Journal of Universal Computer Science, vol. 25, no. 7 (2019), 764-787
submitted: 31/8/17, accepted: 13/5/19, appeared: 28/7/19 © J.UCS

Micro-business Requirements Patterns in Practice:
Remote Communities in Developing Nations

RJ Macasaet
(Pentathlon Systems Resources Inc., Manila, Philippines
rjmacasaet@pentathlonsystems.com)

Manuel Noguera
(University of Granada, Spain
mnoguera@ugt.es)

Maria Luisa Rodriguez
(University of Granada, Spain
mlra@ugr.es)

José Luis Garrido
(University of Granada, Spain
jgarrido@ugr.es)

Sam Supakkul
(Sabre, Inc., Southlake, Texas, USA
ssupakkul@ieee.org)

Lawrence Chung
(University of Texas at Dallas, Richardson, Texas, USA
chung@utdallas.edu)

Abstract: Initializing software for a micro-business in a remote community in a developing
nation is challenging, especially when gathering requirements. This paper proposes the use of
Micro-business Requirements Patterns (ubRPs) in the initial phase of software implementation.
The pbRPs aim to guide the software developer when gathering requirements from a micro-
business and for estimating the effort needed to implement the software. First, we present the
UbRPs, which include a table, optional illustrations, and associated software components. Then,
we explain how pbRPs are applied in practice. Finally, we discuss how our proposal has
evolved through the years by presenting our action research and inspirations from related work.

Keywords: Micro-business, Requirements Pattern, Small-to-medium sized enterprise,
Nonfunctional requirement, Software Component, Action Research
Categories: D.2.1

1 Introduction

The domain of micro-businesses is filled with challenges. The mere characterization
of a micro-business has already been a challenge in itself, already with several
conflicting views [Merten et al., 11]. The varying characterizations of micro-

Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ... 765

businesses (and SMEs in general) range from being based on the number of
employees [European Commission, 08] [International Organization for
Standardization, 11], the age of the business [Nikula et al., 00], the length of software
projects [Aranda et al., 07] [Aranda, 10], the degree of collaboration on software
projects [Jantunen, 10], and the degree of adaptability in software projects [Kamsties
et al, 98]. We characterize micro-businesses together with their software
implementations. They are resource-constrained, as opposed to multinational
organizations with huge budgets [Macasaet, 17]. Software implementations in a
micro-business would not exceed 10 man days of effort (8 hours per man day) nor
more than 10 software components as we roughly estimated [Macasaet et al., 12].

We characterize a software component as an encapsulation of a certain set of data
and functions which vary in granularity as long as they could be updated, replaced, or
modified without affecting other software components in a system. On a similar note,
[Medvidovic and Taylor, 00] characterize components as defined units of
computation or data which could be as small as a single procedure or as large as an
entire application. Examples of such components would range from an off-the-shelf
customer management system, a website template, or a simple JavaScript line of code.

Initializing software implementations for micro-businesses could be very
challenging. Gathering requirements from micro-business owners and estimating the
effort required to implement the software could easily be overlooked. Micro-
businesses must take their software requirements seriously because sloppy
requirements eventually turn into problems [Kauppinen et al., 04], eventually
threatening the success of the implementation [Davis et al., 06]. Proper requirements
are essential, no matter the size of the business [Young, 04]. In addition, the style of
communication between software developers and micro-business owners poses
challenges as well. Micro-business owners are normally not exposed to technical
software languages nor do they have the extra time to learn technical software jargon
[Kamsties et al., 98] [Kauppinen et al., 02]. They would comfortably use their natural
language and illustrations to express their requirements [Macasaet et al., 11]. Hence,
communicating micro-business software requirements must be done as intuitively and
as comprehensible as possible [Kruchten, 03], with as little or no technical software
terms [Young, 04]. Requirements of this kind could be referred to as “lightweight but
effective” [Ambler, 02].

On the other hand, the developers working on micro-business software
implementations still need requirements which have technical relevance. The
technical details in requirements documents and the effort estimates are valuable to
the developer. It is a challenge to propose a requirements approach which can strike a
balance between comprehensibility and technical relevance in this domain.

2 Challenges in Remote Communities in Developing Nations

The Republic of the Philippines is a developing nation and has 820,795 registered
micro-businesses as of 2016 [Philippine MSME Statistics, 16]. These registered
micro-businesses have less than 10 headcount and approximately total asset values
less than 60,000 United States Dollars. The Philippines is a tropical archipelago made
up of 7,641 islands [Namria, 18]. Within Philippine territory is the Province of
Palawan, which is composed of approximately 1,700 islands.

766 Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ...

Pentathlon Systems Resources Incorporated (PSRI) [PSRI, 18] has been invited
by the city mayor of Puerto Princesa, the capital city of Palawan, on June 19, 2018 to
rise to the challenge of connecting the people of the entire province using hardware,
software, telecommunications providers, and the internet. By being connected, we
mean that every current and potential tax-paying person should have a device that can
connect them to the internet and with this device, communicate with others in the
province. Based on a 2015 census, there are 849,469 people in the province of
Palawan. Not all of the 1,700 islands in the province are inhabited but the goal is to
connect approximately 1 million people. The main stakeholders of this initiative are
the local government office of Palawan and both current and potential tax payers of
the province. The funding will come from both the public and private sector.

One of the several solutions proposed by PSRI is to distribute Android tablets
with prepaid Subscriber Identity Module (SIM) cards to the people of Palawan. PSRI
plans to distribute Chinese-manufactured Android tablets which could be acquired for
less than 40 United States Dollars per unit and having sufficient hardware to run apps
(Android Operating System 5.0 Lollipop, Quad-core 1.8 GHz processor, | GB RAM,
8 GB storage, and with a SIM card slot). The largest telecommunications providers in
the Philippines (GLOBE and SMART) are offering prepaid SIMs with 1 GB of
mobile data for less than 1 United States Dollar. The people in the province also have
the option to use their existing tablet, SIM card, and network connection if available.
Part of this solution is to customize the software on their tablet based on the kind of
livelihood of the user. There are several livelihoods in the province and the most
common are related to the plantation and harvesting of coconut, sugar, and rice.
Fishing is also popular. People who have specialized in these kinds of livelihoods are
normally not familiar with customized software and technology in general so a lot of
user onboarding from the developer is expected.

The implementation plan of PSRI for this solution is to send the developers to the
remote communities across the inhabited islands and start distributing the Android
tablets physically, one by one. One or two developers from PSRI will be responsible
for one or several of the 25 municipalities in the province. A total implementation
team of 30 developers has been estimated at this point in time. Each developer will
talk with the locals in their respective area(s) and depending on the livelihood of each
individual, the developer will install, configure, and customize the software on the
tablet based on the needs of their livelihood (e.g. requirements of their micro-
business). The assumption of this solution is that the entire province will become
more connected as the people find it more and more useful when they use (the
software on) their tablets. A critical step in this solution is to find a way for the
developers to properly specify the software requirements for the people of Palawan so
that when the software is implemented, their tablets become as useful as possible. In
the next section, we use a coconut planter micro-business as an example.

3 Micro-business Requirements Patterns (ubRPs)

Our proposal for properly gathering software requirements is to use Micro-business
Requirements Patterns, referred to as ubRPs in this paper. This section presents
UbRPs: its tables, illustrations, and associated software components. We show how
we create, store, and apply ubRPs as well. A pbRP is made up of (1) a table that

Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ... 767

guides the developer when asking software requirements-related questions to the
micro-business owner, (2) optional illustrations that help comprehension for both
developers and micro-business owners, and (3) associated software components that
could be used for implementation.

3.1 The pbRP Table

We show a simplified pbRP table on Table 1 for presentation purposes. It has the
name of the pubRP, its description, and keywords on the top-most part of the table.
From top to bottom, we have the questions that could be asked to the micro-business
owners, starting from questions that are more functional on the top and then questions
that are more non-functional at the bottom. From left to right, we have the steps that
are taken by the developer, starting from requirements gathering from the left and
ending with acceptance of the software implementation by the micro-business owner.

In step 1, the questions, response types, and possible choices are prepared
beforehand by developers. The ubRP in Table 1 is a result of observations of how ten
different coconut planters in the province of Palawan conduct their day-to-day
operations. The questions on the table are as down-to-earth as possible, meaning that
any layman or everyday business owner must be able to understand it. These
questions have no technical jargon since we assume that majority of micro-business
owners, especially in remote communities, have no technical background at all.

In step 2, the responses of the micro-business owners are recorded. The response
types in step 1 and the responses in step 2 correspond to the “modes” and
“instantiations” of the pbRP, respectively. The letters in parentheses per question also
have correspondences with encircled letters in the illustration in Figure 1. The modes,
instantiations, and illustrations are explained later on in this paper.

In step 3, the estimations for the effort needed to satisfy the functional
requirements are expressed in man days and are made by the estimators from the
software development company. An estimator could be anyone qualified to make an
estimate such as a software developer, development manager, or analyst. The effort is
also confirmed by the developer who will be assigned to complete the task during
actual development. Steps 1 to 3 are the steps which take place when initializing a
software project and these are the steps which we will focus on in this paper.

In step 4, the developer confirms when their work per requirement has been
delivered and the testers, who are ideally not the developers themselves, also test that
the work done by the developer has satisfied the requirements. In the case of remote
communities in developing nations, it may be necessary, although not optimal, for the
implementing developer to do the testing. Finally, the developer presents and
onboards the micro-business owner with the software and then the micro-business
owner either accepts or rejects if a requirement has been met or not in step 5.

The bottom section of the ubRP table pertains to non-functional requirements
(NFRs) [Chung et al., 2000]. The columns in this section are grouped in chronological
steps as well. Step 1 is made up of a list of NFRs that could be of importance to the
stakeholders of the software implementation, e.g. the micro-business owner, the
software developers, and customers of the micro-business. This list of NFRs is
prepared by the software developers beforehand.

768 Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ...

pbRP — Coconut Planter
Textual Description:
ub plants and harvests coconuts, buyers pay and pick up coconuts from planters
Keywords: Coconut, Planter, Buyer Pick-up
Functional Requirements in Q&A form for the ub Owner (Links to Figure 1)
Step 1: 2: 3: 4: 5:
) ® ® w | ©
done by Developers g _4;) _ﬂ;) g g g
E | pEE|F
S~ | 5 -
Modes % 2132 ¢ Blw |3
Question (Possible £z | 85 | E| 2|2 | &
Choices) S2 | €3 E 3| e 3
2 | a9 | 3|2 <
(a) When do you want your | Everyday
coconuts to be picked up by | / Certain | Tuesday, 1 VR v oA
the buyer’s truck? Days / Friday
On Call
Cash /
(b) How do I prefer to be Bank Cash 1 v v A
paid by the buyer? Transfer
/ Digital
More questions follow... (table is shortened for presentation purposes)
Non- Functional Requirements in Terms of Priority (Links to Figure 2)
How importantis _ to the pb Owner? Rank
(c) Timely pick-up of coconuts 1st 2 ERE \
Timely payment 2nd 2 ERE \
More priorities follow... (table is shortened for presentation purposes)

Table 1: A Micro-business Requirements Pattern: Coconut Planter

In step 2, the stakeholders of the software project rank the NFRs in terms of
priorities (where only the top NFR (priority) is diagrammed in Figure 2 for simplified
presentation purposes, as will be shown later). Approaches such as the Quantitative
WinWin [Ruhe et al., 03] may be used to aid stakeholders in establishing priorities.
Steps 3 to 5 in the NFR section follow the same logic as the functional requirements.
As aforementioned, in this paper, we will be focusing on steps 1 to 3 since these are
the steps which take place when initializing software implementations.

3.2 Optional Illustrations for pbRPs

When tight on resources such as time and budget, software implementations may be
initialized solely with the guidance of a pubRP table. However, we have included
optional illustrations for ubRPs in our proposal because extra comprehension of the

Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ... 769

implementation at hand could be helpful at times, both for the developer and micro-
business owner. This subsection explains the kinds of supporting illustrations for
UbRPs. For presentation purposes, all illustrations in this paper are simplified versions
of the actual ones in practice. The Coconut Planter ubRP table in Table 1 will be used
as reference for illustrations in this subsection.

ubRP illustrations always have a legend within the illustration so that it is
comprehensible to any layman without a technical background. Compared to our
previous proposal [Macasaet et al. 2013] [Macasaet et al., 2014], we assume that this
simpler illustration approach will be more comprehensible to the micro-business
owners in the remote communities in Palawan. pbRP illustrations can be created
manually by hand on paper (scanned or photographed later on for archiving) resulting
in sketches [Macasaet et al., 11] or with any illustration tool such as RE-Tools [RE-
Tools, 14] [Supakkul and Chung, 12] [Supakkul et al., 13].

First, we explain Figure 1, where the modes of the ubRP are illustrated. Modes
are the possible choices and response types as shown in Table 1. The modes are
possible manners or ways in which a micro-business owner conducts his or her day-
to-day operations. The encircled letters in Figure 1 correspond to the letters in
parentheses in Table 1. [Mendling et al., 10] recommend purposeful placement of
labels in order to make illustrations more relevant. Hence, we place a p symbol where
there are modes in the ubRP illustration.

Second, we explain Figure 2, where an instantiation of the pubRP is illustrated
based on the responses of the micro-business owner in the ubRP table. An instance is
the manner or way in which a micro-business owner actually conducts his or her day-
to-day operations. The chosen priorities of the micro-business owner in Table 1,
indicated with letters in parentheses, correspond to encircled letters in Figure 2. We
place an exclamation mark ! to illustrate the NFR and its refinements and an upside
down exclamation mark j to illustrate when a (refined) NFR could be directly related
to how a software component functions. We place a </> symbol to illustrate the
associated software components that could meet the requirements from the ubRP
table.

770 Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ...

start, end, or link to Legend: mode (choices)
HDRP Table/Figure activity sequence flow n
O —
ub plants
coconuts Coconut Planter pbRP
Q Cash
ub harvests ub stores O Bank Transfer
coconuts coconuts U Digital:
‘_Y_J
o
Buyer

Q Everyday picks up
O CertainDays: l,l, coconuts
4 Only when pb Calls @

There are more steps and modes for the Coconut Planter ubRP.
This illustration is simplified for presentation purposes.

Figure 1: An illustration showing the modes of the Coconut Planter ubRP

start, end, or link to Legend: mode (choices)

bRP Table/Figure sequence flow
O relates to

I NFR (priority) | Max Refined NFR <> Software Component

! Timely Pick Coconut Planter pbRP
 Tinely icup () Instantiation
Fig. 1
! . j Better Pick-up
i Optimized Route Trucks (Faster/Larger)

Buyer Flg 1
picks up
coconuts

<[>

Pick UND Everyday
Scheduler § Certain Days: Tue and Fri B @
Component O Only when pb Calls

There are more NFRs for this Coconut Planter pbRP Instantiation.
This illustration is simplified for presentation purposes.

Figure 2: An illustration showing an instantiation of the Coconut Planter ubRP

Third, we explain Figure 3, which is based on the software components illustrated
in Figure 2. Figure 3 illustrates the associated software components of the pubRP,

Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ... 771

including details on input-output relationships of one software component to another.
This illustration is meant to guide the software developer when searching for reusable
associated software components in component libraries.

gets input >

</> Software Component provides output p»

Legend: relates to

L
<> Pick Up Scheduler
Pick Up ‘\Component
Scheduler </>
User Interface Payment
Component

There are more components associated with the Coconut Planter pbRP
Instantiation. This illustration is simplified for presentation purposes.

Figure 3: Associated sofiware components of the Coconut Planter ubRP

33 General Purpose Illustrations for pbRPs

There are two other general-purpose illustrations which aid in understanding pbRPs.
They are the ubRP meta-model and the step-by-step process for using pubRPs in
practice. In Figure 4, we present the pbRP meta-model showing an pbRP having
modes which have instantiations. pbRPs are derived from common, recurring
requirements in actual micro-businesses. The pbRPs are realized by software
components which either satisfy functional requirements (questions) or satisfice
(satisfy sufficiently) [Chung et al., 2000] NFRs (priorities).

Legend: relates to *location in paper
one concept 1 Figure Fig.
many concepts o Table Tab.

*components realize pbRPs
*components satisfy/satisfice requirements

Fig. 2

Fig. 1,2,3 * Fig.5

question

Tab. 1

priority 'll“ab. I

Figure 4: ubRP metamodel
The next general-purpose diagram which aids in the understanding of pubRPs is

the step-by-step process for using pbRPs in practice as shown in Figure 5. Step 1 is
the observation of actual micro-businesses. Business goals and requirements are

772 Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ...

recorded. There are some techniques which transform business goals into
requirements such as the one on page 198 of [Kotonya and Sommerville, 03] and
another one in the goal modelling section of [Respect-IT, 07]. Should the reverse be
needed, transforming requirements to goals, [Cardoso et al., 11] provide such
techniques as well.

(1) Observe Micro-
businesses

n

(1.1) Record goals
and requirements
(1.2) Convert
goals into
requirements

(2) Identify
Common
Requirements

(3) Search for

O for commen - source
> Requirements
Patterns
for other (5) Creationof a .
Requirements Pattern Requwemen_ts
Pattern Archive
patterns available D Requirements Table %
v
(6) Identify Varying (4) (_Re-)use D Optional lllustrations
Requirements Requirements
q Patterns
Legend (BPMN): (7) Make Databa_se
Implementation Linis
—> Flow 1) to (7))
Notes ’(aiial‘y{'sf)s realize
-------------- » Source I
-
———————— Link (8) Draft o
System Design ’ o o
*design ‘,-—' .,
% Archive | _ =" L5
»"‘— S
1 source S
Requirements (gz (E::\;ilsoep sttt o %
Clocumant Components G store -
’ provision Component
Exclusive Gateway, Wi
Choose One (11) Develop another micro-
i ?
Inclusive Gateway, (10) Deploy business softwaresystem? yes
May Choose Several System 5
release
Parallel Gateway, “generic phases of component-based development no End
Synchs Incoming Flows as proposed by (Kouroshfaret al., 2009)

Figure 5: A step-by-step process for using ubRPs in practice

Step 2 involves identifying common requirements. When common requirements
are identified, software developers search for requirements patterns in an archive in
step 3. If there are available patterns then in step 4, the requirements patterns are re-
used. If there are no available patterns then in step 5, a requirements pattern with the
common requirements is created, consisting of the mandatory requirements table and

Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ... 773

optional illustrations. This requirements pattern is stored in an archive. In step 6, the
varying requirements of a micro-business are identified.

In step 7, all the relevant information gathered from steps 1 to 6 is collated and
used to make implementation notes. From a component-based software development
context, step 7 could be commonly referred to as the analysis phase [Kouroshfar et al.,
09]. In step 8, the architecture and design of the system is drafted which leads to step
9 where reusable software components and other reusable assets are identified for use
in development. After development, the software system is implemented in step 10.
Steps 8, 9, and 10 correspond to the design, provision, and release phases,
respectively, in a component-based software development context [Kouroshfar et al.,
09]. Should the software developer decide to implement another software system then
step 11 simply loops back to step 1. Otherwise, step 11 ends the entire process.

4 Action Research

Our research team has always placed value in documenting observations of actual
software implementations around the world. Action research has always been an ideal
choice for us because when documenting observations, we are able to gather actual
data such as the effort exerted in software implementations, the number of software
components reused, and given the daily rates of developers, even the costs involved.
This actual data helps us understand what is going on when pubRPs are applied in
practice. In addition, the use of pubRPs requires training and influence from the
researchers. In case studies and field experiments (as opposed to action research), the
influence of the researcher has to be minimized or even non-existent. Given the
several variants of action research [Goldkuhl, 08] [Goldkuhl, 12] [Bilandzic and
Venable, 11], the action research in this paper is reported as-is, step-by-step, for
clarification purposes. In order to improve the validity of action research, [Kock, 04]
recommends the use of one or more of the following: units of analysis, multiple
iterations, and/or grounded theory. We apply all three recommendations.

4.1 Units of Analysis

The advantage of using units of analysis is that when more instances of the unit of
analysis are made, the more likely that statistical analysis can be used later on to
ascertain whether there are observable trends or whether events are simply happening
by chance. The first unit of analysis is the “effort exerted during software
implementation,” expressed in man days. It starts on the first day of requirements
gathering and ends on the day the software is accepted by the micro-business owner.
The second unit of analysis is the "number of reused software components (as
characterized in the introduction).”

4.2 Multiple Iterations

In order to perform iterations in action research, we needed the participation of
companies which had micro-business software implementations taking place. We
chose Manila (Philippines) and Granada (Spain) as cities for our action research
because of the geographic proximity to our research teams and because of their

774 Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ...

abundance of micro-businesses. As of 2011, Manila had 211,974 micro, small, and
medium enterprises (MSMEs) of which approximately 90% are micro, based on a
headcount of less than 10 and approximately total assets less than 60,000 United
States Dollars [Philippine MSME Statistics, 11]. Granada had 55,578 micro-
businesses which comprise approximately 96% of total businesses, based on a
headcount of less than 10 [Spain SME Statistics, 11].

Four software development companies with micro-business projects decided to
learn and adapt the pbRPs — (a) Pentathlon Systems Resources Incorporated [PSRI,
18], (b) Virus Worldwide [Virus, 17], (¢c) Everyware Technologies [Everyware, 17],
and (d) Desarrollo TIC [Desarrollo TIC, 17]. The first two are headquartered in
Manila and the latter two are headquartered in Granada.

The companies were asked to identify a “previous implementation” and
“implementations under study,” where the latter would be the iterations in the action
research. The implementations had to be of as similar nature as possible. In the
“previous implementation,” no ubRPs were used. It is important to note that the
“previous implementation” is not a control implementation because if it were, then it
would no longer be considered action research but a field experiment [Kock, 04].

Before the “implementations under study” took place, mandatory face-to-face
training sessions involving two developers from each software development company
were required. Afterwards, the developers could use the training material [PSRI
Action Research, 14], supporting tools [RE-Tools, 14] and accompanying
documentation [Supakkul and Chung, 12] [Supakkul et al., 13], and could contact the
researchers anytime via email, Skype, or mobile for any ubRP-related support.

Since PSRI has contributed in developing the ubRPs under study since 2010, a
fresh perspective involving two new hires developed a sales management system from
scratch, their “previous implementation,” without using ubRPs. Table 2 shows the
units of analysis and six iterations which were performed in each company throughout
a 30-month period, spanning from January 2015 to June 2017.

In addition, Table 2 also shows the exerted effort needed to set-up and maintain
the ubRPs for use in each of the participating companies. This is measured from the
time when there had been no pbRP knowledge up to the time when there were at least
10 ubRPs that could be used. Set-up efforts consist of (1) training the software
developers and analysts regarding the creation and the use of ubRPs and (2) setting up
the component libraries, ubRP tables, and optional ubRP illustrations.

If we assume that a man day costs US$ 320, then the average cost of setting up
ubRPs would be US$ 1,760 (5.5 man day average setup time for the 4 sample
companies in Table 2 multiplied by the assumed day rate) and US$ 320 for monthly
maintenance. Table 2 also shows assumed savings based on the day rate multiplied by
the reduction of exerted effort when ubRPs are used.

Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ... 775

Observing nbRPs in Practice using Action Research
Legend: % is % of reused components. md is man days exerted
=
o, =]

=3 E
g v1 | No pbRPs pbRPs in Implementation E
“ E
Iteration 0 1 2 3 4 5 6

md | % | md | % |md| % | md| % |md| % | md| % | md| % | md | md
a 5 0 18 | 20 10 | 30 8 30 8 30 8 30 8 30 8 9
b 6 20 34 | 50| 26 | 50| 24 | 50| 22 50 | 24 | 50| 24 | 50 | 20 10
c 5 10| 14 | 20 10 | 20| 10 | 30 8 30 8 30 | 10 | 30 10 5
d 6 10 [18 | 30 12 | 40 | 10 | 40 10 | 40 10 | 40 | 10 | 40 10 8

Table 2: Action research data from January 2015 to June 2017

4.3 Grounded Theory

In order to put the data in Table 2 into context, we use grounded theory as
recommended by [Kock, 04]. Grounded theory traces its roots back from sociologists
[Glaser and Strauss, 67]. There are three basic “types” of grounded theory: the
original by [Glaser and Strauss, 67] also referred to as “classical Glaserian grounded
theory,” a formalized and procedural one by [Strauss and Corbin, 90], and one which
clarifies ontological and epistemological ambiguities [Charmaz, 06]. We adapt the
“classical Glaserian grounded theory” which has been recommended, used, and
applied recently in the field of software engineering [Kock, 04] [Carver, 06] [Crabtree
et al., 09] [Adolph et al., 11]. All references to grounded theory in this paper pertain
to “classical Glaserian grounded theory.”

Grounded theory is basically setting out to gather data and then systematically
developing a substantive theory directly from the data [Glaser and Strauss, 67]. The
theory is “grounded” in the data. Grounded theory differs from (other) methods which
first develop theories without data and then systematically seek out data to verify the
theories. Grounded theory is also different because its main purpose is not to find out
irrefutable truths but to try to find out “what is going on here?”

[Schreiber and Stern, 01] suggest using grounded theory in research areas that
have not been previously studied or where new perspectives are needed. In grounded
theory, researchers go through the iterative steps of collecting data (where research
notes are referred to “memos”), building theories, and then comparing the theories to
those in existing literature. Grounded theory suggests that making comparisons to
existing literature has to be delayed as much as possible so as to avoid coming up
with preconceived theories which would not be grounded on the data.

On a practical level, the grounded theory in this paper is adapted for the specific
needs of action research as recommended by [Kock, 04]. The data from Table 2 may
be used to develop causal models [Bagozzi, 80] [Davis, 85] which are considered as
the highest level of abstraction in grounded theory. The causal models link
independent, moderating, intervening, and dependent variables [Arnold, 82] [Baron
and Kenny, 86] [Creswell, 94] [Drew and Hardman, 85]. The variables may be
classified in terms of units of analysis, which can be measured or estimated
numerically or non-numerically [Drew and Hardman, 85] [Gregory and Ward, 74]

776 Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ...

[Pervan and Klass, 92]. From the data in Table 2, we build a causal model, shown in
Figure 6, which includes concepts, units of analysis, and the grounded theories we
could build from the data.

Table 2 shows that the use of the ubRPs in the “implementations under study”
could have reduced the number of man days expended in implementations and could
have increased the number of software components reused in implementations,
resulting in reduced effort for the participating software developers. Instead of
drawing conclusions from the data and making claims, we build grounded theories
and ask questions which would be relevant for the further evaluation and evolution of
ubRPs. The result of several action research iterations in the past and grounded
theories have led us to our current ubRP proposal as previously presented in this

paper.

Legend: relates to — | concept Unit of Analysis % Grounded Theory GT

¥ %

*La bor cost

man days

acceptance
expended

'

GT: improved
communication improves oo~ UlluseorubkFs
acceptance % GT: improved component reuse

p communication ”
.
communication reduces man days # of reused

ub & devs \ expended components
|

GT: morale from training
improves communication | US¢ 0L LUDRES improves use of ubRPs

-
use of (other) GT: use of ubRPs improves awareness Training for
reuse methods | and effects of other reuse methods

S

Figure 6: Causal Model

Some of the grounded theories that we can build from the data (and from memos)
in Table 2 include (but are not limited to): the use of pbRPs improve component
reuse, the use of pbRPs improve communication between micro-business owners and
software developers, improved communication improves implementation acceptance
rates, improved communication reduces the exerted effort in implementations,
training for using ubRPs improves morale and the use of pubRPs, the use of ubRPs
improves awareness and effects of other reuse methods.

Such grounded theories provoke questions such as: Was the improvement in
software component reuse due to the use of pbRPs alone or due to a symbiosis
between the use of ubRPs and (unknown, other) reuse methods? Did the morale of the
software developers influence the quality of communication with micro-business
owners? As a result of using the ubRPs, how many reduced man days can be
attributed to improved communication? When evaluating the use of ubRPs in
practice, is it possible to isolate human variables, which is indispensable in the field
of software engineering? We extend the discussion of these emerging questions in the
future work section of our paper.

Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ... 777

5 Review of Related Work

Using a Venn Diagram as shown in Figure 7, we illustrate the related works and how
the ubRPs have become the common point for all these works.

The first area of work are requirements patterns. (Micro-business) requirements
patterns capture solutions to recurring (software) requirements challenges. They are
presented in a form that can be understood by practitioners so that they can identify
similar requirements (in their systems), select patterns that address those requirements
and instantiate solutions that embody those patterns [Dwyer et al., 99]. Requirements
patterns represent encapsulated information and help make writing requirements
quicker and easier by providing information “on a plate” instead of starting from
scratch. When a pattern is used to help write a (software) requirement, its job is
essentially done [Withall, 07a] [Withall, 07b].

Requirement A
Pattern I|
Domain
Knowledge

Figure 7: Venn Diagram of Related Works

The requirements in the ubRP table are written in such a way that any layman or
non-technical person could understand them. In the case of remote communities in
developing nations, it becomes very important to ask down-to-earth questions to a
micro-business owner who barely knows software. The following requirements
pattern proposals have been sources of ideas for us although they lacked the elements
of associated software components and specializations in specific business domains
such as remote communities in developing nations.

Software Requirements Patterns (SRPs) and Security Requirements Patterns are
examples of requirements patterns that were lacking associated software components
and specific domain elements needed to advance our work. [Franch et al., 10] propose
29 SRPs which aim to be of use during requirements elicitation, documentation, and
validation. There has been a great percentage of reuse of NFR information in SRPs in
call-for-tender requirement specifications. [Mendez-Bonilla et al., 08] propose SRPs
based on a selection of published literature, mainly pertaining to functional and non-
functional requirements. Here, the SRPs are used for commercial off-the-shelf
software (COTS). [Hoffman et al., 12] propose 20 SRPs based on user trust. The
SRPs are based on studies from the behavioural sciences, collecting antecedents that
build trust. The SRPs are used mainly in recommender system development projects.

[Riaz and Williams, 12] propose security requirements patterns which aim to
capture common security requirements, document the context in which a requirement
manifests itself, and describe the trade-offs involved. Part of the proposal includes an
outline for developing patterns and strategies for specifying reusable security

778 Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ...

requirements. In a related work, security test patterns are proposed by [Smith and
Williams, 12] in order to aid in black box security testing.

The optional pbRP illustrations in our proposal are inspired by NFR
visualizations. Concepts such as the operationalizing methods from Softgoal
Interdependency Graphs (SIGs) [Chung et al., 2000] are rooted in NFRs. Four NFR
patterns have been proposed by [Supakkul et al., 10], namely objective, problem,
alternative, and selection. The purpose of the NFR patterns is to capture and reuse
them in business-specific cases with the help of NFR visualizations and
representations. NFR visualizations in business-specific, cloud-computing cases are
also proposed in a related work by [Chung et al., 13]. The optional ubRP illustrations
are also inspired by concepts such as (1) business-friendly comprehension of flows
from the Business Process Modelling Notation (BPMN) and (2) component
deployment diagrams from the Unified Modelling Language (UML).

We have used RE Tools which could simultaneously illustrate BPMN, SIGs, and
UML as explained and demoed in our previous work [Supakkul and Chung, 12]
[Supakkul et al., 13] [Macasaet et al., 14] although for our proposal for remote
communities in developing nations, we believe that more lightweight illustrations are
appropriate, as far as considering hand-drawn illustrations and sketches for better
comprehension for its users [Macasaet et al., 11].

Domain knowledge captured in the form of business patterns is the second area of
work related to our proposal. Using business patterns and finding out where the
patterns can be instantiated in specific (domains and) contexts makes the work of
software analysts and designers easier [Kilov and Sack, 09]. [Withall, 07a] [Withall,
07b], who have proposed 37 requirements patterns based on requirements that crop up
in all kinds of systems, state that domain-specific requirement patterns (e.g. tbRPs for
micro-businesses) could improve communication between product vendors (e.g.
software developers) and their customers (e.g. micro-business owners).

[Aleksy and Stieger, 11] propose domain-specific patterns for mobile service
businesses. Four mobile service business patterns are proposed, as derived from two
industrial case studies, for the purpose of aiding in the integration of third-party
partners, structuring communication between mobile workers and the back office,
support for offline processing capabilities, and tailoring information support. [Seruca
and Loucopoulos, 2003] propose a systematic way of capturing and reusing patterns
based on their specific business domains. Their approach to pattern development is
based on the analysis of domains and is process-oriented. This allows increased
understanding of a business domain and the identification of opportunities to improve
business processes. Specifically, their patterns have been applied in a business process
improvement project in the clothing manufacturing domain.

[Barros, 07] proposes business process patterns (BPP) which result in business
object (BO) frameworks, encapsulating high level business logic. The BPPs are
reusable and can be applied to improve business processes or to develop a (software)
application to support a business process. The resources, events, agents (REA) model
has been extended by [Hruby, 06] with several structural and behavioural business
patterns. The REA-based patterns are used to develop business-related (software)
applications by searching for business objects and related modelling elements.

Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ... 779

[Boukheduoma et al., 13] propose service-based cooperation patterns (SBCPs).
The SBCPs are used for recurring service-based inter-organizational workflows
(IOWF) that meet certain service-oriented architecture (SOA) paradigms, providing
interoperability, reusability, and flexibility required when developing business-related
(software) applications. [Glushko and Mcrath, 08] propose patterns based on
documents, introducing the discipline of “document engineering.” Based on a set of
analysis and design techniques, the document-centric patterns are created. The
patterns are characterized as tangible and easy to analyse and are (re-)usable when
designing business processes. [La Rosa et al., 17] propose configurable business
patterns, which are based on domain knowledge of 430 municipalities in the
Netherlands. The patterns can be instantiated in an actual business although the
patterns still involve a lot of technical jargon and complex illustrations.

UbRPs are associated with Software Components, aiming to promote software
reuse and component-based software engineering (CBSE), which is the third area of
work related to our proposal. [Crnkovic et al., 02] propose the use of patterns (e.g.
ubRPs) in CBSE, suggesting use in design, where reusable units are identified as pre-
existing components and in development, where components are developed based on
the design patterns. Associating software components with ubRPs has been inspired
by some of the following CBSE proposals.

[Kouroshfar et al., 09] propose a generic process framework for component-based
development. A set of high-level process patterns which are commonly encountered
in seven component-based development methodologies are identified. The generic
framework and the process patterns could be used in the development or
customization of component-based systems. [Stepan and Lau, 12] propose controller
patterns which are abstractions for defining coordination in the context of CBSE. The
use of the controller patterns is demonstrated in a case study with the support of a
prototype tool.

[Paludo et al., 11] propose a component specification structure based on analysis
and design patterns. The purpose of the patterns is to document, retrieve, and capture
composition functionalities of the components in order to achieve software reuse. The
integration of the patterns and the components leverage the software reuse process
through the creation of the documentation structure and a component repository
capable of supporting software developers. [Kouskouras et al., 08] investigate the
behaviour of component-based, object-oriented software applications when design
patterns are not used, used, and when aspect-oriented programming techniques are
used alongside the design patterns. The relationship between pattern use and software
components is discussed in detail.

[Elizondo and Lau, 10] propose a catalogue of component connectors, describing
the connectors as the “glue” which piece together components in CBSE. The purpose
of the component connectors is to support the process of software development with
the idea of reuse, alongside the use of design, architectural, and workflow patterns. In
a related work by [Bhuta et al., 07], a framework for selecting the component
connectors is proposed. Software Product Lines (SPLs) [Krueger and Clements, 17]
propose the use of feature trees in SPLs using ontologies and abstractions. Although
requirements could be abstracted and then later on instantiated based on actual cases,
they fell short in domain knowledge and practicality when applied in remote
communities in developing nations.

780 Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ...

As part of this related work section, we would also like to discuss work that is not
directly related to our ubRP proposal but may be of concern. For instance, ubRPs can
be applied both in waterfall and in agile software development implementations.
ubRPs can function, independent of the kind of project management or
implementation methodology used. However, it is important to keep in mind that
agile frameworks such as Scrum are only effective when there are 3 or more
developers on the team [Scrum.org, 17]. Hence, Scrum may not be the best project
management approach for using pbRPs where only one or two developers are
involved in the implementation. Pair programming, an agile development method,
could be applied but is not necessary. The same logic applies to the software
architecture involved with ubRPs. The associated software components of the pbRP
may function within a Representational State Transfer (REST) or Simple Object
Access Protocol (SOAP) architecture, depending on the context of the
implementation.

6 Observable Strengths and Weaknesses

This section presents observations on the use of ptbRPs in practice, specifically from
the experiences of those involved in the micro-business software projects of four
software development companies, over a thirty-month period, from January 2015 to
June 2017. Aside from the data we have provided in the action research section, we
also conducted semi-annual one-on-one interviews of those involved in the
implementations in order to get feedback. We have taken these transcribed interviews
into account in enumerating the observable strengths and weaknesses of using pbRPs
in practice.

The strengths we have observed are the following. First, the mandatory pbRP
table during requirements elicitation was useful. The tables were very outright and
straightforward which made it easily understandable for micro-business owners
without technical backgrounds. In just one step, the micro-business owners simply
had to answer questions in business terms without compromising technical details for
the software developers. This saves a lot of time while maintaining quality
requirements.

The ubRP table also contains a lot of domain knowledge which is useful for
understanding the context of an implementation. We believe that our proposal of
UbRPs for remote communities in developing nations could be useful for countries
aside from the Philippines. There are also other tropical archipelagos that could
benefit from our additions to the domain knowledge for remote communities in
developing nations such as Indonesia, Papua New Guinea, and Cuba.

Second, the optional illustrations for ubRPs have been found useful for software
component information, specifically for reuse and implementation. The use of labels
indicates to software developers that there are opportunities for reusing software
components in certain business process contexts and that the software developers
should take advantage of these reuse opportunities if possible. The optional
illustrations with associated software components also provide information regarding
the relationships among the software components. Using the specific keywords and
filenames found on these illustrations, the software developers are able to search the

Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ... 781

software component libraries with more guidance and more speed, knowing which
associated software components to search for beforehand.

The optional illustrations indicate the activities in business processes and the
associated software components which are critical and which directly or indirectly
relate to NFRs. Prioritizing which business activities and which software components
are critical allow software developers to focus their efforts on more important tasks,
eventually contributing to the success rate for software implementations. The use of
the optional illustrations provides both the software developers and micro-business
owners a clearer overview of the software implementation, avoiding myopic views.
Being aware of the many factors that affect the software implementation allow both
software developers and micro-business owners to exert conscious efforts in areas
critical to success.

Third, based on Grounded Theory, we observed that the overall length of
implementations could have been shortened due to the use of ubRPs. When the
internal communication within an implementation (e.g. the communication among
software developers) and the external communication with the customer (e.g. the
communication of software developers with the micro-business owner) are improved,
the length of projects could be shortened. Improved communication and promoting
software component reuse by using PbRPs could be related to shortening
development time and eventually shortening total implementation time.
Consequently, shorter implementation times could have translated to lesser man day
effort and lower implementation costs, making software more affordable for the
budget-conscious micro-businesses.

We also enumerate the weaknesses and limitations we observed applying ptbRPs
in practice. First, the companies which participated in evaluating the pbRPs were
either involved in developing the ubRPs (PSRI) or have close working relationships
with PSRI. It would be unavoidable to have biased opinions about the pbRPs.
However, Grounded Theory places value on the opinion of the developers (of the
UbRPs) [Glaser and Strauss, 67].

Second, given the strong ties, preferred treatment, and enthusiasm of the
participating companies in the study, the implementation of ubRPs in other firms
without these aforementioned factors could yield different results. It is not
ascertainable if the ubRPs would continue to show positive effects. We have made the
action research material available to the public [PSRI Action Research, 14] so that
they could try and test the ubRPs themselves at their own convenience. We are also
collecting feedback from anonymous pbRP wusers by constantly engaging in
workshops, tutorials, and conferences.

7 Future Work and Conclusions

We start applying into practice our pubRP proposal for remote communities in
developing nations on July 2018 at the province of Palawan. We continue to use our
action research approach for observing and collecting data related to ubRPs. The
software implementation at Palawan is expected to last for at least a year, and could
extend to three to four years more, depending on the results of the first year and other
circumstances. Our plan is to publish an action research report before 2020.

782 Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ...

This paper has proposed pbRPs for remote communities in developing nations.
The main purpose of the pubRPs is to guide software developers when gathering
requirements and estimating effort at the initialization stage of a software
implementation for remote communities in developing nations. This proposal is a
result of (1) the observations gathered from several action research iterations from
January 2015 to June 2017 and (2) our continuous review of related work and
previous pbRP proposals. Hopefully, other software companies without strong ties to
PSRI would start using ubRPs and share their results with the research community.
Notwithstanding issues, our team believes that we have done the first studies on
UbRPs, drawing from lessons learned in the past and also provoking relevant research
questions to be answered in the future.

Acknowledgements

This research has been partially supported by the Spanish Ministry of Economy and
Competitiveness with European Regional Development Funds (FEDER) under the
research project TIN2012-38600 and Pentathlon Systems Resources Incorporated
(PSRI).

References

[Adolph et al., 11] Adolph, S., Hall, W. & Kruchten, P.: Using grounded theory to study the
experience of software development, In Empirical Software Engineering, 16, 2011. pp. 487-513

[Aranda et al., 07] Aranda, J., Easterbrook, S. M., Wilson, G.: Requirements in the wild: How
small companies do it, In Requirements Engineering RE 2007, pp. 3948, IEEE

[Aranda, 10] Aranda, J.: Playing to the Strengths of Small Organizations, In Proceedings of the
1st Workshop on RE in Small Companies RESC 2010, pp. 141-144

[Aleksy and Stieger, 11] Aleksy, M., Stieger, B.: Mobile Service Business Patterns, In
Proceedings of the IEEE 25th International Conference on Advanced Information Networking
and Applications AINA 2011. pp. 62-68. IEEE

[Ambler, 02] Ambler, S.: Agile modeling. 2002, John Wiley and Sons

[Arnold, 82] Arnold, H.: Moderator variables: A clarification of conceptual, analytic, and
psychometric issues, In Organizational Behavior and Human Performance, (29) 2, 1982. pp.
143-174

[Bagozzi, 80] Bagozzi, R. P.: Causal models in marketing. 1980. New York, NY: Wiley.

[Baron and Kenny, 86] Baron, R., Kenny, D.: The moderator-mediator variable distinction in
social psychological research: Conceptual, strategic, and statistical considerations, In Journal of
personality and social psychology, 51. 1986. pp. 1173—1182

[Barros, 07] Barros, O.: Business process patterns and frameworks: Reusing knowledge in
process innovation, In Business Process Management Journal, 13 (1), 2007, pp. 47-69

[Bhuta et al., 07] Bhuta, J., Mattmann, C., Medvidovic, N., Boehm, B. W.: A Framework for
the Assessment and Selection of Software Components and Connectors in COTS-Based
Architectures, In Working IEEE/ IFIP Conference on Software Architecture WICSA 2007.
IEEE Computer Society

Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ... 783

[Bilandzic and Venable, 11] Bilandzic, M., Venable, J.: Towards Participatory Action Design
Research: Adapting Action Research and Design Science Research Methods for Urban
Informatics, In Journal of Community Informatics, 7, 2011

[Boukheduoma et al., 13] Boukheduoma, S., Oussalah, M., Alimazighi, Z., Tamzalit, D.:
Adaptation Patterns for Service-Based Inter-Organizational Workflows, In Wieringa R.,
Nurcan S., Rolland C., Cavarero J.L. (eds.), Proceedings of the IEEE 7th International
Conference on Research Challenges in Information Science RCIS 2013, IEEE

[Cardoso et al.,, 11] Cardoso, E., Almeida, J., Guizzardi, R., Guizzardi, G.: A Method for
Eliciting Goals for Business Process Models Based on Non-Functional Requirements
Catalogues, In International Journal of Information System Modeling and Design, 2(2), 2011.
pp. 1-18

[Carver, 06] Carver, J.: The Use of Grounded Theory in Empirical Software Engineering, In V.
R. Basili, H. D. Rombach, K. Schneider, B. A. Kitchenham, D. Pfahl, R. W. Selby (eds.),
Empirical Software Engineering Issues. 2006. pp. 42. Springer

[Charmaz, 06] Charmaz, K.: Constructing grounded theory: a practical guide through
qualitative analysis. 2006. London; Thousand Oaks, Calif.: Sage Publications

[Chung et al., 00] Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional Requirements
in Software Engineering, 2000. Springer

[Chung et al., 13] Chung, L., Hill, T., Legunsen, O., Sun, Z., Dsouza, A., Supakkul, S.: A goal-
oriented simulation approach for obtaining good private cloud-based system architectures, In
Journal of Systems and Software, 86 (9), 2013. pp. 2242-2262

[Crabtree et al., 09] Crabtree, C. A., Seaman, C. B., Norcio, A. F.: Exploring language in
software process elicitation: A grounded theory approach, In ESEM 2009. pp. 324-335

[Creswell, 94] Creswell, J. W. (ed.): A Qualitative Procedure in Research Design. Qualitative
and Quantitative Approaches. 1994. London and New Dheli: Sage.

[Crnkovic et al., 02] Crnkovic, 1., Larsson, M.: Challenges of component-based development,
In Journal of Systems and Software, 61(3), 2002. pp. 201-212

[Davis, 85] Davis, J. A.: The Logic of Causal Order (Vol. 07-055). 1985. Beverly Hills,
London, New Delhi. Sage.

[Davis et al., 06] Davis, C. J., Fuller, R. M., Tremblay, M. C., Berndt, D. J.: Communication
Challenges in Requirements Elicitation and the Use of the Repertory Grid Technique, In
Journal of Computer Information Systems, 46(5), 2006, pp. 78

[Desarrollo TIC, 17] Desarrollo TIC, 2017. https://desarrollotic.com

[Drew and Hardman, 85] Drew, C.J., Hardman, M.L.: Designing and Conducting Behavioral
Research. 1985. Pergamon, New York, NY

[Dwyer et al., 99] Dwyer, M. B., Avrunin, G. S., Corbett, J. C.: Patterns in Property
Specifications for Finite-State Verification, In Boehm B.W., Garlan D., Kramer J. (eds.),
International Conference on Software Engineering ICSE 1999. pp. 411-420. ACM

[Elizondo and Lau, 10] Elizondo, P. V., Lau, K.-K.: A catalogue of component connectors to
support development with reuse, In Journal of Systems and Software, 83(7), 2010. pp. 1165—
1178

[European Commission, 08] European Commission.: The New SME Definition User Guide and
Model Declaration, 2008

784 Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ...

[Everyware, 17] Everyware Technology, 2017. http://www.everywaretech.es

[Franch et al., 10] Franch, X., Palomares, C., Quer, C., Renault, S., Lazzer, F. D.: A Metamodel
for Software Requirement Patterns, In R. Wieringa, A. Persson (Eds.), Requirements
Engineering for Software Quality REFSQ 2010. pp. 85-90. Springer

[Glaser and Strauss, 67] Glaser, B. G., Strauss, A. L.: The Discovery of Grounded Theory:
Strategies for Qualitative Research, 1967. New York, NY: Aldine de Gruyter.

[Glushko and Mcrath, 08] Glushko, R., McGrath, T.: Document Engineering — Analyzing and
Designing Documents for Business Informatics and Web Services. 2008. Cambridge, MA,
USA: MIT Press

[Goldkuhl, 08] Goldkuhl, G.: Practical Inquiry as Action Research and Beyond, In W. Golden,
T. Acton, K. Conboy, H. van der Heijden, V. K. Tuunainen (eds.), ECIS 2008. pp. 267-278

[Goldkuhl, 12] Goldkuhl G.: From action research to practice research, In Australasian Journal
of Information Systems, 17, 2, 2012: pp. 57-78

[Gregory and Ward, 74] Gregory, D., Ward, H.: Statistics for Business Studies. 1974. McGraw-
Hill, London, England

[Hoffman et al., 12] Hoffmann, A., S6llner, M., Hoffmann, H.: Twenty Software Requirement
Patterns to Specify Recommender Systems that Users will Trust, In European Conference on
Information Systems ECIS 2012

[Hruby, 06] Hruby, P.: Model-Driven Design Using Business Patterns. 2006. Secaucus, NJ,
USA: Springer-Verlag New York, Incorporated

[International Organization for Standardization, 11] International Organization for
Standardization (ISO).: ISO/IEC DTR 29110-1:2011 Software Engineering — Lifecycle Profiles
for Very Small Entities (VSEs) — Part 1: Overview. 2011. ISO, Switzerland

[Jantunen, 10] Jantunen, S.: The Benefit of Being Small: Exploring Market-Driven
Requirements Engineering Practices in Five Organizations, In Proceedings of the 1st Workshop
on RE in Small Companies RESC 2010, pp. 131-140

[Kamsties et al., 98] Kamsties, E., Hormann, K., Schlich, M.: Requirements Engineering in
Small and Medium Enterprises: State-of-the-Practice, Problems, Solutions, and Technology
Transfer, In Conference on European Industrial Requirements Engineering CEIRE 1998,
London, United Kingdom

[Kauppinen et al., 02]. Kauppinen, M., Kujala, S., Aaltio, T., Lehtola, L.: Introducing
Requirements Engineering: How to Make a Cultural Change Happen in Practice, In RE 2003,
pp. 43-51, IEEE Computer Society

[Kauppinen et al., 04] Kauppinen, M., Vartiainen, M., Kontio, J., Kujala, S., Sulonen, R.:
Implementing requirements engineering processes throughout organizations: Success factors
and challenges, In Information and Software Technology, 46(14), 2004, pp. 937-953

[Kilov and Sack, 09] Kilov, H., Sack, I.: Mechanisms for communication between business and
IT experts, In Computer Standards & Interfaces, 31(1), 2009, pp. 98-109

[Kock, 04] Kock, N.: The three threats of action research: a discussion of methodological
antidotes in the context of an information systems study, In Decision Support Systems, 37 (2),
2004. pp. 265-286

[Kotonya and Sommerville, 03] Kotonya, G., Sommerville, I.: Requirements Engineering:
Processes and Techniques. 2003. England: John Wiley and Sons Limited

Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ... 785

[Kouroshfar et al., 09] Kouroshfar, E., Shahir, H. Y., Ramsin, R.: Process Patterns for
Component-Based Software Development, In Lewis G.A., Poernomo 1., Hofmeister C. (eds.),
International Symposium on Component-based Software Engineering CBSE 2009. pp. 54-68,
Springer.

[Kouskouras et al., 08] Kouskouras, K., Chatzigeorgiou, A., Stephanides, G.: Facilitating
software extension with design patterns and Aspect-Oriented Programming, In Journal of
Systems and Software 81 (October (10)), 2008. pp. 1725-1737, Elsevier

[Kruchten, 03] Kruchten, P.: The Rational Unified Process: An Introduction. 2003, Boston,
MA: Addison-Wesley

[Krueger and Clements, 17] Krueger, C., Clements, P.: Enterprise Feature Ontology for
Feature-based Product Line Engineering and Operations. In 27" International Symposium of
International Council on Systems Engineering INCOSE, 2017

[La Rosa, 17] La Rosa, M., van der Aalst, W., Dumas, M., Milani, F: Business Process
Variability Modeling: A Survey, In ACM Computing Survey, 50 (1), 2017

[Macasaet et al., 11] Macasaet, R., Chung, L., Garrido, J., Rodriguez, M., Noguera, M.: An
Agile Requirements Elicitation Approach based on NFRs and Business Process Models for
Micro-businesses, In Proceedings of the 12th International Conference on Product Focused
Software Development and Process Improvement PROFES 2011, pp. 50-56. New York, NY,
USA: ACM

[Macasaet et al., 12] Macasaet, R., Noguera, M., Rodriguez, M., Garrido, J., Supakkul, S.,
Chung, L.: Micro-business Behavior Patterns associated with Components in a Requirements
Approach, In Proceedings of the 2nd International Workshop on Experiences and Empirical
Studies in Software Modeling EESSMOD at the ACM/IEEE 15th International Conference on
Model Driven Engineering Languages & Systems MODELS, 2012, New York, NY, USA

[Macasaet et al., 13] Macasaet, R.J., Noguera, M., Rodriguez, M.L., Garrido, J.L., Supakkul, S.,
Chung, L.: A requirements-based approach for representing micro-business patterns, In R.
Wieringa, S. Nurcan, C. Rolland, J.L. Cavarero (eds.), Proceedings of the IEEE 7th
International Conference on Research Challenges in Information Science RCIS 2013, IEEE

[Macasaet et al., 14] Macasaet, R.J., Noguera, M., Rodriguez, M.L., Garrido, J.L., Supakkul, S.,
Chung, L.: Representing Micro-business Requirements Patterns associated with Software
Components, In RCIS’13 Special Issue of Top Ranked Papers, Journal of Information System
Modeling and Design IJISMD 2014. IGI-Global

[Macasaet, 17] Macasaet, R.J.: The Project Start Review Group, In M. Brambilla, T.
Hildebrandt (eds.), Industrial Track Proceedings of the 15" International Conference on
Business Process Management BPM 2017

[Mendez-Bonilla et al., 08] Mendez-Bonilla, O., Franch, X., Quer, C.: Requirements Patterns
for COTS Systems, In Proceedings of the 7th International Conference on Composition-Based
Software Systems ICCBSS 2008. pp. 232-234. IEEE

[Medvidovic and Taylor, 00] Medvidovic, N., Taylor, R. N.: A classification and comparison
framework for software architecture description languages, In IEEE Transactions on Software
Engineering, 26(1), 2000, pp. 70-93

[Mendling et al., 10] Mendling, J., Recker, J., Reijers, H.: On the usage of labels and icons in
business process modelling, In International Journal of Information System Modeling and
Design, 1(2), 2010. pp. 40-58

786 Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ...

[Merten et al., 11] Merten, T., Lauenroth, K., Biirsner, S.: Towards a New Understanding of
Small and Medium Sized Enterprises in Requirements Engineering Research, In Proceedings of
the 17th International Working Conference on Requirements Engineering: Foundation for
Software Quality REFSQ 2011, pp. 60-65. Springer Berlin Heidelberg

[Nikula et al., 00] Nikula, U., Sajeniemi, J., Kalvianen, H.: A state-of-the-practice survey on
requirements engineering in small-and-medium-sized enterprises, In Telecom Business
Research Center Lappeenranta Research Report 1, 2000, Lappeenrata University of
Technology

[Namria, 18] National Mapping and Resource Information Authority of the Philippines, 2018

[Paludo et al., 11] Paludo, M., Reinehr, S. S., Malucelli, A., Bruzon, L., Pinho, P.: Applying
pattern structures to document and reuse components in component based software engineering
environments, In IEEE International Conference on Information Reuse and Integration IRI
2011, pp. 378-383, IEEE Systems, Man, and Cybernetics Society

[Pervan and Klass, 92] Pervan, G.P., Klass, D.J.: The use and misuse of statistical methods in
information systems research, In R. Galliers (Ed.), Information Systems Research: Issues,
Methods and Practical Guidelines, 1992. pp. 208-229, Blackwell, Boston, MA

[Philippine MSME Statistics, 11] Philippines MSME Statistics: Philippine Department of Trade
and Industry. 2011

[Philippine MSME Statistics, 16] Philippines MSME Statistics: Philippine Department of Trade
and Industry. 2016

[PSRI, 17] Pentathlon Systems Resources Incorporated, 2017.
http://www.pentathlonsystems.com

[PSRI Action Research, 14] PSRI Action Research: Action Research Material for Micro-
businesses, 2014. http://www.pentathlonsystems.com/ar4mb.html

[RE-Tools, 14] RE-Tools: RE-Tools, 2014. http://www.utdallas.edu/~supakkul/tools/RE-
Tools/index.html

[Respect-IT, 07] Respect-IT.: KAOS Tutorial Version 1.0, 2007

[Riaz and Williams, 12] Riaz, M., Williams, L.: Security requirements patterns: understanding
the science behind the art of pattern writing, In 2nd International Workshop on Requirements
Patterns RePa 2012. pp. 29-34. IEEE

[Ruhe et al., 03] Ruhe, G., Eberlein, A., Pfahl, D.: Trade-off Analysis for Requirements
Selection, In International Journal of Software Engineering and Knowledge Engineering, 13
(4), 2003, pp. 345-366

[Seruca and Loucopoulos, 2003] Seruca, 1., Loucopoulos, P.: Towards a systematic approach to
the capture of patterns within a business domain, In Journal of Systems and Software, 67(1),
2003, pp. 1-18

[Scrum.org, 17] Scrum Guide, 2017. https://www.scrum.org/resources/scrum-guide

[Schreiber and Stern, 01] Schreiber, R., Stern, P.: Using Grounded Theory in Nursing. 2001.
Springer Publishing Company, New York.

[Smith and Williams, 12] Smith, B. H., Williams, L.: On the Effective Use of Security Test
Patterns, In 6th IEEE International Conference on Software Security and Reliability SERE
2012. pp. 108-117. IEEE

Macasaet R.J., Noguera M., Rodriguez M.L., Garrido J.L., Supakkul S. ... 787

[Spain SME Statistics, 11] Spain SME Statistics: Spanish Ministry of Industry, Energy, and
Tourism. 2011

[Stepan and Lau, 12] Stepan, P., Lau, K.-K.: Controller patterns for component-based reactive
control software systems, In V. Grassi, R. Mirandola, N. Medvidovic, M. Larsson (Eds.),
Component-based Software Engineering CBSE 2012. pp. 71-76, ACM

[Strauss and Corbin, 90] Strauss, A., Corbin, J.: Basics of qualitative research: Grounded theory
procedures and techniques. 1990. Sage Publications

[Supakkul et al., 10], Supakkul, S., Hill, T., Chung, L., Tun, T., Sampaio do Prado Leite, J.C.:
An NFR Pattern Approach to Dealing with NFRs. In Proceedings of the 18th IEEE
International Requirements Engineering Conference RE 2010. pp. 179-188. IEEE

[Supakkul and Chung, 12] Supakkul, S., Chung, L.: The RE-Tools: A Multi-notational
Requirements Modeling Toolkit. In Proceedings of the 20th International Requirements
Engineering Conference RE 2012. pp. 333-334

[Supakkul et al., 13] Supakkul, S., Chung, L., Macasaet, R., Noguera, M., Rodriguez, M.,
Garrido, J.: Modeling and Tracing Stakeholders’ Goals across Notations using RE-Tools. In
Proceedings of the 6th International i* Workshop iStar at the 25th International Conference on
Advanced Information Systems Engineering CAiSE 2013

[Virus, 17] Virus Worldwide, 2017. http://www.virusworldwide.com

[Withall, 07a] Software Requirement Patterns. 2007. O’Reilly

[Withall, 07b] Software Requirement Patterns. 2007. Microsoft Press

[Young, 04]. Young, R.: The requirements engineering handbook. 2004, Artech House

