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Nomenclature 
 
A cross-section area 

Ac,eff effective area of concrete or area of concrete contributing to tension stiffening. 

This is defined as a rectangular area perpendicular to the bar extending over a 

distance from the bar that is smaller than 5.0ϕ 

As area of steel 

Aϕ area of the vertical leg 

d, D total displacements of element and of structure 

dB, DB displacements of element and of structure induced by bending 

dS, DS displacements of element and of structure induced by shear 

ϕ bar diameter [in mm] 

E Modulus of elasticity 

Ec Secant modulus of elasticity of concrete 

Es Modulus of elasticity of reinforcing steel 

f c’ compressive strength of concrete 

fct concrete strength in tension 



fr modulus of rupture of concrete 

fy steel yield stress 

fu steel ultimate stress 

F force vector 

G shear modulus 

I moment of inertia 

k, K element and structural mechanical stiffness matrix considering shear 

deformation 

kB, KB Bernoulli element and structural mechanical stiffness matrix considering (i.e., 

not considering shear deformation) 

L length of the element 

nl number of legs for stirrup 

s distance between vertical bars 

u longitudinal deflection 

v transverse deflection 

z lever arm 

 

α shear stiffness, slope of the V-γ curve  

β,  traditional ratio between flexural and shear stiffnesses 

γ shear rotation 

Γi  integration constants 

κs  shear correction factor 

σx concrete stress in x-axis 

σsv stress in vertical reinforcing steel 

θ crack angle and rotation due to bending 



Abstract 

This paper presents a matrix formulation for calculating the bending and shear 

deformation, up to collapse, of reinforced concrete beams and columns. The method is 

based on the fundaments of the shear deformation of reinforced concrete elements. A 

conceptual review of the different models used to describe the tension stiffening of 

concrete is also presented. A numerical procedure that can be used for modeling the 

shear deformation of a reinforced concrete (RC) beam-column element similar to the 

one used for flexural elements is presented. The procedure proposed is explained by 

applying it in detail to a theoretical example, and subsequently, it is verified by using 

the experimental results available in the literature. 

1. Introduction 

In general, reinforced concrete codes, such as EN-1992[1] or ACI-318[2] do not 

consider shear deformation. Nevertheless, the earthquake engineering community is 

actively seeking an efficient fiber beam-column element that incorporates flexure and 

shear interaction, ([3], [4], [5],[6],[7]). This is crucial due to the significant importance 

of shear collapse in beams and columns under seismic actions, as illustrated in Fig. 1. 

                



Figure 1. Shear deformation of columns during the Lorca earthquake (2011), adapted 

from [8]. 

In the search for a fiber beam-column element that considers flexure and shear, different 

concrete models have been used. The most popular models of concrete are usually the 

Mander model for confined concrete [9], the MCFT (Modified Compression Field 

Theory) [10], and the RA-STM (Rotating Angle Softened Truss Model) [11] for 

concrete tension stiffening.  

The main discrepancy between the MCFT and RA-STM concerns the steel bar model: 

while the MCFT uses a bare bar model, the RA-STM uses an embedded one. In an 

attempt to show the equivalence of both theories, an adjustment of the original MCFT 

tension stiffening model was carried out in [12]. Additionally, a theoretical refinement 

was presented to simplify both theories, [13]. Both the MCFT and the RA-STM 

describe the tension stiffening of concrete using several functions, and these need 

conditional checks to define their ranges of applicability (an apparent yield check in the 

case of the RA-STM and a crack check in the case of the MCFT). In both theories, the 

tension stiffening effect is considered to exist even for an average strain greater than the 

steel yield strain, an assumption which is also supported by other authors [14]. 

Nevertheless, well recognized structural software packages such as [15] and [16] 

consider linear approximations for the tension stiffening response of concrete, assuming 

that for strain values beyond the steel yield strain, tension stiffening disappears. The 

latest assumption is supported by some other authors [17]. Recently, a linear model of 

concrete tension stiffening adjusted by deflections has been proposed, [18]. 

In accordance with the first assumption in the Timoshenko beam theory, a new beam-

column model has recently been formulated [19] to calculate the  shear deformation of 



RC elements in the elastic and plastic ranges. This paper proposes a matrix formulation 

for an RC beam-column finite element that considers bending and shearing deformation 

in both elastic and plastic domains. The formulation presented can be used with fiber 

elements.  

The procedure proposed has been is verified by applying it to Specimen 7 tested by 

[20], and studied by [21]. 

2. Matrix formulation 

This study introduces a matrix-based formulation to model the bending and shearing 

deformation of RC beam-column elements. This formulation is suitable for both elastic 

and plastic deformation regimes. The development presented is simple, and it is based 

on traditional reinforced concrete mechanics. It is applicable to scenarios that could 

involve distributed plasticity (Figure 2), especially fiber elements. 

 

Figure 2. Idealized models of beam-column elements. NEHRP Seismic Design 

Technical Brief No 4, [22]. 

The k element stiffness matrix relates the d nodal displacement vector to the f nodal 

force vector (see Figure 3). In the case of a plane beam element, where three degrees of 

freedom (DOF) are considered per node: 
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Figure 3. Nodal displacements and nodal forces in a planar beam-column element. 

The assemblage of the k matrix of all the elements of the structure forms the stiffness 

matrix of the structure, K.  

2.1 Finite element formulation of the Timoshenko beam 

Unlike the Euler-Bernoulli beam theory, in which deformation is due entirely to 

bending and in-plane stretching, the Timoshenko beam theory (TBT) includes a state of 

transverse shear strain which is assumed to be constant throughout the thickness of the 

beam [23]. 

Without loss of generality, let a cantilever beam subjected to a uniformly distributed q 

transverse load  [21, 22] be considered, based on the following field of displacements 

(Figure 4): 

 u( x, y ) y x

v( x, y ) v( x )

dv( x )
( x ) ( x )
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where u(x, y) in Eq. (2) is the horizontal displacement of a fiber located at y from the 

centerline (see red points in Figure 4), and v(x) in Eq. (3) is the transverse deflection of 

the centerline of the beam. Figure 4 shows that the x-coordinate is taken along the 

length of the beam. All the points in the same cross-section are assumed to have the 

same displacements on the y-axis. In the expressions above, θ(x) is the rotation caused 

by bending, or the angle of the centerline with the x-axis induced by bending, and γ(x) 

is the shear strain that is the angle of the centerline with the x-axis caused by the shear 

deformation, as shown in Figure 4. Therefore, the angle of the centerline (i.e. dv(x)/dx) 

is the summation of bending and shearing effects, Eq.(4). Equations (2) and (3) are 

common elements of the Bernoulli beam, and Eq. (4) characterizes the Timoshenko 

beam.  

 

Figure 4. Displacement field of the TBT.  

Establishing the balance of internal moments and transverse forces, assuming linear 

elasticity: 



     

     

2
x xA A A A

s sA A A

d x d xu
M x y dA y E dA y E dA E y dA EI

x dx dx
dv( x ) dv( x )

V x dA G dA G x dA GA x
dx dx

 
 

     


      


           
   

   

    

(5) 

(6) 

with G as the shear modulus, τ as the average shear stress, and κs as a shear correction 

factor  to compensate for the error caused by the assumption of constant shear stress 

(and strain) on the beam cross–section (κs =5/6 for rectangular cross sections [25]). In 

Eq.(6), a constant state of transverse shear strain throughout the thickness of the beam is 

assumed. 

For the purpose of derivation, both EI and GAκs are assumed to be constant. The next 

section will elaborate on this assumption, particularly in the context of concrete 

structures. Both terms can be assumed to be constant in incremental studies when 

considering small enough increments of loading. 

Considering equilibrium of moments and transverse forces over a segment of beam: 
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(8) 

The two second-order coupled equations, Eqs. (7) and (8), are the governing equations 

of the TBT. The solution for the system of differential equations is: 
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with Γi as integration constants depending on the boundary conditions of the problem. 



Normally [26], the element finite formulation is based on shape functions for v and θ, 

which are determined by using the exact homogeneous form of the equilibrium 

equations of a Timoshenko beam subjected to a uniformly distributed transverse load 

[24] (i.e. imposing q=0 in Eq.(8)). The displacement and rotation field solutions for  the 

homogeneous system of equations are the ones indicated in Eqs. (9) and (10), i.e.: 
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If the displacement and rotation fields in Eqs. (11) and (12) are adopted [24], then a 

constant state of transverse shear strain is obtained: 

1
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For a two-node beam, the above fields can be expressed in matrix form as: 
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For a two-node beam with a length of L, the transverse nodal displacements and 

rotations can be obtained as (see Figure 3): 



 1 1 2 2

1

1

2

2

0

0

δT v , ,v ,

being :

v v( )

( )

v v( L )

( L )

 

 

 








 (15) 

Eq. (15) can be re-written in matrix form as: 
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Considering Eqs. (14) and Eq. (16), the following equality is obtained: 
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With N as the shape function matrix (Hermite cubic shape function matrix if β tends to 

0, or equivalently, shear stiffness if GAks tends to infinity).   

Considering the above expressions, the bending curvature of the beam and the shear 

strain can be written as: 
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 By applying the virtual work principle, the stiffness matrix of an element with constant 

values of EI and GAks are obtained as: 

 
2 2

3 2

2 2

6 3 6 3

0 3 2 6 3 62
0 6 3 6 31 12

3 6 3 2 6

k B BT

sL

L L

EI L L L LEI
dx

GAk L LL L

L L L L

 


 

 
             
 

   

  (19) 

In the previous development, axial force has been ignored. If the degrees of freedom in 

Figure 3 are considered, k can be extended to the well-known stiffness matrix of a 

beam-column element: 
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(20) 

If β=0, the shearing effect is not considered, and k is the traditional matrix based on the 

Bernoulli beam theory (kB). 

Several finite beam elements exist in the literature that consider the Timoshenko beam 

theory (TBT). Each of these elements differs from the others in the choice of the 

interpolation functions used for transverse deflection and rotation [24]. One well-known 

phenomenon in the conventional displacement approach of the Finite Element Method 

is shear locking, which leads to very stiff behaviour of the element caused by its 



inability to represent a constant state of transverse shear strain. One traditional way to 

overcome shear locking is the use of an equal interpolation for both transverse 

deflection and rotation and a lower-order polynomial for the shear strain [3, 20, 21]. 

In the specific case of RC beams, several authors have studied the flexure-shear 

interaction in the context of the Finite Element Method. Feng and Xu [3] used a 

conventional displacement-based TBT to present a fiber element considering the bond-

slip effect in at critical regions. In this approach, shear deformation was assumed to be 

uniformly distributed along the section and it was only resisted by concrete.  

In this work, the shear deformation of a beam-column element will be determined by 

using a different approach, which is based on the quasi-Timoshenko beam theory 

presented in [19]. Consequently, the flexural-shear interaction will be formulated in 

matrix form from a different perspective. 

3. Anew approach based on the quasi-Timoshenko beam theory 

In the shear beam-column RC element model considered in [19],  shear strain is caused 

by the deformation of shear reinforcement and the effective area of the surrounding 

concrete in tension. Without loss of generality, the shear reinforcement is considered to 

be perpendicular to the centerline of the non-deformed beam-column element. An 

effective shear strain (γeff) is defined, which is a function of the angle of the crack1 (θ), 

the lever arm (z), and the elongation of the shear reinforcement (vs), see Figure 5. 

                                                           
1 In accordance with traditional nomenclature, the authors have used θ as the rotational degree of freedom 
in the nodes, but also as the angle of the crack in concrete elements. Readers will have to differentiate 
between the two meanings by considering the context in which it is presented.  
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Figure 5. Effective shear strain 

The shear deformation in RC beam-columns results from the elongation of the 

tensioned shear reinforcement, and this also takes the contribution of the concrete in 

tension surrounding the bar (tension stiffening effect) into account, as illustrated in 

Figure 6.  

 



Figure 6. Response of shear reinforcement 

If the number of legs of each stirrup is denoted as nl, the area of the transverse 

reinforcing bars is AØ, and the effective area surrounding the bar contributing to tension 

is Ac,eff, the equilibrium of vertical forces results in the following value for the shearing 

force [19]: 

 ,

cot
( ) cot coteff l sv eff c eff ct eff

z
V n A A

s 
               (22) 

The first and second terms on the right side of the equation correspond to the 

contributions of steel and concrete, respectively. 

In this piece of work, the linear approximation proposed by [18] for the  tension 

stiffening of concrete is considered. 

3.1. The angle of the θ crack 

The θ angle can be deduced from any of the compression field theories [19]. A sound 

simplification can be made in the case of columns, where shear cracks can appear 

without any prior deterioration of concrete. This phenomenon occurs because, unlike 

beams in which bending causes concrete to crack, the concrete sections of columns are 

typically fully compressed before shear cracking occurs. 

Taking the previous paragraph into account, and for simplicity in the case of columns, θ 

is adopted as the angle of the principal direction of compression assuming the element 

is made of plain concrete (i.e., with no reinforcement). Figure 7 shows that the angle at 

the centerline of the beam-column element is considered. 



 

Figure 7. Angle of the principal direction of compression (θ). 

The Mohr circle in Figure 7 allows the value of the shearing stress that induces tensile 

cracking in concrete as a function of the N axial force (Eq.(23)) and the angle of the 

cracks (θ) (Eq.(24)) to be determined. From Eq.(24) clearly shows that θ=45° when 

N=0, and as the value of N increases, the angle θ decreases from 45º. 
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Figure 8 shows an example of the influence of the axial load in the angle of the crack. 

The first crack appeared during an interstory movement to the right when the column 

was fully compressed, and the crack (and the principal direction of compression) 

inclined towards the vertical axis (see Figure 7 and Equation 24). After this crack 

occurred, the stress state in the concrete altered, and the axial force was mainly resisted 

by the rebars. From this point onward, the concrete was no longer subjected to axial 



force. As a result, during a subsequent movement to the left, the crack orientation was 

closer to 45º. 

 

Figure 8. A parking structure during the Northridge earthquake on  January 17th, 1994.  

Detailed examples of how the angle of the crack is calculated by applying different 

compression field theories can be found in [19] and [28]. 

4. Nonlinearity of the stiffness matrix 

A numerical approach for considering the variation of the coefficients of matrix k in Eq. 

(1) involves dividing the loading into multiple steps and varying the EI and GAks 

coefficients from one step to the next: 

f k d     (25) 

As EI and GAks are functions of the actions (i.e. EI=EI(N,M) and GAks=GAks(V)), they 

vary throughout  the loading process.  

In Eq.(6), GAks (or shear stiffness) represents the slope of the graph of shearing force 

versus shear strain (V-γ). Figure 9 depicts an example of the V-γeff graph taken from 



[19], where three stages are shown: precracking, preyield, and postyield. The tension 

stiffening of concrete and the plasticization of steel are considered, with C25 concrete 

and B400 steel. In the pseudo-Timoshenko beam proposed for RC elements, γeff has 

been considered (see Eq.(22)), and the slope of the V-γeff graphs has been denoted as α 

(i.e. α=dV/dγeff), see Figure 10. 

 

Figure 9. Example of a V-γeff curve. 

In Eq. (5), EI (or bending stiffness) represents the slope of the moment-curvature 

diagram, as curvature, by definition, is the variation in rotation caused by bending. 

Moment-curvature diagrams are constructed for constant values of the N axial force. 

Numerical processes equivalent to the utilization of moment-curvature graphs can be 

employed (i.e. Equilibrium and compatibility equations at a cross-sectional level). 

However, in this study moment-curvature diagrams are going to be used for better 

visualization, see Figure 10. Tension stiffening, concrete softening, confinement effects, 

and steel plasticization are considered in the development of moment-curvature 

diagrams [28].  



Figure 10 shows the flowchart used to obtain the bending and shear matrix formulation 

of RC beam-column elements for elastic and plastic deformation, as proposed in this 

paper. K is the assemblage of k element matrices in Eq. (20), and KB is the stiffness 

bending matrix, i.e. when shear deformation is not considered (i.e., β=0). 

To trigger the algorithm, the slope at zero in both V-γeff and moment-curvature curves 

are used. Because the moment-curvature graph presents negative slopes for large 

deformations, the problem is solved by using displacement increments (ΔDi), rather 

than by using loading increments, with i as the control degree of freedom. For each ΔDi 

displacement increment, the ΔF force vector is calculated using K (the global stiffness 

matrix is formed by assembling the k element stiffness matrices). Vector F is obtained 

by adding the successive ΔF. Using ΔF, K, and KB, the ΔD and ΔDB displacement 

vectors are calculated, with ΔDB as the displacement only caused by bending, and ΔD 

as the displacements caused by bending and shear. Therefore, the displacement caused 

by shear, ΔDS, is obtained as the difference between ΔD and ΔDB. In each step, the D, 

DB, and DS displacement vectors are obtained from the summation of ΔD, ΔDB, and 

ΔDS, respectively.  

 

For each beam-column element, the curvature and the effective shear strain are obtained 

from the d, dB and dS element displacement vectors, which are taken from the global 

displacement vectors. The angle of the crack (θ) in each element can be obtained as a 

function of vector F from Eq. (24), or from any of the compression field theories, [19]. 

The slope of the V-γeff curves and moment-curvature (i.e. EI and α, with α=GAks in 

traditional approaches) are calculated for each value of the curvature, γeff and θ. Finally, 

K and KB are updated before the next displacement increment. 

 



 

Figure 10. Flow chart of the method proposed. 

Example  

To validate the procedure presented above, Specimen 7 of Tanaka [20] studied by 

Fenves in [21] is analyzed here. The properties of the materials are summarized in Table 

1. A brief description of the geometry of the specimen is depicted in Figure 11, adapted 

from page 154 of [20]. The tip of the cantilever is subjected to a compressive axial load 

and to a shear force. Along the length of the element, there is a portion near the fixed 

end (L1=540 mm, with the first stirrup located at 30 mm from the fixed end) where the 

stirrups are more closely spaced. The test results are plotted in page 165 of [20]. 

The confinement of the core of the cross-section has been considered in this example by 

applying the model proposed by Mander [9] and  by considering the value proposed by 

Paulay and Priestly [29] as the ultimate strain of confined concrete. As suggested by the 

new EN 1992[1], the effective area of concrete in tension perpendicular to the bar is 

limited to a distance from the bar that is smaller than 5ϕ, with ϕ representing the 

diameter of the bar. A bilinear model is adopted for steel with Es=200000 MPa with a 

1% strain-hardening ratio. 



 

Table 1. Characteristics of materials 

Concrete Longitudinal reinforcement Transverse reinforcement 

fc´(MPa) Ec(MPa)[30] fr(MPa) fy(MPa) fu(MPa) fy(MPa) fu(MPa) 

32 4700√fc´ 4 510 675 325 429 

 

 

Figure 11. Specimen 7 tested by Tanaka [20], [21]. Dimensions in mm. 

The specimen has been divided into 3 beam-column elements (4 nodes), see Figure 12. 

Due to the two different separations of the transverse reinforcement, two element types 

have been considered. The longitudinal reinforcement is the same for both element 

types, although, due to the two different confinements given by the transverse 

reinforcement, the moment-curvature curves are slightly different (see Figure 12).  

According to Eq. (24), the angle of the crack is 29.2º. This angle can be considered for 

the first crack, and 45º for the following cracks (see the comment on Figure 8 in Section 



3). In this study, pushover analyses have been carried out considering both θ= 29.2º and 

θ= 45º. Figure 12 shows that the shear-γeff curves are different for both types of 

elements and for the two values of the crack angle considered. 

 

Figure 12. Types of beam-column elements 

The pushover curves (horizontal-top-displacement versus shear force (V)) for the two 

cases considered are depicted in Figure 13. The blue curve corresponds to the original 

layout, while the red curve corresponds to the case in which stirrups are spaced at 90 

mm along the entire length of the cantilever (i.e., the cantilever is divided into three 

type-1 elements). The original layout exhibits sudden shear failure caused by the 

reduction of the shear reinforcement in the upper part of the specimen, which is 

unsurprising given that the shearing force diagram is constant along the length of the 

specimen.  



 

Figure 13. Pushover curves 

The original reinforcement layout should present shear failure before flexural failure in 

a pushover test. However, the results depicted in Figure 13 are congruent with those 

presented in the experimental test, page 165 of [26], in which the load of 700 kN was 

never reached.  

Nonetheless, in the case where stirrups are uniformly spaced at 90 mm, (i.e. considering 

three type-1 elements to model the cantilever) the specimen presented flexural failure. 

The graphs on the right of Figure 13 are a zoomed-in version of those on the left (refer 

to the scale on the horizontal axis). 

Conclusions 

The importance of shear deformation in reinforced concrete (RC) beam-column 

elements depends on their transverse reinforcement. In certain cases, shear deformation 

becomes non-negligible and must be considered in structural analyses. Traditionally, 

bending stiffness (EI) and shear stiffness (GAks) have been assumed to be constant, and 

shear deformation has been addressed by considering specific displacement and rotation 

fields that meet the conditions of the system of differential equations used in the 



Timoshenko Beam Theory (TBT).  However, given the unique features of RC elements, 

their stiffness cannot be assumed to be constant, as it varies along the response curve 

and along the length of the element (this is influenced by the reinforcement layout). 

This paper has presented a procedure for modifying the traditional matrix analysis, and 

this procedure considers the shear deformation of RC elements. The methodology is 

straightforward and can be easily implemented in fiber element software packages. 

Data Availability Statement 

Code that support the findings of this study are available from the corresponding author 

upon reasonable request. 
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