
Quality of Service in Cloud Computing Environments with multitenant
DBMS

Manuel I. Capel1 a, Oscar I. Aporta1 and Marı́a C. Pegalajar-Jiménez2 b

1Department of Software Engineering
2Departament of Computer Science and AI

ETSI Informática and Telecomunicación, University of Granada
Periodista Daniel Saucedo Aranda s/n, 18015 Granada, Spain

manuelcapel@ugr.es, oscar.aporta@juntadeandalucia.es, mcarmen@decsai.ugr.es

Keywords: Multitenancy, multitenant DBMS, Quality of Service, DBMS located in the Cloud, IaaS, OpenNebula

Abstract: This article proposes a new study of Quality of Service (QoS) in Database Management Systems with
multitenancy in which it is experimentally verified that tenants follow interference patterns between them
when they concurrently access the DBMS. The interference degree depends on characteristics of the database
used by each tenant. A testing architecture with virtual machines (VM), managed with OpenNebula, has been
designed. In each VM one DBMS is loaded managing many databases, one for each tenant. Five experiments
were designed and numerous measurements performed using benchmarks of reference, such as TPCC, in a
Cloud computing-based system. The results of the experiments are presented here, for which the latency and
performance were measured with respect to different workloads and tenant configurations. To carry out the
experiments, a multitenant environment model known as shared database/separate schema or shared instance
was deployed, which is widely used at moment and presents the best ratio between resource use, performance
and response.

1 INTRODUCTION

The requirements of today’s society and the new ITC
paradigms that dominate in a general way explain
that software development tends to be increasingly
flexible, dynamic and personalized, accessible off-
premise through the Internet, without the need to be
installed and managed on-premise. Virtualization is
one of the fundamental technologies to make this new
approach possible for the development and provision
of software services, since it allows a variety of
applications, which function as dedicated software, to
be grouped into a set of shared resources that help
to improve the use of physical resources, to simplify
management and reduce costs for companies.

A tenant is defined according to the context in
which it is inserted, for example, a tenant can be a user
of the application or a particular database in relation
to a DBMS.

a https://orcid.org/0000-0003-2449-4394
b https://orcid.org/0000-0001-9408-6770

A multitenant approach can help us consolidate
applications composed of multiple simultaneous
versions into a single functional system, thus avoiding
the inefficiency of having a separate system for each
tenant (Benjamin et al., 2011). DBMS are potential
candidates for implementation in a multitenant Cloud
Computing environment, thus promoting scalability,
cost reduction, ease of configuration, availability
of on-demand services, etc. Currently, multitenant
DBMS have been used to host multiple tenants
within a single system, and thus allowing the efficient
sharing of resources at different levels of abstraction
and isolation (Agrawal et al., 2011a).

We propose here a software architecture and a
performance evaluation methodology to carry out
a Quality of Service (QoS) study in Database
Management Systems (DBMS) for multitenant
environments in the Cloud.

Cloud service providers have to solve several
challenges, such as availability, performance,
scalability and elasticity, to meet the quality of
service required by customers of multitenancy
systems in the Cloud. A possible solution to achieve
this is to automatically manage the available resources



and the workload of the system to obtain elasticity
and improve the use of these resources (Sousa et al.,
2011), but this solution usually causes throughput
gets worse due to the increase in the response time
of tenants’ requests. In particular, to solve the
drawback caused by the high degree of concurrency
among the tenants of a DBMS, there is a strategy
that consists of distributing the location of tenants
in virtual machines according to their individual
interference pattern. To apply that means performing
the following tasks: (a) analysis of the tenant’s
profile to determine the level of interaction with
other tenants, (b) dynamic assignment of tenants
to different virtual machines without degrading the
system response and (c) application of techniques
to efficiently migrate tenants which show a lot of
interference.

This article, therefore, has focused on conducting
a systematic study to determine interference
profile of each tenant by using metrics such as
performance, latency and response time. The
study has to be considered a preliminary stage in
the development of a method and software tool
that allow automatic migration of tenants and
DBMS. The experiments carried out mix different
workload/tenant configurations and measure their
latency and throughput by assuming one DBMS
per VM, many databases (one database per tenant)
managed by one DBMS and VM, which are managed
using OpenNebula.

The article structure is as follows. First the quality
of service (QoS) model used to comply with the
SLA (client requirements) of a multitenant DBMS
system is presented. In the third section, the software
architecture and the implementation of the execution
environment to conduct the study are discussed. In the
fourth section the design of the testing experiments
carried out is detailed. The fifth section is dedicated
to the measures obtained in the study and discussion
of results. Finally, a section of conlusions and future
work is included.

2 A proposal for obtaining QoS of a
multitenancy DBMS in the Cloud

In multitenant models where each tenant only needs
a fraction of the resources, the degree of concurrency
of multiple tenants is quite high and makes difficult
to guarantee the quality of service (QoS), which
is usually defined by means of an SLA with the
user. Cloud service providers have to solve several
challenges to meet their required availability to
customers of the service.

Scalability is a static property of the system
that specifies its behavior with respect to a given
configuration, and elasticity is the dynamic property
that allows to scale the system when there is
a variation in demand, while the system is in
operation (Agrawal et al., 2011b). Therefore, the
property of elasticity is the most important to achieve
quality of service by Cloud service providers, who try
to obtain an estimate of the workloads expected to be
reached, in order to be able to perform a proactive
management of the resources.

We select a multitenancy model that presents
the best relationship between the maximum degree
of resource sharing and the least number of
interferences between tenants that may concur in the
DBMS. The selected multitenant model is that of
shared database/separate schema or shared instance,
since it is the most widely used and present
the best relationship between resource utilization,
performance and security (Barker et al., 2012).
According to this model, each virtual machine has an
instance of the DBMS, and each DBMS contains a
variable number of tenants, depending on the capacity
of the virtual machine resources and the workload.
A tenant is represented by a database in the system.
Despite requiring less infrastructure resources, this
model increases the interference between tenants,
since there will be a greater number of tenants in the
same DBMS.

2.1 Proposal of DBMS model with
multitenancy

Our DBMS model in the Cloud with QoS was built
according to the requirements of elasticity, scalability
and efficient use of shared resources.

Figure 1: OpenNebula-based Cloud architecture

To meet the above requirements, the multitenant
system proposal is structured in the following
components,
1. Autonomic Manager: Highly scalable monitoring

system that can interpret a computation to collect
the relevant parameters, regarding migration of
tenants.

2. Predictive models: allow to anticipate software



Figure 2: Determination of limits of acceptance for Q-attributes in a DBMS w.r.t. SLA during monitoring of services
execution, from (2011:Sousa).

and hardware failures.

3. Managed Resources: Cloud management
platform for autonomous services that provides
self-awareness and self-configuration through
sensors and actuators to take proactive measures
and decisions of reconfiguration (replication,
migration).

4. Task assignment system based on QoS: distributes
the workload based on the current state of
available resources. The allocation system is a
load balancer based on QoS.

We choose OpenNebula middleware (see
Figure 1), which manages physical and virtual
resources (nodes, networks, virtual machines,
images, etc.), to perform the functions of a stand-
alone administrator (“Autonomic Manager”), while
OpenNebula’s OneFlow service is the service
administrator (“Managed Resources”) that manages
services automatically, including elasticity. Self-
awareness and self-configuration are achieved by
extending the OneGate component provided by
OpenNebula.

Users and administrators use OneGate to collect
metrics, detect problems in applications, and trigger
elasticity rules in OneFlow. OpenNebula interacts
with OneGate, through its XML-RPC interface,
to send monitoring metrics to virtual machines.
OneGate is the principal mechanism used to exchange
information between virtual machines and OneFlow.

2.2 Quality model of the DBMS
according to the service level
agreement

The service level contract (SLA) contains information
related to the functional and non-functional
requirements that the service provider must guarantee
and the penalties in case of non-compliance. The
definition of an SLA is not a trivial task and should
consists of information about stakeholders, the SLA’s
parameters, an algorithm to calculate these and the
metrics used, service level objective (SLO) and the

actions to be performed in case of violation of the
agreement (Schnjakin et al., 2010). That information
must be specified as characteristics and attributes of
quality in a structured and guided way, by means
of a SLA specification language, such as one of the
languages: WSLA, WSOL or SLAng.
According to (Chi et al., 2011), SLA metrics for
database in Cloud Computing should optimize the
system, address relevant aspects for data management
and contemplate the characteristics of the Cloud
Computing model, such as elasticity, scalability
and multitenancy. For (Schoroeder et al., 2010)
it is important to establish more general criteria
to evaluate QoS, such as the percentile x% within
which the response time is less than a given value
y. In (Sousa et al., 2011) (Moreira et al., 2013) we
find SLADB, an example of a quality model, which
includes a definition of SLA, monitoring techniques
and penalties. Each metric has a quality of service
level objective (SLO) associated with it, as indicated
below,
• Response time: percentile x% of response times

less than a certain value and for a period of time t

• Throughput: percentile z% of throughput values
greater than a k value and for a period of time t

• Availability: function detected/non-detected for
indicating the existence of queries rejected over
a period of time

• Consciousness: function detected/non-detected
for indicating whether updated data are accessed
according to the consistency type (strong or weak)
In a QoS model for DBMS based on states, to

comply with the SLA, the acceptable limits of the
above parameters must be defined to perform a correct
monitoring, as shown in Figure 2.

2.3 QoS metrics for a multitenant
DBMS

The proposed multitenant DBMS infrastructure
presents a set of objectives included in the SLA,
which have associated metrics that allow measuring



the quality of the service. The System Level
Objective (SLO) contains the predetermined limits for
the parameter to be measured and, for each parameter,
a way of calculating how it is defined, e.g., by
computing the mean time. We define a Function
of Aptitude (FA) that will help us in the decision
process regarding the distribution of workloads, thus
allowing us to verify the allocation of a load to a
virtual machine (VM). FA will give us a criterion to
determine whether the instance of the DBMS loaded
in the VM is suitable to receive a new workload or
not.

We calculate the FA(i) for each VM(i) that will
reflect the percentage of work capacity of each VM (i)
with respect to the rest of the VMs. The function must
be defined according to the capacity of the resource
and the efficiency,

FA(i) = a∗ cp(i)+b∗ cm(i)+ c∗ tr(i) where :
cp(i) = CPU capacityavailable f or theV M(i)
cm(i) = Availablememorycapacityo f theV M(i)
tr(i) = Responsetimeo f theV M(i)
{a, b, c} aretheweigths

Where each of the three parameters of FA will be
multiplied by a weight depending on the importance
of this factor in the multitenant system.

3 Architecture of the software and
implementation

We will introduce in this section the OpenNebula
middleware (Fontan et al., 2008), which is the
management platform of Cloud computing selected
for this study. We will show how physical
resources are orchestrated and virtualized. We
use OpenNebula in this study because it makes
possible the construction of any type of cloud
computing system: private, public or hybrid, which is
fundamental for the administration of heterogeneous
infrastructures of distributed data centers. It includes
features for integration, administration, planning,
management, scalability, security and data center
accounting. Its core is very efficient and is fully
developed in C ++ with a backend for highly scalable
database management systems, including support for
MySQL and SQLite.

The software architecture of OpenNebula
provides interfaces that allow interaction with
physical resources as well as virtual resources,
such as the following: i) Interfaces for consumers
and administrators of Cloud Computing, with
several available APIs: AWS EC2, EBS and OGF

OCCI. In hybrid configurations, it has adapters
for Amazon EC2 Cloud services and ElasticHosts.
ii) Management interfaces for advanced users and
operators of Cloud Computing, such as the UNIX-
based command line interface (ONE CLI), and its
own graphical GUI from Sunstone, which serves
as a multi-user portal and manager of resources for
advanced users. iii) Low level extensible APIs for
Cloud integrators for Java, Ruby, XMLRPC API.
iv) OpenNebula Marketplace is an online catalog
that offers a wide variety of applications capable of
running in OpenNebula environments.
In our study we chose to use a multitenant model of
shared instance, so that, according to this model, a
correspondence between a database and a tenant in
the system can be defined; each DBMS contains a
variable number of tenants and each virtual machine
maintains a single instance of the DBMS (see
Figure 3).

Figure 3: ‘Shared instance’ multitenant DBMS model used
in the study

For the evaluation of the model, we used a
private cloud implemented with the OpenNebula
middleware. This allows us to focus the study’s
attention on analyzing the interference between
tenants after getting rid of external factors (network
latency, unavailability of a public cloud, etc.)
that could affect the results of our measurements.
In relation to the evaluation tool, we opted for
MuTeBench, since it is the first specific tool
for this type of systems that currently exists, at
least, until our best knowledge at the time of
publication. MuTeBench allows you to simulate
a complete multitenant environment. To carry out
the measurements, we created 2 virtual machines
(VM-MuTeBench, VM-mySQL) each one running
a Ubuntu 16.04 LTS distro. VM-MuTeBench is
deployed in 2 CPUs, 8 GB of RAM, 30 GB of storage,
and contains the MuTeBench framework. In its turn,
the VM-mySQL virtual machine is deployed in 2
CPUs, 4 GB of RAM, 30 GB of storage and runs
MySQL 5.7 DBMS, with the InnoDB engine, and 128
MB of buffer memory. The databases provided by
MuTeBench for the realization of the TPCC, YCSB
and Wikipedia benchmarks, were located in the VM-
mySQL virtual machine.



Table 1: Set of benchmarks accepted in OLTP-Bench
Class Benchmark Application domain

Transactional

AuctionMark Auctions on line
CH-benCHmark OLTP and OLAP mix

SEATS On-line airline ticketing
SmallBank Banking system

TATP Call location application
TPCC Processing order
Voter Talent sample voting

Web oriented

Epinions Social networks
Twitter Social networks

Wikipedia Online encyclopedia

Functional test

ResourceStresser Isolate resources stress-test
YCSB Scalable store of

key-value pairs
JPAB Relational assignment

of objects
SIBench Transactional isolation

Table 2: Databases used in the experiments

Multiple tenants Size
running the benchmatk (MB)

TPCC 500 MB
YCSB 800 MB

Wikipedia 600 MB

4 Design of testing experiments

In a multitenant architecture the data layer is essential
and an important issue is how a tenant’s workload
interferes with the rest of tenants sharing a resource.
The evaluation of multiple tenants in the Cloud differs
completely from the methods used in a traditional
evaluation of DBMSs, being necessary to use specific
benchmarks for these environments that may have the
ability to execute in parallel and changing workloads
of several tenants. Until very recently there was
no standard benchmark designed to conduct the
evaluation of database services with multitenancy in
cloud computing systems. MuTeBench (MuTeBench,
2014) allowed us to make different measurements
on these systems by creating different workload
scenarios. Like OLTP-Bench, the execution of a
benchmark in MuTeBench consists of three phases,
creation of the database, data loading and execution;
the type of execution must be indicated with the
appropriate parameter. OLTP-Bench is an open-
source framework for benchmarking, useful for
relational databases, which supports data generation
and execution of workloads. To carry it out,
OLTP-Bench uses 14 specific benchmarks applicable
to online transaction processing (OLTP) (Difallah
et al., 2013), as Table 1 shows. Transactional
benchmarks include intensive writing transactions
and complex relationships. Benchmarks oriented to
the Web address characteristics of social networks,

with operations based on many-to-many graphs
relationships. These benchmarks take into account
public data available to simulate a real application.
Benchmarks oriented to functional tests are focused
on testing individual functionalities of certain DBMS,
such as multitenancy ones.

The objective of this study is to verify through
experiments the availability. Therefore, we
use benchmarks to perform this analysis with
different characteristics, capable of validating a well
differentiated range of applications belonging to the
three types of benchmarks accepted in OLTP-Bench,

1. TPCC, a transactional benchmark well known in
the specific literature (TPCC, 2008),

2. Wikipedia, understood as a web-oriented
benchmark

3. YSCB (Yahoo Cloud Serving Benchmark) as a
functional test.

Next, we design a set of experiments to perform
different types of tests, first by analyzing the behavior
of tenants in an isolated environment, which assumes
the absence of interference with other tenants. In
a second phase, response times are analyzed by
assuming that several tenants could start interfering
if the number of these is progressively increased.

5 Measurements and results
The main objective of the tests carried out was
to verify the performance of a multitenant DBMS
under synthetic workloads that simulate operations
of different applications. In order to do that, the
benchmarks TPCC, YCSB (Cooper et al., 2010)
and Wikipedia, were used throughout the different
experiments carried out in the study.

To evaluate a multitenant database system we
used the aforementioned shared instance model.
Consequently, we create the databases shown in
Table 2. Each experiment explores a different feature
of a multitenant DBMS in the Cloud, such as quality
of service or elasticity, for this reason we need to vary
the transaction rate.

Firstly, we executed 3 tenants of different sizes
and individually, without competition of resources
among them. For each one, we made four measures
modifying the number of users (in each measure we
doubled the number of the previous one), as Table 3
shows.

5.1 Individual execution

In this first experiment we want to evaluate how
some characteristics influence the performance of the
tenants that run in an instance of the DBMS: size



Table 3: QoS temporal properties (ms.) of each tenant during a 30-minute execution of the model

Throughput
Tenant# 1 user 50 users 100 users 150 users

TPCC1 (100MB) 128.5 − 157.05 460.26 − 598.05 515.51 − 553.35 458.32 − 495.40
TPCC2 (500MB) 95.5 − 113.56 456.41 − 484.56 426.8 − 452.61 405.78 − 425.37
TPCC3 (900MB) 96.06 − 130.91 352.25 − 365.80 333.9 − 343.3 327.05 − 338.47

Latency
TPCC1 (100MB) 6.36 − 10.30 83.60 − 108.72 180.61 − 193.94 279.01 − 328.2
TPCC2 (500MB) 8.67 − 10.45 97.09 − 109.62 221.0 − 305.9 344.82 − 367.58
TPCC3 (900MB) 7.63 − 10.68 134.05 − 142.0 287.71 − 299.2 440.25 − 511.08

99th percentile latency
TPCC1 (100MB) 27.20 − 39.96 298.55 − 369.53 558.15 − 636.05 825.65 − 1020.99
TPCC2 (500MB) 30.72 − 36.30 352.30 − 381.09 570.14 − 1073.75 822.53 − 887.69
TPCC3 (900MB) 34.30 − 36.36 446.38 − 513.97 776.76 − 916.06 1086.47 − 1196.64

Figure 4: Minimum and maximum: (a)throughput measured for 1, 50, 100 and 150 users, (b)average latency measured for 1,
50, 100 and 150 users

of the tenant, number of users executing parallel
connections to the DB, number of transactions per
second that each user executes. We show in Table 3
the measurements obtained for the Throughput,
Average Latency and Average Latency of the 99th
Percentile response time or tail lantency.

From the data obtained, both the size of the
database (different for each tenant) and the number
of users influence the performance of the DBMS,
when these values increase, it worsens throughput and
increases latency.

This experiment served to observe the behavior
of the DBMS in a simulated environment of a single
tenant and serves as a comparison reference for
multitenancy DBMS assessment.

Table 4: Configuration of tenants in the second experiment

Tenant# Users Start Finish Rate
(min.) (min.) (tps)

T PCC1 (Tenant 1) 25 2 7 1000
T PCC2 (Tenant 2) 25 4 9 1000
T PCC3 (Tenant 3) 25 6 11 1000
T PCC4 (Tenant 4) 25 8 13 1000
T PCC5 (Tenant 5) 25 10 15 1000

5.2 Constant load concurrent execution
In the second experiment (see tables 5 and 6), we
used TPCC tenants of 500 MB each, at a rate of 1000
transactions per second and running for 5 min. The
first tenant ran after an initial phase of 2 min to reach
7 minutes, and then every 2 minutes a new tenant
was included in the DBMS until including 4 more.
Throughput of tenants gets worse (see Table 5) as new
tenants are incorporated into the DBMS and increases
when a tenant ends, and thus the total number of
tenants sharing the DBMS instance decreases. The
results of the total throughput show that MySQL
adequately manages tenant concurrency by providing
a good isolation among them. As shown in table 6,
the latency values increase with the inclusion of new
tenants in the DBMS and decrease when a tenant
ends, therefore no anomalies in measured latency,
which might lead to interference anomaly, were
observed in the experiments that were carried out.
The results of the average latency of 99th percentile
for the 5 tenants are depicted in Figure 5. These
results reflect that MySQL suitably manages the
overload that suffers trying to cope with concurrency
of tenants through preserving a good level of isolation
between them.



Table 5: Throughput of each tenant during the time of the second experiment
Time (m.)

Tenant# 120 180 240 300 360 420 480 540 600 660 720 780 840 900
Tenant 1 58.265 57.661 118.604 119.005 171.604 121.511 0 0 0 0 0 0 0 0
Tenant 2 0 0 119.216 118.626 171.617 117.315 170.663 129.952 0 0 0 0 0 0
Tenant 3 0 0 0 0 172.51 117.472 171.976 118.744 177.909 177.536 0 0 0 0
Tenant 4 0 0 0 0 0 0 173.469 118.2 177.725 116.629 113.46 113.956 0 0
Tenant 5 0 0 0 0 0 0 0 0 177.907 117.526 113.471 59.116 58.545 34.908

Table 6: 99th percentile latency during the time of the second experiment
Time (m.)

Tenant# 120 180 240 300 360 420 480 540 600 660 720 780 840 900
Tenant 1 243.749 251.211 388.414 395.643 508.144 280.246 0 0 0 0 0 0 0 0
Tenant 2 0 0 393.486 399.541 513.79 390.997 511.26 322.939 0 0 0 0 0 0
Tenant 3 0 0 0 0 506.217 382.018 499.573 397.456 517.671 305.902 0 0 0 0
Tenant 4 0 0 0 0 0 0 510.845 393.934 503.831 381.745 390.311 251.671 0 0
Tenant 5 0 0 0 0 0 0 510.845 0 505.716 377.593 382.607 247.873 246.484 95.263

Figure 5: (a) System’s average latency ; (b)99th percentile average latency (TPCC1, TPCC2, TPCC3, TPCC3, TPCC4,
TPCC5)

Figure 6: (a)Throughput (tps) (TPCC1, Wikipedia1, Wikipedia2, YCSB1, YCSB2, YCSB3) (b)99th percentile average latency
(ms.) (TPCC1, Wikipedia1, Wikipedia2, YCSB1, YCSB2, YCSB3).

Figure 7: (a)Aggregated average latency (ms.) (TPCC1, Wikipedia1, YCSB1, YCSB2, YCSB3) (b)99th percentile average
latency (ms.) (TPCC1, Wikipedia1, YCSB1, YCSB2, YCSB3).



5.3 Measurement of the QoS

According to the graphs plots shown in Figure 5, the
value of average latency of p99 increases with the
inclusion of tenants into the DBMS and decreases
when a tenant ends its work and exits. At time
equal to 640 s. the average latency reaches its
maximum value, which is when all the maxima are
reached in the system, i.e., the critical instant when
tenants’ concurrency is the highest in the DBMS
for this sample, as well connections to MySQL and
transactions per second. Latency evolution reflects
how the increase in transactions produces an overload
in the DBMS, and also how MySQL presents a good
level of isolation among the different tenants. In
our third experiment we used TPCC tenants of 500
MB in size, a variable transaction rate per second
according to the sequence: 500, 1000, 1500, 2000,
2500, which increased every 2 min. We started by
adding 2 tenants to the DBMS, with an interval of
3 min; and thus 2 new tenants were added until
reaching 19 min of time when stopped incorporating
new tenants. With this experiment we wanted to
evaluate how the variation of workload influences
the quality of service of the multitenant DBMS.
We designed several experiments that represented
different scenarios, combining different types of
tenants and varying the workload over time. It is also

Table 7: Throughput variability depending on the workload
of tenants

(s.)
Tenant# 300 360 420
TPCC 1 115.067 107.233 108.783
TPCC 2 116.667 107.617 106.867
TPCC 3 111.7 107.25 108.45
TPCC 4 112.083 109.3 106.483

TPS 3000 4000 5000

observed that for time windows where the number of
tenants is constant and are concurrently executed, the
throughput only suffers a small decrease due to the
increase in the number of transactions executed by
each tenant. The data in table 7 shows that at 300
seconds 3000 tps is executed, at 360 seconds 4000
tps and at 420 seconds 5000 tps, a small decrease in
throughput occurs when the number of transactions
per second increases and there are no new tenants
incoming.

In Figure 6 we can observe how the througput of
TPCC tenants gets worse when the tenants YCSB2
and YCSB3 increase their workload. Therefore, the
increase in the workload of YCSB tenants interferes
with the performance of the TPCC tenant. However, it
is noticed that the Wikipedia-tenant does not present

interference with the rest of the tenants.
As we can observe in Figure 7, in the two latency

plots, we can see that augmenting the workload of
the YCSB tenant produces an increase in the TPCC
tenant’s latency (minutes from 17 to 26 and from 32
to 41) due to the interference that occurs between the
two. It must be also pointed out that MySQL works
well even with an increase in the workload, as it can
keep acceptable latency values when the concurrent
execution of the three tenants takes place.

5.4 Elasticity

In this section we will evaluate the elasticity when the
workloads of tenants increase and decrease during a
certain period of time. We designed several scenarios
by using different types of tenants and combinations
of heterogeneous workloads. Elasticity was analized,
so that we used the same tenants of prior experiments:
functional test (YCSB), transactional test (TPCC) and
web-oriented test (Wikipedia). The evolution in the
workload of the system varied by increasing and
decreasing the workload of the YCSB tenant while the
workloads of TPCC and Wikipedia tenants kept fixed.
Thus, the workload of the YCSB tenant changed
every 5 minutes, according to the sequence: 1000,
5000, 1000, 1000, 3000. For the benchmarks that
we named: TPCC and Wikipedia, the transaction rate
was set to 1000 tps. All the tenants were configured
with 20 users.

The plots in Figure 7 show how MySQL works
well with the elasticity of the workload, given that
the troughput values respond to the evolution of the
workload of the tenants, presenting little interference.
At minute 44 and 55 we see how the growth of the
workload of YCSB3 causes a drop in the throughput
value of TPCC1, which denotes an interference
between both tenants that causes a reduction in the
performance of TPCC1. In Figure 6 we observe
that increasing the work load of YCSB increases its
latency, and when it decreases it shows a better result.
After 32 minutes, the TPCC tenant starts executing,
coinciding with the completion of YCSB2, which
explains the alteration of the latency at that point due
to the interference between the two. After 42 minutes,
the YCSB3 tenant begins to run, and the interference
that occurs with TPCC at minutes 44 and 51 is clearly
visible.

6 CONCLUSIONS

The paper presents experimental analyses of
DBMSs running on virtual machines with different



benchmarks (mainly TPCC). The experiments
mix different workload / tenant configurations and
measure their latency and throughput. We have
verified that a multitenant DBMS model of shared
instance prevents from the anomaly of throughput
degradation, which usually occurs due to interference
between tenants of a DBMS (MySQL) located in the
same VM.

Getting the tenant’s time profile (workload
evolution) allows detecting of changes in DBMS
performance and overload and, therefore, allows
to identify the level of interference between
tenants. Five experiments were designed and
numerous measurements have been performed using
benchmarks, such as TPCC, in a cloud computing
based system. The work done presents the results
of the experiments in which different workloads and
tenant configurations for which their latency and
performance were measured. Patterns of mutual
interference between tenants have been identified
depending on the three types: YCSB, TPCC and
Wikipedia considered in this study.

Our objective is to obtain individualized
techniques for assigning tenants to VMs, relying
on the monitoring of quality features in addition to
the ones studied in this article, which will allow us
in the future to obtain a variation of the tenant’s
workload through proactive models and machine
learning. Likewise, it is important to detect tenant
usage patterns that help to classify tenants with little
interference. Several levels of QoS could be defined
for different types of tenants.

REFERENCES

Agrawal, D., Das, S., and El-Abbadi, A. (2011a). Big
data and cloud computing: Current state and future
opportunities. In In: Proceedings of the 14th
International Conference on Extending Database
Technology (EDBT’11). ACM.

Agrawal, D., Das, S., and El-Abbadi, A. (2011b). Database
scalability, elasticity, and autonomy in the cloud. In
In: Database Systems for Advanced Applications -
16th International Conference (DASFAA 2011), v.1,
2:15. ACM.

Barker, S., Yun, C., Hyun, M., Hacigumus, H., and Shenoy,
P. (2012). Cut me some slack:latency-aware live
migration for databases. In In Proceedings of the
15th International Conference on Extending Database
Technology (EDBT12), 432:443. ACM.

Benjamin, S., Andreas, B., and Bernhard, M. (2011).
Native support of multi-tenancy in rdbms for software
as a service. In In Proceedings of the 14th
International Conference on Extending Database
Technology, EDBT/ICDT ’11, 117:128. ACM.

Chi, Y., Moon, H., Hacimugus, H., and Tatemura, J. (2011).
Sla-tree: A framework for efficiently supporting
sla-based decisions in cloud computing. In In
Proceedings of the 14th International Conference on
Extending Database Technology (EDBT/ICDT ’11),
129:140. ACM.

Cooper, B., Silberstein, A., Tam, E., Ramakrishnan, R.,
and Sears, R. (2010). Benchmarking cloud serving
systems with ycsb. In In: Proceedings SoCC. DOI:
10.1145/1807128.1807152.

Difallah, D., Pavlo, A., Curino, C., and Cudre-Mauroux,
P. (2013). Oltp-bench: An extensible testbed for
benchmarking relational databases. In In: PVLDB 7
Proceedings, 277:288. PVLDB.

Fontan, J., Vazquez, T., Gonzalez, L., Montero, R., and
Llorente, I. (2008). Open nebula: the open source
virtual machine manager for cluster computing. In
In: Proceedings of Open Source Grid and Cluster
Software Conference. OSGCSC 2008, San Francisco
(USA).

Moreira, L., Sousa, F., Maia, J., Farias, V., Santos, G., and
Machado, J. (2013). A live migration approach for
multi-tenant rdbms in the cloud. In In: 28th Brazilian
Symposium on Databases (SBBD ’13), 73:78. SBBD.

MuTeBench (2014). Colaborative development platform in
GitHub. GitHub.

Schnjakin, M., Alnemr, R., and Meinel, C. (2010).
Contract-based cloud architecture. In In: Proceedings
of the Second International Workshop on Cloud
Data Management, CloudDB ’10, 33:40. ACM. DOI:
10.1145/1871929.1871936.

Schoroeder, B., Harchol-Balter, M., Iyengar, A., and
Nahum, E. (2010). Achieving class-based qos
for transactional workloads. In In: Proceedings
of the 22nd International Conference on Data
Engineering (ICDE ’06), 153:155. IEEE-CS. DOI:
10.1109/ICDE.2006.11.

Sousa, F., Moreira, L., and Machado, J. (2011). Sladb:
Acordo de nı́vel de serviço para banco de dados
em nuvem. In In: 26th Brazilian Symposium on
Databases (SBBD ’11), 155:162. SBBD.



Institute for Systems and Technologies of Information, Control and Communication

Best Poster Award Certificate
for the paper entitled:

Quality of Service in Cloud Computing Environments
with Multitenant DBMS

authored by:

Manuel I. Capel, Oscar I. Aporta and María C. Pegalajar-Jiménez

received at the

10th International Conference on Cloud
Computing and Services Science

(CLOSER)

held from May 7 - 9, 2020

On behalf of the Organizing Committee,

Markus Helfert
CLOSER Conference Co-chair

e-mail: secretariat@insticc.org website: http://www.insticc.org


