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Abstract
Speech-related applications on mobile devices require high-
performance speech enhancement algorithms to tackle chal-
lenging, noisy real-world environments. In addition, current
mobile devices often embed several microphones, allowing
them to exploit spatial information. The main goal of this Thesis
is the development of online multichannel speech enhancement
algorithms for speech services in mobile devices. The proposed
techniques use multichannel signal processing to increase the
noise reduction performance without degrading the quality of
the speech signal. Moreover, deep neural networks are applied
in specific parts of the algorithm where modeling by classical
methods would be, otherwise, unfeasible or very limiting. Our
contributions focus on different noisy environments where these
mobile speech technologies can be applied. These include dual-
microphone smartphones in noisy and reverberant environments
and general multi-microphone devices for speech enhancement
and target source separation. Moreover, we study the training of
deep learning methods for speech processing using perceptual
considerations. Our contributions successfully integrate signal
processing and deep learning methods to exploit spectral, spa-
tial, and temporal speech features jointly. As a result, the pro-
posed techniques provide us with a manifold framework for ro-
bust speech processing under very challenging acoustic envi-
ronments, thus allowing us to improve perceptual quality and
intelligibility measures.
Index Terms: speech enhancement, array signal processing,
deep neural networks, low-latency, speech presence probability

1. Introduction
Speech enhancement algorithms aim to improve the percep-
tual quality and intelligibility of speech signals degraded due
to distortions [1], especially environmental noise, but also re-
verberation or interfering speakers. These techniques are usu-
ally implemented in the time-frequency (TF) domain via the
short-time Fourier transform (STFT) [2]. Thus, classical single-
channel methods, including spectral subtraction, Wiener filter-
ing, or Bayesian estimators [3], can be expressed as a gain func-
tion applied to the noisy STFT. The availability of microphone
arrays in recent speech devices, such as smartphones or smart
speakers, allows us to exploit the additional spatial informa-
tion through multichannel speech enhancement techniques. The
most common strategy consists of using a frequency domain
beamforming algorithm [4], which applies spatial filtering, fol-
lowed by a single-channel postfilter to enhance the speech sig-
nal further. The performance of the aforementioned techniques
relies on an accurate estimation of the noise power spectral den-
sity (PSD) [5], in the single-channel case, and the noise spatial

covariances and relative acoustic channels for beamforming [6].
Despite the existence of different estimation algorithms for each
case, most popular approaches are based on the computation of
the speech presence probability (SPP) for each TF bin in order
to discriminate speech- and noise-dominant spectral regions [7].

In the last decade, the revolution of the deep learning
paradigm has extended the use of deep neural networks (DNN)
for speech enhancement tasks [8]. Regarding the STFT domain,
two main approaches have been followed for the single-channel
scenario, spectral mapping [9] or masking [10], which differ in
the network’s target. While the first directly tries to estimate
the magnitude spectrum of the clean speech signal, the latter
uses the DNN to compute a gain function. In this last case, net-
work outputs can be optimized for a pre-defined target mask or
through a loss function that considers the enhanced speech sig-
nal [8]. The integration of DNNs with beamforming algorithms
can be performed in several ways. Still, a general approach uses
DNN spectral mask estimators to compute the needed speech
and noise spatial covariances accurately [11, 12, 13]. This is
similar to the aforementioned SPP paradigm.

Among the presented speech enhancement approaches,
classical signal processing is limited due to the assumptions
made, while DNNs depend on the training data and can lack
generalization. In addition, common methods assume the avail-
ability of the whole speech signal during processing. On the
other hand, speech-related applications in mobile devices have
to ensure online processing with low latency and computational
efficiency. Therefore, this Thesis focuses on developing on-
line multichannel speech enhancement techniques suitable for
mobile devices. Our objective is the integration of statisti-
cal signal processing algorithms with DNNs efficiently used in
parts of the algorithm where assumptions about signal proper-
ties are weak. Thus, this yields increases in robustness under
challenging, noisy real-world environments while allowing for
online processing. More specifically, we focus on four differ-
ent scenarios to apply these integrated techniques: (1) dual-
microphone smartphones in noisy and reverberant environments
exploiting power and phase channel differences, (2) the joint
estimation of clean speech and acoustic parameters in general
multi-microphone devices, (3) multichannel target speaker ex-
traction in multi-talker mixtures by exploiting auxiliary spectral
and spatial information, and (4) the training of DNNs for speech
enhancement using perceptual considerations of the human au-
ditory system.

The rest of this paper aims to describe the key aspects of
the developed speech enhancement algorithms in this Thesis,
the most relevant experimental results obtained and the main
conclusions drawn for the research addressed in these works.
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Figure 1: Overview of the dual-channel speech enhancement
algorithm for dual-microphone smartphones.

2. Thesis overview
In this section, we present four speech enhancement (SE) al-
gorithms developed in this Thesis. First, we give an overview
description of these techniques and their contributions to the
state-of-the-art. Then, we present the most relevant experimen-
tal results and analysis obtained through evaluating these algo-
rithms in different speech corpora. Our evaluations focus on
the use of objective quality and intelligibility measures, espe-
cially the Perceptual Evaluation of the Speech Quality (PESQ)
[14], the Short-Time Objective Intelligibility (STOI) [15] and
its extended version (ESTOI) [16], as well as the Scale Invari-
ant Signal Distortion Ratio (SI-SDR) [17].

2.1. Dual-channel SE based on extended Kalman filter for
channel estimation

The proposed algorithm for dual-microphone smartphones is
depicted in Figure 1. The dual-channel noisy speech signal vec-
tor in the TF domain, y(t, f), is processed by a minimum vari-
ance distortionless response (MVDR) beamformer d(t, f) [7]
followed by a Bayesian postfilter G(t, f) [5]. This computation
requires knowledge about the relative transfer function (RTF)
between the microphone acoustic channels H21(t, f), and the
noise spatial covariance matrices (SCM) ΣN (t, f). The esti-
mation of the RTF variations in reverberant environments is ad-
dressed via a proposed extended Kalman filter (eKF) for track-
ing the channel variations [18, 19] assuming the availability of a
priori RTF statistics information. On the other hand, the estima-
tion of the SCMs relies on the computation of the SPP px(t, f)
through the power level difference (PLD) [20] and interchan-
nel phase difference (IPD) [21] information. To this end, we
investigate two different approaches. The first one, based on
Bayesian estimation, considers both the likelihoods of the noisy
speech given speech presence and absence hypotheses and a
priori speech absence probability (SAP), which is computed
through the previous dual-channel features [22]. The second
one directly performs the SPP estimation using a convolutional
recurrent network (CRN) fed with both the log-magnitude noisy
spectrum and the dual-channel features [23].

The proposed technique was evaluated in a simulated dual-
channel speech database that considers a smartphone used in
different noisy and reverberant environments [18]. Two dif-
ferent user positions were considered, close-talk and far-talk,
which consider a different distance between the speaker and the
smartphone (conversational and hands-free). We first compare
the proposed eKF estimator with common approaches for RTF
estimation, such as eigenvalue decomposition (EVD) and co-
variance whitening (CW) [7]. The distortionless property of the
MVDR beamformer holds when an accurate estimation of the
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Figure 2: SD results for the different RTF estimators when used
for MVDR beamforming.
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Figure 3: PESQ and SDR results from the evaluation of the
CRN-based SPP mask estimator with the different input fea-
tures. The plots show the increments obtained on the metrics
with respect to noisy speech.

RTF is achieved. Therefore, in Figure 2 the RTF estimators are
compared in terms of the speech distortion (SD) [4] in the clean
speech at the MVDR output. The results show lower distortion
for the eKF estimator, closer to an oracle estimation, indicating
a more precise RTF estimation. Finally, in Figure 3 we com-
pare the performance of the two SPP estimators in terms of fi-
nal noise reduction. It is observed that the CRN performs better
than its statistical counterpart, while the dual-channel features
provide useful information. Thus, PLD features help in close-
talk condition, while IPD features are more relevant in the far-
talk scenario.

2.2. Multichannel SE based on recursive expectation-
maximization with DNN speech presence priors

We will now describe the proposed multichannel speech en-
hancement approach for general multi-microphone devices. To
increase the robustness of the approach, we addressed the joint
estimation of the speech statistics and the acoustic parameters
using a Bayesian framework. A possible solution is to perform
maximum likelihood (ML) estimation, but it has no closed-form
solution [24]. In addition, the variables should be computed
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Figure 4: Block diagram of the proposed REM algorithm for
multichannel speech enhancement, depicting the most relevant
parts. The dashed lines indicate the feedback due to the M-step.

Table 1: PESQ, ESTOI and SI-SDR results for the different vari-
ants of the proposed REM algorithm

Method PESQ ESTOI (%) SDR (dB)

Noisy 1.27 68.2 7.51
MVDR 1.59 79.5 11.34
MWF 1.94 80.1 13.01
MKF 1.81 77.1 12.53

REMWF 2.05 83.3 14.46
REMKF 2.08 84.1 14.89

in an online fashion. Therefore, we proposed using a recur-
sive expectation-maximization (REM) iterative procedure [25],
which can be performed with only a few iterations per frame.
The algorithm is depicted in Figure 4 and consists in a two-step
procedure per iteration. In the E-step, the filtered speech signal
X̃1(t, f) is obtained through MVDR beamforming plus postfil-
tering, where two different postfilters are evaluated: Wiener and
Kalman filters. The a posteriori SPP px(t, f) is also obtained
through Bayes’ rule using the noisy speech likelihoods and the
a priori SPP qx(t, f). In the M-step, the acoustic parameters
for the beamforming and the postfilter are computed using the
clean speech statistics and SPP by ML estimation. Furthermore,
a recurrent neural network is used to compute the a priori SPP
given the noisy speech signal, thus increasing the robustness
and improving the convergence of the REM algorithm.

The REM framework was evaluated using the multichannel
CHiME-3 database [26], which comprises noisy speech signals
captured using a 6-microphone tablet in different public spaces.
Table 1 shows the results obtained with the two variants of the
REM approach with Wiener (REMWF) and Kalman (REMKF)
postfilters. Our approach is compared with MVDR as well
as multichannel Wiener filter (MWF) [27] and multichannel
Kalman filters (MKF) [28] with a DNN-based mask estimation
for the acoustic parameters [11]. These results show that the
proposed REM framework outperforms other approaches, with
the Kalman filter achieving the best results, which remarks the
importance of exploiting additional temporal information. In
addition, Figure 5 shows an example of the a priori and the a
posteriori SPP. We can observe how the DNN prediction can be
improved during the REM procedure by considering the statis-
tical spatial information.
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Figure 5: Example of a priori and a posteriori SPP obtained
from the DNN and the REMKF algorithm.

Table 2: SDR, STOI and WER scores obtained for different
speaker extractors

BF Extractor STOI SDR WER
dB %

Offline

Speaker-beam 0.76 8.78 28.66
DAN 0.78 11.38 23.70
PreBF 0.80 10.00 23.32
Spt. Features 0.80 9.70 23.50

Online Online-PreBF 0.74 5.54 34.60
Online-Spt. Features 0.75 5.09 33.61

2.3. Multichannel target speaker separation based on
spatial-beam network

We will now focus on a different scenario with a target speaker
and other overlapped interfering speakers. Our objective is the
estimation of the target speaker using beamforming with DNN-
based mask estimators for the computation of the covariance
matrices. The main problem is that the network cannot dis-
criminate among different speakers. To solve this issue, the
Speaker-beam approach was previously proposed [29]. It con-
sists of using an adaptation utterance from the target speaker
to compute a speaker vector using an auxiliary network. This
speaker vector is used in the DNN mask estimator to adapt the
network and compute the target speaker mask. The main lim-
itation of this approach is the degradation suffered by unseen
speakers with similar voice patterns (e.g., same gender). To
overcome this issue and also adapt the system for online pro-
cessing, we proposed the Spatial-beam variant [30], which con-
siders block-online beamforming and mask estimation, as well
as the use of spatial information from the multichannel adap-
tation utterance. Two different alternatives are considered: (1)
pre-beamforming (PreBF), which computes an offline MVDR
beamformer from the adaptation utterance to enhance the input
signals to the Speaker-beam mask estimator, and (2) the use of
additional IPD spatial features from both the noisy speech and
adaptation utterances for the Speaker-beam network.

The systems were evaluated in a simulated multi-speaker
version of the Wall Street Journal database [31]. Table 2 com-
pares Spatial-beam variants with Speaker-beam, and also Deep
Attractor Networks (DAN) [32] for source separation. In addi-
tion, we evaluated the online versions of the proposed approach.
Apart from enhancement metrics such as STOI and SDR, we
also evaluated the word error rate (WER) when enhanced sig-
nals are used in a DNN-based speech recognition system. It
can be observed that the proposed Spatial-beam system out-
performs Speaker-beam and achieves similar results with DAN
networks while focusing on the target speaker. Moreover, the
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Figure 6: Examples of different estimated target speaker masks
obtained from different DNN speaker extractors.

performance is still competitive for the more challenging on-
line scenario. Although the two variants perform similarly,
PreBF yields better signal distortion while using spatial features
improves the recognition accuracy. An example of the target
speaker mask obtained for Speaker-beam and Spatial-beam is
shown in Figure 6. It can be observed that the speaker mask
computed using Spatial-beam is closer to the target ideal binary
mask (IBM) used for the DNN training, both for the offline and
online mask estimators.

2.4. Deep learning loss function for the perceptual evalua-
tion of the speech quality

The last contribution of this Thesis is devoted to the training of
DNN-based speech enhancement algorithms exploiting percep-
tual considerations. To this end, a direct approach consists of
integrating well-established objective quality metrics as criteria
to the loss function [33]. We proposed a differentiable adapta-
tion of the PESQ algorithm as a loss function, called Perceptual
Metric for the Speech Quality Evaluation (PMSQE) [34]. This
loss is intended to improve the speech quality, and its compu-
tation is performed as follows. First, a standardized listening
level enhanced and clean speech spectra are transformed to a
perceptual domain by applying a Bark transformation followed
by a sone loudness scale. In addition, the Bark spectrum of
the enhanced signal is equalized to remove non-relevant effects,
such as time-invariant non-severe filtering and short-term gain
variations. Finally, two per-frame disturbance terms are com-
puted from the loudness spectra differences: the symmetrical
and asymmetrical disturbances. These terms account for mask-
ing effects and discriminate spectral differences due to distorted
speech and additive noise. The PMSQE loss is essentially ob-
tained as the weighted sum of both terms averaged over time.

The proposed loss function was evaluated for training spec-
tral masking speech enhancement using a CRN network. Thus,
a simulated noisy version of the TIMIT database [35] was used
for training and testing. Figure 7 shows the results for different
objective metrics when the network is trained with PMSQE and
other losses based on quality metrics. The results were obtained
for both seen and unseen noises during training. The experi-
mental results show that PMSQE loss outperforms in terms of
PESQ metric, while the combination of PMSQE with SDR loss
gives a generally good performance among objective metrics.
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Figure 7: PESQ, and SDR results for the PMSQE loss and other
metric-based loss functions. The plots show the increments ob-
tained on the metrics with respect to noisy speech.

3. Conclusions
In this Thesis, we have developed a set of online multichannel
speech enhancement algorithms suitable for low-latency pro-
cessing in mobile devices. These techniques are able to com-
bine statistical signal processing and deep neural networks suc-
cessfully. Therefore, we can overcome the limitations imposed
by the statistical framework, thus improving the final perfor-
mance. This allows us to efficiently exploit the spectral, tempo-
ral, and spatial information within the noisy speech signals to
obtain high-quality speech estimates.

The availability of accurate knowledge about the SPP in
the TF domain is a crucial element in the performance of the
proposed algorithms. Among the different approaches, DNN
mask estimators have shown astounding performance in the
computation of accurate SPP estimates. Their potential can also
be extended to estimating target spectral masks for overlapped
speakers and defining gain functions for single-channel spectral
masking. This allows the design of low-latency and lighter com-
putational algorithms suitable for mobile devices in real-world
conditions.

As a results of this Thesis1, we have published a total of
three JCR journals [34, 22, 25] and four conference papers [18,
19, 30, 23] in InterSpeech, Eusipco and IberSpeech.

For future work, interesting research lines that can be ex-
plored are the full integration of DNNs and statistical signal pro-
cessing, dealing with more complex reverberant environments,
and using complex DNNs for spectral masking.
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