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Abstract: The estimation of defects positioning occurring in the interface between
different materials is performed by using an artificial neural network modeled as
an inverse heat conduction problem. Identifying contact failures in the bonding
process of different materials is crucial in many engineering applications, ranging from
manufacturing, preventive inspection and even failure diagnosis. This can be modeled
as an inverse heat conduction problem in multilayered media, where thermography
temperature measurements from an exposed surface of the media are available. This
work solves this inverse problem with an artificial neural network that receives these
experimental data as input and outputs the thermalphysical properties of the adhesive
layer, where defects can occur. An autoencoder is used to reduce the dimension of the
transient 1D thermography data, where its latent space represents the experimental data
in a lower dimension, then these reduced data are used as input to a fully connected
multilayer perceptron network. Results indicate that this is a promising approach due
to the good accuracy and low computational cost observed. In addition, by including
different noise levels within a defined range in the training process, the network can
generalize the experimental data input and estimate the positioning of defects with
similar quality.

Key words: Inverse heat conduction problem, artificial neural networks, contact failure
identification, applied artificial intelligence, denoising autoencoder.

INTRODUCTION

Heat transfer inmultilayeredmedia is a phenomenon that can be fundamentally important in different
applications of science and engineering, such as manufacturing of composite materials (Danes et al.
2003), oil and gas industry (Su et al. 2012), thermal based health treatments (Sarkar et al. 2015),
aerospace engineering (Jayaseelan et al. 2015) and many others. More specifically, defect identification
in the process of bonding among different materials can be formulated as a multilayered media and
solved as an Inverse Heat Conduction Problem (IHCP), where estimating the positioning of air gaps,
oil bubbles, and cracks, usually is performed by estimating thermophysical properties of the adhesive
layer. Therefore, estimating heterogeneity in this layer may be crucial to evaluate the bonding quality
(Abreu et al. 2014, 2016, Mascouto et al. 2020).
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In classical approaches, IHCPs can be treated as optimization problems, where a least squares
functional must beminimized (Beck et al. 1985, Moura Neto & Silva Neto 2013), or as bayesian inference
problems, such as the Maximum a Posteriori and the Markov Chain Monte Carlo methods (Kaipio &
Fox 2011, Orlande 2012). Since these types of IHCPs formulations require intensive iterative procedures,
many efforts of the scientific community are focused on reducing the computational costs related to
techniques, algorithms and mathematical formulations (Orlande et al. 2014, Vakili & Gadala 2009).
Parallel to these efforts, the use of computational intelligence emerged as a possible approach for
solving IHCPs, such as Genetic Algorithms (Garcia et al. 1998, Imani et al. 2006) and Artificial Neural
Networks (ANN) (Soeiro et al. 2004, Shiguemori et al. 2004, Balaji & Padhi 2010, Czél et al. 2014), which
are considered soft computing approaches, as opposed to classical ones.

The use of ANNs has been permeating the most eclectic types of applications, such as
engineering, financial analysis, image and speech recognition, medicine, among many others. This
success can be credited to several factors, one of them being the notable improvements and
developments of different ANN architectures, such as Autoencoders (AE), Recurrent Neural Networks
(RNN), Convolutional Neural Networks (CNN), Extreme Learning Machines (ELM), and so on. The use of
any of these architectures must take into consideration its specific features along with characteristics
of the problem being solved.

Recently, several of these architectures emerged as viable techniques for defect characterization
using IHCPs with infrared thermography. Hu et al. (2019) employed a long short term memory RNN
for automatically classifying different types of common defects occurring in honeycomb materials.
Later, Fang & Maldague (2020) used a Gated Recurrent Units (GRU) for depth prediction in composite
material samples. Kaur et al. (2021) introduced a novel Constrained Autoencoder in order to reduce
the dimensionality of temporal thermographic images for defect depth estimation in steel plates.
Marani et al. (2021) used step-heating thermography combined with CNN in order to describe defects
in composite laminates. Xu & Hu (2021) performed defect depth identification by using amethod based
also on GRUs.

Besides the cited innovation in networks architectures, the most widely used in the field of heat
transfer engineering is the simple feed-forward back propagation Multilayer Perceptron (MLP). Indeed,
this network has been proved to be a great general purpose approximator in countless applications,
but it lacks some advantages that a specific deep neural network, such as CNNs, AEs, RNN and others
may give.

In this context, AEs (or Replicator networks) are great tools designed for reducing the dimension
of any given data (Haykin 2009, Hinton & Salakhutdinov 2006). Such network have the input equal
to the output, but it main aspect is a bottleneck-like hidden layer (latent space) which is smaller in
dimension than the input-output. When properly trained, the original data can be encoded into this
smaller dimension latent space, then the information in this space can be decoded back into the
original information size. Furthermore, AEs can be specially designed as a noise reduction network,
also known as Denoising Autoencoders (DAE). This can be performed by giving an noisy data as input,
passing it through the latent space, then outputting a noiseless version of that same data. If well
trained, the information stored in the latent space is an almost-noiseless representation of the original
data.
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In this work the IHCP of estimating the spatially varying thermal properties of multilayered media
is solved via an ANN, where the input data are temperature measurements of a exposed surface and
the output is a set of discrete points representing the thermal properties of different materials. More
specifically, an encode-decode architecture is used, where the normalized experimental temperature
and the thermal properties are encoded separately with respectives AE, then the latent space of
each one of them are used as input and output, respectively, for the multi layer perceptron (MLP)
neural network. Although this approach imposes the training of three ANN (two AEs and one MLP),
which yields an extra computational cost when compared to a simple MLP, the use of the AE shows
advantages such as the robustness to different architectures, as presented in the obtained results.

In order to test this approach, the problem of contact failures identification was chosen, where
two materials are joined with an adhesive layer. Gaps of air can form in this layer, meaning that the
adhesion process is not perfect (Abreu et al. 2014, 2016, Mascouto et al. 2020). Identifying the thermal
properties of this layer containing gaps is crucial to access the adhesion quality in manufacturing and
preventive maintenance.

In this work, the training data set is generated by solving the direct problem, i.e., the temperature
profiles are simulated and obtained for different configurations of failures. Furthermore, the
temperature data containing simulated noise is used to train a DAE, where its output is the noise
free version of the same data. Due to its dimensionality and noise reduction, this approach can
greatly benefit the use of increasingly larger data, as presented in the results. Also, some effort goes
into fine tuning the parameters of the ANN itself, such as activation functions, layer sizes, number of
neurons, and so on. As mentioned, this is where the encoded-decoded approach shows its promising
characteristics, by yielding robust results for different types of configurations.

DIRECT PROBLEM FORMULATION AND SOLUTION

Consider the Lx × Ly multilayered rectangular medium presented in Fig. 1 composed by three different
layers. Such representation can model the bonding of two materials, where Layer 1 and 3 are joined
by an adhesive layer shown as Layer 2. In the configuration of Fig. 1, two defects are illustrated in the
adhesive layer. Both left and right boundaries are considered adiabatic, the constant heat flux q is
prescribed at the bottom boundary, and the top one is considered exposed, with ambient temperature
of T∞ and natural convection heat transfer coefficient h. Temperature measurements T

exp are acquired
at the exposed boundary, i.e., y = Ly .

Using a single-domain formulation (Mascouto et al. 2020) and taking in consideration the
mentioned assumptions, the heat conduction problem can be written as
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Figure 1. Schematic representation of the multilayered medium.

where h is the convection heat transfer coefficient at the top boundary, and q is the prescribed
heat flux at the bottom boundary. The materials properties k(x, y), 𝜌(x, y), and cp(x, y) are the thermal
conductivity, specific mass, and specific heat, respectively. These spatially dependent properties are
modeled in such way to represent the different materials of the multilayered medium. Furthermore,
the initial temperature is considered equal to the ambient temperature T∞.

If all the thermophysical properties and all the conditions and contact failures geometries are
known, the problem described by Eq. (1) can be solved yielding the temperature profile T(x, y, t). In this
work this solution is obtained by using the built-in “NDSolve” routine of the Wolfram Mathematica 11.0
software. This routine is executed with the Finite Element Method option and the mesh is generated
with rectangular user defined uniform cell size. This routine returns an interpolated temperature
profile T(x, y, t) for the whole Lx × Ly medium and for times ranging from t = 0 to t = tmax, which is
a prescribed maximum time instant.

INVERSE PROBLEM FORMULATION

Consider that the materials of the multilayered medium presented in Fig. 1 are known, but the
existence and position of possible defects in Layer 2 are unknown. In this case, the inverse problem
is formulated based on the assumption that Layer 2 is composed entirely by adhesive or by adhesive
with air gaps (defects). This leads to the definition of an auxiliary function 𝛾(x) which represents the
thermal properties k(x, y) and 𝜌(x, y)cp(x, y) of Layer 2, defined as

𝛾(x) =
𝜙(x) − 𝜙gap
𝜙layer − 𝜙gap

(2)

where 𝜙(x) is the related thermophysical property, that is, the thermal conductivity k(x, y) or the
volumetric heat capacity 𝜌(x, y)cp(x, y), of Layer 2 materials. Assuming that there is no variation in
the y direction within the materials of Layer 2, 𝛾(x) is considered only as an x variable function. Also,
the subscripts “gap” and “layer” represent the related material thermal properties. The function 𝛾 is
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used algorithmically as a way to translate the thermal properties to the spatial dependent boolean
function “gap, no-gap”, “0” or “1”, respectively. Furthermore, 𝛾 can be reversely translated to the thermal
properties k(x, y) and 𝜌(x, y)cp(x, y) of Layer 2, since the values 𝜙gap and 𝜙layer are known.

In order to obtain estimates of the gaps positioning in Layer 2, an ANN is used to represent the
inverse model, i.e. the network receives temperature experimental data as input and outputs a vector
representing discrete points of the auxiliary function 𝛾(x).

Experimental Data. In order to simulate real measurements of temperature, the experimental data is
computationally generated, where random numbers r drawn from a normal distribution centered at
zero with known standard deviation 𝜎exp are added to solution of the direct problem, i.e.,

Ti,j = T(xi, Ly, tj) with i = 1, 2, ...,N, j = 1, 2, ...,M (3a)

Texpi,j = Ti,j + r, r ∼ N(0, 𝜎
2
exp), with i = 1, 2, ...,N, j = 1, 2, ...,M (3b)

where xi represents the positioning of temperature acquisition along the x coordinate with the total
number of N points, and tj the time instants with total number ofM levels. Therefore, the total number
of experimental data considered is Nexp = N ×M.

INVERSE PROBLEM SOLUTION WITH ARTIFICIAL NEURAL NETWORKS

As previously mentioned, the IHTP of this work has the objective of estimating the positioning of
gaps that can occur in Layer 2 of the medium (see Fig. 1). This task is performed by estimating discrete
points of the auxiliary function 𝛾(x): this is the ANN output. The input consists of transient temperature
measurements that are encoded into a latent space of an AE, which is used with the purpose of
reducing the dimension and noise on the experimental data. This latent space serves as the input
to a fully connected MLP network that yields another latent space of the same size of the first one.
This last latent space is then decoded to a full representation of the auxiliary function 𝛾. With this
approach, both latent spaces are used as input and output, respectively, to the fully connected MLP
neural network.

In the following subsections, the two AEs and MLP construction are explained and detailed. Firstly,
the temperature and 𝛾 AE are presented. Next, the complete network architecture is showcased. Lastly,
general aspects necessary to build the network and the simulated data set are shown.

Autoencoders

Temperature Autoencoder (T-AE). Consider the AE structure presented in Fig. (2). The input A is fully
connected to one hidden layer, represented by HA, which is the latent space. Then HA is fully connected
to the output ̂A. These connections are all modified by weights, biases, and activation functions.

As presented in Fig. (2), the AE input A and output ̂A are normalized versions of Texp and T,
respectively (see Eq. 3). The components of A are the normalized version of Texp, and the ones for ̂A are
the normalized version of T, both ranging between −1 and 1. These linear normalizations are performed
with limits of Tmin and Tmax, which are the minimum and maximum exact temperature values of the
entire training set (see subsection entitled General Aspects of the Artificial Neural Network for details).
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Figure 2. Schematic representation of the Temperature Denoising Autoencoder.

The T-AE implemented in this work has only one hidden layer, which is the latent space itself, but
in some cases, AE’s can have many hidden layers as the problem requires. Using the architecture with
the single hidden layer, tests with different simulated experimental data led to good approximations,
making the increased network with more layers unnecessary.

Choosing the latent space HA dimension is crucial to a good performance of the AE. If too small,
some information will be lost, leading to a poor representation of the temperature data. On the other
hand, if its dimension is too large, training requires more examples and the problem can become
less efficient overall. Therefore a comparison of different HA dimensions is performed in this work.

Adhesive Layer Properties Autoencoder (𝛾-AE). The adhesive layer thermophysical properties is
represented by the auxiliary function 𝛾(x), which ranges from 0 to 1. The profile of this function
represents different material properties and its behavior indicates where there are gaps in the layer.

As presented in Fig. 3, this second AE is used to represent 𝛾 and has input G, output Ĝ and latent
space HG. The input G is composed by discrete points used to represent 𝛾 across the x direction. Ĝ is
the exact representation of G, therefore, they are trained to be equal. The latent space HG dimension
is chosen to be equivalent as HA, i.e., equal to the T-AE latent space dimension.

It is important to note that this Adhesive Layer Properties AE has to encode less information than
the T-AE presented, since it has only to output 0 or 1, so tests with dimensions smaller than the T-AE
size yielded good results, which is expected. Nevertheless, in this work the choice of maintaining both
latent space sizes equal is kept.

An Acad Bras Cienc (2022) 94(Suppl 3) e20211577 6 | 21



LUCAS C.S. JARDIM et al. CONTACT FAILURE IDENTIFICATION

Auxiliary Function Autoencoder (γ-AE)

HG

G

0.0

1.0

Discretized γ (x)  

0.0

1.0

Discretized γ (x)  

Ĝ

Figure 3. Schematic representation of the Adhesive Layer Properties Autoencoder using the Auxiliary Function 𝛾(x).

Final Artificial Neural Network Model

In order to transform HA into HG, a fully connected MLP is used, i.e., this network model has to translate
latent spaces information from temperature measurements to the adhesive layer properties in terms
of 𝛾(x). Therefore, HA and HG are the input and output to the MLP, respectively, where hidden layers
are connected and the information passing is modified by weight, biases and activation functions.

The final ANN architecture is displayed in Fig. (4), where it is possible to see the normalized
experimental temperature input A. This input is encoded into HA, which is then passed and
transformed into HG to finally be decoded as Ĝ. With this approach the actual 𝛾(x) estimation process
utilizes only machine information, which is an advantage to obtain more robust models. Also, it is
important to note that such network model allows to an increased dimension of the temperature
input data, which is desirable with a transient problem. To illustrate this aspect of the ANN model,
different time instants are considered and compared in this work.

The training of the Fully Connected MLP in Fig. (4) is performed by using the same training set that
trained all the other models. To perform this task, firstly, the two AE’s must have been properly trained.
Then, all the experimental temperature of the training set is encoded into HA and all the respective
discretized 𝛾(x) profiles are encoded into HG. With this, the pairs HA → HG are assembled and the
model can be trained.

HGHA

ĜA Fully Connected MLP

T-AE Encoder γ-AE Decoder

Figure 4. Schematic representation of the complete network model.
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General Aspects of the Artificial Neural Network

To build the training data set for the three ANN, a list of input-output pairs is necessary. One training
pair for the T-AE is composed by the rule A→ ̂A, which are the normalized versions of the experimental
data Texp and the exact temperature data T, respectively. Similarly, the material property AE uses the
pair G→ G, which is the discrete representation of the exact 𝛾 used to generate that particular T and
Texp. After completing the training of both AE’s, the set for the MLP can be build with input HA and
output HG by using the two AE’s to translate the original training set into the related latent space.

To build this training data set, the direct problem is solved with a given random thermophysical
properties profile for Layer 2 containing gaps, which is represented as the auxiliary function 𝛾.
Furthermore, it is important to follow some criteria that represents the physics of the problem in
order to avoid unnecessary computations (Czél et al. 2014). In this work, the training data set is built
by assuming that:

� There is a maximum number of gaps in Layer 2, i.e. Ngap = 1, 2, ...,Mgap;

� There is a minimum gap size, namely Lmin;

� The gaps only occur in the region of xmin ≤ x ≤ xmax, where xmin and xmax are chosen to avoid gaps
being too close to the boundaries.

� The T-AE and final MLP dataset are composed of multiple copies of the original set, with each
one containing different level of noise for Texp.

These rules are a way to generate meaningful information to the ANN model. For example, if
the gap is too narrow, it will not influence the temperature on the exposed surface of the medium,
specially considering experimental noise. Furthermore, the last rule is included in order to generalize
the noise reduction aspect of the T-AE, by giving different noise levels in the data set.

RESULTS AND DISCUSSION

Direct Problem Solution

Considering a steel plate for Layer 1, adhesive for Layer 2, composite protection for Layer 3 and air
as the inclusions in the possible defects (gaps), the respective thermophysical properties used are
displayed in Table I.

Table I. Thermal Properties for the Multilayered Medium.

Layer k [W/mK] 𝜌cp [MJ/m
3K]

1 13.400 3.860

2 0.700 1.750

3 1.171 2.650

Gaps 0.0263 1.170
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Furthermore, to obtain the results of the direct problem, the prescribed heat flux, the natural
convection coefficient, and the ambient temperature are defined as q = 10000 W/m2, h = 15.0 W/m2K,
and T∞ = 20.0 °C, respectively. The medium dimensions are defined as Lx = 0.2 m and Ly = 0.071 m,
and Layer 2 is vertically positioned in the range 0.05 ≤ y ≤ 0.051 m.

Training, Validation and Testing Sets Generation

All the training and validation data are generated with 1, 2 or 3 gaps in Layer 2, i.e. Mgap = 3. For
each particular number of gaps, 2000 randomly positioned gaps configurations are used to obtain
the respective transient temperature profile, yielding a total of 6000 direct problem evaluations. The
training and validation data are then split into a 90% to 10% relation, respectively. Therefore, from
this total set, 5400 are used for training and 600 for validation.

To build the simulated experimental data used for the training process of the T-AE and the MLP,
four levels of random noise are considered for 𝜎exp, they are 0.05 °C, 0.1 °C, 0.15 °C and 0.20 °C (see
Eq. 3b). This type of measurement is typically obtained via infrared thermography techniques (Knupp
et al. 2013). Hence, four sets of 6000 input-output pairs compose the final training data, yielding 24000
examples (21600 for training and 2400 for validation). It is important to notice that the 𝛾-AE training
is performed with the original 6000 auxiliary function profiles.

The testing data is generated similarly to the training and validation set. It is composed of 150
random positioned defects (50 for 1, 2, and 3 simultaneous failures). The same noise levels are
considered, therefore the original 150 data is copied yielding 600 examples for the T-AE and MLP
testing - the 𝛾 AE keeps the original 150.

In order to illustrate how efficiently the AE can store information in its latent space, the results of
this work compares three problems with different time instants for the measured experimental data.
For M = 3 time instants, 600 s, 800 s, and 1000 s are considered, for M = 5, 600 s, 800 s, 1000 s, 1200
s and 1400 s, and lastly, for M = 7, the instants range from 600 s to 1800 s in steps of 200 s. For every
instant, N = 321 points in the x coordinate are considered. So, for problems with 3, 5 and 7 time levels,
the ANN must deal with a input of 963, 1605 and 2247 data, respectively. These time instants and total
amount of input data are displayed in Table II.

Table II. Time Instants and number of temperature data used.

M Time Instants Data Size

M = 3 600 s, 800 s, 1000 s 963

M = 5 600 s, 800 s, 1000 s, 1200 s, 1400 s 1605

M = 7 600 s, 800 s, 1000 s, 1200 s, 1400 s, 1600, 1800 s 2247

It is important to notice that the model proposed in this work considers increasingly time levels
of physical experiment. In other words, for M = 3, M = 5 and M = 7, the final time of temperature
acquisition is 1000 s, 1400 s and 1800 s, respectively. Therefore there is a trade off between amount of
data and temporal information available. At the lower spectrum, for M = 3, less temperature readings
are used, making the model training and configuration more efficient. On the other hand, for M = 7,
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the larger data set can contain useful transient information of the problem, in exchange of training
and model configuration efficiency. Hence, M = 5 can be considered as the middle point of the two
mentioned.

The exact maximum temperature values necessary to normalize the training data set between −1
and 1 are different for the sets with 3, 5 and 7 time instants, they are: 35.5718 °C, 47.8281 °C and 60.5670
°C, respectively. The minimum temperature obtained is equal for the three sets, with value of 21.1653
°C, which occurs for t = 600 s.

Temperature Autoencoder Results

The T-AE implementation is performed using the Keras library, from Python 3.9 programming language.
The Logistic Sigmoid activation function is selected for the hidden layer and the output layer is kept
as linear. The Adam optimizer is selected as implemented within the Keras library and the Logarithmic
Hyperbolic Cosine (log-cosh) is chosen as the loss function. Such function has the advantage of being
totally differentiable, with a L2 norm behavior for small values of its argument, and as L1 for larger
values (Queiroz et al. 2021).

Early Stopping is selected as the stopping criterion. When the minimum loss function value found
during training for the validation set does not change for 200 epochs, the iterative procedure is
stopped. Then, the weights and biases obtained for the best epoch are used. This approach avoids
over fitting of the training data (Chollet 2017). Furthermore, the maximum number of epochs is set to
6400, but none of the configurations tested reached that value. Finally, the batch size selected is 256,
which is a relatively large size, but results have shown to be a good compromise between quality and
speed of training.

In Table III the results obtained for the T-AE with M = 3 time instants are displayed for different
latent spaces dimensions, namely “AE dim” column. The table displays the Validation and Testing Mean
Squared Errors obtained (MSE), along with the number of Training Epochs needed for that particular
result. The result displayed as “Max. error” represents the maximum relative temperature error. This
error is obtained with the following expression

Max. error = max (|
̂Ti,j,k − Ti,j,k
Ti,j,k

|) × 100 (4)

where ̂T and T are the denormalized T-AE output and exact temperatures, respectively, both obtained
for each testing data k, time level j and point in space i.

As it is possible to see in Table III, the AE dimensions such as 20, 40 and 60 generated the worst MSE
results for the validation and testing set. Nevertheless, it is possible to notice that, with the exception
of the AE with 20 dimensions, every configuration yielded a maximum error lower than 1%. Here is also
possible to see that, in general, the epochs necessary to reach the stopping criterion ranges from 1021
to 1875, which can be considered a relatively low discrepancy. From the Test MSE criterion, the best
configuration was the 80-dim AE. Here it is important to note that the MSE metric tends to increase
larger errors, due to its squared argument. This is a desirable feature for comparing different ANN
configurations, the best networks tend to have small and low discrepancy among them, whereas the
worst configurations will generate larger values with higher discrepancy among themselves.
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Table III. Temperature Autoencoder (T-AE) MSE results for 3 time
instants and different Autoencoder (AE) dimensions.

AE dim. Val. MSE (10−6) Test MSE (10−6) Max. error % Epochs

20 25.170385 24.700969 1.021519 1314

40 14.667914 14.616520 0.881631 1126

60 10.545812 10.572952 0.673743 1021

80 7.853343 7.673714 0.543680 1875

100 8.831671 8.996550 0.544467 1217

120 8.089550 8.317249 0.594848 1295

140 7.684247 7.809486 0.542980 1583

160 8.395999 8.263888 0.516542 1027

Table IV. T-AE MSE results for 5 time instants and different AE dimensions.

AE dim. Val. MSE (10−6) Test MSE (10−6) Max error % Epochs

20 31.454491 30.781830 2.285817 1182

40 9.214962 9.460896 0.984900 2242

60 5.495272 5.311201 0.602837 1664

80 5.777369 5.447388 0.769883 1185

100 5.811261 5.820386 0.725761 774

120 4.109372 4.142637 0.532461 1481

140 4.518737 4.532548 0.600322 1157

160 3.567894 3.335813 0.564507 1095

The T-AE results for M = 5 and M = 7 time instants are presented in Table IV and V, respectively.
For both results it is possible to see that the validation and testing MSE tends to decrease as the AE
dimension increases. For M = 5, the maximum error values are also lower than 1% with exception of
the 20-dim AE, which is not true for M = 7, since only the dimensions 120, 140 and 160 generated lower
than 1% maximum relative errors. This can be explained in the light of the amount of data considered
for 7 time instants and their range, i.e., since all the data is normalized between -1 and 1, the more
information one fits inside this range, the more difficult becomes to the network train with efficiency.
Nevertheless, the lowest validation and testing MSE generated the lowest maximum relative error for
M = 7 (120-dim: 4.08, 3.97 and 0.63%).
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Table V. T-AE MSE results for 7 time instants and different AE dimensions.

AE dim. Val. MSE (10−6) Test MSE (10−6) Max error % Epochs

20 32.861363 32.541317 2.374726 2217

40 9.426475 9.157836 1.144972 2459

60 10.696455 9.888308 1.453967 921

80 8.383932 8.169459 1.184161 892

100 6.024927 6.137550 1.347719 659

120 4.084239 3.969270 0.632970 938

140 4.491201 4.456416 0.728079 932

160 4.480562 4.385102 0.735544 732

MLP Results

To construct the complete ANN architecture, it is necessary to specify the elements for the MLP and
𝛾-AE. Firstly, the activation functions for 𝛾-AE latent space and output layer are the ReLU and Logistic
Sigmoid functions, respectively. Since 𝛾-AE outputs the auxiliary function, which ranges between 0 and
1, the Logistic Sigmoid is a reasonable choice that acts similar to a filter, limiting the output values
inside that range and, furthermore, results with a linear output yielded undesired oscillations around
the exact value. Regarding the loss function for training, the Binary Cross Entropy was selected, which
have a good behavior for optimizing values that can be either 0 or 1. Secondly, the MLP is composed of
four hidden layers, with the Hyperbolic Tangent (tanh) activation function for each and linear output
layer. It is important to note that the MLP input and output sizes are equal as the latent spaces of both
AE’s, as previously mentioned. The output layer activation is linear and the loss is calculated using
the log-cosh functional. Other activation functions such as ReLu, Leaky ReLU and Logistic Sigmoid
were tested for the hidden layers, but the best result (including faster training) were obtained with
the tanh function. The stopping criterion for training for both 𝛾-AE and MLP is similar as the T-AE,
after 200 epochs with no improvements on the validation set loss function ADAM optimizer iterative
process stops.

Tables VI, VII and VIII present the MSE between the exact discretized 𝛾 profile and the respective
ANN final output for different MLP sizes (number of neurons per hidden layer). Therefore these “Test
MSE” results compares the decoded 𝛾-AE output obtained from the MLP output, which MSE error is
displayed as “Test HG”.

In Table VI the results for M = 3 time instants are displayed, which were obtained with the 80-dim
T-AE (therefore the 𝛾-AE is also used with 80 dimensions). Similarly, Tables VII and VIII show the results
for 5 and 7 time instants, with T-AE of 160-dim and 120-dim, respectively.

In Table VI, forM = 3, the MLP size that yielded the lowest 𝛾MSE was the one with 200 neurons per
hidden layer. Nevertheless, the 80 MLP size, which is equal as the used T-AE and 𝛾-AE for this problem,
generated the second best result. As it is possible to see, the epochs used for training decreases as
the MLP size increases, which is indication that overfitting was avoided. Another important aspect to
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observe is that the best HG MSE was not observed for the same MLP size as the best 𝛾 MSE, which
indicates that the 𝛾-AE accepts small differences in the latent spaces elements in order to decode it
into the same output.

For M = 5 and M = 7 in Tables VII and VIII, the best found MLP size was the one with 40 neurons
per hidden layer. Similarly to the results in Table VI, the training epochs needed also decreases when
the MLP size increases, and the best HG MSE was not observed for the best 𝛾 MSE. It is worth noting
the the respective best 𝛾 output MSE for 3, 5 and 7 time instants were 0.01396935, 0.01423047 and
0.01425704, respectively, indicating that the problem considering 3 instants generated the lowest error.
Nevertheless, the three results are relatively similar.

Table VI. MSE for M = 3, 80-dim AE, and different MLP sizes.

MLP size Test MSE (10−2) Test HG MSE (10
−2) Epochs

40 1.497972 0.108321 1947.0

80 1.421108 0.090003 1442.0

120 1.533937 0.108943 1107.0

160 1.492982 0.104258 828.0

200 1.396935 0.102659 723.0

Table VII. MSE for M = 5, 160-dim AE, and different MLP sizes.

MLP size Test MSE (10−2) Test HG MSE (10
−2) Epochs

40 1.423047 0.069287 3382.0

80 1.569511 0.068726 993.0

120 1.490072 0.070474 720.0

160 1.462179 0.068498 612.0

200 1.513545 0.070189 549.0

Table VIII. MSE for M = 7, 120-dim AE, and different MLP sizes.

MLP size Test MSE (10−2) Test HG MSE (10
−2) Epochs

40 1.425704 0.119196 2818

80 1.486218 0.117148 904

120 1.647438 0.129891 667

160 1.595111 0.129822 628

200 1.539906 0.125107 558
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Detection of Contact Failures

The auxiliary function 𝛾 estimation using the best ANN obtained in Tables VI, VII, and VIII are presented
in this subsection. To illustrate how themodel can generalize the input data with different noise levels,
the results are considered for 𝜎exp of 0.1 °C and 0.2 °C.

In order to illustrate the T-AE noise reduction capability, the comparison among simulated
experimental temperature data, the denormalized T-AE output, and the exact temperature is displayed
in Fig. 5a, 6a, 7a, 8a, 9a, and 10a for different contact failures configurations. The simulated
experimental temperature is generated with noise level of 𝜎exp = 0.2 °C and M = 3 (three time
instants). The T-AE output is obtained with the 20-dim latent space configuration. In such figures, the
𝛾(x) presented indicates the exact auxiliary function profile used to obtain the temperature displayed
above each one. For the sake of visualization, the results with T-AE’s of 5 and 7 time instants are not
displayed.

Although the noise level of 𝜎exp = 0.2 °C was the largest used in training, the approximation
between the exact temperature profiles and the denormalized T-AE output is excellent, as it is possible
to see for every configuration with one (Fig. 5a and 6a), two (Fig. 7a and 8a), and three (Fig. 9a and 10a)
contact failures. This indicates that the AE has good dimensionality reduction qualities and it can,
indeed, be used as a feature extractor tool, which stores the most important information necessary
to reconstruct the temperature data without noise in the latent space.

Figure 5b and 6b presents the results for 1 single contact failure, being one small and one large,
respectively. Both results shows a good approximation of the estimated 𝛾 profile with the exact one.
The small gap in Fig. 5b has 10 mm, which should be the hardest to detect due to lack of sensitivity,
and shows very reasonable fit for all time instants considered. Therefore, this configuration with only
one gap can be considered the easiest to estimate.

Now considering two defects in Layer 2, the results are presented in Fig. 7b and 8b for two small
gaps and for one small and one large gap, respectively. Results in Fig. 7b shows two small gaps of
10 mm length and separated by another 10 mm. This configuration show very good results for M = 5
and M = 7 time instants, for both noise level considered. Although the results for M = 3 are good,
some undesired oscillation in the second gap is found. For one small and one large gaps, the results
presented in 8b shows very good agreement to the exact values, considering that they are more far
apart from each other. The large gap has 30 mm in length and the small 10 mm.

Finally, the results considering three gaps in Fig. 9b and 10b. The former is composed of three
small gaps, and the latter with two small and one large. These configuration are the most difficult to
estimate, due to the increase non-linearity of the problem: it makes the AE’s work harder to extract
more information from the temperature data. All the gaps in Fig. 9b have 10 mm of length and are
separated by 20 mm intervals. Here the agreements of results with exact values are not exactly
centered, but, nevertheless, the three gaps positioning is well identified. Specially considering the
result with M = 5 and 7, which generated less oscillations. For two small and one large gaps, the
results showed some difficult in estimation. The best agreement is obtained for M = 3 for both noise
levels, as indicated by results in the subsection entitled MLP Results. In this configuration, the model
for M = 5 presented some oscillations. Results with M = 7 found the correct positioning of the two
small gaps, but not the right size of them by estimating larger defects than the exact ones.
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Figure 5. T-AE output (a) and 𝛾(x) estimation (b) for one small contact failure configuration.
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Figure 6. T-AE output (a) and 𝛾(x) estimation (b) for one large contact failure configuration.
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Figure 7. T-AE output (a) and 𝛾(x) estimation (b) for two small contact failures configuration.

22

24

26

28

30

32

34

36

Te
m

pe
ra

tu
re

 [°
C]

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
x [m]

0

1

(x
)

Exp. Temp. (600 s)
Exp. Temp. (800 s)
Exp. Temp. (1000 s)

T-AE Output (600 s)
T-AE Output (800 s)
T-AE Output (1000 s)

Exact Temp. (600 s)
Exact Temp. (800 s)
Exact Temp. (1000 s)

(a) T-AE output for M = 3 time instants considering
𝜎exp = 0.2 °C

0.0

0.5

1.0

M
=

3

0.0

0.5

1.0
M

=
5

(x
)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
x [m]

0.0

0.5

1.0

M
=

7Exact
exp = 0.1 °C
exp = 0.2 °C

Exact vs. Estimated (x)

(b) Estimated 𝛾(x) comparison for one small and one
large contact failures considering M = 3, 5, and 7 and

noise levels of 𝜎exp = 0.1 °C and 0.2 °C.

Figure 8. T-AE output (a) and 𝛾(x) estimation (b) for one small and one large contact failures configuration.
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Figure 9. T-AE output (a) and 𝛾(x) estimation (b) for three small contact failures configuration.
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Figure 10. T-AE output (a) and 𝛾(x) estimation (b) for one large and two small contact failures configuration.
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The computational times necessary for this investigation can be divided into three categories:
training data generation, training of the models, and activation of the neural network. The system
used to perform all executions is equipped with a AMD Ryzen™ 5 4600H processor, GeForce® GTX
1650 graphics processor, 8GB of RAM, and Microsoft Windows 10 operational system. Some aspects of
computational times for each of the mentioned categories are the following:

� The training data generation is the most intensive computational task of this work. The time
necessary to evaluate sequentially the 6000 different direct problem solutions, as described in
the subsection General Aspects of the Artificial Neural Network, was 15.6 hours. Although this task
was performed sequentially, it has a fixed number of iterations and can be easily parallelized in
order to reduce this computational time.

� The computational times spent to train the neural networks are varied, given the different
architectures and networks types. For the sake of illustration, the training of MLP’s with 160
and 200 neurons per layer of M = 7 time instants took 3 minutes and 22 seconds, and 2 minutes
and 57 seconds, respectively, with both using 628 and 558 epochs to reach the stopping criterion
- see Table VIII.

� The computational cost of performing the final estimation of 𝛾(x) with the three networks is the
main motivation for using the approach proposed. For instance, the estimation for M = 7 and
𝜎exp = 0.1 °C, as presented in Fig. 6, takes an average of 0.113 seconds.

CONCLUSIONS

The present work used an ANN in order to estimate the positioning of defects that can occur in
the bonding between two materials. To reduce the dimension of the 1D transient thermography
experimental data, an AE was used. Different configurations of AE were tested considering data from
3, 5 and 7 time instants, which corresponds to 963, 1605 and 2247 temperature readings, respectively.
The main aspects of the proposed approach for solving the defect positioning estimation problem
may be summarized as the following items:

� Speed of estimation. When compared to classical approaches such as Maximum Likelihood or
Bayesian Methods, the use of ANN’s for estimating parameters of the physical problem has a
great advantage in computational efficiency. Usually, such classical methods have cumbersome
iterative processes that are not practical in some real scenarios. On the other hand, the
estimation with ANN’s can instantly be obtained.

� Reduced dimensions of temperature data. Since the problem solved in this work is transient,
several time instants must be included as the ANN input. This work deals with this problem by
encoding such transient temperature profiles in order to facilitate the work of estimating failures.
Thus, the reduction in dimension was necessary to extract important features of the noisy data
and work with a manageable ANN.

� Increased estimation resolution Since an AE is also used to reduce the dimension of the output,
a larger amount of points can be used to represent the varying thermophysical properties of the
adhesive layer.
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� Fixed computational cost for training data generation. Each training data is generated by solving
the direct problem once. Therefore, the amount of examples needed to train the model is
generated only once. For every result presented in this work, the same 6000 direct problem
solutions were used.

Moreover, further investigations must continue in two main subdivisions: Validation of the
proposed ANN model with real experimental data, and construction of a ANN model that considers
the complete 2D transient thermography image as experimental data.
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