
UN
CO

RR
EC

TE
D

PR
OO

F

Automation in Construction xxx (xxxx) 104129

Contents lists available at ScienceDirect

Automation in Construction
journal homepage: www.elsevier.com/locate/autcon

Review

IFC+: Towards the integration of IoT into early stages of building design
Angel Ruiz-Zafra a, b, ⁎, Kawtar Benghazi a, Manuel Noguera a

a Department of Software Engineering, University of Granada, Spain
b Department of Computer Engineering, University of Cadiz, Spain

A R T I C L E I N F O

Keywords:
IFC +
Internet of things
Building information modelling (BIM)
Smart buildings
Industry foundation classes
IFC
Building design
Building models

A B S T R A C T

The integration of Internet of Things (IoT) technologies into Building Information Modelling (BIM) provides sig-
nificant opportunities to support useful services and functionalities for end users in buildings, enabling so-called
smart spaces (e.g. smart buildings and smart homes). Current approaches perform this integration to access the
deployed IoT devices once the building is constructed using Building Automation Systems (BAS), Building Infor-
mation Systems (BIS) and Building Control Systems (BCS). Thus, the integration of IoT devices into the early
stages of building design to describe IoT scenarios and IoT practices is still neglected, despite the benefits it can
provide by being involved in the entire building lifecycle, e.g. cost estimation, stronger facility management, col-
laborative approach, simplification of tasks for developers/programmers through the integration with BIS, BAS
and BCS, and a more holistic management of the IoT infrastructure.

This paper presents a solution to integrate IoT into the design stage (modelling) of buildings in BIM processes,
through two main contributions: Industry Foundation Classes Plus (IFC+), an extension to the latest version of
IFC where new types of entities have been added to support the modelling of IoT scenarios; and a digital object-
based approach to transform smart-built environment specifications in IFC+ into consumable software, with the
aim of supporting IoT scenarios. This paper illustrates the applicability of the proposed method in the context of
design processes, the metamodel (schema) of IFC+, the proposed approach, and a proof of concept with a clari-
fying use case.

1. Introduction

The Internet of Things (IoT) is a trendy research topic owing to its
widespread use and benefits [1–3], fostering its application in several
diverse domains [4–6]. A most renowned IoT application domain is that
of smart spaces (e.g. smart buildings and smart homes) [7], where sev-
eral different solutions have emerged in recent years to provide new in-
door functionalities [8,9].

Recent advances in IoT-related technologies, such as wireless sen-
sors, data processing and Machine to Machine (M2M), and their conver-
gence with the Building Information Modelling (BIM) paradigm, have
the potential to transform the way of interacting with buildings and
monitoring them, thereby enhancing the end-user experience.

BIM is a model-based process that provides the tools and insights to
architecture, engineering and construction practitioners to plan, de-
sign, construct and manage buildings in an efficient manner [10,11]. In
BIM, buildings and structures are represented using interoperable (i.e.

shareable and exchangeable between different software tools) digital
models that are created using software applications, such as Auto-
CAD®, Revit®, and SketchUp®. Some of the best known interoperable
formats for such digital models are Industry Foundation Classes (IFC)
and Construction Operations Building Information Exchange (COBie)
[12].

IFC1 is a complex and comprehensive standard for describing build-
ings, which depends on its own data model and corresponding meta-
model to represent data. IFC specifications are formatted using the
STEP ISO standard, either in eXtensible Markup Language (XML)2 or in
EXPRESS,3 a data modelling language formalised in another ISO stan-
dard (i.e. ISO 10303). The IFC metamodel (i.e. IFC schema) defines sev-
eral hundred entities to represent different building assets (e.g. door,
space, and wall) and the relationships between them, such that most
building types and their infrastructures can be modelled and repre-
sented with the IFC data model [13–16].

⁎ Corresponding author at: Department of Software Engineering, University of Granada, Spain.
E-mail addresses: angelr@ugr.es (A. Ruiz-Zafra), benghazi@ugr.es (K. Benghazi), mnoguera@ugr.es (M. Noguera).

1 https://standards.buildingsmart.org/IFC/
2 https://www.iso.org/standard/40646.html
3 https://www.iso.org/standard/38047.html

https://doi.org/10.1016/j.autcon.2022.104129
Received 29 July 2020; Received in revised form 30 November 2021; Accepted 3 January 2022
0926-5805/© 2021

Note: Low-resolution images were used to create this PDF. The original images will be used in the final composition.

https://doi.org/10.1016/j.autcon.2022.104129
https://doi.org/10.1016/j.autcon.2022.104129
https://doi.org/10.1016/j.autcon.2022.104129
https://doi.org/10.1016/j.autcon.2022.104129
https://doi.org/10.1016/j.autcon.2022.104129
https://doi.org/10.1016/j.autcon.2022.104129
https://doi.org/10.1016/j.autcon.2022.104129
https://doi.org/10.1016/j.autcon.2022.104129
https://www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
mailto:angelr@ugr.es
mailto:benghazi@ugr.es
mailto:mnoguera@ugr.es
https://standards.buildingsmart.org/IFC/
https://www.iso.org/standard/40646.html
https://www.iso.org/standard/38047.html
https://doi.org/10.1016/j.autcon.2022.104129
https://doi.org/10.1016/j.autcon.2022.104129

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

In a smart building, where certain type of IoT infrastructure it is usu-
ally deployed, things (such as door, windows, and light) should be inter-
connected and aware of the current state of other elements because
changes in the state of one thing in a smart environment may trigger the
execution of several actions and services, possibly without needing hu-
man mediation. Thus, IoT connectivity must be planned from the onset.
However, the basic set of IoT-related elements (i.e. sensors and actua-
tors) that can be represented in IFC is not sufficient to represent several
aspects related to smart building design, monitoring, and management
[17–19].

In addition, several required features are not well-supported by the
latest version of IFC (i.e. IFC4), such as the representation and query
about the state of a piece of smart furniture (e.g. the state of a door or a
light, simply for querying purposes or to change it), IoT networks and
the interconnection between different nodes (e.g. servers, gateways,
and other networks), or the authorisation of users to access certain
parts of a building.

Moreover, IoT-based solutions employed in smart buildings are typi-
cally part of Building Automation Systems (BAS) [20], in which the
building manager and her/his team use dedicated software to control
the spaces, grant permissions, and monitor the accesses. IoT-based solu-
tions are applied in a BIM process once the building is already con-
structed, in the context of building management processes [21].

Nevertheless, the support to IoT features from the early stages of
building design has not been treated in depth in BIM, thus far. The inte-
gration of IoT-related functionalities in the design of buildings from
their inception has several benefits, such as the documentation of smart
building functionalities (e.g. building automation and management of
devices, parking spot for employees, and motion detectors to conserve
energy), thus enabling the specification of IoT ecosystems (sensors, net-
works, users and credentials) through Computer-Aided Design (CAD)
software to address the design of an IoT scenario efficiently and itera-
tively as part of the entire building lifecycle process. This results in ro-
bust facility management processes and ultimately achieves better
building environments [22].

The possibility of working with models is a very desirable character-
istic as far as the support of IoT features in BIM processes is concerned,
since each IoT infrastructure is managed by an underlying software.
The use of models to represent IoT devices can helps to detect errors
and inconsistencies in early stages of the software development, which
in turn, has been repeatedly proved to reduce software lifecycle costs
exponentially [23–25]. Similarly, there are starting to appear studies
reflecting the positive economic impact of using BIM models in con-
struction processes, although the lack of records and available data still
difficulties to carry out these kinds of research [26,27].

This paper presents a set of mechanisms with the aim to address the
concerns related to the integration of IoT into the early stages of build-
ing design and BIM process lifecycles. The two main contributions of
this paper are 1) an extension to the original IFC schema intended to
support IoT features, that we have named IFC+, and 2) a digital object
(DO)-based approach to enable the automatic transformation of IFC+
entities into consumable software/services used by IoT applications and
software for the management of buildings (i.e. BAS and Building Infor-
mation Systems (BIS) software).

The work presented in this paper brings about important benefits,
highlighting: 1) the description of IoT scenarios in BIM from early
stages in the building design through IFC+ and 2) the automatic trans-
lation of IFC+ entities into ready-to-use software artefacts imple-
mented as DOs and supported by the Handle System®, a comprehen-
sive system for assigning, managing, and resolving persistent identifiers
for digital objects and other resources on the Internet [28]. This auto-
matic translation of IFC+ entities and DOs reduces development times;
facilitates the integration of third-party software and minimizes errors
in the access to consume the DOs, since service interoperable interfaces
for IoT devices are automatically generated; and minimizes the poten-

tial mistakes derived from the human intervention in the development
and deployment process (e.g wrong setting parameters). Likewise, the
use of models to integrate the representation of IoT devices and con-
struction elements in BIM models opens up the possibility to develop
software that performs conformance and validity checks on such mod-
els, which results in improved model reliability. The software provided
in the Supplementary Section allows the proposal to be tested using the
appropriate tools to generate the IFC+ models from IFC ones (for ex-
ample, exported from Revit) and transforms them automatically into a
DO-object structure supported by the Handle System.4 In addition, a
Java-coded parser has been released ready-to-be used by developers or
programmers to support IFC+ compatibility in customised software.

The paper begins by citing related studies on BIM, IoT, and the coex-
istence of both domains. It is followed by a description of the proposal
that outlines the main components of our contribution. Subsequently,
IFC+ is presented as well as the proposed approach including the dif-
ferent stages and elements required. Finally, a proof of concept (PoC) is
described in detail, followed by the discussion and conclusions of the
study.

2. Related work

The field of built environments is plagued by several diverse tech-
nologies that may be used in the different processes that may be a part
of a BIM project, from CAD software for modelling buildings to sophisti-
cated BAS and BIS to manage them [29].

Currently, the use of IoT-based technologies has fostered the devel-
opment of applications to enhance buildings and their context, generat-
ing so-called smart environments or smart spaces, such as smart build-
ings and smart homes. However, research on the integration of BIM and
IoT is still in its early stages, and most studies published thus far include
concepts and theoretical approaches [21]. These studies focus on the in-
tegration of BIM and IoT from two different points of view or ap-
proaches: 1) the use of IoT-based technologies to monitor buildings and
support other aspects, such as construction logistics, and emergency re-
sponse services; and 2) the use of methods to integrate IoT and Informa-
tion and Communication Technologies (ICT) together with BIM [30].

In the first approach, certain literature deals with BIM and IoT inte-
gration across several domains: construction, operation and monitor-
ing, health and safety management, construction logistics and manage-
ment, and facility management [30]. Several different projects pre-
sented for these domains propose solutions where IoT technologies are
applied to monitor buildings within BIM processes. For instance, the
projects presented in [31,32] to support real-time environmental moni-
toring through IoT technologies or the research described in [33,34] to
provide emergency response services for buildings using IoT technolo-
gies and BIM.

In the second approach, the existing studies are oriented to investi-
gate the methods to integrate IoT devices and BIM around three main
concerns: 1) contextual information to describe the building and IoT
devices (e.g. sensors); 2) light data storage to save time-series data from
continuous sensor reading; and 3) the integration of both concerns, that
is, contextual information and light data storage [30].

The projects in this second approach aim to use BIM technologies
(e.g. CAD software and IFC data representation formats) and general-
purpose technologies (e.g. databases, servers, and custom software) to
integrate BIM and IoT. One example is the use of a particular CAD soft-
ware (Revit) to transform the building contextual information into tu-
ples of a relational database and store the time-series data gathered
from IoT devices into a second database, both linked by a unique identi-
fier [35,36]. Other projects propose the integration of contextual infor-
mation and dynamic information (i.e. gathered periodically from IoT

4 The Handle System must be installed. Please, check https://hdl.handle.net/
20.1000/113 for more information about the installation process

2

https://hdl.handle.net/20.1000/113
https://hdl.handle.net/20.1000/113

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

devices) to provide useful functionalities (e.g. building heat maps and
indoor positioning systems) through useful all-in solutions, such as the
MITBIM platform presented in [37], or using query-oriented languages
such as BIMQL [38]. Finally, most recent and sophisticated projects use
semantic web technologies and ontologies, in which the contextual in-
formation (building context data) and dynamic information (i.e. the
data gathered from IoT devices) are linked using specific languages (e.g.
SPARQL) [39,40].

Reviewing one of the most complete surveys on this topic, presented
by Tang et al. in [30], the integration of IoT into the early stages of
building design (BIM) has not been addressed thus far, and most solu-
tions focus on the integration of BIM and IoT in the use of IoT technolo-
gies to support data gathering once the building is constructed (e.g.
monitoring, facilities, and services) or to link IoT-related technologies
(e.g. devices) with static contextual information about the building.

Although certain approaches have been proposed to integrate BIM
and ICT (e.g. to transform IFC specifications into relational database
schemata and tuples), security and automation in data transformation
still require further revision. Security is one of the main concerns in a
smart building, that is, the grant of permissions, authorisations, and ac-
cess to sensitive data. In addition, the transformation from IFC to a rela-
tional data model or any other data storage format requires additional
software to handle the database, such as customised applications or Ap-
plication Programming Interfaces (APIs) that must be implemented ad-
hoc, which hinders the automation of the deployment of software re-
lated to smart buildings.

Many other technologies supported by buildingSMART organiza-
tion5 could be used instead of IFC to intend to support IoT from early
stages of building design, such as another buildingSMART MVDs
(Model View Definitions) like BAMie,6 COBIe,7 BIMSie, WALLie; and
technologies such as BACNet or KNX [41]. However, we did decide to
use IFC and our custom approach instead any other MVD and other
technologies for the following reason:

• As IFC, the other MVDs mentioned are also oriented to the
building construction processes, but likewise, with no support for
IoT infrastructures and features. We decided to work with IFC,
for being probably the most used/famous standard.

• Although there are many other technologies related to BIM that
would seem suitable for the representation of IoT elements, such
as the service framework BACnet and which enables the
communication between electronic devices within a building,
other main features related to IoT, such as access control, security
issues and data integration are still missing.

• Regardless of the MVDs (IFC, BAMie, COBie, etc.) and the
additional technologies used (KNX, BACnet), the goal is usually
oriented to get a proper i) representation (MVD), ii) automation
(i.e. KNX) and iii) management of building information. Usually,
and according to buildingSMART, the integration of these three
technologies could be done through the use of a BIM server8

together with additional software (general purpose or ad-hoc, i.e.,
customised). Thus, the deployment of an IoT-based scenario into a
smart building requires many different technologies, skills and
software. Our proposal reduces the number of technologies used
and simplifies the integration of the different technologies (MVD,
Services, Applications) by means of IFC+ to represent IoT-based
smart spaces. The use of digital objects accessed through a friendly
API to be consumed by programmers simplify development life
cycles.

5 https://www.buildingsmart.org/
6 http://docs.buildingsmartalliance.org/MVD_BAMIE/
7 http://docs.buildingsmartalliance.org/MVD_COBIE/
8 https://github.com/opensourceBIM/BIMserver

In this paper, IFC+ and a DO-based approach are introduced to ad-
dress these two concerns. When deepening in the details of the afore-
mentioned pieces of work, it is possible to realize that they do not ac-
complish a full integration of IoT technologies, particularly when it
comes to the specification of design models. It can be said that they
make use of IoT technology for some purpose, but IoT is not integrated
into the BIM modelling artefacts. The IFC+ extension that we propose
allows IoT devices and sensored spaces in a built environment (e.g. a
temperature sensor, a light bulb actuator or the specification of secure-
related parameters in an IoT network), to be treated as first-class enti-
ties, that is, to be modelled and represented the same as other construc-
tion elements (e.g., walls, doors, stairs, etc.) in BIM projects. Thus, it is
described as an extension to IFC that enables the modelling of buildings
that support IoT-related features and security constraints.

In addition, the approach described in this paper enables the auto-
matic translation of contextual information (IFC+) into an out-of-the-
box solution to be used by IoT applications complying with security
constraints. The approach, based on the use of DOs, enables the au-
tomation of software generation using model transformation tech-
niques, with the aim to represent IoT-related building assets and a com-
mon way to consume software related to the IoT infrastructure into the
building [42]. With the approach proposed it is possible, in an auto-
matic way, generate an entire software infrastructure (supported by
DOs) from the CAD model.

This software infrastructure contains consumed software elements
(DOs) that can be accessed through an ease-to-use REST API, allowing
the consumption of the DOs by third-party applications. Thus, buildings
constructed using an approach similar as it is proposed will share the
same syntax of the REST API, which significantly foster the communica-
tion, interconnection and integration of buildings, in the context of
smart cities.

3. Integrating IoT into building design environments

The IFC data model was designed to describe buildings and con-
struction data, with IFC4 being the latest version of the standard
[13,14]. This technology allows building supplies, furniture (such as
doors, tables, and windows), and building infrastructures (e.g. electrical
and pipeline installation) to be represented. The IFC schema is defined
using EXPRESS, a data modelling language for product data based on
STEP (ISO 10303) [43]. Thus, the IFC4 schema defines entities to de-
scribe doors, windows, walls, and any type of furniture as well as rela-
tionships between them.

However, regarding IoT, several elements or features are missing in
IFC4 which are required to design smart spaces that use IoT technolo-
gies. For instance, the entity Door, represented in IFC4 as IfcDoor or Ifc-
DoorStandardCase (type and subtype respectively), has a set of attrib-
utes such as color, size, and description, but is unrelated to the current
state of the door (i.e. open/closed); hence, it is not possible to devise
mechanisms to monitor such state using IFC. The schema specification
for sensors in IFC is another paradigmatic example of this situation. The
concept of sensor is also supported in IFC4, as the entity IfcSensor, but
no information is provided on the way to interact with each sensor (e.g.
communication protocol, what information is provided, and data struc-
ture), and thus, the potential of IoT is not fully leveraged.

In this section, IFC+, an extension to IFC4, is presented to support
IoT features, with the aim of providing architects/designers, the possi-
bility of modelling IoT scenarios at the early stages of building design,
in conjunction with CAD software. For instance, when setting up the
sensors in the lounge of a building, it would be desirable to additionally
specify the authorised users to access these sensors, the IoT-based net-
works to use, and the configuration parameters required in the different
elements involved in communication with such sensors (e.g. gateways
and servers).

3

https://www.buildingsmart.org/
http://docs.buildingsmartalliance.org/MVD_BAMIE/
http://docs.buildingsmartalliance.org/MVD_COBIE/
https://github.com/opensourceBIM/BIMserver

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

IFC+ is defined as a schema and has been modelled following the
same syntax and philosophy: a hierarchical and well defined structure
of entities (tree data structure). In IFC+, the main entity is IfcPlusIoT,
which is a sub-entity of IfcObject, a core entity of IFC, and all entities
defined in IFC+ inherit from IfcPlusIoT or any of its sub-entities. In this
way, as for the description of IoT elements, IFC+ has the same reliabil-
ity as IFC to model buildings and IoT scenarios.

Due to IfcObject “is the generalization of any semantically treated thing
or process”,9 IFC+ entity also inherits (for transitivity) from the most
general entity in IFC and thus, any IFC+ entity will also have the gen-
eral attributes that any IFC entity has. In this way, we enable the defini-
tion of our custom entities (i.e., IfcPlusXXX) at the same level as any
other thing in IFC, such as a wall or a door. This entails that, in terms of
software processing, an object like an IoT-based badge reader or any
other kind of IoT device is treated the same in IFC+ as a door or any
other construction element from the IFC standard.

This inheritance also entails two main benefits:

1. The presence of required attributes that must be specified for
any IFC entity, also in IFC+ entities. These attributes are also
inherited from other entities (IfcRoot, IfcObjectDefinition) like the
GlobalId, name, owner, description, relationships (associations)
and type of object. This will help to ensure that custom IFC+
entities share the common data structure of IFC entities, which
helps in the interpretation, management and processing of IFC+
files by CAD software or custom software in the future by means
of homogeneous representations.

2. Since IfcPlusIoT inherits from IfcObject, and in IFC+ any entity
inherits from IfcPlusIoT, it is possible to link together original IFC
entities and IFC+ entities. This feature is mandatory so as to
enable CAD software to represent IoT-based assets, such as smart
doors, linking IFC entities (e.g., a door) with IoT devices (e.g., an
RFID card).

Finally, we propose a novel approach based on DOs to generate a
ready-to-use consumable software from IFC+ specifications to enhance
the automation of smart spaces. Both contributions are described in this
section.

3.1. IFC+ genesis

The formalisation of IFC+ to describe IoT scenarios in the early
stages of building design was conducted in two different
stages—requirement analysis and design—to detect the required IoT-
related features and an appropriate way to define them to comply with
the current IFC specification and schema.

3.1.1. Requirements analysis
To design a suitable IFC+ schema, an in-depth requirement analysis

was conducted to detect new elements and features required to describe
IoT scenarios. This requirement analysis did start with periodical meet-
ings hold in the scope of PETRAS project (https://petras-iot.org/), with
the staff of the BRE (Building Research Establishment) in Watford (UK),
researchers from Newcastle University (Urban Sciences Building), re-
searchers from Digital Catapult Ltd., and people from The Bartlett
School of Architecture (University College London) from November
2016 to January 2018. These meetings represented a first benchmark
for the elicitation of the desired features that an extension to IFC that
would include support for IoT infrastructure design, should have. The
requirement analysis was completed after a deep review of the litera-
ture, with the aim to define the main requirements of IoT ecosystems
that are not included in IFC, such as the works presented in [7,22,44].

9 https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC1/HTML/
schema/ifckernel/lexical/ifcobject.htm

Such analysis revealed the following important concerns to be ad-
dressed: 1) things in buildings, 2) state of things, 3) things locations, 4)
interaction between things and networks, and 5) security.

3.1.1.1. Things in buildings. The IoT is a large domain with a wide
range of processes, interconnected devices, and supporting technolo-
gies. In an IoT scenario, there are things, that is, well-identified items
with interfaces to interact with them through a communication proto-
col technology (e.g. network) [45].

However, not all elements inside a building should be considered as
things within an IoT scenario. For instance, a specific wall might not be
relevant from an IoT perspective. In contrast, a smart door (i.e. a door
equipped with sensors, actuators, and RFID tags) must be considered as
a thing to check whether the door is open or closed, obtain the list of au-
thorised users to open it, and manage/monitor it remotely. Thus, in a
building modelled by IFC4, certain entities will be relevant in an IoT
scenario, whereas others will be transparent.

3.1.1.2. State of things. Generally, things in an IoT scenario may be in
different states (e.g. a door opened, a window closed, an air condition-
ing machine off, and a lamp on). The definition of the state of the dif-
ferent things is not supported natively in IFC, although it is possible to
define and link custom properties through the IfcPropertySingleValue
entity.

However, these custom properties are tailored and defined ad-hoc
by each architect/designer. Thus, the lack of standardisation and refer-
ence schema often leads to situations in which two or more models aim
to represent the same state of an entity in different ways. For instance,
the first model could represent a particular state using an attribute
called state that could have an integer number to represent the different
states (e.g. -1, 0, 1, 234, and − 123), whereas the second model could
use an attribute called position that represents the same state using a
character string (i.e. a word or small piece of text, such as on, bat-
tery_low, off, and shut_down). Applications using any of these two
schemata cannot interact or share information at all because they
process states in a particular manner and expect information to be codi-
fied in a particular manner, rendering it unfeasible to foresee and
process all possible ways of representing the state of an entity. This fact
hinders the integration of different schemata into the same system.
Hence, it is necessary to unify the representation of common attributes
and features present in an IoT-based smart space.

3.1.1.3. Things locations. In IFC, the place of an entity is relative to
another entity, generally the entity where it is contained. For instance,
to identify the location of a door (an IfcDoor entity), the wall (an
IfcWall entity) where it is placed and the floor of the building where
the door is located (an IfcSpace) must be identified. In terms of smart
spaces, it would be desirable to describe the location of things in a
building in absolute terms to support functionalities required in IoT
settings, such as ‘turn off the lights of the first floor’ or ‘open all the
doors’.

3.1.1.4. Interaction with the things and network. An in-demand feature of
things in IoT settings is the capability to be accessed by other things, ap-
plications, processes, and users.

IFC entities are described using common attributes, such as name,
description, size, and color. Although new entities have been added to
represent IoT-related elements, the attributes required to describe how
to interact with them; such as communication protocol, address, and in-
terface; how the device sends the information; and what information is
sent by an IoT device are still missing. Therefore, support is required to
describe additional entities to represent interactions between elements
present in an IoT setting.

Furthermore, a crucial element to support these interactions is the
network. Similar to an electrical or pipeline installation in a building,

4

https://petras-iot.org/
https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC1/HTML/schema/ifckernel/lexical/ifcobject.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC1/HTML/schema/ifckernel/lexical/ifcobject.htm

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

smart spaces deploy different types of networks to provide communica-
tion channels to the BAS and BIS. Smart spaces typically have a specific
network technology, such as wireless sensor networks (WSNs) or low
power wide area networks (LPWANs), to transmit data in IoT settings
[46]. These types of IoT-oriented networks are not supported in the cur-
rent IFC standard but are required to define the interactions between el-
ements. Hence, they must be included to specify a fundamental part of
IoT settings.

3.1.1.5. Security. Security is one of the main concerns to be addressed
in an IoT design [47]. In a BIM–IoT solution, it is necessary to tag the
different things in a building and ensure that only authorised and au-
thenticated users access them. For instance, in a smart space with dif-
ferent types of users (e.g. building manager, office worker, and mainte-
nance worker) and different types of things (e.g. smart doors, lights,
and sensors), certain users will be authorised to manage the entire
smart space (e.g. a building manager) or part of it (e.g. an office worker
or a maintenance worker).

These authorisation and authentication features between things and
users are not supported in IFC; however, they are supported by the BAS
and BIS once the building is constructed. Thus far, it is not possible to
describe these security constraints in the early stages of building design.

3.1.2. IFC+ design
According to the different concerns described in the previous sec-

tion, and as an extension to IFC (i.e. to its latest version, IFC4), new en-
tities, attributes, relationships and types have been defined in IFC+.

The IFC schema has a well-defined structure. Hence, the new ele-
ments of IFC+ were defined to be compliant with the specifications of
IFC. IFC+ metamodel (Fig. 1) is the general description, containing all
the possible elements to be used. The different files (ifcplus extension)
used to describe buildings, also called instances, are created from the
schema. An essential technology to support this generation of instances
from the original schema is the use transformation models technology
[42].The use of models and transformation models automate part of the
implementation, but also ensure that IFC+ files are consistent with re-
spect to the original schema, because it is not possible to construct an
instance with entities or elements that are not represented in the origi-
nal schema. Furthermore, model transformation techniques along with
the description of IoT elements can help to detect inconsistencies and
problems in early stages of the building construction process, in partic-

ular as far as interaction software between IoT devices and applications
is concerned. This is a source of software overcost widely studied and
proven in the literature [48].

In IFC, the names of all elements begin with the word Ifc, followed
by the name of the entity (e.g. IfcDoor, IfcWall, and IfcWindow). To dif-
ferentiate the entities that have been added in IFC+ from the existing
ones in IFC, we adopted a convention to begin IFC+ entities with the
term IfcPlus, followed by the name of the entity (e.g. IfcPlusSensorSecu-
rity and IfcPlusNetwork).

IFC+ had one root entity, IfcPlusIoT, being positioned at the same
level as other upper-tier entities in IFC (IfcActor, IfcProcess, and IfcProd-
uct) and inherited directly from IfcObject, which is the generalization of
any semantically treated entity or process in IFC. Thus, IfcPlusIoT inher-
ited the attributes of IfcObject that provided crucial features, such as the
attribute IsDeclaredBy, which enabled the association of certain entities
with others, allowing the linking between IFC+ and IFC entities. Fur-
thermore, this inheritance provided attributes such as name, descrip-
tion, and unique identifier (global identifier).

Moreover, the definition of IfcPlusIoT as the root IoT element below
the IfcObject entity permitted the addition of new elements when neces-
sary, preserving the original structure of IFC and ensuring backward
compatibility and consistency between the new elements added in
IFC+ and the existing ones in IFC.

The entities added in IFC+ to describe IoT scenarios are organised,
conceptually, into four main topics, according to the concerns detected
in the Requirements analysis stage (Section 3.1.1). The topics are as fol-
lows:

1. Network. In smart spaces, several devices (things) are
interconnected or connected to external actors (e.g. users,
software, and devices) to exchange data. IoT entities belong to a
network that must be defined and represented in IFC+.

2. State. Supplies and furniture in a building have state, but are not
represented natively in IFC, such as the state of doors, windows,
and lamps. Therefore, the representation of the state of IoT
entities was essential in IFC+ to support IoT settings.

3. Location. Although, in IFC, it was possible to calculate the location
of an entity by recursively calculating the location of the entities
where it was contained until reaching the root IfcProject container,
IFC+ provided additional entities to describe the location of a
thing more efficiently and easily.

Fig. 1. IFC+ metamodel (or schema in IFC jargon).

5

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

4. Security. Security is a crucial concern in any IoT scenario. Hence,
it was addressed and covered in IFC+ to secure the authentication
of the users and the integrity of the data. Therefore, additional
entities were added to support the description of secure IoT
scenarios in smart spaces.

The casuistry for the representation of IoT scenarios is really signifi-
cant and constantly growing. Thus, in IFC+, several entities to repre-
sent generic IoT elements were added, such as devices (IfcPlusDevice),
networks (IfcPlusNetwork), states (IfcPlusState), and security (IfcPlusSe-
curity and IfcPlusCredential). Below each generic element, there were
several entities that represented a required and specific concern in built
environments. For instance, the representation of an integrated circuit
card based on the use of smart cards and badge readers, commonly used
for smart doors in smart buildings, could be represented in IFC+ by the
IfcPlusTag and IfcPlusReader entities, respectively.

An illustrative example is that of networks for IoT applications. Cur-
rently, several IoT networks, such as Long Power Wide Area Network
(LPWAN), have different features which are defined and maintained by
either public or private organisations. LoRaWAN is a LPWAN that en-
ables long-range Internet transmissions (of more than 10 km) [49], al-
lowing the deployment of Wireless Sensor Networks (WSNs), both in-
doors and outdoors, and making it a suitable choice for smart-built en-
vironments [50,51]. In IFC+, several entities permitted the complete
representation of a LoRaWAN network and its configuration parame-
ters, supporting different end nodes, such as IoT devices, (IfcPlusLo-
RaDevice), LoRa gateway (IfcPlusGateway), Lora server (IfcPlusServer),
and security-related parameters (IfcPlusLoRaSecurityServer, and IfcPlus-
LoRaSecurityNode).

Another example to illustrate the capability of IFC+ is related to
sensors and actuators. Sensors and actuators are devices commonly pre-
sent in IoT applications and smart environments (e.g. temperature sen-
sors, humidity sensors, and actuators to open a door). These types of de-
vices were represented in IFC+ as entities of the type IfcPlusDevice. Al-
though IfcSensor and IfcActuator entities existed in the original IFC
schema, the representation of sensors/actuators for smart spaces were
enhanced in IFC+ by a set of additional entities to specify metadata for
the sensor (IfcPlusSensorMetadata) as well as to specify the interaction
with the device. Because the interaction with a sensor/actuator is a
complex programming task, two entities, IfcPlusSensorDescriptor and Ifc-
PlusSensorDataField, were added in IFC+ to describe the technology
used and thus, enhance the integration of the sensor/actuator in the
smart-built environment, for example, by using third-party description
languages that are easily compatible with IFC+, such as Sensor Markup
Language (SenML), Sensor Model Language (SensorML), or other cus-
tomised model-based approaches [52,53].

Fig. 1 presents the IFC+ metamodel (schema) described in the
Unified Modelling Language (UML) with the entities added to the IFC
schema and their relationship with each other. The complete list of
added entities and a short description of each one are provided in
Table A.1, in Appendix A.

The complete IFC+ schema can be obtained from the link provided
in the Supplementary Materials section.10

3.2. A DO-based approach to enable the use of IFC+ entities by IoT
applications

Although IFC+ allows the modelling of IoT scenarios, once the
building is constructed, IoT applications must be implemented to sup-
port the interactions. These applications will be configured and will in-
teract with the devices, networks, and elements specified in the IFC+
file of the building. To simplify the development of these applications
and the management of the different IoT-related elements described in

10 https://github.com/bihut/ifcplus

IFC+, we propose a solution that automates the generation of software
artefacts from the specifications of IFC+ entities. These software arte-
facts, represented as DOs [54], could be used by customised ad-hoc IoT
applications or by existing commercial BAS, BMS, or BIS.

IFC+, as an extension to IFC, is a schema to support and model
buildings with IoT features.

A DO is a data record that contains data, state and information about
one entity in a domain [54]. Typically, DOs are used as a digital repre-
sentation of physical or digital elements and their features. A specific
implementation of DOs is supported by the Handle System®, an open-
source and comprehensive system for assigning, managing, and resolv-
ing persistent identifiers for DOs over the Internet [28].

In the Handle System, everything is a DO, which is identified by a
unique identifier composed of two different parts: a prefix (generally
represented by a number) and a unique alphanumeric name called suf-
fix; both separated by the character’/’, that is, prefix/suffix (e.g. 55,555/
device1). These DOs can be consumed through a Representational state
transfer API (REST API), provided natively by the Handle System.

In terms of security, the Handle System guarantees the access and
management of DOs, providing easy-to-use and well-tested security
mechanisms for authentication and authorisation. IFC+ is well-aligned
with these features. In the Handle System, the authentication is the
process to be identified as a DO (that is, similar to being identified as a
user in any other system), whereas the authorisation is the possibility to
access and/or modify a specific DO. Easy-to-use and well-tested secu-
rity mechanisms for authentication and authorisation are implemented
and supported by the Handle System, such as basic authentication
schema (user id and password) and digital certificates for authentica-
tion and the use of Access Control Lists (ACLs) for authorisation [54].

Finally, the Handle System supports a naming system similar to Do-
main Name System (DNS), which can be used to represent and resolve
DOs with a hierarchical structure.

To expedite the development and deployment of IoT scenarios in
buildings modelled by IFC+, we propose the transformation of IFC+
entities into DOs supported by the Handle System. This entails repre-
senting each IoT-related element described in IFC+ as a DO with 1) a
unique identifier, 2) a custom data structure to represent the entity in-
formation and 3) security features, assuring security features of the
building that are described in the IFC+ model through the correspond-
ing entities (i.e. IfcPlusCredential and IfcPlusSecurity). Fig. 2 depicts the
proposed approach.

In this approach, the architect designs (Stage 1) the building using a
specialised CAD software that supports the IFC+ schema. Conse-
quently, an IFC+ file with a model of the building is generated.

Using the model of the building and a dedicated software, the differ-
ent IoT-related entities described in the IFC+ file are transformed into
DOs in the Handle System, producing a hierarchical tree-like entity
structure to represent the entire building (Stage 2), as illustrated in Fig.
3.

In addition to the features provided by the Handle System (i.e. secu-
rity mechanisms, ACLs, and metadata about each entity), the DOs have
a data structure to represent the information and features of the IFC+
entities. This data structure is managed by the Handle System as a plain
text field, but it could be enhanced for built-oriented goals, such as the
proposal described in [55], consisting of enhanced data structures for
DOs called templates, which enable 1) the description of complex data
structures through a hierarchical organization and 2) the linking be-
tween DOs' data structures.

The IFC+ file is only used to describe the IoT scenario itself and the
information required to configure it, which is transformed into Digital
Objects in this stage. In this way, additional data such as values gath-
ered from sensors, networking traffic logs, etc. is not stored, in any way,
in the IFC+ file. This data must be handle (implemented) by the system
developers and analysts in Stage 5, who decide how to handle them
properly (storage, organization, analysis, purpose). This DO-based ap-

6

https://github.com/bihut/ifcplus

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

Fig. 2. Approach to support IoT in building design process.

proach is independent and agnostic about the ultimate purpose for
which the data produced in a smart building are managed. The stake-
holders are free to decide what to do with data once they are collected.
This approach also fosters loose coupling between the infrastructure of
the building, which may be fully functional aside data, and data pro-
cessing.

Subsequently, with the IFC+ file (which contains a building model),
the building construction process is conducted in Stage 3. The IoT ele-
ments (i.e. devices and networks for the building being designed) are
configured in Stage 4.

Once the building is constructed and IoT elements have been de-
ployed, the end users (i.e. maintenance workers, building managers,
and office workers) are ready to use smart things (e.g. RFID cards, read-
ers, and sensors) through dedicated applications (e.g. BAS, BCS, BIS,
third-party APIs, and customised applications) in Stage 5. These appli-
cations interact with the handle system to query features about the IoT
elements deployed within the building or, for example, check security
constraints before using any device or access to a specific zone. In this
stage as well as in the previous stage (Stage 4), IFC+ file is not required
or used, because the information originally stored in the IFC+ file is
now implemented and stored in the DO-based infrastructure through
the different digital objects, which can be consumed through the high-
level REST API. In this way, the applications resolve access permissions
to the devices and functionalities available in an IoT scenario (i.e. smart

building) using the information stored securely in the corresponding
DOs.

On the other hand, it may be desirable to add a new IoT-related ele-
ment to support a new functionality once the building is completed. Al-
though the option to re-start the cycle (from Stage 1 to Stage 5) is al-
ways possible, it is much more efficient a new manner to include this
IoT element within the constructed building without modifying the
CAD model, re-generating the IFC+ file and re-constructing the DO in-
frastructure. In the approach presented, we have defined two stages
(Stage 6 and 7) which correspond with the set up of the IoT hardware
(installation) and the set up of IoT software required, as it is depicted in
Fig. 2. At Stage 7, we can use dedicated software that uses the REST API
of the DO infrastructure (Handle System) to create a DO through to rep-
resent. Once Stage 6 and 7 are completed, the process can pursuit to the
Stage 4, ready to configure the IoT device and use it through the appli-
cations or dedicated software (Stage 5).

This approach simplifies the design (construction) and services im-
plementation (software) of smart buildings. The approach enables the
design of IoT-based smart buildings by architects, along with the pro-
posal presented based on DOs, allows the automatic generation of
ready-to-use web services and consumable by third-party software from
the design of a smart building design. That is, the proposal presented
enables that the software components (i.e. web services), needed to in-
teract and access the IoT devices, can be derived from the specification
of such devices in IFC+. In this way, IFC+, together with the approach

7

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

Fig. 3. DO-based hierarchical structure to represent a building through the Handle System.

proposed, work as a bridge between architects and IT guys, because ar-
chitects without any background about networks or IoT systems, are
able to design the building and, IT guys, without knowledge about
buildings are able to configure and deploy an IoT infrastructure into a
smart building.

4. Proof of concept

In this section, a PoC conducted in a synthetic and simulated built
environment is provided to:

• Illustrate the applicability of IFC+.
• Demonstrate the viability of working processes based on the

approach presented in Section 3.2 (see Fig. 2), starting from
early stages in the construction process of a smart building
(Stage 1) and concluding with the interaction with IoT devices
through mobile apps once the smart building has been
constructed (Stage 5).

• Evaluate the suitability of IFC+ and the DO-oriented approach in
the construction of smart built environments based on BIM.

In the following section, we will present the scenario simulating a
fictitious company that plans to use IFC+ and requests the develop-
ment of a PoC in the laboratory. The remainder of the sections analyse
the different stages of the devised process, illustrating the proposed ap-
proach (Fig. 2) in a particular and notional scenario.

4.1. Scenario description

A novel and emerging start-up construction company has a project
in mind for the design and construction of a smart building, considering
the modelling, configuration, and tuning of IoT settings from the early
stages of the building construction process, such as device definitions,
credentials, and networks. That is, to allow the definition of IoT fea-
tures during the design stage of a building, rather than after its con-
struction, and transform this design, as automatically as possible, into
ready-to-use services of the smart building, which, in turn, will be con-

sumed by end users (i.e. building managers, office staff, and visitors)
through IoT-based applications or other third-party software (i.e. BIS).

The company has its own architectural firm. Hence, according to the
current trends and legal requirements, architects design and construct
all the buildings using technologies and techniques based on BIM. Be-
cause in smart buildings, IoT services (networks, devices, and creden-
tial accesses) are set up once the building is constructed, the engineers
and architects of the company face two main challenges that hinder
their goal of designing a smart building with IoT features:

1. The company uses a proprietary tool (e.g. Revit) as BIM software
to model the building, and IFC as data representation and
exchange format that are used by the different departments and
stakeholders. However, either the software or IFC has to be
designed to describe sophisticated IoT-based scenarios, such as
those deployed in a smart building.

2. Architects and construction engineers lack knowledge about IoT
technical problems, which are required for the specification of
IoT devices, IoT networks and technology, and configuration
parameters required in communication networks.

To overcome these challenges, the company plans to adopt our ap-
proach (IFC+ and the DO-based approach) as a possible solution. Be-
fore deciding on the procedure to follow to conduct the design and con-
struction of a real smart building, the company requests for a simula-
tion of our solution with an in-the-lab synthetic PoC, which is explained
next.

4.2. Application of the proposal

The different stages of the proposed approach (Fig. 2) and the appli-
cation of the proposed technology are described in detail in the follow-
ing sections.

4.2.1. Stage 1: building design
The first stage is related to the design of the building, where an ar-

chitect (or team of architects) uses a CAD software to model the entire
building, that is, the different floors, pipes, and electrical installations.

8

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

In this PoC, we used a free CAD model available on the Internet11 and
Revit as a CAD software to manage the model (Fig. 4).

In this first stage, and according to the approach presented in
Section 3.2, the elements to describe the IoT scenario must be modelled
using a CAD software. These elements include IoT devices, networks,
users, and credentials, that is, the features supported by IFC+ (Section
3.1).

Because IFC+ is a novel proposal, it is currently not supported by
any CAD software. To simulate and illustrate the applicability of the ap-
proach, we developed a custom software called IFC2Handle.

IFC2Handle is a Java desktop application (see Fig. 5) that provides
two main functionalities: 1) the generation and downloading of IFC+
files from the original IFC files generated by a CAD software and 2) the
automatic construction of the DO-based hierarchical structure in the
Handle System using an IFC+ file. In this section, we will focus on the
first functionality as the outcome of Stage 1. The second functionality
will be described later (in Stage 2).

IFC2Handle used the file with the IFC model generated by Revit as
input (see Fig. 4), which was parsed and displayed in IFC2Handle as a
hierarchical view of the building (left-hand side of Fig. 5). From this hi-
erarchical view, it was possible to select those parts of the building that
were involved in the IoT scenario, that is, the parts of the building
where IoT-related features would be involved, such as devices, creden-
tials, locations, and sensorised spaces.

Furthermore, IFC2Handle is based on automatic model transforma-
tions. Transformations and models are defined in terms of IFC models
and formal languages, and IFC+ files are instances of the IFC+ meta-
model. Likewise, IFC+ files are processed using software constructed
over the IFC+ metamodel definition, ensuring the reliability process-
ing.

In this PoC, we considered two rooms of the building as smart rooms
(i.e., sensorised rooms). They appear highlighted in blue in Fig. 4 and
identified as R1 and R2 in the left-hand side of Fig. 5.

Once certain zones of the building were selected as smart spaces, we
generated the corresponding IFC+ file by clicking on the’Generate
IFC+ File’ option. This IFC+ file could be downloaded through the ap-
plication, when required, using the’Download IFC+’ button. Fig. 6 dis-
plays an excerpt from the IFC+ file generated in this case. The entire
file is available in the link provided in the’Supplementary Material’ sec-
tion.

4.2.2. Stage 2: transformation of IFC+ entities into DOs
As mentioned before, the IFC2Handle application implements the

Stage 2 of the approach, that is, the transformation of IFC+ entities
into DOs which can be managed through the Handle System (see Fig.
2). The different DOs were created using a hierarchical structure, pre-
serving the specification of the structure of the building described in the
IFC file. The IFC2Handle application used a custom parser to conduct
this task, which was also implemented to transform the IFC+ files into
programming language objects (i.e. Java programming language ob-
jects). The parser, called IFCPlusParser, is available for developers/pro-
grammers as a Java library in the repository referenced in the “Supple-
mentary Materials” section, which implies that it can be imported in
any Java-based project.

On the right-hand side of the graphical user interface (GUI) of the
application (see ‘Project Options’ in Fig. 5), the parameters required to
set up the DO-based hierarchical structure in the Handle System must
be defined, that is, the name of the project, prefix, credentials to access
the Handle System (Handle Admin, and Password), and the Project
Manager (PM) credentials (PM Username and Password). The PM, in
this PoC, was the user in charge of the building (e.g. a building man-
ager).

11 https://grabcad.com/

Consequently, a local Handle System was obtained, deployed with
the basic DO structure that represented the IoT-related parts of the
building. In this case, two different DOs were created to support the two
smart rooms: 55555/maletplace/engbuilding/level3/space/r1 and 55,555
/maletplace/engbuilding/level3/space/r2.

IFC2Handle application is available in the link provided in the’Sup-
plementary Material’ section.

4.2.3. Stage 3: building construction process
This stage encompassed the construction process of the building us-

ing BIM methods and techniques, concluding with the building con-
structed after passing through the construction tasks required (e.g. ob-
taining planning permissions, pouring the foundation, framing, and
electrical and plumbing installations). This stage included several dif-
ferent tasks involving several experts (e.g. architects, plumbers, and
structure engineers) and processes in several areas. Furthermore, for a
smart building, IoT-related elements must be installed in this stage (e.g.
network installation, sensors and actuators, and smart doors), similar to
other installations such as pipes or electrical wiring.

4.2.4. Stage 4: deployment of the IoT scenario
Once the building was constructed (Stage 3) and the digital repre-

sentation of the IoT-related elements of the building were represented
as DOs in the Handle System, the IoT elements (devices and networks)
were installed and configured. Ideally, the installation of IoT elements
should be conducted during Stage 3, as part of the building construc-
tion, similar to the electrical or plumbing infrastructure. For simplicity
and pragmatism, to illustrate the simulation, which is not a complete
BIM process, everything related to the IoT (installation and configura-
tion) is addressed at this stage.

Two main tasks related to IoT were conducted at this stage: 1) the
installation of IoT elements and 2) the configuration and implementa-
tion of the software to interact with the IoT elements to provide the ser-
vices required in the smart building. With these premises, several con-
cerns were identified to make the PoC as similar as possible (in terms of
technology used and behaviour expected) to a real deployment of a
smart building. They are:

• A network is an important infrastructure asset in any IoT
scenario because it enables the communication between different
devices and applications and provides services to the end users of
the smart building. Therefore, it is necessary to select an IoT-
compliant network that is suitable for smart building
environments.

• A smart building communicates with devices (sensors) to obtain
information from the environment and also to interact with devices
(actuators). To illustrate how to address this type of situation
within the running simulation example, we assumed that the
following elements were located in room 1 (R1): a smart light, a
temperature sensor, a humidity sensor, and an air conditioning
machine (actuator). In this PoC, we used commercial and low-cost
consumer electronic products to simulate the real elements.

• Real-time operation is vital in any smart building environment
to provide smart services (i.e. management of the building and
access to environmental features). Therefore, we must use a
proper technology that guarantees access to information in real-
time.

These concerns are addressed in the following sections.

4.2.4.1. IoT network. Several network technologies are available to
support communications within a smart environment, most of which
are wireless networks. Among them, LoRaWAN is currently the most
used network for both indoor and outdoor spaces. LoRaWAN is an LP-
WAN that provides several benefits that are highly suitable for IoT sce-

9

https://grabcad.com/

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

Fig. 4. Building CAD model.

Fig. 5. IFC2Handle: Software to manage IFC+ file.

narios, such as low power consumption, low-cost connectivity, low
cost of LoRaWAN-based devices, and long-range capability [49]. In re-
ality, LoRaWAN has been widely used in several projects and studies
related to smart environments as IoT networks [56–58] and hence, is
the one selected for this PoC.

LoRaWAN follows a deployment model based on four main ele-
ments (Fig. 7):

1. End Nodes. LoRa embedded devices, which typically have
sensors/actuators to interact with the environment, a LoRa
transponder to transmit signals (data), and optionally, a micro-
controller.

2. Gateways. LoRa gateways act as bridges between end nodes (e.g.,
LoRa transponders) and network servers, which use the IP.

3. Network Servers. It connects gateways with Application Servers (see
below), working as a router, broker and handler, processing all
data packets from the LoRaWAN gateways.

4. Application Servers. They store the information gathered by end
nodes, allowing their consumption by end users through any
software or application.

The EveryNet platform,12 which automatically allows the use of
public LoRaWAN infrastructure, was used as the network server in this
PoC. The EveryNet platform automatically detects nearby LoRaWAN
public gateways and uses a private network server to gather informa-
tion from the end-node devices and dumps the data into an application
server. Furthermore, EveryNet enables the management of end-node
devices and LoRaWAN secure-related parameters (i.e. Network Session
Key, Application Session Key, Device Address, and Device Unique Iden-
tifier) [49] through a friendly front-end, simplifying the setup of Lo-
RaWAN features and configuration.

The PubNub platform13 was used as an Application Server in this
PoC which enabled data storage and provided a high-level REST API to
developers/consumers with access to these data from any device, any-
where and anytime, allowing the consumption of such data by any
other application or customised software.

The end-node devices used for this PoC are extensively detailed in
the following section.

12 https://www.everynet.com/
13 https://www.pubnub.com/

10

https://www.everynet.com/
https://www.pubnub.com/

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

Fig. 6. IFC+ file excerpt.

Fig. 7. LoRaWAN deployment model.

4.2.4.2. IoT devices (LoRaWAN end node). As mentioned before, one of
the main concerns in any smart environment is the interaction with the
environment through devices (sensors/actuators).

In this PoC, we considered only R1, where one smart light, a temper-
ature/humidity sensor, and an air conditioning machine were located.
For this simulation, low-cost electronic products were used, that is, a
red LED for the smart light, a commercial temperature/humidity sensor
model DHT11,14 and a motor with a fan blade to act as the air condi-
tioning machine.

As an end-node LoRaWAN device, we used Lopy4 technology, a
compact quadruple-network MicroPython-enabled development board
where the different electronic products (red led, temperature/humidity
sensor, and fan) were connected.15 The end-node (LoPy4) enabled the
connection and gathering of information from sensors/actuators and
implemented the LoRaWAN RF protocol, allowing the communication
between the end-node and the gateway, and therefore, the data ex-
change and interaction between the environment and end users
through the LoRaWAN infrastructure elements (i.e. Gateways, Network
Servers, and Application Servers).

4.2.4.3. Real-time environment interaction. Support for real-time fea-
tures is essential for most of the services provided by a smart environ-
ment, such as obtaining information in real-time (i.e. temperature or if
a light is on or off) as well as sending order and acting immediately on

14 https://components101.com/dht11-temperature-sensor
15 https://pycom.io/product/lopy4/

the environment (i.e. turn on a light or set the temperature of the room
through the air conditioning machine).

To support real-time reactions in this IoT scenario, several IoT-
oriented technologies exist, such as the so-called Machine to Machine
(M2M) technologies. These technologies enable the interaction and ex-
change of information between software and devices without human in-
tervention, for instance, between a temperature sensor (or end-node Lo-
RaWAN device) and a mobile application. For this PoC, we chose Mes-
sage Queuing Telemetry Transport (MQTT) as M2M technology [59].
MQTT is a communication protocol supported by a flexible architecture
that implements a publisher-subscriber design pattern, where sub-
scribers (end-point elements, that is, software, application, and arte-
facts) can subscribe to a specific publisher or topic (e.g. the last temper-
ature measured in a room or the state-open, closed-of a door). Once cer-
tain information is sent by the publisher (e.g. updating the temperature
of the room or the notification that a door has been closed), it is auto-
matically received by the corresponding subscribers through the MQTT
broker (a server that receives all messages from the publisher and then
routes the messages to the appropriate subscribers).

Several commercial and open-source solutions are available to im-
plement MQTT (e.g. Google IoT Core, Microsoft IoT Azure, and Eclipse
Mosquitto). The PubNub platform, used as Application Server in the Lo-
RaWAN infrastructure for this PoC, provided an MQTT service that is
easily interoperable with any IoT application. Thus, the PubNub plat-
form enabled the automatic forwarding of information gathered from
end-node LoRaWAN devices through the use of the gateway into to the

11

https://components101.com/dht11-temperature-sensor
https://pycom.io/product/lopy4/

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

Network Server; which then forwarded the information to the PubNub-
supported Application Server.

4.2.5. Stage 5: use of applications for the management of the building and
DOs

In this PoC, we established R1 as the room with IoT devices in the
building. Although the associated IFC+ schema is available and its gen-
eration has been described in Stage 1, we require additional software to
manage the DOs that represent the IoT settings of the smart building
(i.e. devices located in R1, users and credentials, sensors, and actua-
tors).

We developed a software platform, called IoTW, that allowed archi-
tects and developers to manage the DOs of a building. This feature im-
proved the management of the elements related to the IoT scenario of
the building, from the creation of new DOs to the representation of new
IoT devices for the management of credentials, where different users of
the building were also represented as DOs.

IoTW is a multi-stakeholder platform where each authorised type of
user (e.g. building manager and building staff) has a custom GUI that
provides a specific set of functionalities, for instance, create new users,
set permissions, add new assets to the building, and design data struc-
ture for each asset (i.e. templates [55]). IoTW was implemented in
NodeJS for the back-end and in AngularJS and pure JavaScript for the
front-end. Fig. 8 depicts the main screenshots of IoTW.

Fig. 8. IoTW web platform for the management of Digital Objects through the
Handle System.

Additional software is required to monitor and interact with build-
ings, such as BIS or custom applications, which must also be used in this
stage. We implemented a lightweight Android-based application to in-
teract with the temperature sensor located in R1. In this application, the
user (e.g. a maintenance operator created in the IoTW platform earlier
–see Fig. 8b), could log into the application to obtain the temperature
value of (R1).

The application would request the handle system for access to the
DO that represented the temperature sensor. If the user was granted
permission, he/she could obtain the required information to access the
sensor information. In this case, the user obtained the subscriber token
required to gather the information broadcast by the MQTT server (sup-
ported by PubNub). The temperature was received in the mobile appli-
cation and displayed on the screen, as illustrated in Fig. 9.

4.2.6. Stage 6 and 7: IoT Setup after building construction
New IoT elements can be added some time later if required, once the

building is constructed.
Once the IoT elements are installed, physically, in the building

(Stage 6), the software developers or IT guys are able to represent these
new elements as DOs, and then, configure them (Stage 4) and using
them through the proper application (Stage 5). This could be done
through a third-party application that uses the REST API provided by
the DO-infrastructure, such as the IoTW web platform, which already
displays in 4 an interface to add new IoT elements to a part of a building
(R1) once the building is already constructed.

4.3. PoC design and workflow

In addition to the construction processes related to BIM, a proper de-
sign of the IoT scenario is required. To design the IoT scenario that we
intend to simulate in this PoC, we used an architectural model to de-
scribe the different elements and their relationship [60]. A common IoT
architecture is a layered oriented architectural model that includes
three different layers: 1) the Perception Layer (also called Acquisition
Layer), 2) Network Layer, and 3) Application Layer [61].

In this architecture, all sensing devices (IoT devices) are placed in
the Acquisition layer, which can be used by IoT applications (Applica-
tion Layer) through the Network Layer (gateways, network servers). A
detailed explanation of this architecture can be found in [22].

The PoC presented was designed according to this reference archi-
tecture. Fig. 10 depicts the workflow followed to develop the PoC de-

Fig. 9. Application to interact with the building.

12

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

Fig. 10. PoC workflow and architecture.

scribed in this section, which matches the proposed approach (Section 3
and shown in Fig. 2). In addition, (Fig. 2) illustrates the relationship be-
tween the workflow of the PoC and the three-layer oriented architec-
ture used to design and describe the IoT scenarios.

4.4. Suitability and evaluation of the contributions

Through the PoC we demonstrated how IFC+ and the DO-based ap-
proach could be used to 1) support the design of IoT scenarios since the
early stages of building design and 2) allow the representation of these
scenarios through consumable software (DOs) directly by IoT applica-
tions and end users.

Meanwhile the adoption and support for IFC+ by mainstream CAD
vendors have become a reality we have implemented certain simple ap-
plications to illustrate the feasibility of planning building design
processes that include the representation of IoT elements in the early
stages.

Ideally, once CAD software used in BIM for constructions (i.e. Revit
and AutoCAD) implements the IFC+ schema specification, it could be
possible to design, similar to other assets, furniture, or installation, IoT
scenarios, specifying the different IoT devices, networks, credentials,
and safe zones with restricted access. Once the entire building was de-
signed, including IoT-related elements, the architect could, through the
same CAD software, generate the IFC+ file to share it with other ex-
perts or architects and automatically deploy the entire DO-based infra-
structure supported by the Handle System in a transparent manner and
without any specific technological background (i.e. seamlessly).

IoT applications could consume the different DOs that represent the
IoT-related elements in the smart environment through the REST API
provided by the Handle System. The use of this native REST API re-

duced the development time of IoT applications, because developers
did not have to dedicate time and effort in designing and implementing
the back-end services related to the representation and storage of infor-
mation for the smart environment, which were automatically managed
by the Handle System.

In this PoC, we simulated the approach described in Fig. 2 by imple-
menting custom software (i.e. IFC2Handle, IoT applications and IFC-
PlusParser) to address and overcome the technological challenges that
exist in the implementation of the proposed approach.

5. Discussion

The solution presented in this study was designed to enable the
modelling of IoT scenarios along with the design of the building. The
different contributions have outstanding benefits:

• The use of IFC+, as an extended schema of the current version of
IFC (version 4), enables the description of IoT scenarios from early
stages in the design of buildings in BIM processes.

• The approach presented simplifies the development of IoT
solutions because IoT-related features described in IFC+ are
automatically translated into software artefacts (DOs) supported
by the Handle System.

• DOs, as digital representations of IoT-related elements involved
in the building, could be consumed by any type of application
through a REST API, which fosters the agile implementation of
IoT applications and the integration with BAS, BCS and BIS.

• The use of secure DOs supported by the Handle System enhances
the security concerns of smart spaces, providing for instance, ACLs

13

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

for each IoT-related device or element, and secure access to
sensitive data together with the management of credentials.

• A hierarchical structure to digitally represent a smart space
simplifies the management of the supplies and the
credentials/authorisation through a permission inheritance
mechanism.

Conversely, the proposal presented still has some challenges and
limitations.

IFC+ is a novel proposal; hence, no platform or CAD software inte-
grates the IFC+ schema (and its features) yet. This implies the need of
additional software to modify the original IFC model to add IoT features
and transform it into an IFC+ model, such as IFC2Handle software, the
example described in Section 4.

IFC+ has been designed and created as an extension of IFC (v4)
schema. Automated software tools (in the form of parsers and other
processing software) are also involved in producing and processing the
extended metamodel of IFC+. The core entity of IFC+, IFCPlusIoT, is
directly a sub-entity of the IfcObject entity, originally defined in the IFC
schema. In IFC+ all the entities inherit, directly or indirectly, from Ifc-
PlusIoT entity. So, all the IFC+ entities are sub-entities, at different hi-
erarchical levels, of IfcObject. Thus, IFC+ inherits all benefits (and limi-
tations) of IFC concerning the representation of IFC scenarios using
IFC+. This entails that, as for the reliability of IFC scenarios, IFC+ pre-
serves the same reliability as IFC. Likewise, IFC provides mechanisms to
link the different construction elements through several properties of
the IFC metamodel, and the same applies to the IFC+ extension, so that
IFC+ IoT devices can be also linked to traditional construction ele-
ments present in the IFC metamodel and other IFC+ elements.

However, while for IFC, some CAD software (like Revit) provide en-
hanced reliability of models through different conformance checks, the
same support is not currently available for IFC+ as it is in the early
stages of its development. For instance, Revit implements automatic
background processes to, using the position of the elements and the
type, check if the position and the assembling of these elements are cor-
rect or not, displaying a warning message in case something is not ok.
The IFC2Handle tool has been developed as a proof-of-concept software
about the feasibility of the presented IFC+ metamodel extension. Fur-
ther work is needed to evolve this and other tools that carry out addi-
tional consistency and conformance checks to improve the reliability of
IFC+ scenarios.

In addition, even if IFC+ was supported by a CAD software (Auto-
CAD, Revit, and Sketchup), architects typically do not have the techno-
logical background required to model IoT scenarios and set up network
configurations or IoT-based devices. Thus, CAD software that integrates
IFC+ should provide a friendly GUI to assist architects in modelling IoT
scenarios or facilitate the involvement of users with the technological
background that is required in the modelling process of a building in
BIM.

Furthermore, another possible approach could be the definition of
multi-stakeholder processes in BIM, where different architects and tech-
nicians in computing coexist in the early stages of building design.
Through the traditional CAD software, architects model the built envi-
ronment and generate the corresponding IFC file as output. This IFC file
could be used as input by technicians in an additional software created
to complete the model of the building with IoT features and generate
the IFC+ file. This approach, addressed in the PoC through IFC2Handle
software (see Section 4), is the most suitable approach to the widespread
use of the IFC+ schema, because no changes are required in traditional
BIM modelling processes.

The current state of IFC+ is the outcome of a custom design to sup-
port most of the relevant elements related to IoT in smart spaces, but
not all of them are supported in the current version. Although tradi-
tional supplies and furniture described in IFC do not noticeably change
over time, IoT and smart spaces are constantly evolving, owing to the

emergence of novel technologies and requirements. Therefore, IFC+
must be updated from time to time with new entities, relationships, and
attributes, adapting over time to trends in smart spaces. This is not a
concern because the IFC+ schema can be published in a public reposi-
tory, and distributed knowledge graph technologies can help in keeping
track of the versions of the schema and compatibility issues [62].

Finally, the definition of IFC+ as an extension of the original IFC
schema has several other implications related to its use, design, devel-
opment, and management of periodical updates.

First, programming skills would be required to improve or extend
the IFC+ in a functional and operable way, which is not accessible for
an average architect, designer, or construction-related engineer.

Second, and finally, according to buildingSMART (formerly, the In-
ternational Alliance for Interoperability -IAI-), the creator of IFC, there
are three different ways to extend IFC: 1) defining new entities or types,
2) using proxy elements, and 3) using the property sets or types [63].
The first option (the definition of new entities/types) was the one cho-
sen to design and create IFC+ by adding entities (IFCPlusXXX). This is
the best approach to extend the original IFC schema because the new
entities and types can be used in the same manner as the existing ones,
whereas with the other two options, additional implementations are re-
quired [64]. However, buildingSMART takes two or more years to inte-
grate the proposed extensions in a new IFC release [63]. Therefore, the
time frame required for the outcomes of this study to pass through the
certification phase of buildingSMART to improve the current IFC
schema with IoT-related features presented in IFC+ is too long for a dy-
namic domain such as IoT; hence, the subsequent versions of IFC that
include IFC+ entities/features may be outdated when released.

However, it is important to mention that further development of
IFC+ is required to ensure a ready-to-use solution and an IFC+ schema
ready to be considered as a possible extension of the current IFC schema
by buildingSMART. We are convinced that a solution such as IFC+ is
essential in the near future to support BIM-based constructions with IoT
elements as key concerns for any smart environment.

6. Conclusions

The integration of IoT in BIM has the potential to transform the way
of interacting with buildings, where IoT-based technology provides an
opportunity to enhance user experience. Currently, a growing concern
exists about the integration of IoT into BIM. Most existing solutions and
approaches are oriented to integrate IoT applications through BIS and
BCS, once the building is constructed. However, the integration of IoT
from the early stages of BIM, that is, during building design, is not a
commonly addressed topic, although it can provide important benefits,
such as the enhancement of the design of smart environments, the pos-
sibility of adapting IoT scenarios to new requirements through model-
ling mechanisms, and the use of technologies to automatically deploy
ready-to-use IoT solutions from models.

This study provides an approach to integrate IoT into building mod-
els in early stages of design in BIM processes, through two main contri-
butions: 1) IFC+, an extension to IFC that enables the representation of
IoT devices and related elements, and 2) a DO-based approach to trans-
form building models with IoT features into working software compo-
nents to support IoT interaction scenarios. In particular, IFC+, an ex-
tended schema of the latest version of the IFC (version 4), supports the
modelling of IoT-related features with security constraints (Things, Lo-
cations, Networks, State, Security). The proposed approach enhances
the integration of IoT and BIM by providing the mechanisms and tools
required to transform, automatically, IoT-related elements described in
IFC+ into secure DOs, supported by the Handle System and accessible
by external software through a friendly REST API.This automatic trans-
lation of IFC+ entities and DOs reduces, significantly, development
times, integration efforts with third-party software and reduces config-

14

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

uration and specification errors in the API caused by human interven-
tion, as several pieces of software are automatically generated.

As an outcome of this study, we illustrated the feasibility of this ap-
proach with an in-lab use case simulation. Other use cases simulation
can be tested and validated using the software provided in the Supple-
mentary Section. The IFC2Handle is used to transform a CAD exported
IFC file into an IFC+ file which automatically transforms the IFC+ file
into ready-to-use DOs.16 The Java-coded parser provided could be used
in case it is desired to integrate the support or compatibility of IFC+
into custom applications.

As future work, we envision to improve IFC+ by adding new enti-
ties to support cutting-edge IoT technologies and cover other IoT fea-
tures unavailable in the current version for smart buildings, such as
other authentication mechanisms, additional types of networks with
different topologies, data exchange formats present in IoT devices (e.g.
Generic Attribute Profile -GATT- specification in Bluetooth), and sup-
port available standards for the IoT world. Furthermore, it is desirable
to work on the dissemination and broadcast of IFC+ and related ap-
proaches, such that CAD software vendors and related stakeholders
start to integrate these extensions in their products and validate their
suitability with architects and other practitioners from the built do-
main.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

This paper was funded by the Spanish Ministerio de Ciencia, Inno-
vación y Universidades under contracts RTI2018-100754-B-I00 (iSUN
project) and RTI2018-098160-B-I00 (Air Forecasting project). In addi-
tion, this work also received inputs from the COST Action CA19134 Dis-
tributed Knowledge Graphs.

16 Previous installation of the Handle System is required. Please check https://
hdl.handle.net/20.1000/113

Appendix A. Entities added in IFC+

Table A.1
IFC+ entities description.
Group Entity Description

Root IfcPlusIoT Main entity to represent a Thing and linked to IFC (subclass of IfcObject)
Things and Networks IfcPlusNetwork Entity to describe an IoT-based network

IfcPlusTag Entity to represent a Tag, that is, a device to be read by a reader
IfcPlusReader Entity to represent a badge reader device
IfcPlusGateway Entity to represent a gateway into an IoT-based network
IfcPlusDevice Entity to represent a physical device (sensor, actuator, tag, HVAC)
IfcPlusGroupIoT Entity used to group related entities according to specific features (location)
IfcPlusLoraDevice Entity to represent an end-node LoRa device (mote)
IfcPlusSensorDataField Entity to represent relevant information for each value provided by a sensor
IfcPlusSensorDescriptor Entity used to represent the descriptor of a sensor
IfcPlusSensorMetadata Entity for the metadata associated with a specific sensor
IfcPlusServer Entity to represent a physical server into an IoT scenario

State IfcPlusState Entity defined as super-object to represent the state of a Thing
IfcPlusStateDoor Entity to represent the state of a door
IfcPlusStateWindow Entity to represent the state of a window
IfcPlusStateLamp Entity to represent the state of a lamp

Location IfcPlusLocation Alternative way to specify the location of a Thing through an array of elements
Security IfcPlusCredential Entity to represent the authorised users for a specific Thing

IfcPlusSecurity Entity to represent method used in the security of a Thing
IfcPlusLoRaSecurityNode Entity for the secure-related parameters of an end-node LoRa device

15

https://hdl.handle.net/20.1000/113
https://hdl.handle.net/20.1000/113

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

Group Entity Description

IfcPlusLoRaSecurityServer Entity for the secure-related parameters of a LoRa server
Agent IfcPlusAgent Entity to represent an agent (software, device) that could interact with a Thing

IfcPlusRole Entity to describe the role of an Agent
Relationships IfcPlusRelIFC This relationship is used to link IFC+ entities with IFC entities

IfcPlusRelDeviceLora Relationship to link an end-node LoRa device as a Thing
IfcPlusRelLocationIoT Relationship to link a location with a Thing
IfcPlusRelGroupIoT Relationship to link a Thing with a group of Things
IfcPlusRelNetworkDevice Relationship to link a Thing with a network
IfcPlusRelSecurityDeviceLora Relationship to link a LoRa secure specification with a Device/Thing
IfcPlusRelSensorData Relationship to link a data specification with a sensor
IfcPlusRelSensorInterface Relationship to relate a sensor with a specific interface description
IfcPlusRelSensorMetadata Relationship to link a metadata with a specific sensor
IfcPlusRelServerSecurity Relationship to link a security specification with a server
IfcPlusRelDataFieldState Relationship to related a data field with an state of a Thing
IfcPlusRelAgentRole Relationship to link a specific role of an agent with a Thing
IfcPlusRelSecurityIoT Relationship to link a security specification with a Thing

Types IfcPlusState OPEN, CLOSE, HALF_OPEN, ON, OFF, UP, DOWN
IfcPlusStateLevel Represent the state level of a Thing as a percentage, fromt 0 to 100 (percentage)
IfcPlusNetworkTopology POINT_TO_POINT, RING, STAR, MESH, BUS, TREE, HYBRID
IfcPlusNetworkProtocol WIFI, ETHERNET, BLUETOOTH
IfcPlusNetworkType CLIENT_SERVER, P2P
IfcPlusTagState READY, ARBITRATE. REPLY, ACKNOWLEDGED, OPEN, SECURED, KILLED
IfcPlusReaderInterface I2C, SPI, SMBus
IfcPlusReaderState READ, WAITING, READING, BLOCK
IfcPlusSensorDescriptorSeparator DECIMAL, TOKEN, BLOCK
IfcPlusSensorUnitMeasure Represent the different unit measures, according to Sensor Markup Language (IETF)
IfcPlusSecurityEncryptionMethod DES, RSA, SHA, AES
IfcPlusSecurityAuthenticationMethod HASH, MAC, DIGITAL_SIGNATURE
IfcPlusAgentRole OWNER, AUTHORISED, NOT_AUTHORISED, AUTHORISED_TEMPORARILY

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.autcon.2022.104129.

References

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of
things: A survey on enabling technologies, protocols, and applications, IEEE
Commun. Surveys Tutorials 17 (4) (2015) 2347–2376, https://doi.org/10.1109/
COMST.2015.2444095.

[2] S. Li, L. Da Xu, S. Zhao, The internet of things: a survey, Inf. Syst. Front. 17 (2)
(2015) 243–259, https://doi.org/10.1016/j.comnet.2010.05.010.

[3] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao, A survey on internet of
things: architecture, enabling technologies, security and privacy, and applications,
IEEE Internet Things J. 4 (5) (2017) 1125–1142, https://doi.org/10.1109/
JIOT.2017.2683200.

[4] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things (iot): a vision,
architectural elements, and future directions, Futur. Gener. Comput. Syst. 29 (7)
(2013) 1645–1660, https://doi.org/10.1109/I-SMAC.2017.8058399.

[5] A. Ruiz-Zafra, K. Benghazi, C. Mavromoustakis, M. Noguera, An iot-aware
architectural model for smart habitats, in, in: 16th IEEE International Conference
on Embedded and Ubiquitous Computing (EUC), IEEE, 2018, pp. 103–110, https://
doi.org/10.1109/EUC.2018.00022.

[6] A. Khanna, S. Kaur, Evolution of internet of things (iot) and its significant impact
in the field of precision agriculture, Comput. Electron. Agric. 157 (2019) 218–231,
https://doi.org/10.1016/j.compag.2018.12.039.

[7] D. Minoli, K. Sohraby, B. Occhiogrosso, Iot considerations, requirements, and
architectures for smart buildings—energy optimization and next-generation
building management systems, IEEE Internet Things J. 4 (1) (2017) 269–283,
https://doi.org/10.1109/JIOT.2017.2647881.

[8] B. Morvaj, L. Lugaric, S. Krajcar, Demonstrating smart buildings and smart grid
features in a smart energy city, in: Proceedings of the 3rd International Youth
Conference on Energetics (IYCE), IEEE, 2011, pp. 1–8.

[9] G.T. Costanzo, G. Zhu, M.F. Anjos, G. Savard, A system architecture for
autonomous demand side load management in smart buildings, IEEE Trans. Smart
Grid 3 (4) (2012) 2157–2165, https://doi.org/10.1109/TSG.2012.2217358.

[10] S. Azhar, M. Khalfan, T. Maqsood, Building information modelling (bim): now
and beyond, Construct. Econ. Build. 12 (4) (2012) 15–28, https://doi.org/
10.5130/ajceb.v12i4.3032.

[11] R. Howard, B.-C. Björk, Building information modelling–experts’ views on
standardisation and industry deployment, Adv. Eng. Inform. 22 (2) (2008)
271–280, https://doi.org/10.1016/j.aei.2007.03.001.

[12] J.M.D.L. Patacas, N. Dawood, M. Kassem, Evaluation of ifc and cobie as data
sources for asset register creation and service life planning, in: 14th International
Conference on Construction Applications of Virtual Reality, 2014, ISBN 978-0-
9927161-1-0.

[13] C. Fu, G. Aouad, A. Lee, A. Mashall-Ponting, S. Wu, Ifc model viewer to support
nd model application, Autom. Constr. 15 (2) (2006) 178–185, https://doi.org/
10.1016/j.autcon.2005.04.002.

[14] buildingSMART, What Is ifc? accessed: 26/10/2020. URL in: https://
technical.buildingsmart.org/standards/ifc/, 2018.

[15] Y. Adachi, Overview of ifc model server framework, in: European Conference on
Product and Process Modelling (ECPPM), 2002, 367–372ISBN: 905809507X.

[16] T. Froese, F. Grobler, J. Ritzenthaler, K. Yu, B. Akinci, R. Akbas, B. Koo, A.
Barron, J.C. Kunz, Industry foundation classes for project management-a trial
implementation, ITcon 4 (Nov) (1999) 17–36.

[17] J.K.W. Wong, J. Ge, S.X. He, Digitisation in facilities management: a literature
review and future research directions, Autom. Constr. 92 (2018) 312–326, https://
doi.org/10.1016/j.autcon.2018.04.006.

[18] J. Heaton, A.K. Parlikad, J. Schooling, Design and development of bim models to
support operations and maintenance, Comput. Ind. 111 (2019) 172–186, https://
doi.org/10.1016/j.compind.2019.08.001.

[19] R. Vieira, P. Carreira, P. Domingues, A.A. Costa, Supporting building automation
systems in bim/ifc: reviewing the existing information gap, Eng. Constr. Archit.
Manag. (2020), https://doi.org/10.1108/ECAM-07-2018-0294.

[20] W. Kastner, G. Neugschwandtner, S. Soucek, H.M. Newman, Communication
systems for building automation and control, Proc. IEEE 93 (6) (2005) 1178–1203,
https://doi.org/10.1109/JPROC.2005.849726.

[21] B. Dave, A. Buda, A. Nurminen, K. Främling, A framework for integrating bim
and iot through open standards, Autom. Constr. 95 (2018) 35–45, https://doi.org/
10.1016/j.autcon.2018.07.022.

[22] M. Jia, A. Komeily, Y. Wang, R.S. Srinivasan, Adopting internet of things for the
development of smart buildings: a review of enabling technologies and
applications, Autom. Constr. 101 (2019) 111–126, j.autcon.2019.01.023.

[23] B.W. Boehm, Software engineering economics, IEEE Trans. Softw. Eng. 1 (1984)
4–21.

[24] J.C. Westland, The cost of errors in software development: evidence from
industry, J. Syst. Softw. 62 (1) (2002) 1–9.

[25] O. Pastor, J.C. Molina, Model-Driven Architecture in Practice: A Software
Production Environment Based on Conceptual Modeling, Springer Science &
Business Media, 2007.

[26] J. Won, G. Lee, How to tell if a bim project is successful: A goal-driven approach,
Autom. Constr. 69 (2016) 34–43.

[27] N. Ham, S. Moon, J.-H. Kim, J.-J. Kim, Economic analysis of design errors in bim-
based high-rise construction projects: case study of haeundae l project, J. Constr.
Eng. Manag. 144 (6) (2018) 05018006.

[28] S. Sun, L. Lannom, B. Boesch, Handle System Overview, Tech. rep., Internet
Engineering Task Force, rFC 3650, Accessed: 26/10/2020. 2003, https://doi.org/

16

https://doi.org/10.1016/j.autcon.2022.104129
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1109/JIOT.2017.2683200
https://doi.org/10.1109/JIOT.2017.2683200
https://doi.org/10.1109/I-SMAC.2017.8058399
https://doi.org/10.1109/EUC.2018.00022
https://doi.org/10.1109/EUC.2018.00022
https://doi.org/10.1016/j.compag.2018.12.039
https://doi.org/10.1109/JIOT.2017.2647881
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0040
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0040
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0040
https://doi.org/10.1109/TSG.2012.2217358
https://doi.org/10.5130/ajceb.v12i4.3032
https://doi.org/10.5130/ajceb.v12i4.3032
https://doi.org/10.1016/j.aei.2007.03.001
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0060
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0060
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0060
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0060
https://doi.org/10.1016/j.autcon.2005.04.002
https://doi.org/10.1016/j.autcon.2005.04.002
https://technical.buildingsmart.org/standards/ifc/
https://technical.buildingsmart.org/standards/ifc/
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0075
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0075
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0080
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0080
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0080
https://doi.org/10.1016/j.autcon.2018.04.006
https://doi.org/10.1016/j.autcon.2018.04.006
https://doi.org/10.1016/j.compind.2019.08.001
https://doi.org/10.1016/j.compind.2019.08.001
https://doi.org/10.1108/ECAM-07-2018-0294
https://doi.org/10.1109/JPROC.2005.849726
https://doi.org/10.1016/j.autcon.2018.07.022
https://doi.org/10.1016/j.autcon.2018.07.022
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0110
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0110
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0110
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0115
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0115
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0120
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0120
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0125
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0125
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0125
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0130
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0130
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0135
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0135
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0135
https://doi.org/10.17487/RFC3650

UN
CO

RR
EC

TE
D

PR
OO

F

A. Ruiz-Zafra et al. Automation in Construction xxx (xxxx) 104129

10.17487/RFC3650.
[29] L. Sabol, BIM Technology for FM, Vol. 1 of BIM for Facility Managers, John Wiley

& Sons, New Jersey, 2013, https://doi.org/10.1002/9781119572633.ch2, iSBN:
978-1-118-38281-3.

[30] S. Tang, D.R. Shelden, C.M. Eastman, P. Pishdad-Bozorgi, X. Gao, A review of
building information modeling (bim) and the internet of things (iot) devices
integration: present status and future trends, Autom. Constr. 101 (2019) 127–139,
https://doi.org/10.1016/j.autcon.2019.01.020.

[31] J. Park, J. Chen, Y.K. Cho, Self-corrective knowledge-based hybrid tracking
system using bim and multimodal sensors, Adv. Eng. Inform. 32 (2017) 126–138,
https://doi.org/10.1016/j.aei.2017.02.001.

[32] A. Kiani, A. Salman, Z. Riaz, Real-time environmental monitoring, visualization,
and notification system for construction h&s management, J. Inform. Technol.
Construct. 19 (2014) 72–91.

[33] S. Peng, G. Su, J. Chen, P. Du, Design of an iot-bim-gis based risk management
system for hospital basic operation, in: IEEE Symposium on Service-Oriented
System Engineering (SOSE), IEEE, 2017, pp. 69–74, https://doi.org/10.1109/
SOSE.2017.22.

[34] J. Lee, Y. Jeong, Y.-S. Oh, J.-C. Lee, N. Ahn, J. Lee, S.-H. Yoon, An integrated
approach to intelligent urban facilities management for real-time emergency
response, Autom. Constr. 30 (2013) 256–264, https://doi.org/10.1016/
j.autcon.2012.11.008.

[35] M. Marzouk, A. Abdelaty, Monitoring thermal comfort in subways using building
information modeling, Energy Build. 84 (2014) 252–257, https://doi.org/
10.1016/j.enbuild.2014.08.006.

[36] X. Yuan, C.J. Anumba, M.K. Parfitt, Cyber-physical systems for temporary
structure monitoring, Autom. Constr. 66 (2016) 1–14, https://doi.org/10.1007/
978-3-030-41560-0_7.

[37] R.Y. Zhong, Y. Peng, F. Xue, J. Fang, W. Zou, H. Luo, S.T. Ng, W. Lu, G.Q. Shen,
G.Q. Huang, Prefabricated construction enabled by the internet-of-things, Autom.
Constr. 76 (2017) 59–70, j.autcon.2017.01.006.

[38] W. Mazairac, J. Beetz, Bimql–an open query language for building information
models, Adv. Eng. Inform. 27 (4) (2013) 444–456, https://doi.org/10.1016/
j.aei.2013.06.001.

[39] M. Dibley, H. Li, Y. Rezgui, J. Miles, An ontology framework for intelligent
sensor-based building monitoring, Autom. Constr. 28 (2012) 1–14, https://doi.org/
10.1016/j.autcon.2012.05.018.

[40] S. Hu, E. Corry, E. Curry, W.J. Turner, J. O’Donnell, Building performance
optimisation: a hybrid architecture for the integration of contextual information
and time-series data, Autom. Constr. 70 (2016) 51–61, https://doi.org/10.1016/
j.autcon.2016.05.018.

[41] S. Tang, D.R. Shelden, C.M. Eastman, P. Pishdad-Bozorgi, X. Gao, Bim assisted
building automation system information exchange using bacnet and ifc, Autom.
Constr. 110 (2020) 103049, https://doi.org/10.1016/j.autcon.2019.103049.

[42] N. Kahani, M. Bagherzadeh, J.R. Cordy, J. Dingel, D. Varró, Survey and
classification of model transformation tools, Softw. Syst. Model. 18 (4) (2019)
2361–2397, https://doi.org/10.1007/s10270-018-0665-6.

[43] M.J. Pratt, Introduction to iso 10303—the step standard for product data
exchange, J. Comput. Inf. Sci. Eng. 1 (1) (2001) 102–103, https://doi.org/
10.1115/1.1354995.

[44] A. Magruk, The most important aspects of uncertainty in the internet of things
field–context of smart buildings, Proc. Eng. 122 (2015) 220–227, https://doi.org/
10.1016/j.proeng.2015.10.028.

[45] E. Oriwoh, P. Sant, G. Epiphaniou, Guidelines for internet of things deployment
approaches–the thing commandments, Proc. Comput. Sci. 21 (2013) 122–131,
https://doi.org/10.1016/j.procs.2013.09.018.

[46] K. Mekki, E. Bajic, F. Chaxel, F. Meyer, A comparative study of lpwan
technologies for large-scale iot deployment, ICT Express 5 (1) (2019) 1–7, https://
doi.org/10.1016/j.icte.2017.12.005.

[47] Z.-K. Zhang, M.C.Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, S. Shieh, Iot
security: ongoing challenges and research opportunities, in: 7th IEEE International

Conference on Service-Oriented Computing and Applications, IEEE, 2014, pp.
230–234, https://doi.org/10.13140/RG.2.2.27063.47520.

[48] P. Mohagheghi, W. Gilani, A. Stefanescu, M.A. Fernandez, An empirical study of
the state of the practice and acceptance of model-driven engineering in four
industrial cases, Empir. Softw. Eng. 18 (1) (2013) 89–116, https://doi.org/
10.1007/s10664-012-9196-x.

[49] N. Sornin, M. Luis, T. Eirich, T. Kramp, O. Hersent, Lorawan specification 1.1,
accessed: 26/10/2020, URL in: https://lora-alliance.org/sites/default/files/2018-
04/lorawantm_specification_-v1.1.pdf.

[50] M. Rizzi, P. Ferrari, A. Flammini, E. Sisinni, Evaluation of the iot lorawan
solution for distributed measurement applications, IEEE Trans. Instrum. Meas. 66
(12) (2017) 3340–3349, https://doi.org/10.1109/TIM.2017.2746378.

[51] P. Spachos, I. Papapanagiotou, K.N. Plataniotis, Microlocation for smart
buildings in the era of the internet of things: a survey of technologies, techniques,
and approaches, IEEE Signal Process. Mag. 35 (5) (2018) 140–152, https://doi.org/
10.1109/MSP.2018.2846804.

[52] X. Su, H. Zhang, J. Riekki, A. Keränen, J.K. Nurminen, L. Du, Connecting iot
sensors to knowledge-based systems by transforming senml to rdf, Proc. Comput.
Sci. 32 (2014) 215–222, https://doi.org/10.1016/j.procs.2014.05.417.

[53] A. Ruiz-Zafra, M. Noguera, K. Benghazi, S.F. Ochoa, A model-driven approach for
wearable systems developments, Int. J. Distributed Sensor Networks 11 (10) (2015)
637130, https://doi.org/10.1155/2015/637130.

[54] R. Kahn, R. Wilensky, A framework for distributed digital object services, Int. J.
Digit. Libr. 6 (2) (2006) 115–123, https://doi.org/10.1007/s00799-005-0128-x.

[55] P.T. Kirstein, A. Ruiz-Zafra, Use of templates and the handle for large-scale
provision of security and iot in the built environment, 2018, https://doi.org/
10.1049/cp.2018.0029.

[56] M. Pasetti, P. Ferrari, D.R.C. Silva, I. Silva, E. Sisinni, On the use of lorawan for
the monitoring and control of distributed energy resources in a smart campus,
Appl. Sci. 10 (1) (2020) 320, https://doi.org/10.3390/app10010320.

[57] A.M. Yousuf, E.M. Rochester, M. Ghaderi, A low-cost lorawan testbed for iot:
Implementation and measurements, in: 2018 IEEE 4th World Forum on Internet of
Things (WF-IoT), 2018, pp. 361–366, https://doi.org/10.1109/WF-
IoT.2018.8355180.

[58] W. Li, G. Shen, J. Zhang, An indoor environmental monitoring system for large
buildings based on lorawan, in: Proceedings of the Conference on Research in
Adaptive and Convergent Systems, RACS ‘19, Association for Computing
Machinery, New York, NY, USA, 2019, pp. 34–38, https://doi.org/10.1145/
3338840.3355667.

[59] A. Banks, R. Gupta, Mqtt version 3.1. 1, accessed: 26/10/2020. URL http://
docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf, 2014.

[60] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 2nd edition,
Addison-Wesley Longman Publishing Co., Inc., USA, 2003, https://doi.org/
10.5555/773239.

[61] M. Leo, F. Battisti, M. Carli, A. Neri, A federated architecture approach for
internet of things security, in: 2014 Euro Med Telco Conference (EMTC), 2014, pp.
1–5, https://doi.org/10.1109/EMTC.2014.6996632.

[62] S. Auer, H. Herre, A versioning and evolution framework for rdf knowledge
bases, in: International Andrei Ershov Memorial Conference on Perspectives of
System Informatics, Springer, 2006, pp. 55–69, https://doi.org/10.1007/978-3-
540-70881-0_8.

[63] M. Weise, T. Liebich, J. Wix, Integrating Use Case Definitions for ifc
Developments, eWork and eBusiness in Architecture and Construction, Taylor &
Francis Group, London, 2009, pp. 637–645, https://doi.org/10.1201/
9780203883327.ch71.

[64] M. Zhiliang, W. Zhenhua, S. Wu, L. Zhe, Application and extension of the ifc
standard in construction cost estimating for tendering in china, Autom. Constr. 20
(2) (2011) 196–204, j.autcon.2010.09.017.

17

https://doi.org/10.17487/RFC3650
https://doi.org/10.1002/9781119572633.ch2
https://doi.org/10.1016/j.autcon.2019.01.020
https://doi.org/10.1016/j.aei.2017.02.001
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0160
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0160
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0160
https://doi.org/10.1109/SOSE.2017.22
https://doi.org/10.1109/SOSE.2017.22
https://doi.org/10.1016/j.autcon.2012.11.008
https://doi.org/10.1016/j.autcon.2012.11.008
https://doi.org/10.1016/j.enbuild.2014.08.006
https://doi.org/10.1016/j.enbuild.2014.08.006
https://doi.org/10.1007/978-3-030-41560-0_7
https://doi.org/10.1007/978-3-030-41560-0_7
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0185
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0185
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0185
https://doi.org/10.1016/j.aei.2013.06.001
https://doi.org/10.1016/j.aei.2013.06.001
https://doi.org/10.1016/j.autcon.2012.05.018
https://doi.org/10.1016/j.autcon.2012.05.018
https://doi.org/10.1016/j.autcon.2016.05.018
https://doi.org/10.1016/j.autcon.2016.05.018
https://doi.org/10.1016/j.autcon.2019.103049
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1115/1.1354995
https://doi.org/10.1115/1.1354995
https://doi.org/10.1016/j.proeng.2015.10.028
https://doi.org/10.1016/j.proeng.2015.10.028
https://doi.org/10.1016/j.procs.2013.09.018
https://doi.org/10.1016/j.icte.2017.12.005
https://doi.org/10.1016/j.icte.2017.12.005
https://doi.org/10.13140/RG.2.2.27063.47520
https://doi.org/10.1007/s10664-012-9196-x
https://doi.org/10.1007/s10664-012-9196-x
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf
https://doi.org/10.1109/TIM.2017.2746378
https://doi.org/10.1109/MSP.2018.2846804
https://doi.org/10.1109/MSP.2018.2846804
https://doi.org/10.1016/j.procs.2014.05.417
https://doi.org/10.1155/2015/637130
https://doi.org/10.1007/s00799-005-0128-x
https://doi.org/10.1049/cp.2018.0029
https://doi.org/10.1049/cp.2018.0029
https://doi.org/10.3390/app10010320
https://doi.org/10.1109/WF-IoT.2018.8355180
https://doi.org/10.1109/WF-IoT.2018.8355180
https://doi.org/10.1145/3338840.3355667
https://doi.org/10.1145/3338840.3355667
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
https://doi.org/10.5555/773239
https://doi.org/10.5555/773239
https://doi.org/10.1109/EMTC.2014.6996632
https://doi.org/10.1007/978-3-540-70881-0_8
https://doi.org/10.1007/978-3-540-70881-0_8
https://doi.org/10.1201/9780203883327.ch71
https://doi.org/10.1201/9780203883327.ch71
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0320
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0320
http://refhub.elsevier.com/S0926-5805(22)00002-4/rf0320

	IFC+: Towards the integration of IoT into early stages of building design
	1. Introduction
	2. Related work
	3. Integrating IoT into building design environments
	3.1. IFC+ genesis
	3.1.1. Requirements analysis
	3.1.1.1. Things in buildings.
	3.1.1.2. State of things.
	3.1.1.3. Things locations.
	3.1.1.4. Interaction with the things and network.
	3.1.1.5. Security.

	3.1.2. IFC+ design

	3.2. A DO-based approach to enable the use of IFC+ entities by IoT applications
	3.2. A DO-based approach to enable the use of IFC+ entities by IoT applications

	4. Proof of concept
	4.1. Scenario description
	4.2. Application of the proposal
	4.2.1. Stage 1: building design
	4.2.2. Stage 2: transformation of IFC+ entities into DOs
	4.2.3. Stage 3: building construction process
	4.2.4. Stage 4: deployment of the IoT scenario
	4.2.4.1. IoT network.
	4.2.4.2. IoT devices (LoRaWAN end node).
	4.2.4.3. Real-time environment interaction.

	4.2.5. Stage 5: use of applications for the management of the building and DOs
	4.2.5. Stage 5: use of applications for the management of the building and DOs
	4.2.6. Stage 6 and 7: IoT Setup after building construction

	4.3. PoC design and workflow
	4.4. Suitability and evaluation of the contributions

	5. Discussion
	6. Conclusions
	Acknowledgements
	References

	fld110:
	fld111:
	fld207:
	fld238:
	fld249:
	fld290:
	fld291:
	fld308:
	fld309:
	fld325:
	fld326:
	fld338:

