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Abstract. Adenocarcinomas are tumors that originate in the lining
epithelium of the ducts that form the endocrine glands of the human
body. Infiltrating breast and one of the most frequent neoplasms among
female population, and the early detection of the disease is then funda-
mental and, for this reason, a profound knowledge of the biology of tumor
at this phase is essential. Among the distinct tools that contribute to
this knowledge, computational simulation is more frequently used every
day. The availability of fast and efficient computations that allow the
simulation of tumor dynamics in situ, under a wide range of different
parameters, is an important research topic. Based on cellular automata,
this paper proposes a generic simulation model for the Adenocarcino-
mas In Situ (CIS). We applied it to the breast ductal adenocarcinoma
in situ (DCIS), modeling our cells with the genomic load that we cur-
rently know that the tumor starts, and proposing a numerical coding
method for the genome that allows efficient computational management.
We propose a parallelization scheme using data parallelism, and we show
the acceleration achieved in multiple nodes of our cluster of processors.
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1 Introduction

It is estimated that one in eight women [8] will suffer breast cancer, being approx-
imately 80% of them ductal carcinomas. Likewise, one in every nine men will
suffer a prostate cancer. Thus, the incidence of these neoplasms in the adult
population and the magnitude of the health problem they imply will be very
important. Early detection is aimed at identifying the disease when it has not
yet acquired infiltrating character, and it is limited to glandular ducts (in situ),
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i.e. the glandular parenchyma not was infiltrated yet. At this point, the disease
can only be root out with surgery that removes the affected segment of the duct,
and a safety margin free of disease, while preserving the rest of the patient’s
breast, with a success rate of more than 90%. In the case of prostate carci-
nomas, prostate-specific antigen, which has traditionally been used as a tumor
marker, it has been found out that is unaccurate in screening the disease for men.
In both cases, the characterization of the disease when is still in situ becomes
of great interest, and for this, computer simulation can be an excellent tool to
investigate it. Carcinogenesis is a phenomenon in which one or multiple muta-
tions on certain genes allow the cells to reproduce and survive abnormally, under
a selection process that results in uncontrolled tumor growth characterized by
infiltrating nature. There are many mathematical models in the literature that
contain the knowledge we currently have about genes involvement in neoplasms
[1-3,6,7,9,11], which study the mutations that neoplasms can develop to orig-
inate a CIS. In this paper, we propose a three-dimensional cellular automaton
based CIS model to simulate a generic glandular duct and to analyze how the
mutations in the cells of the simulated duct become CIS. We also apply the model
to known breast intraductal adenocarcinoma data, parallelize it and we study
its natural development with respect to the parallel model and the acceleration
achieved.

Normal duct Ductal Atypical DCIS Invasive ductal
hyperplasia hyperplasia carcinoma
rembrane Myoepithelium Ductal epithelium

Fig. 1. Natural development of Adenocarcinomas in Situ (CIS), from a normal duct
to an infiltrated one.

2 Biology of Breast Adenocarcinomas in Situ

If not detected and treated, the natural development of these tumours is the
progression to an infiltrating adenocarcinoma, as shown in Fig. 1. In the case of
the human breast, it is now known that within a normal duct the two types of
cells that form the ducts originate from a single class of progenitor cell that, by
cellular differentiation, leads to two germ lines that conclude in the two cited
types of cells. Ductal adenocarcinomas initially have a local character and then
grow to infiltrate and reach the duct.

It is known that those women with genetic predisposition to breast cancer
accumulate inherited specific mutations [16,17], and thus, an estimate points out
that up to 12% the number of cases is due to this circumstance, not mentioning



706 A. J. Tomeu-Hardasmal et al.

other genes that may be involved. In addition it is now known that mutations in
the BRCA1, BRCA2, PTEN and TP53 genes increase the likelihood of suffering
from ductal carcinoma. In the model proposed here, this genetic predisposition
will be taken into account by means of a logical variable HMG. In our simulation,
all the stem cells of the duct will be defined with the genetic predisposition
incorporated into their genome.

The meaning of the four genes that we will consider in the simulation is
illustrated in Table 1. In it, the first and second columns collect the modeled
genes and their function in physiological conditions. When one or several of the
genes suffer damage, the behavior of the cell that contains it becomes malignant.
When a chain of specific mutations occurs it inexorably leads to the proliferation
of ductal carcinoma, first local, and then infiltrating, breaking the duct and
expanding to the glandular parenchyma.

Table 1. Pathological functioning of genes.

Gen Operation with damages
BRCAL1 | The cell dies

BRCAZ2 | Neoplastic reproduction
PTEN | Neoplastic reproduction

PTEN | Does not inhibit neoplastic reproduction

TP53 | Cell survival with damage to proto-oncogenes

TP53 Cell survival with damage to the double-layer architecture

3 Cellular Automata

A cellular automaton (CA) [5,15,18] is as a 4-tuple (¢, &, N1, p) where:

— ( is a discrete regular network of cells (or nodes) together with some border
conditions set for the finite dimension net case, which are of use to define
neighboring conditions of cells at the net frontier.In our case, we have the
mathematical representation of a 3D-cubic: ¢ = {r: r = (ry,rq9,73) € Z3}.

— ¢ is a finite set (usually, with an algebraic Abelian ring structure) of states
that the network of cells can take on.

— N is a finite set of cells that define the neighbor cells with which a given cell
of the network can interaction.

— The transition function p that defines how any cell’s state can change depend-
ing on time and on its neighbor cells own state N'.

Given the previous definitions, any area of cells can be defined as the net-
work ¢ included in the real 3D space R? that uniformly covers a portion of the
d-dimensional Euclidean space. Each cell is labeled by its position r» € (. The
layout of cells is spatially specified by the connections that any cell holds with
its closest neighbors, which are obtained by connecting pairs of cells following
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a regular pattern. For any spatial coordinate r, the neighborhood grid Ny(r)
consists of a list of neighbor cells that is defined by

Nb(T):{’/’—FCi:CiENb,i=1,~-~,b} (1)

Where b is the coordination number or, in other words, the number of the
grid neighbors that directly interact with the cell at coordinate r. N}, denotes
the elements in that pattern as ¢; € R, i=1,---,b.

C={r:rez’ (2)

The total number of cells available is usually denoted by |¢|. The entire set
of neighboring cells whose states affect any cell r is defined by the interaction
vicinity N} (r) function, N/ (r) = {r +¢; : ¢; € N/'}.

Any cell’s neighborhood can be chosen in different ways, though we choose for
our simulation the vicinity schema of Moore [5], where any cell has as neighbors
only its surrounding cells. Furthermore, each cell » € ¢ has a state s(r) € e.
A global configuration of the automaton s € &l¢l is determined by the state
of all the cells on the grid. Finally, model’s temporal evolution dynamics is
determined by the function of transition p that specifies the changes in any
cell state according to its previous state, and the interaction with closest-cells
neighborhood given by p : e — & where p = |N{f|. The rule is proved to be
spatially homogeneous and does not therefore explicitly depends on the position
of a given cell [14]. Extensions of the previous definition to include temporary
or spatial homogeneity are feasible. If the CA is deterministic, the function of
transition yields only one feasible change of state, whereas if it is stochastic, the
new cell’s state is given by a specific distribution of probability.

4 Modelling Breast Adeconocarcinoma Ductal in Situ
with Cellular Automata

To model the duct, a cellular automaton [12,13] assuming a three-dimensional
¢ grid with 20 x 20 x 200 nodes is used, which is built from the two-dimensional
model proposed in [14], by just adding an additional dimension. Each node
may contains a cell. Although a human ductal cell has a genome composed of
multiple genes with millions of DNA bases, we will limit ourselves to consider
only the four genes in the model involved in the pathogenesis of the DICS, which
are encoded by 32 bits integers. The genetic load of a cell is then modeled by
an ordered tuple of the form GC = (brcal,brca2, pten,tp53). The tuple GC
is encoded in its turn by a single integer using the pairing function given by
the Eq.3. The three dimensional version of Moore’s neighborhood and a null
boundary condition is used to give the ends of the duct a biological coherence.

(z,y) =2"2y+1) -1 3)
This function, which is a bijection, may be nested by means of the expression.

({brcal,brea2, )y, (pten, tp53)) (4)
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It allows the encoding of the entire genome of a cell in a single positive inte-
ger by using a compact and reasonably efficient way. In this way, each node
of the ¢ grid of the cellular automaton contains a pair of positive numbers
that respectively code the cell type and its genetic load, which in turn are
re-encoded by applying the pairing function to both data, so that the node
contains a unique number in Z*. Decoding the integer to update that genetic
load when a cell mutates or for any other reason is trivial, given the encod-
ing technique exposed, by simply using the decoding functions r(z) and (z),
described in the Eqs.5 and 6. The set of possible cell types! of the grid is
S = {free, basal, luminal, myoephitelial} and, as we have said, they are numer-
ically coded.

U(2) = ming<[(3y)<:](z = (2, 9)) (5)
r(2) = miny<.[(3r)<:](z = (2, 9)) (6)

The three given functions are primitive recursive [4] and, therefore, com-
putable. The nodes of the grid are synchronously updated node by node of the
duct. The cells are updated according to the probability of mutation and its
neighborhood environment. Both variables define the transition function p. The
selection and updating of the 8 x 10% nodes of the grid defines a generation. The
number of generations varies depending on the length of the natural history of
the tumor being simulated, increasing or decreasing the number of generations
of the simulation. The grid is initialized by a completely deterministic algorithm
that creates a base membrane and places a small number of progenitor cells in
its interior, which reproduce to form a double layer duct, though we will apply
it to the breast ducts here. Each section of the duct contains approximately 45—
50 luminal cells. Originally, all the cells are located on the duct have a healthy
genome, which is represented by 32 bits equal to zero. Mutations are modeled
by nullifying the value of one or several bits of a gene. The HMG flag allows us to
execute the model considering an inherited genetic predisposition to contract the
disease, using a Monte-Carlo method. The algorithm to obtain a simulation of
the duct compatible with the histological structure of a human breast is shown
below?.

1 Algorithm SetUp

> Input: empty grid

s Output: grid with initial states for nodes

. Method :

¢ 1. With radial symmetry put basal_cells to define basal
membrane ;

! Basal cells: they form the outer layer of tissue that surrounds the duct; luminal and
myoephitelial cells: form the internal structure of a normal duct (see Fig. 1); free
represents the internal space of the duct that is empty.

2 For the sake of clarity, we have abstracted the necessary coding and decoding steps
that allow us to modify the state of a node of the reticle or the genome of a cell
located in that node. However, the reader should always bear in mind that any
reading or writing to node in the grid requires that state modification.
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stem_cells =[];

//seeding stem cells ...

for (i=0; i<200; i++){
cx=random (0, 19);
cy=random (0, 19);
cz=random (0,199) ;

grid [x][y][z]=stem;
stem_cells.add ((x, y, z));

}

//putting mutations in stem cells ...
if (HMG=true)
for iterator in stem_cells{
x=iterator (x);
y=iterator (y);
z=iterator (z);
mutate (grid [x][y][z], all_gens, 15%);
}
//making the rest of duct...
While (free_places){
5. for all cells in grid
reproduce (grid [x][y][z], adjacent, hierarchy);
6. for all !(stem_cell) in grid
migrate (grid [x][y][z], vacant_-neighboring,
radial_symemtry) ;
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Fig. 2. Initial state for a layer of the duct.

709

When the previous simulation is executed in the Java language, a grid is

obtained that coherently models the normal histological structure of a human
duct (Fig.2), and all the cells generated in the grid remain inside, adopting
the double layer structure illustrated in Fig.1 for the normal state of the duct.
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During the reproduction phase, modeled on line number 5, all the cells of the
grid get divided and take up the adjacent places, wherever there is enough room
for them. The inherited genetic load can be mutated, according to the mutation
rate set as a parameter of the mutate method, to which we have given a value of
15%, which reasonably encompasses the various real causes that can lead to this
type of mutations, and that include the environment, the genetics and even the
type of the cell [7]. Since all genes are mutated through the method, including
those that control both mitosis and programmed cell death, the cells of the duct
resulting from the routine SetUp will eventually lead to neoplastic pathology.
Once the grid is in its initial state, it is necessary to make it evolve over time,
which is the responsibility of the Evolve algorithm.

1 Algorithm Evolve

> Input: grid in t—time

s Output: grid in (t+1)—time
1+ Method:

6 //now, the transition function ...

7 1. for all cells in grid{

8 //normal apoptosis ...

9 2. if ((mutations (BRCAL(grid [x][y][z]))

10 +mutations (TP53(grid [x][y][z])))>32)
11 grid [x][y][z]=free; //cell dies

12 //normal apoptosis...

13 3. if (mutations (TP53(grid [x][y][z]))<16 && (
14 ladjacent_basal(grid [x][y][z]) ||

15 ladjacent_myopithelial (grid [x][y][z])))
16 grid [x][y][z]=free; //cell dies

17 //anormal apoptosis...

s 4. if(stem(grid[x][y]lz])){

19 5. if(adjacent_free(grid[x][y][z]))

20 normal_reproduction () ;

21 6. if ((mutations(BRCAl(grid [x
22 mutations (BRCAl(grid [x
23 mutations (PTEN(grid [x][y
24 mutations (TP53(grid [x] [y
25 cancerous_reproduction ()
26 }

27 7. for all !(stem_cell) in grid

28 migrate () ;

2 }

In the previous algorithm, the methods BRCA1, BRCA2, PTEN and TP53 takes
the integer that encodes the genome of a cell in the grid and extracts the 32-
bit integer that encodes the gene according to the name of the method; the
mutations method takes a numerically coded gene as its argument and returns
the number of mutations it presents, as an integer between 0 and 32. The meth-
ods adjacent_basal and adjacent_myopithelial allow us to know the type
of the cells that form the Moore’s neighborhood cube of a given cell while the
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method adjacent_free gets the free nodes on the neighborhood of the node
given as argument. On the other hand, there is also available a set of four meth-
ods that allow us to know the type of the cell that is in a node of the grid.
The subroutine normal_reproduction allows parents to be reproduced correctly
around their local cubic neighborhood, preserving the double layer structure of
the duct. The subroutine cancerous_reproduction, allows parents to be repro-
duced at points in their local cubic neighborhood, but does not respect the
double-layer structure of the duct, and ended up forming an intraductal carci-
noma in situ. Note that for a parent to reproduce in this way, it is necessary that
the total sum of mutations present in their four genes is greater than half the
positions that the four genes encode. Finally, a simulation is carried out using a
given number of discrete time steps, in which each of them the described algo-
rithm Evolve is executed. When a critical number of mutations is reached, cells
begin to proliferate uncontrollably, filling the duct lumen and forming the carci-
noma in situ. Figure 3 illustrates this for a segment of the duct consisting of fifty
layers, where the neoplastic transformation has taken place and the malignant
cells have begun to fill the duct lumen, without infiltrating the base membrane.
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Fig. 3. Simulation for a full duct by layers. Neoplastic cells (yellow) are filling the
inside of the duct. (Color figure online)

5 Implementation

The previous model was implemented using the Java programming language,
and parallelizing the initial, sequential version. The parallelization employed
the principles of symmetric multiprocessing with data parallelism, dividing the
grid in its longitudinal dimension z into cubic sections that were processed by
different threads on a dedicated core to each one of them [18].

A security condition is implemented to ensure the consistency of the simu-
lation, which consists of forcing a thread trying to write in the bilayer section
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of the neighboring sub-table to consult the state of the node in which it intends
to write after the acquisition of the lock, since the thread responsible for that
sub-grid reticle could have occupied that node in its own writing time [15].
The execution tests were developed on four different nodes of the cluster of our
university. Each node has two Intel®Xeon™ E5 processors at 2.6 GHz, which
yield 20.8 Gflops together, with 128 GB memory and without hyperthreading
activated. The entry node operates the HP Cluster Management Utility on Red
Hat Enterprise Linux for HPC and the processing nodes the version Compute
Node of the same operating system. The version of the Java development kit
used was Oracle 1.8.0.151-1.b12.el7_4.

6 Measurements and Results Discussion

Figures 4 and 5 show the average times and speedups obtained, for 5x 10® genera-
tions. Once computed, the simulation stopped. Average times ans speedups were
obtained by computing the same simulation in different nodes of our cluster It
can be seen that both time and speedup curves reach their bests values for eight
parallel threads and that these values get worse if the number of parallel tasks
is increased. In other words, the optimal average time is 4.18s for a maximum
speedup of 5.85, over a theoretical maximum of 16, which is the number of cores
available in each node, and starting from an optimal sequential time of 24.45s.
One might think that the parallelization of the model, which barely gets up to
half of the theoretical maximum speedup, could be easily improved. However, the
following items clarify the obtained results rationale:

DCIS Parallel Simulation Mean Time
25 T T T T T T

z T
3\ ean Time
SD >

20 - b

AVA MEAN TIMES (seconds)

0 L L L L L L L
0 2 4 6 8 10 12 14 16
TASKS [1-16]

Fig. 4. Execution times (Mean + Standard Deviation).

— It must be remembered that the contact zones between sub-reticles, con-
trolled by different threads, are protected by a mutually exclusive lock, which
introduces undesirable latencies that are however necessary to guarantee the
coherence of the state of the nodes in the grid. This directly induces an
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overload of the execution time that is proportional to the number of paral-
lel threads (and contact zones). This shortcoming was identified in previous
work [15] and by other authors in [10].

— Although the introduction of different reading and writing grids allow the
threads to process the nodes that are not in the contact areas of the grid in
a fully parallel manner, this is not the case of the nodes in those areas. Here,
the thread that wants to write to a node located in the contact area, once
it has got the permission to do it, cannot just use the neighborhood data in
the reading grid, but has also to check the writing grid to verify that there
is enough free space for the modification, because another thread may have
occupied that space as the result of a mitosis. This also induces execution
overloads.

— It is also worth mentioning that each node of the grid encodes a lot of infor-
mation by using a single positive integer (type of cell that occupies the node,
and BRCA1, BRCA, PTEN and TP53 genes). This introduces a heavy load
process for decoding (and encoding, when appropriate) the information in the
neighborhood of a cell.

One could think that the representation of the state and the genome of a
cell by means of a class gridCell. java could improve the results, although the
measures obtained by using an alternative implementation, discarded that. The
space occupied in the heap of the Java Virtual Machine by the nodes modeled
as classes, and the need of navigate through their respective references to reach
them, increases the global process times and decreases the speedups. In short,
the three previous items justify why those seepdups have been obtained, being
the second one of particular relevance, and also being coherent with models
that develop similar simulation dynamics in two dimensions, such as the results
published in [10] and in [15]. The parallelization is worthwhile by itself, besides
the proposed method is very general, and applicable to other types of tumors
where, depending on the transition function with which they are modeled, the
speedup could be slightly improved.

Regarding the biological fidelity of the model, we have compared the simula-
tion with a real specimen, using the number of neoplastic cells in the duct as a
as variable that changes over time (number of generations). In the real case, the
genetic predisposition was verified by means of immunohistochemical method,
while in our case the corresponding flag of the simulation was activated. The
classic gompertzian behavior [7] that describes the tumor dynamics for both in
vivo and in vitro were observed, which tends to occupy all available tissue domain
with a quasi-exponential acceleration from a specific time instant. We see that
the simulation in silico is compatible with biological and histological observa-
tions, with an acceptable degree of fidelity in terms of the global dynamics of
neoplastic growth in situ refers.
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Fig. 5. Speedups (Mean + Standard Deviation).

7 Conclusions and Future Works

In this work we have proposed a general procedure for the parallel simulation
of adenocarcinomas in situ by using cellular automata-based model. A change
of the transition function of the cellular automaton and the genetic load model
allows us to adapt it to different types of glandular neoplasms, before they adopt
infiltrating character. From the proposed algorithms, a parallel implementation
has been developed using the Java language with symmetric multiprocessing by
means of data parallelism for the study of a case: breast ductal adenocarcinoma
in situ. The parallel simulation in the cluster of our University achieved a sig-
nificant reduction of the processing times (Fig. 4), getting a maximum speedup
factor of 5.85 (Fig.5); it has also allowed us to identify an important limita-
tion to the scalability of the proposed method, derived from the need to have
under mutual exclusion control the nodes of the simulation grid located in con-
tact zones that separate the data spaces reserved for different threads, which we
already had identified in a previous work [15] for a two dimensional simulation.
This limitation is typical of the nature of the problem and, therefore, cannot be
ignored. The fidelity of the proposed model to the biological reality has also been
checked, showing that the simulation achieves a more than acceptable fidelity
with respect to the usual behavior in this type of neoplasms. Our future work is
focused in:

— the application of the developed model to other glandular neoplasms in situ.
— the development of a data partitioning scheme that allows parallel simulations
on GPU architectures.
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