been proposed. Other chemical fractions, such as volatile 52 

compounds or phenols, have also been used but they are not stable enough to give reliable 53 

results.  54 

Triglycerides represent 95-99% of the chemical composition of vegetable oils. The 55 

compositional characterization of these compounds, determined by gas chromatography 56 

(GC) or high-performance liquid chromatography (HPLC), has been proposed for the 57 

detection of other oils due to their specific compositional profiles [Aparicio & Aparicio-Ruiz, 58 

2000; Ruiz-Samblás, Marini, Cuadros-Rodríguez, & González-Casado, 2012; Lerma-Garcia, 59 

Simó-Alfonso, Méndez, Lliberia & Herrero-Martínez, 2011]. The content of some fatty acids, 60 

such as linolenic and oleic acids, has also been used to detect blending in olive oils [Aparicio 61 

& Aparicio-Ruiz, 2000].  62 

Fatty acids are quantified using GC, following derivatization to increase the volatility of the 63 

compounds, as necessary [Sanchéz de Medina, El Riachy, Priego-Capote & Luque de 64 

Castro, 2014; Fernandes, Fernandes, Simas, Barrera-Arellano, Eberlin, & Alberici, 2013]. 65 

Moreover, sterols are applied as markers of authenticity in vegetable oils. In order to 66 

characterize the compositional profile of these compounds, firstly, it is necessary to carry out 67 

saponification of the oil followed by isolation of free sterols by means preparative 68 

chromatography or solid phase extraction, and silanization. Then, GC analysis is performed 69 
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[Gázquez-Evangelista, Pérez-Castaño, Sánchez-Viñas & Bagur-González, 2013]. 70 

Consequently, this methodology is difficult, tedious and time-consuming.  71 

In 1993, Bierdermann et al. [Biedermann, Grob & Mariani, 1993] developed a new strategy 72 

that replaced the conventional saponification/ isolation process with a methyl-73 

transesterification reaction. This approach, which inexplicably has been underused by the 74 

analytical community, requires less vegetable oil and facilitates extraction since soaps are 75 

not produced and the process is faster. The breakdown of molecules during 76 

transesterification leads to the formation of methyl esters from fatty acids and the liberation of 77 

sterols. Two fractions are obtained during this process: (1) the water soluble fraction, which 78 

contains the polar compounds, and (2) the organic fraction (transesterified fraction) in which 79 

fatty acid methyl esters, sterols, alcohol, monoglycerides, diglycerides and other molecules 80 

can be found. In the latter fraction, Bierdermann et al. [1993] identified methyl sterols, 81 

dimethyl sterols and linear alcohols. The methyl-transesterified fraction can be analysed by 82 

liquid chromatography to obtain a characteristic fingerprint of each vegetable oil, which might 83 

also be used to detect potential adulteration. The fingerprinting methodology is based on 84 

treating the entire or a part of the chromatogram as a whole, without identifying or quantifying 85 

each compound [Ellis et al., 2012; Cuadros-Rodríguez, Ruiz-Samblás, Valverde-Som, Pérez-86 

Castaño, & González-Casado, 2016]. Effective implementation of fingerprinting requires the 87 

use of chemometric tools. Chromatograms are exported as data vectors and treated with 88 

pattern recognition methods to develop multivariate classification or regression models, 89 

which are suitable to differentiate among vegetable oils.  90 

The chemometric methods fall in to two groups: supervised and non-supervised [Naes, 91 

Isaksson, Fearn & Davies, 2002; Marini, 2010]. In the first group, the category or class 92 

membership of each data vector is known and used to build the multivariate model. In 93 

contrast, the model from non-supervised methods does not consider this information 94 

[Correira & Ferreira, 2007]. Supervised classification methods are used to categorize objects 95 

(samples) in two or more classes according to a set of characteristic features of each class. 96 

Such features are extracted previously from information supplied for standard objects and 97 

selected during the model-training step. In order to perform the classification process, two 98 

approaches could be applied: discriminant analysis methods and class-modelling methods 99 

[Bevilacqua, Nescatelli, Bucci, Magrì, Magrì & Marini, 2014]. A discriminant method works by 100 

finding the borders between groups of objects from different classes, while a class-modelling 101 

method defines a particular enclosed space for all the objects from the same class. 102 

Sometimes class-modelling methods are described as 'one‐class classifier' (e.g. SIMCA) 103 

where each class is modelled independently [Brereton, 2011] and as many model as classes 104 

are built. Classification is performed considering all the models simultaneously. In our 105 
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opinion, however, this term should not be used as synonym for class-modelling since the two 106 

might be confused.  107 

This study proposes a multivariate method to differentiate olive oil from other edible 108 

vegetable oils. For this, the methyl-transesterified fraction from each oil class (olive and non-109 

olive) was analysed using normal-phase conventional high-performance liquid 110 

chromatography. The chromatograms (chromatographic fingerprints), acquired by means of 111 

a corona charged aerosol detector (CAD), were used as a source of analytical information to 112 

set up the classification models. Some common and well-established classification methods 113 

were applied, such as k-nearest neighbours (kNN), partial least squares discriminant 114 

analysis (PLS-DA), support vector machine classification (SVM-C) and soft independent 115 

modelling of class analogies (SIMCA). Two classification strategies were tried for each 116 

classification method according to the number of class used for model training: two input-117 

class and one input-class classifications. In addition, the use of a 'dummy' class was 118 

proposed for applying discrimination methods with a one input-class strategy. The 119 

classification results from each method and strategy were compared and ranked on the basis 120 

of several classification performance metrics [Cuadros-Rodríguez, Pérez-Castaño & Ruiz-121 

Samblás, 2016].  122 

 123 

2.  MATERIALS AND METHODS  124 

 125 

2.1. Chemicals  126 

All solvents used were HPLC grade. Isopropanol, n-hexane, methanol and tert-butyl methyl 127 

ether (TBME) were provided by the VWR International Eurolab, S.L. (Barcelona, Spain). 128 

Sodium methoxide (MeONa), citric acid monohydrate, and anhydride sodium sulphate were 129 

purchased from Merck (Darmstadt, Germany). The nitrogen (99.9999 %) used was provided 130 

by Air Liquid (Madrid, Spain). 131 

 132 

2.2. Chromatography 133 

The analyses were carried out with an Agilent 1100 series liquid chromatograph (Santa 134 

Clara, USA) equipped with a column thermostat (Eppendorf CH30), a quaternary pump and 135 

degasser auto sampler. Detection was performed with a corona charged aerosol detector 136 

(CAD) (ESA Bioscienses Inc., Chemlsford, MA, USA). Agilent ChemStation software (rev. 137 

B.02.01-SR1) for LC systems was used to collect and process data.  138 
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The HPLC analysis was carried out on a (250  4 mm i.d, 5 μm) column Lichrospher® 100 139 

CN. The column temperature was set at 30 ºC during the entire operation. The composition 140 

of the mobile phase was n-hexane/isopropanol (96:4, v/v) at a flow rate of 1.2 mL min–1. The 141 

injection volume was 20 µL and the run time was only 8 min.  142 

 143 

2.3. Samples  144 

A total of 127 vegetable oil samples of different types were analysed. The samples were 145 

obtained directly from local providers. More specifically, 66 samples were different categories 146 

of marketed olive oil (virgin extra, virgin, refined+virgin, and pomace+virgin), and the other 61 147 

were canola, safflower, corn, peanut, sunflower, (no-specified) seed, grapeseed, palm, 148 

linseed, sesame, and soybean oils. Table 1 summarizes the different vegetable oils and the 149 

number of samples analysed for each.  150 

 151 

TABLE 1 

 152 

2.4. Sample preparation  153 

Previous to the chromatographic analysis, a transesterification reaction was applied. A 154 

modification of the procedure described by Biedermann et al [Biedermann, Grob & Mariani, 155 

1993] was used. For this, 0.1 g of oil was weighed into a centrifuge tube. 1 mL of extracting 156 

agent (MeONa at 10 % in methanol in TBME, 4:6 (v/v)) was added and mixed with the oil. 157 

The mixture was stirred for 20 s and then allowed to stand for 20 min. This step was 158 

repeated twice. Then, 1 mL of water and 8 mL of hexane was added, and the mixture 159 

centrifuged for 3 min at 1,500 g. The aqueous phase was removed with a Pasteur pipette 160 

and 1 mL of 1 % citric acid in water added to the residual. Again, the aqueous phase was 161 

eliminated before 2 g of anhydrous sodium sulphate added and the mixture allowed to stand 162 

for 20 min. The methyl-transesterified organic fraction was passed through a 163 

polytetrafluoroethylene (PTFE) membrane syringe filter (0.22 µm) and the solution stored at 164 

–20ºC until analysis. For the chromatographic analysis, 200 µL of transesterified solution was 165 

added to a 2 mL HPLC vial before 450 µL of n-hexane was added and 20 µL injected. 166 

 167 

2.5. Chemometrics  168 

The raw data files from each chromatogram were obtained in a CSV file and exported to 169 

MATLAB (version R2013a). In this way, a data vector composed of 839 variables defined 170 
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each chromatogram. The data pre-processing was done with a home-programmed MATLAB 171 

function, "Medina" (version 10) [Pérez Castaño et al., 2015]. This function implemented 172 

several algorithms from the MATLAB Bioinformatics ToolboxTM and 'icoshift' (interval 173 

correlation optimized shifting) algorithm [Tomasi, Savorani & Engelsen, 2011] to align the 174 

peaks of the chromatograms. The steps for pre-processing the data were: (1) raw 175 

chromatograms data grouping and overlay; (2) selection of interval of interest in 176 

chromatograms; (3) filtered of the raw chromatograms data to eliminate noise of signal 177 

analytical; (4) correction of the baseline using the 'msbackadj' function (included in the 178 

Bioinformatics ToolboxTM); (5) alignment of the peaks with the function 'icoshift'; and finally 179 

(6) mean centring of the data set.  180 

The original dataset was divided in two groups: (1) the training set, which was made up of 84 181 

oil samples (44 olive oil, 40 non-olive oil), and (2) the validation (or test) set composed of the 182 

remaining oil samples (25 olive oil, 18 non-olive oil). Selection was carried out ensuring that 183 

a sample from each class of oil was allocated to one vegetable oil group or the other. Within 184 

each group, the samples were selected randomly. 185 

Classification of the vegetable oils was achieved using multivariate chemometric pattern 186 

recognition in the PLS_Toolbox (version 7.5.2, Eigenvector Research, Wenatchee, WA).  187 

 188 

Principal Component Analysis (PCA)  189 

The main aim of PCA is to reduce the number of variables to evaluate which components 190 

contain essential information. Each principal component (PC) is a lineal combination 191 

between original variables (chromatographic intensities) of each object, which are described 192 

as: X=TPT where X is the original data matrix, T is the score matrix and P is the transposed 193 

loading matrix [Bro & Smilde, 2014].  194 

 195 

k-Nearest Neighbours (kNN)  196 

kNN is a based-similarity classification method that uses distance measures between 197 

objects. The classification is carried out as follows: first, a multidimensional hyperspace is 198 

defined with the training set and, then, the prediction is performed. The assigned class of 199 

each new object will be one where the number of k-neighbours is largest [Correira & Ferreira, 200 

2007; Alsberg, Goodacre, Rowland & Kell, 1997] and k is an odd integer that could be 201 

selected previously. Each sample is classified based on the most represented classes of the 202 

k-nearest samples.  203 

 204 
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Partial Least Squares Regression-Discriminant Analysis (PLS-DA)  205 

PLS-DA is a latent variable-based method that builds a PLS regression model on latent 206 

variables (LV) to establish limits of the class and, then, carries out a discriminant analysis 207 

(DA) to classify the samples [Bevilacqua, Nescatelli, Bucci, Magrì, Magrì & Marini, 2014; 208 

Ballabio & Consonni, 2013]. In order to develop the best PLS model, it is necessary to 209 

optimize the number of LVs to be used in advance. 210 

 211 

Support Vector Machine Classification (SVM-C)  212 

SVM is a based-machine learning method. As with PLS-DA, SVM-C works by carrying out a 213 

SVM regression model for building hyperplanes in a multidimensional space that separates 214 

the different classes of objects [Xu, Zomer, Brereton, 2006; Luts, Ojeda, Van de Plas, De 215 

Moor, Huffel & Suykends, 2010]. SVM can be optimized with 'nu' and 'C' parameters. The 216 

former optimizes a model with an adjustable parameter Nu [0  1], which indicates the upper 217 

boundary for the number of misclassifications allowed, and the latter optimizes a model with 218 

an adjustable cost function C [0  ∞], which indicates how strongly misclassifications should 219 

be penalized [SVM Function Settings, Eigenvector Documentation wiki. URL 220 

http://wiki.eigenvector.com/index.php?title=SVM_Function_Settings. Accessed 29.06.15].  221 

 222 

Soft Independent Modelling of Class Analogies (SIMCA)  223 

This chemometric technique performs as many principal component (PC) models as input-224 

classes in study and, then, the classification is carried out from the distance of the object to 225 

the centre of each principal component score space [Bevilacqua, Nescatelli, Bucci, Magrì, 226 

Magrì & Marini, 2014]. The assignment of each unknown sample to a particular class is 227 

based on the nearest distance to the corresponding regions established by the PC model.  228 

 229 

Two input-class (2iC) and one input-class (1iC) classification  230 

Usually a two-class classification method (or more properly, two output-class classification) 231 

requires using two input-classes, the target class and the non-target class (in this paper, 232 

olive and non-olive classes). The term 'output' is related to the classes to which objects or 233 

samples will be assigned as result of the classification while the term 'input' refers to the 234 

class that is used to train the classification model [Cuadros-Rodríguez, Pérez-Castaño, & 235 

Ruiz-Samblás, 2016]. It is also possible to perform the same classification method by training 236 

the model with a single input-class, i.e. the target class.  237 

http://wiki.eigenvector.com/index.php?title=SVM_Function_Settings
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Working with one input-class classification has significant advantages. For example, in food 238 

authentication, the model can be built with data from only genuine foods (target class) and it 239 

is not necessary to have other foods (non-target class) to train the model. Consequently, the 240 

necessary experimental work is halved. When this model is applied on unknown foods, only 241 

those recognized by the model will be declared as "true" whereas the remaining food will be 242 

refused and they are candidate to be considered as "false". The greater the training set of 243 

genuine representative samples, the better the quality classification performance. Obviously, 244 

this strategy can be applied to differentiate olive oils from other edible vegetable oils.  245 

This is a very easy task when a class-modelling method is applied because each class is 246 

modelled independently. This approach has been used already with SIMCA [López, Trullos, 247 

Callao & Ruisanchez, 2014]. However, the discriminant methods, such as PLS-DA or SVM-248 

C, usually require two input-classes to define the discrimination model. Although some 249 

proposals have been reported as one-class PLS (OCPLS) [Xu, Yan, Cai & Yu, 2013], in fact, 250 

this is a class-modelling method. To resolve this drawback, a fictitious class or 'dummy' class 251 

could be used as a substitute for the second class (the non-target class). The dummy class 252 

should be defined from inactive objects that do not have analytical information of interest for 253 

the target class, e.g. analytical blank.  254 

In this study, both 2iC and 1iC strategies were applied to devise a classification model for 255 

differentiating olive oil from non-olive oil. When the 1iC was applied, a dummy class was 256 

from the dataset provided using 30 chromatograms for the solvent blank.  257 

 258 

3.  RESULTS AND DISCUSSION  259 

A chromatogram was recorded for each vegetable oil sample. Figure 1 shows the 260 

superposed chromatograms for all vegetable oil samples. Two regions could be easily 261 

differentiated: (1) region A shows a major peak, which was essentially composed of methyl 262 

esters of fatty chains derived from triglycerides, phospholipids, waxes, esterified sterols and 263 

free fatty acids, and (2) region B that was composed of several minor peaks and contained 264 

information about the families of free sterols and terpenic alcohols.  265 

 266 

FIGURE 1 

 267 

Exploratory Analysis  268 

A principal component analysis (PCA) was carried out considering the dataset composed of 269 

the whole chromatogram from each vegetable oil sample. Four PCs were enough to explain 270 



9 / 23 

87.16% of the variance. Figure 2a shows the biplot for scores on the PC2-PC1 plane. PC1 271 

and PC2 explained 56.2% and 17.3% of the variance, respectively. Three groups of 272 

vegetable oils could be distinguished easily, which corresponded with olive oil (centre left), 273 

palm oil (top left) and other vegetable oils (right).  274 

Two additional PCA were carried out, one for each of the regions of the chromatograms to 275 

check if both regions grouped the oil samples in the same way. Figure 2b and 2c show the 276 

biplot for scores on the PC2-PC1 plane, corresponding to the data subset from regions A and 277 

B, respectively.  278 

 279 

FIGURE 2  

 280 

The three scores biplots allowed differentiation in similar ways to the three sample groups 281 

and, in principle, there was no conclusive reason –from a chemometric point of view– to 282 

select one dataset or the others. However, looking the chromatographic retention time, 283 

region A was preferred to minimize the analysis time.  284 

 285 

Two input-class (2iC) classification  286 

In order to differentiate olive oils from other vegetable oils, a two input-class (2iC) 287 

classification strategy was applied where the target class was 'olive oil' and the alternative 288 

class was, generally, denoted as 'non-olive oil'. Four well-established classification methods 289 

were tried: kNN, PLS-DA, SVM-C and SIMCA.  290 

To differentiate the two vegetable oils classes, k=3 was enough to decide the neighbour 291 

distance in the kNN model. The olive class was defined by a class predicted probability value 292 

equal to 1, while the non-olive class was defined by a probability of 0. Classification of the 293 

samples contained in the validation set was carried out directly by the software. All of olive oil 294 

samples were well classified (probability=1) and the non-olive oil samples were also 295 

classified correctly (probability=0), with exception of palm oil samples, which had an 296 

assigned probability of 0.5; in this case, we also classified these samples as non-olive oil.  297 

The PLS-DA model was built using four LVs, with 92.91% of the variance explained. Each 298 

class was characterized by a predicted value around 1 for olive oil and 0 for non-olive oil. 299 

The classification threshold established by the software from the corresponding probability 300 

curves was a predicted value of 0.6 for the olive oil class.  301 
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The SVM-C model was optimized with 'C-svc' and 'nu-svc' parameters, and the results 302 

obtained in both cases were similar. As in the kNN method, the olive class was assigned to 303 

samples with a predicted probability value equal to 1 and the non-olive class was defined by 304 

samples with a probability of 0. The software also carried out the class assignment for the 305 

validation samples. Both olive and non-olive oil samples were classified correctly.  306 

Figure 3 (a) and (b) show the classification plots obtained from both 2iC PLS-DA and 2iC 307 

SVM-C methods.  308 

 309 

FIGURE 3 (a) (b) 

 310 

The application of SIMCA implies building of two PC models. The number of PCs chosen for 311 

each model was four for 'olive oil' and five for 'non-olive oil'. The software carried out 312 

classification of the validation dataset based on the Q-residual values for each olive oil 313 

sample. Samples with a normalized  Q-residual (95% confidence) value less than 2  were 314 

classified as olive oil.  315 

Table 2 shows the different quality performance features for the 2iC classification method, 316 

calculated according to the olive oil samples classification. These show that, in this 317 

classification scenario, 2iC kNN and SVM-C were faultless and, in contrast, 2iC SIMCA 318 

performed poorly.  319 

TABLE 2 

 320 

One input-class (1iC) classification  321 

Since the aim of this study was differentiation of olive oil from other vegetable oils, the 322 

classification model could be trained using objects from the olive oil class. In this way, the 323 

objects recognized by the model should be assigned as olive oil whereas the remainder, 324 

regardless of their botanical origin, should be classified as non-olive oils. The same 325 

classification methods, kNN, PLS-DA, SVM-C and SIMCA, were applied. For each, a 326 

confidence interval-based classification criterion was established because the default 327 

classification threshold defined by the software was not applicable.   328 

The kNN model conformed with k=3, but did not generate good results and all the non-olive 329 

oil samples were misclassified because they were considered to be "nearest neighbours" to 330 

the target class (olive oil). Thus, the 1iC strategy was not applicable for the kNN method.  331 
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Two strategies were applied for 1iC PLS. In a first step, a PLS-DA classification with dummy 332 

class was performed using the PLS_Toolbox. Next, a one-class PLS without dummy class 333 

(OCPLS) was performed using software provided by Xu [Xu, Yan, Cai, & Yu, 2013].  334 

A conventional PLS-DA was built with only two LVs explaining 99.74% of the variance. A 335 

confidence interval was established centred on 1, which was the value assigned for the olive 336 

oil class. The width of the interval was calculated as plus/minus 2.33-times the standard 337 

deviation (s) from the predicted values for the olive oil samples in the training set. The 338 

expression 2.33s is an "ad-hoc" application, recommended by the EC for estimating the 339 

decision limit (DL), formally termed as CCα, concerning the performance of analytical 340 

methods in the case of substances for which no permitted limit has been established [EU 341 

Commission Decision, 2002]. This decision limit defines the limit at and above which it can 342 

be concluded with an error probability of α that a sample is non-compliant. Strictly speaking, 343 

the correct expression would be: DL = 1.645 2 s, where 1.645 is the critical value for the 344 

standardized normal distribution (α = 1%) and s the whiting-batch standard distribution of the 345 

difference between the predicted values of both the target and the non-target samples, which 346 

are considered equal, and consequently: s = arg)tnon(s(targ)s 22 −+  = 2 s(targ). The 347 

coefficient 2.33 is the result of multiplying 1.645  2  (or 1.414). The confidence band is 348 

calculated from an estimated standard deviation of 0.026.  349 

Figures 4(a) and 4(b) show the classification plots obtained from the 1iC PLS-DA method.  350 

 351 

FIGURE 4 (a) (b) (c) (d) 

 352 

Most olive oil samples were included within the confidence interval while the no-olive oils 353 

were not. However, samples in the non-olive oil class were separate into two subclasses on 354 

both sides of the interval. The seed oils were located in the upper region whereas the palm 355 

oils were in the lower region. This surprising outcome implies the classification scenario is 356 

suitable for implementing a three output-class classification (olive oil, palm oil, and 357 

generically seed oil) from a one input-class strategy, making it possible to distinguish palm oil 358 

from a classification model trained only with olive oils. Currently, the authors are working to 359 

develop and apply this approach.  360 

OCPLS was built with seven LVs. For classification purpose, the regions pre-established by 361 

the software were used. The results are showed in Table 3. 362 

SVM-C classification was carried out by optimization of 'C-svc' and 'nu-svc' parameters, and 363 

the results obtained in both cases were similar. All the oil samples were assigned to a 364 
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predicted probability close to 1 and always distant from 0, which was assigned to the dummy 365 

class. Specifically, the probability value was ca. 0.98 for the olive oil class and less but 366 

always greater than 0.92 for the non-olive class. The confidence interval was determined by 367 

means of a probability interval centred on the average olive oil class probability calculated 368 

from the training set. The width of the interval was also calculated as plus/minus 2.33 times 369 

the standard deviation from the predicted class probability. The estimated value of the 370 

probability standard deviation was 0.0015. Figures 4 (c) and (d) show the classification plots 371 

obtained from the 1iC SVM-C method.  372 

Finally, the SIMCA method was also applied. Since SIMCA is a class-modelling method, two 373 

options were applied: i) a double PCA model using both the olive oil and dummy classes; 374 

and ii) a single model from the olive oil class. In both cases, five PCs were used to build the 375 

olive oil model. In both cases, a sample oil was classified as olive oil when the normalized Q-376 

residual (95% confidence) value was less than 2 .  377 

Table 3 shows the quality performance features of the different 1iC classification methods. In 378 

contrast with the 2iC classification method, the 1iC PLS-DA provided the best classification 379 

performance and 1iC SIMCA (without dummy class) was, again, the worst.  380 

 381 

TABLE 3  

 382 

4. CONCLUSIONS  383 

In this study, several classification methods were applied and the application strategy has 384 

been discussed. Four well-established classification methods were used, namely kNN, 385 

PLS-DA, SVM-C and SIMCA. Each was applied using two classification strategies 386 

designated as two input-class (2iC) and one input-class (1iC) classifications. This is the first 387 

time a dummy class has been used to perform discriminant analysis methods with a single 388 

input-class. This new approach does not require having and analysing samples from the non-389 

target class (non-olive vegetable oil) in order to train the classification model. In order to 390 

assess and rank the different classification methods and strategies, several quality 391 

classification metrics were calculated. kNN and SVM-C, on the one hand, and PLS-DA, on 392 

the other, proved to be the best when 2iC or 1iC classification strategies were applied, 393 

respectively. Furthermore, the proposed analytical method consumed less time in sample 394 

treatment (transesterification reaction, 60 min) and chromatographic elution (8 min) than 395 

previous methods (saponification, 120 min) and chromatographic analysis (40 min).  396 

  397 
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Table 1. Class and types of vegetable oils analysed.   
 

Class Category/type Nº samples 

Olive oil  

(66 samples) 

Virgin extra  50 

Virgin  4 

"Refined" a  6 

"Pomace" b  6 

Non-olive oil  

(61 samples) 

Canola   4 

Safflower   4 

Corn  5 

Peanut  5 

Sunflower c 13 

Seeds  6 

Grapeseed  4 

Palm  7 

Linseed  3 

Sesame  3 

Soybean  7 

a A marketed blend of refined and virgin olive oil (5-10 %).  

b A marketed blend of pomace and virgin olive oil (5-10 %).  

c  Two samples of high-oleic sunflower oils are included. 
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Table 2. Values of the quality performance features of the different 2iC classification 
methods. 
 
 

Performance features kNN PLS-DA SVM-C SIMCA 

Sensibility (or Recall)  1.00 1.00 1.00 0.48 

Specificity  1.00 0.94 1.00 1.00 

Positive predictive value (Precision) 1.00 0.96 1.00 1.00 

Negative predictive value  1.00 1.00 1.00 0.58 

Youden index  1.00 0.94 1.00 0.48 

Positive likelihood rate  – 18.00 – – 

Negative likelihood rate  0.00 0.00 0.00 0.52 

F-measure  1.00 0.98 1.00 0.65 

Discriminant power  – – – – 

Efficiency (or Accuracy)  1.00 0.98 1.00 0.70 

AUC (Correctly classified rate)  1.00 0.97 1.00 0.74 

Matthews correlation coefficient  1.00 0.95 1.00 0.53 

Kappa coefficient  1.00 0.95 1.00 0.44 

The hyphen "–" is signifying that the performance feature cannot be determined 
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Table 3. Values of the quality performance features of the different 1iC classification 
methods. 
 
 

Performance features With a dummy class Without dummy class 

 kNN PLS-DA SVM-C SIMCA OCPLS SIMCA 

Sensibility (or Recall)  1.00 0.96 0.88 0.88 0.80 0.80 

Specificity  0.00 1.00 1.00 0.83 0.89 1.00 

Positive predictive value (Precision) 0.58 1.00 1.00 0.88 0.91 1.00 

Negative predictive value  – 0.95 0.86 0.83 0.76 0.78 

Youden index  0.00 0.96 0.88 0.71 0.69 0.80 

Positive likelihood rate  1.00 – – 5.28 7.20 – 

Negative likelihood rate  – 0.04 0.12 0.14 0.23 0.20 

F-measure  0.74 0.98 0.94 0.88 0.85 0.89 

Discriminant power – – – 0.86 0.83 – 

Efficiency (or Accuracy)  0.58 0.98 0.93 0.86 0.84 0.88 

AUC (Correctly classified rate)  0.50 0.98 0.94 0.86 0.84 0.90 

Matthews correlation coefficient  – 0.95 0.87 0.71 0.68 0.79 

Kappa coefficient  0.00 0.95 0.86 0.71 0.67 0.77 

The hyphen "–" is signifying that the performance feature cannot be determined 
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FIGURE CAPTIONS  

 

 

Figure 1. Superposed chromatograms of the 127 vegetable oil samples showing the two 

characteristic regions (see text for additional explanations). The chromatograms have been 

previously pre-processed with the exception of the mean centring step.  

 

Figure 2. PCA scores biplot obtained from the fingerprint data of the methyl-transesterified 

fraction of the 127 vegetable oil samples: (a) PC2-PC1 plane of the whole chromatogram; (b) 

PC2-PC1 plane from region A; (c) PC2-PC1 plane from region B.   

 

Figure 3. Classification plots on the 2iC classification strategy: (a) PLS-DA; (b) SVM-C.   

 

Figure 4. Classification plots on the 1iC classification strategy: (a) and (b) PLS-DA full plot 

and zoomed plot, respectively; (c) and (d) SVM-C full plot and zoomed plot, respectively. In 

addition, the confidence bands are superposed on (b) and (d) plots.  
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Figure 1  
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Figure 2  
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Figure 3  
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Figure 4  
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