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logitFD: an R package for functional
principal component logit regression
by Manuel Escabias, Ana M. Aguilera and Christian Acal

Abstract The functional logit regression model was proposed by Escabias et al. (2004) with the objective
of modeling a scalar binary response variable from a functional predictor. The model estimation
proposed in that case was performed in a subspace of L2(T) of squared integrable functions of finite
dimension, generated by a finite set of basis functions. For that estimation it was assumed that the
curves of the functional predictor and the functional parameter of the model belong to the same finite
subspace. The estimation so obtained was affected by high multicollinearity problems and the solution
given to these problems was based on different functional principal component analysis. The logitFD
package introduced here provides a toolbox for the fit of these models by implementing the different
proposed solutions and by generalizing the model proposed in 2004 to the case of several functional
and non-functional predictors. The performance of the functions is illustrated by using data sets of
functional data included in the fda.usc package from R-CRAN.

1 Introduction

A functional variable is that whose values depend on a continuous magnitude such as time. They
are functional in the sense that they can be evaluated at any time point of the domain, instead of
the discrete way, in which they were originally measured or observed (see for example Ramsay and
Silverman, 2005). Different approaches have been used for the study of functional data, among others,
the nonparametric methods proposed by Müller and Stadtmüller (2005) and Ferraty and Vieu (2006) or
the basis expansion methods considered in Ramsay and Silverman (2005). Most multivariate statistical
techniques have been extended for functional data, whose basic theory and inferential aspects are
collected in recent books by Horvath and Kokoszka (2012), Zhang (2014) and Kokoszka and Reimherr
(2018). The basic tools to reduce the dimension of the functional space to which the curves belong, are
Functional Principal and Independent Component Analysis (FPCA) (Ramsay and Silverman, 2005;
Acal et al., 2020; Vidal et al., 2021) and Functional Partial Least Squares (FPLS) (Preda and Saporta,
2005; Aguilera et al., 2010; Aguilera et al., 2016).

In the last decade of the XXth century and the first decade of XXIth century, where functional
data methods began to be developed, there was no adequate software available for using and fitting
functional data methods. In fact, nowadays classical statistical software like SPSS, STATA,... do not
have a toolbox for functional data analysis. The development of object-oriented software like R, Matlab
or S-plus and the great activity of scientific community in this field has made possible to emerge
different packages mainly in R for using functional data analysis (FDA) methods. Every package
is designed from the point of view followed by its developer and the method used to fit functional
data methods. For example Febrero-Bande and Oviedo (2012) used nonparametric methods in their
fda.usc package, Ramsay et al. (2009) designed their fda package under basis expansion philosophy,
Principal Analysis by Conditional Estimation (PACE) algorithm (see Zhu et al., 2014) was used for
curves alignment, PCA and regression in the fdasrvf package (see https://cran.r-project.org/web/
packages/fdasrvf/index.html). Recently Fabian Scheipl has summarized the available R packages
for FDA (see https://cran.r-project.org/web/views/FunctionalData.html).

This paper is devoted to logitFD an R package for fitting the different functional principal compo-
nent logit regression approaches proposed by Escabias et al. (2004). Functional logit regression is a
functional method for modeling a scalar binary response variable in different situations: firstly, from
one single functional variable as predictor; secondly, from several functional variables as predictors;
and thirdly, from several functional and nonfunctional variables as predictors which is the most
general case. There exist some R functions with this objective as the fregre.glm function of fda.usc
package (see https://rpubs.com/moviedo/fda_usc_regression). Different to the former the methods
proposed by Escabias et al. (2004), and developed in logitFD, are basis expansion based methods
what makes the logit model suffer from multicollinearity. The proposed solutions were based on
different functional principal components analysis: ordinary FPCA and filtered FPCA (see Escabias
et al., 2014). These models have been successfully applied to solve environmental problems (Aguilera
et al., 2008b; Escabias et al., 2005; Escabias et al., 2013) and classification problems in food industry
(Aguilera-Morillo and Aguilera, 2015). Extensions for the case of sparse and correlated data or gener-
alized models have been also studied (James, 2002; Müller and Stadtmüller, 2005; Aguilera-Morillo
et al., 2013; Mousavi and Sørensen, 2018; Tapia et al., 2019; Bianco et al., 2021).

This package adopts fda’s package philosophy of basis expansion methods of Ramsay et al. (2009)
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and it is designed to use objects inherited from the ones defined in fda package. For this reason fda
package is required for logitFD. The package consists of four functions that fit a functional principal
component logit regression model in four different situations

• Filtered functional principal components of functional predictors, included in the model accord-
ing to their variability explained power.

• Filtered functional principal components of functional predictors, included in the model auto-
matically according to their prediction ability by stepwise methods.

• Ordinary functional principal components of functional predictors, included in the model
according to their variability explained power.

• Ordinary functional principal components of functional predictors, included in the model
automatically according to their prediction ability by stepwise methods.

The designed functions of our package use as input the fd objects given by fda package and also
provide as output fd objects among others elements.

This paper is structured as follows: after this introduction, the second section shows the generalities
of the package with the needed definitions and objects of functional data analysis, functional logit
regression and extended functional logit regression, third and fourth sections board ordinary and
filtered functional principal component logit regression, respectively. In fifth section ordinary and
filtered functional principal components logit regression is addressed by including functional principal
components according prediction ability by stepwise methods. In every section a summary of the
theoretical aspects of the involved models is shown with a practical application with functional data
contained in fda.usc package (Febrero-Bande and Oviedo, 2012).

2 logitFD package: general statements

Functional data analysis

A functional data set is a set of curves {x1(t), . . . , xn(t)} , with t in a real interval T (t ∈ T). Each curve
can be observed at different time points of its argument t as xi = (xi (t0) , . . . , xi (tmi ))

′ for the set of
times t0, . . . , tmi , i = 1, . . . , n and these are not necessarily the same for each curve.

Basis expansion methods assume that the curves belong to a finite dimensional space generated by
a basis of functions

{
ϕ1 (t) , . . . , ϕp (t)

}
and so they can be expressed as

xi (t) =
p

∑
j=1

aijϕj (t) , i = 1, . . . , n. (1)

The functional form of the curves is determined when the basis coefficients ai =
(

ai1, . . . , aip

)′
are

known. These can be obtained from the discrete observations either by least squares or by interpolation
methods (see, for example, Escabias et al., 2005 and Escabias et al., 2007).

Depending on the characteristics of the curves and the observations, various types of basis can be
used (see, for example, Ramsay and Silverman, 2005). In practice, those most commonly used are, on
the one had, the basis of trigonometric functions for regular, periodic, continuous and differentiable
curves, and on the other hand, the basis of B-spline functions, which provides a better local behavior
(see De Boor, 2001). In fda package the type of basis used are B-spline basis, constant basis, exponential
basis, Fourier basis, monomial basis, polygonal basis and power basis (Ramsay et al., 2009). Due to
logitFD package use fd objects from fda package, the same types of basis can be used.

In order to illustrate the use of logitFD package we are going to use aemet data included in fda.usc
package of Febrero-Bande and Oviedo (2012). As can be read in the package manual, aemet data
consist of meteorological data of 73 Spanish weather stations. This data set contains functional and
nonfunctional variables observed in all the 73 weather stations. The information we are going to use
to illustrate the use of our logitFD package is the following:

• aemet$temp: matrix with 73 rows and 365 columns with the average daily temperature for the
period 1980-2009 in Celsius degrees for each weather station.

• aemet$logprec: matrix with 73 rows and 365 columns with the average logarithm of precip-
itation for the period 1980-2009 for each weather station. We are going to use the proper
precipitation, that is, exp(aemet$logprec)

• aemet$wind.speed: matrix with 73 rows and 365 columns with the average wind speed for the
period 1980-2009 for each weather station.
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• aemet$df[,c("ind","altitude","longitude","latitude")]: data frame with 73 rows and 4
columns with the identifications code of each weather station, the altitude in meters over sea
level and longitude and latitude of each weather station.

The problem with daily data is that they are too wiggly so if we need smooth curves with few
basis functions, the loose of information is big. So, in order to illustrate the use of logitFD package we
are going to use mean monthly data. So for each one of the previously defined matrices we consider
mean monthly data. On the other hand, logprec is also a very wiggly data set, so we considered their
exponential. So the final data sets considered were the following:

• TempMonth: matrix with 73 rows and 12 columns with the mean monthly temperature of
aemet$temp.

• PrecMonth: matrix with 73 rows and 12 columns with the mean monthly exponential of
aemet$logprec.

• WindMonth: matrix with 73 rows and 12 columns with the mean monthly wind speed of
aemet$wind.speed.

We are going to consider as binary response variable that variable with values: 1 if a weather station
is located in the north of Spain (above Madrid, the capital of Spain, and located in the geographic
center of the country) and 0 otherwise (stations of the south). Our objective will be to model the
location of weather stations (north/south) from their meteorological information. This is a really
artificial problem trying to explain the climate characteristics of Spanish weather stations classified
according to their geographical location. Let us observe that only latitude is enough to determine the
location of a weather station in the sense we are defining. In fact, latitude allows complete separation
that makes the estimation of the logit model impossible (see for example Hosmer et al., 2013).

The steps for reading data would be

library(fda.usc)
data(aemet)
Temp <- aemet$temp$data
Prec <- exp(aemet$logprec$data)
Wind <- aemet$wind.speed$data
StationsVars <- aemet$df[,c("ind","altitude","longitude","latitude")]
StationsVars$North <- c(1,1,1,1,0,0,0,0,1,1,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,1,0,0,1,1,1,1,1,
0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,1,1,1,1)

and the transformations to consider mean monthly data from daily data only for Temperature

TempMonth <- matrix(0,73,12)
for (i in 1:nrow(TempMonth)){
TempMonth[i,1] <- mean(Temp[i,1:31])
TempMonth[i,2] <- mean(Temp[i,32:59])
TempMonth[i,3] <- mean(Temp[i,60:90])
TempMonth[i,4] <- mean(Temp[i,91:120])
TempMonth[i,5] <- mean(Temp[i,121:151])
TempMonth[i,6] <- mean(Temp[i,152:181])
TempMonth[i,7] <- mean(Temp[i,182:212])
TempMonth[i,8] <- mean(Temp[i,213:243])
TempMonth[i,9] <- mean(Temp[i,244:273])
TempMonth[i,10] <- mean(Temp[i,274:304])
TempMonth[i,11] <- mean(Temp[i,305:334])
TempMonth[i,12] <- mean(Temp[i,335:365])
}

The rest of matrices (PrecMonth and WindMonth) were obtained in the same way.

logitFD is an R package for fitting functional principal component logit regression based on
ordinary and filtered functional principal components described in previous sections. As was stated
in the introduction, this package uses fda’s package philosophy of basis expansion methods and it is
designed to use objects inherited from the ones defined in fda package. For this reason fda package is
required for logitFD. The R functions designed in our package use as input the fd objects given by fda
package and also provide as output fd objects among others elements. In order to use our package it
is assumed that the reader manage with fda package, its objects and functions.

Let us begin with a brief explanation of the fda objects required in our proposal. fda package builds,
from discrete observations of curves, an fd object (named fdobj) that will be used by logitFD for its
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Figure 1: Curves of mean monthly Temperature (left), Precipitation (middle) and Wind Speed (right)
registered in Spanish weather stations along one year. Data set aemet from fda.usc package. Numbers
1, 2, . . . , 12 in the horizontal axis refer to months January, February, . . . , December respectively.

methods. So, let Xn×m = (xi(tk)), i = 1, . . . , n; k = 1, . . . , m be the matrix of discrete observations
of curves x1 (t) , x2 (t) , . . . , xn (t) at the same time points t1, t2, . . . , tm. An fd object is an R list with
elements:

• coefs: the matrix of basis coefficients.

• basis: an object of type basis with the information needed to build the functional form of
curves based on basis expansion methods explained before. Depending on the selected basis
the list of objects that contains the basis object can be different (see fda reference manual).

• fdnames: a list containing names for the arguments, function values and variables. This argu-
ment is not necessary.

The matrix of basis coefficients An×p = (aij), i = 1, . . . , n; j = 1, . . . , p (coefs) of all curves are

obtained by least squares as AT =
(
ΦTΦ

)−1 ΦT XT where Φm×p = (ϕj (tk)), j = 1, . . . , p; k = 1, . . . , m
is the matrix of basis functions evaluated at sampling points.

The basis object allows the basis expansion (1) of curves. We consider for aemet data these two
basis:

• 7-length Fourier basis for Temperature.

• 8-length cubic B-spline basis for Precipitation and Wind

The R parameters needed to define the basis object depend on the type of basis used (see fda R reference
manual). Fourier basis only needs the interval where basis functions are defined and the dimension
of the basis. B-spline basis needs also the degree of polynomials that define the basis functions. The
default degree is 3.

The code to create the used basis have been

FourierBasis <- create.fourier.basis(rangeval = c(1,12),nbasis=7)
BsplineBasis <- create.bspline.basis(rangeval = c(1,12),nbasis=8)

The main function of fda package that provides the fdobj object from discrete data in a matrix is
Data2fd function (see fda reference manual). Our fdobj were obtained with the code

TempMonth.fd <- Data2fd(argvals = c(1:12), y=t(TempMonth),basisobj = FourierBasis)
PrecMonth.fd <- Data2fd(argvals = c(1:12), y=t(PrecMonth),basisobj = BsplineBasis)
WindMonth.fd <- Data2fd(argvals = c(1:12), y=t(WindMonth),basisobj = BsplineBasis)

An fdobj allows plotting all curves by using the R plot() command. The functional data so
obtained can be seen in Figure 1.

Functional logit regression model

In order to understand how the functions of the logitFD work, let summarize the theoretical aspects
of the models involved.
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Let Y be a binary response random variable and let {X1 (t) , X2 (t) , . . . , XR (t) : t ∈ T} be a set
of functional covariates related to Y. Let x11 (t) , . . . , xn1 (t) , . . . , x1R (t) , . . . , xnR (t) be R samples of
curves of the functional predictors that can be summarized by columns in a matrix of curves

x11 (t) x12 (t) · · · x1R (t)
x21 (t) x22 (t) · · · x2R (t)
· · · · · · · · · · · ·

xn1 (t) xn2 (t) · · · xnR (t) .

 (2)

Let y1, . . . , yn be a sample of the binary response associated with the curves (yi ∈ {0, 1}), then the
functional logit model in terms of the functional predictors is formulated as

yi = πi + εi = π (xi1 (t) , . . . , xiR (t)) + εi ⇔ πi =
exp {li}

1 + exp {li}
, i = 1, . . . , n, (3)

where ε = (ε1, . . . , εn)
′ is the vector of independent centered random errors, with unequal variances

and Bernoulli distribution, and li (known as logit transformations) are modelized from functional
predictors as

li = ln
[

πi
1 − πi

]
= α +

∫
T

xi1 (t) β1 (t) dt +
∫

T
xi2 (t) β2 (t) dt + · · ·+

∫
T

xiR (t) βR (t) dt. (4)

This model has R functional parameters to be estimated β1 (t) , . . . , βR (t) . If we consider that the
curves of each functional predictor belong to a finite space generated by a basis of functions as in (1)
and that the corresponding functional parameter belongs to the same space (same basis for each pair
(Xr(t), βr(t)), r = 1, . . . , R)

βr (t) =
pr

∑
l=1

βrlϕrl (t) , r = 1, . . . , R, (5)

the functional logit model in terms of the logit transformations is expressed in matrix form as

L = 1α + A1Ψ1β1 + A2Ψ2β2 + · · ·+ ARΨRβR, (6)

where

• L = (l1, . . . , ln)′ is the vector of logit transformations.

• (1 | A1Ψ1 | A2Ψ2 | · · · | ARΨR) is the design matrix, and | indicating the separation between
the boxes of the matrix.

• 1 = (1, . . . , 1)′ is a n−length vector of ones.

• Ψr = (ψjkr), r = 1, . . . , R is the matrix whose entries are the inner products between basis
functions of the space where curves belong to

ψjkr =< ϕjr(t), ϕkr(t) >=
∫

T
ϕjr(t)ϕkr(t)dt, j, k = 1, . . . , pr; r = 1, . . . , R. (7)

• Ar, r = 1, . . . , R is the matrix of basis coefficients as rows of sample curves of the space where
curves belong to.

• βr =
(

βr1, . . . , βrpr

)′ , r = 1, . . . , R are the basis coefficients of the functional parameter
βr(t), r = 1, . . . , R.

Let us observe that each functional predictor (and functional parameter) can be expressed in terms
of a different type of basis and different number of basis functions.

This functional logit model provides severe multicollinearity problems as was stated in Escabias
et al. (2004) for the case of a single functional predictor that was the original formulation of the model.

Extended functional logit model: several functional and nonfunctional predictors

We can finally formulate the functional logit model in terms of more than one functional predictor and
non-functional ones. So let Y be a binary response variable and let {X1 (t) , X2 (t) , . . . , XR (t) : t ∈ T}
be a set of functional covariates related to Y and U1, U2, . . . , US a set of non-functional predictors. Let
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us consider the sample of curves (2) and
u11 u12 · · · u1S
u21 u22 · · · u2S
· · · · · · · · · · · ·
un1 un2 · · · unS

 ,

the sample of observations of nonfunctional predictors. Let y1, . . . , yn be a sample of the response
associated with the curves. Then the model is expressed in terms of logit transformations as

li = α +
∫

T
xi1 (t) β1 (t) dt + · · ·+

∫
T

xiR (t) βR (t) dt + ui1δ1 + · · ·+ uiSδS, i = 1, . . . , n. (8)

Now the model has R functional parameters to estimate β1 (t) , . . . , βR (t) and S nonfunctional param-
eters δ1, . . . , δS. As in the previous case, each functional predictor and functional parameter can be
expressed in terms of a different type of basis and different number of basis functions as in (1) and (5).
We consider again the same basis for each pair (Xr(t), βr(t)), r = 1, . . . , R. The functional logit model
in terms of the logit transformations is expressed in matrix form as

L = 1α + A1Ψ1β1 + A2Ψ2β2 + · · ·+ ARΨRβR + U1δ1 + · · ·+ USδS.

This model has as only difference with respect the previous one the design matrix of the model
(1 | A1Ψ1 | A2Ψ2 | · · · | ARΨR |U1| · · · |US) , where U1, . . . , US represent the columns of observations
of the nonfunctional predictors, and a set of scalar parameters δ1, . . . , δS. As in the previous case, this
model has multicollinearity problems.

3 Ordinary functional principal components logit regression

The proposed solution to solve the multicollinearity problems in Escabias et al. (2004) for the single
model (only one functional predictor) was to use as predictors a set of functional principal components.
Let us briefly remember the functional principal component analysis principles.

Let x1 (t) , . . . , xn (t) be a set of curves with mean curve and covariance surface respectively

x (t) =
1
n

n

∑
i=1

xi (t) , C (s, t) =
1

n − 1

n

∑
i=1

(xi (s)− x (s)) (xi (t)− x (t)) .

Functional principal components are defined as

ξij =
∫

T
(xi (t)− x (t)) f j (t) dt, f j (t) =

p

∑
k=1

Fjkϕk (t) , j = 1, . . . , p; i = 1, . . . , n.

In this formulation it is assumed that curves are expressed as in (1), and, as a consequence, the eigen-
functions f j(t), that define the functional principal components, are also basis expansion expressed,
being the basis coefficients Fj the eigenvectors of AΨ1/2 matrix (see Ocaña et al., 2007). For a more
general and detailed situation see Ramsay and Silverman (2005). The original curves can be expressed
in terms of the functional principal components as

xi (t) = x(t) +
p

∑
j=1

ξij f j (t) = x(t) +
p

∑
j=1

p

∑
k=1

ξijFjkϕk (t) , i = 1, . . . , n.

If a reduced set of functional principal components is considered, the original curves can be approxi-
mated by

xi (t) ≃ x(t) +
q<p

∑
j=1

ξij f j (t) = x(t) +
q<p

∑
j=1

p

∑
k=1

ξijFjkϕk (t) , i = 1, . . . , n (9)

The quality of this approximation will depend on the percentage of explained variability that acumu-
lates the first q functional principal components, given by

∑
q
j=1 λj

∑
p
j=1 λj

.

The ordinary functional principal components logit regression solution to solve the multicollinear-
ity problems of the functional logistic regression model consists of considering a functional principal
component expansion of each sample curve for each functional predictor and turning the functional
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model into a multivariate one whose covariates are the considered functional principal components.
The number of principal components required can be different in each functional predictor, but the
same for all curves of a specific functional predictor.

In order to get an estimation of the functional parameter for the case of a single functional covariate,
by considering the principal component expansion of curves, the logit model adopts the following
expression

li = α +
∫

T

x(t) +
p

∑
j=1

ξij f j (t)

 β (t) dt = α +
∫

T
x(t)β (t) dt +

p

∑
j=1

ξij

∫
T

f j (t) β (t) dt,

= γ0 +
p

∑
j=1

ξijγj, i = 1, . . . , n.

These expressions enables to express the basis coefficients of the functional parameter and the intercept
parameter of the logit model in terms of the parameters estimated from the functional principal
components of the curves.

α = γ0 −
∫

T
x(t)β (t) dt = α + (a1, . . . , ap)Ψ(β1, . . . βp)

′, (10)

(β1, . . . , βp)
′ = ΨF(γ1, . . . , γp)

′ (11)

with Ψ =
(

ψjk

)
being the inner products between the basis functions (as in (7)) and F the orthogonal

matrix of basis coefficients of principal component curves shown in (9).

If we consider the principal component expansion of curves in terms of a reduced set of functional
principal components we can get an estimation of the basis coefficients of the functional parameter
whose accuracy depends on the accumulated variability of the selected principal components (see
Escabias et al., 2004).

So, if we denote by Γ1, Γ2, . . . , ΓR the ordinary functional principal components matrices of the sam-
ple curves associated with the functional predictors {X1 (t) , X2 (t) , . . . , XR (t) : t ∈ T} , respectively,
the functional principal component logit model in terms of the logit transformations is expressed in
matrix form as

L = 1α + Γ1γ1 + Γ2γ2 + · · ·+ ΓRγR + U1δ1 + · · ·+ USδS,

where (1 | Γ1 | Γ2 | · · · | ΓR|U1| · · · |US) is the design matrix in terms of ordinary functional princi-
pal components, γr =

(
γr1, . . . , γrpr

)′ are the coefficients of the multiple model associated to the
corresponding functional principal components and (δ1, . . . , δs)

′ the scalar parameters associated to
non-functional variables. By using a reduced set of q1, q2, . . . , qR functional principal components,
being the scores matrix denoted as Γ1(q1), Γ2(q2), . . . , ΓR(qR), respectively, the model is then expressed
as

L = 1α + Γ1(q1)γ1 + Γ2(q2)γ2 + · · ·+ ΓR(qR)γR + U1δ1 + · · ·+ USδS.

Basis coefficients for each functional parameter are then obtained by formula (11) from their
corresponding γ parameter and the intercept α by formula (10).

logitFD.pc is the function from logitFD package that fits the ordinary functional principal com-
ponent logit regression model. The declaration of the function has this form:

logitFD.pc(Response,FDobj=list(),ncomp=c(),nonFDvars=NULL),

and the function arguments are the following:

• Response: vector of responses y1, . . . , yn.

• FDobj: list of the different functional objects (fdobj) to use from the fd package. Theoretically
x1(t), . . . , xR(t).

• ncomp: vector with the number of functional principal components q to use in the model for
each functional predictor. The length of the vector must be equal to the length of the FDobj list.
The first element of the vector corresponds with the number of functional principal components
of the first functional predictor (columns of Γ1), the second with the columns of Γ2, . . ., the Rth
with the columns of ΓR.

• nonFDvars: data frame with the observations of the scalar predictor variables, that is, with
columns U1 . . . , US. Let us observe that the number of rows of this data frame must be the same
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as the length of the response vector. Likewise, the number of functions in each functional object
must be the same for all functional objects.

In order to illustrate the performance of the function, let us consider StationsVar$North as a
binary response variable, TempMonth and PrecMonth as functional predictors, and StationsVar[,c(
"altitude","longitude")] as scalar predictor variables. We are going to consider the first 3 and 4
functional principal components of TempMonth and PrecMonth respectively.

Our fit is obtained as

Fit1 <- logitFD.pc(Response=StationsVars$North,FDobj=list(TempMonth.fd,PrecMonth.fd),
ncomp = c(3,4),nonFDvars = StationsVars[,c("altitude","longitude")])

The output of the function is an R list with objects: glm.fit, Intercept, betalist, PC.variance
and ROC.curve. These elements are explained next.

glm.fit object of Fit1: Object of class inherited from "glm". This object contains details about the
fit of the multiple logit model to explain the binary response from the selected functional principal
components and the scalar variables. This output allows to use different R functions as summary()
function to obtain or print a summary of the fit, or anova() function to produce an analysis of variance
table, and to extract various useful features of the values returned by "glm" as coefficients, effects,
fitted.values or residuals (see R help). In our example the summary of the fit can be seen on page (241).
Let us observe that the package assigns the names A.1, A.2 and A.3 and B.1, B.2, B.3 and B.3 to the
first 3 and 4 functional principal components of the functional covariates. From this object it would
easily be able to make an analysis of residuals, with residuals() function, or fitted values, with
fitted.values() function, testing goodness of fit, etc. A classical goodness of fit measure is the correct
classification rate (CCR) from the classification table. In our example both elements can be easily
obtained through these sentences table(StationsVars$North,round(predict(Fit1$glm.fit,type =
"response"))) and 100*sum(diag(table(StationsVars$North,round(predict(Fit1$glm.fit,type
= "response")))))/nrow(StationsVars). From the results we can conclude that if we want to model
the weather stations location from the temporal evolution of temperatures and precipitation and from
altitude and longitude variables, we classify correctly 94.5% of stations.

Intercept object of Fit1: The α (intercept) estimated parameter through expression (10) is given in
the object Fit1$Intercept.

betalist object of Fit1: A list of functional objects. Each element of the list contains the functional
parameter corresponding to the associated functional predictor variable located in the same position of
FDobj parameter that appears in the function. In our case, firsty temperature curves where introduced,
and precipitation curves were added in second place. Then the first two elements of betalist, that
is, [[1]] and [[2]] will be the functional parameters associated with temperature and precipitation
curves respectively. If we use more functional data, [[3]],[[4]],... provide the corresponding
functional parameters. Let us remember that as fdobj, its elements are coefs: the matrix (vector in this
case) of basis coefficients, basis: the same basis used in FDobj object and the rest elements as fdnames.
Besides, multiple functions from fd package can be used such as the plot() function, used here as
plot(Fit1$betalist[[1]]) and plot(Fit1$betalist[[2]]) for the parameter functions associated
to Temperature and Precipitation curves respectively. The plots that generate these sentences can be
seen in Figure 2. We could also evaluate these functions in a grid with the function eval.fd(), for
example in the observed months-time, we could obtain the values on page (241).

PC.variance object of Fit1: A list of data.frames with explained variability of functional principal
components. Each element of the list contains the cumulative variance matrix corresponding to
the associated functional variable in the same position. In our case, the first input curves were
temperature curves and the second ones, the precipitation curves. In this point, the first element
[[1]] of PC.variance will be the matrix of explained variability of functional principal components
associated with temperature curves whereas the second element [[2]] of the PC.variance will be the
matrix of explained variability of principal components associated with precipitation curves as with
betalist. If we use more functional data [[3]],[[4]],... the function provides the corresponding
explained variability matrices. The output got in PC.variance list is on page (242). We can observe
that the first two functional principal component of temperature and precipitation accumulate 99.4%
and 99.1% of the total variability respectively, so that the selection of 3 components for temperature
and 4 for precipitation are enough for a good representation of the curves.
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β̂1(t) β̂2(t) ROC curve

Figure 2: Left and middle curves are the estimated functional parameters associated with Temperature
and Precipitation functional data respectively of Fit 1. The graph on the right is the ROC Curve of the
fit. These graphs are obtained from Fit 1 by means of logitFD.pc() function.

ROC.curve object of Fit1: an object of the roc() function from pROC package whose mission is to
test the prediction ability of the model. This function builds a ROC curve and returns a roc object, i.e.
a list of class roc. This object can be printed, plotted, or passed to many other functions (see reference
manual). As default this element returns the area under the ROC curve with the object Fit1$ROC. The
plot of the ROC curve with sentence plot(Fit1$ROC) can be seen in Figure 2. As it was stated from
the correct classification rate, the ROC curve and its graph allows us to observe that the fit is accurate
for this modeling.

4 Filtered functional principal components included in the model accord-
ing to their explained variability

Alternatively to ordinary functional principal component logit regression, Escabias et al. (2014) dis-
cussed a different approach based on equivalences proved by Ocaña et al. (2007) and Ocaña et al.
(1999) between different functional principal component analysis. These equivalences stated that given
x1 (t) , . . . , xn (t) a set of curves, the functional principal component analysis of the transformed curves
L(x1(t)), . . . , L(xn(t)) defined by L(xi(t)) = ∑

p
j=1 a∗ijϕj(t), being (a∗i1, . . . , a∗ip)

′ = Ψ1/2(ai1, . . . , aip)
′, is

equivalent to multivariate PCA of the design matrix AΨ associated with the functional logit model. In
this expansion, the principal component curves f ∗j (t) are expressed in terms of the basis functions as

f ∗j (t) =
p

∑
k=1

F∗
jkϕk (t) , j = 1, . . . , p,

where basis coefficients in matrix form are obtained as F∗ = Ψ−1/2V, being V the eigenvectors of the
covariance matrix of AΨ.

The original curves can be also approximated

L(xi (t)) = L(x(t)) +
p

∑
j=1

ξ∗ij f ∗j (t) , i = 1, . . . , n,

where ξ∗ij are the functional principal components scores of the transformed curves L(x1(t)), . . . , L(xn(t)).

Now again the original curves can be approximated by using a reduced set of these functional
principal components

L(xi (t)) ≃ L(x(t)) +
q<p

∑
j=1

ξ∗ij f ∗j (t) , i = 1, . . . , n.

In order to avoid multicollinearity in functional logit model an alternative is to use filtered principal
components (see Escabias et al., 2004). So let x1 (t) , . . . , xn (t) be a set of curves with mean curve x (t)
and y1, . . . , yn the response associated observations. Let Γ∗ = (ξ∗ij) be the n × p matrix of functional
principal components, and f ∗1 (t), . . . , f ∗p (t) the principal component curves. The filtered functional
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principal component logit regression can be expressed

li = α +
∫

T

x(t) +
p

∑
j=1

ξ∗ij f ∗j (t)

 β (t) dt = α +
∫

T
x(t)β (t) dt +

p

∑
j=1

ξ∗ij

∫
T

f ∗j (t) β (t) dt,

= γ∗
0 +

p

∑
j=1

ξ∗ijγ
∗
j , i = 1, . . . , n.

This expression also allows expressing the basis coefficients of the functional parameter and the
intercept parameter of the logit model alternatively in terms of the parameters estimated from the
filtered functional principal components of the curves equivalently to (11) and (10) respectively:

α = γ∗
0 −

∫
T

x(t)β (t) dt = α + (a1, . . . , ap)Ψ(β1, . . . βp)
′, (12)

(β1, . . . , βp)
′ = ΨF∗(γ∗

1 , . . . , γ∗
p)

′, (13)

due to F∗ and Ψ matrices are orthogonal and Ψ is also a symmetric matrix.

If we consider a principal component expansion of curves in terms of a reduced set of filtered
functional principal components we can get an estimation of the basis coefficients of the functional
parameter whose accuracy depends of the accumulated variability of the selected principal components
(see Escabias et al., 2004).

So, if we denote by Γ∗
1 , Γ∗

2 , . . . , Γ∗
R the matrices of filtered functional principal components of

the sample curves of the functional predictors {X1 (t) , X2 (t) , . . . , XR (t) : t ∈ T} respectively, the
functional principal component logit model in terms of the logit transformations is expressed in matrix
form as

L = 1α + Γ∗
1γ∗

1 + Γ∗
2γ∗

2 + · · ·+ Γ∗
Rγ∗

R + U1δ1 + · · ·+ USδS,

where
(
1 | Γ∗

1 | Γ∗
2 | · · · | Γ∗

R
∣∣U1| · · · |US) is the design matrix in terms of ordinary functional princi-

pal components, γ∗
r =

(
γ∗

r1, . . . , γ∗
rpr

)′
are the coefficients of the multiple model associated to the

corresponding filtered functional principal components and (δ1, . . . , δs)
′ the scalar parameters associ-

ated to non-functional variables. By using a reduced set of q1, q2, . . . , qR filtered functional principal
components Γ∗

1(q1)
, Γ∗

2(q2)
, . . . , Γ∗

R(qR)
, respectively, the model is then expressed as

L = 1α + Γ∗
1(q1)

γ∗
1 + Γ∗

2(q2)
γ∗

2 + · · ·+ Γ∗
R(qR)

γ∗
R + U1δ1 + · · ·+ USδS.

Basis coefficients for each functional parameter are then obtained by formula (11) from their
corresponding γ∗ parameters and the Intercept α∗ by formula (10).

The function of the logitFD package that allows fitting the filtered functional principal components
logit regression model is logitFD.fpc. The performance of the function is the same as the logitFD.pc
function.

In order to illustrate the performance of the functions, let us again consider StationsVar$North as
binary response variable, TempMonth and PrecMonth as functional predictors, and as scalar predictor
variables StationsVar[,c("altitude","longitude")]. We are going to consider the first 3 and 4
functional principal components of TempMonth and PrecMonth, respectively.

Our fit is obtained as

Fit2 <- logitFD.fpc(Response=StationsVars$North,FDobj=list(TempMonth.fd,PrecMonth.fd),
ncomp = c(3,4),nonFDvars = StationsVars[,c("altitude","longitude")])

The output of this function is an R list with the same elements that were explained in the previous
section. Next, the results of the fit are shown.

glm.fit object of Fit2: explained in the previous section, its results can be seen next to the ones
obtained for Fit1
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-----------------------------------------------------
summary(Fit1$glm.fit)

Call:
glm(formula = design, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.77059 -0.01185 0.00000 0.01309 2.02115

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 15.10398 8.80373 1.716 0.0862 .
A.1 -1.94776 1.05278 -1.850 0.0643 .
A.2 -0.19686 0.58414 -0.337 0.7361
A.3 -6.69297 3.49893 -1.913 0.0558 .
B.1 0.41633 0.78514 0.530 0.5959
B.2 0.51503 6.42736 0.080 0.9361
B.3 -3.11044 3.06542 -1.015 0.3103
B.4 -2.44083 5.69108 -0.429 0.6680
altitude -0.02846 0.01576 -1.806 0.0709 .
longitude 1.40203 0.85922 1.632 0.1027
---
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 100.857 on 72 degrees of freedom
Residual deviance: 14.785 on 63 degrees of freedom
AIC: 34.785

Number of Fisher Scoring iterations: 15
------------------------------------------------------

------------------------------------------------------
summary(Fit2$glm.fit)

Call:
glm(formula = design, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.671e-04 -2.100e-08 2.100e-08 2.100e-08 2.939e-04

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 598.163 75918.975 0.008 0.994
A.1 -99.485 11468.867 -0.009 0.993
A.2 -13.281 10608.315 -0.001 0.999
A.3 -264.950 45230.675 -0.006 0.995
B.1 26.123 7055.585 0.004 0.997
B.2 174.667 31244.941 0.006 0.996
B.3 318.127 79802.859 0.004 0.997
B.4 -828.247 233825.008 -0.004 0.997
altitude -1.251 142.820 -0.009 0.993
longitude 50.865 7090.131 0.007 0.994
---
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1.0086e+02 on 72 degrees of freedom
Residual deviance: 2.2821e-07 on 63 degrees of freedom
AIC: 20

Number of Fisher Scoring iterations: 25
------------------------------------------------------

Classification table of Fit2: obtained as explained for Fit1, we can observe that the filtered func-
tional principal components provide a better fit with CCR of 100% in spite a less accurate estimation
of parameters due to the high standard error of coefficients estimation. This fact was observed and
stated in Aguilera et al. (2008a) for example.

Intercept object of Fit2: provides the same result seen in the Fit1 case.

betalist object of Fit2: The functional parameters obtained by this fit can be seen in Figure 3. We
can observe the great similarity of the functional parameters form provided by the fit in terms of
ordinary functional principal components and in terms of filtered functional principal components.
The evaluation of these functions in the observed months-time, appears next with the ones obtained
for Fit1:

Fit1
--------------------------------

Months Beta1 Beta2
1 Jan -2.6186728 -0.3861178
2 Feb 0.6541213 -0.2615488
3 Mar 2.6530440 -0.5074478
4 Apr 2.2007300 0.4053187
5 May 1.4871676 1.3946294
6 Jun 0.7918409 0.3944050
7 Jul -0.9034488 -1.8776571
8 Aug -2.1700722 -2.6123256
9 Sep -1.9520934 -1.1094367
10 Oct -2.2614869 0.5243271
11 Nov -3.4888495 0.9816193
12 Dec -2.6186728 1.1577407
--------------------------------

Fit2
--------------------------------

Months Beta1 Beta2
1 Jan -114.45858 -208.85221
2 Feb 16.52657 -295.08973
3 Mar 97.13723 -142.07106
4 Apr 80.32782 29.22866
5 May 54.09383 91.48928
6 Jun 29.28698 -28.35074
7 Jul -36.52664 -219.37744
8 Aug -87.77921 -234.26248
9 Sep -81.81846 -18.66271
10 Oct -97.27569 226.44071
11 Nov -148.43166 303.70498
12 Dec -114.45858 61.99109
--------------------------------

The code used for generating these results is data.frame("Months" = names(monthLetters),"Beta1"
= eval.fd(c(1:12),Fit1$betalist[[1]]),"Beta2" = eval.fd(c(1:12),Fit1$betalist[[2]])) for
the left-hand side and changing Fit1 by Fit2 for the right-hand side.

PC.variance object of Fit2: it can be observed that there are several differences in the dynamic of
variance accumulation between ordinary and filtered functional principal component analysis.
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Figure 3: Left and middle curves are the estimated functional parameters associated with Temperature
and Precipitation functional data respectively of Fit 2. The graph on the right is the ROC Curve of the
fit. These graphs are obtained from Fit 1 by means of logitFD.fpc() function.

----------------------------------
Fit1$PC.variance
[[1]]
Comp. % Prop.Var % Cum.Prop.Var

1 A.1 85.9 85.9
2 A.2 13.5 99.4
3 A.3 0.4 99.8
4 A.4 0.1 99.9
5 A.5 0.0 99.9
6 A.6 0.0 99.9
7 A.7 0.0 99.9
[[2]]
Comp. % Prop.Var % Cum.Prop.Var

1 B.1 98.2 98.2
2 B.2 0.9 99.1
3 B.3 0.6 99.7
4 B.4 0.3 100.0
5 B.5 0.1 100.1
6 B.6 0.0 100.1
7 B.7 0.0 100.1
8 B.8 0.0 100.1
----------------------------------

----------------------------------
Fit2$PC.variance
[[1]]
Comp. % Prop.Var % Cum.Prop.Var

1 A.1 85.888 85.888
2 A.2 13.479 99.367
3 A.3 0.440 99.807
4 A.4 0.132 99.939
5 A.5 0.034 99.973
6 A.6 0.016 99.989
7 A.7 0.010 99.999
[[2]]
Comp. % Prop.Var % Cum.Prop.Var

1 B.1 99.070 99.070
2 B.2 0.536 99.606
3 B.3 0.311 99.917
4 B.4 0.049 99.966
5 B.5 0.031 99.997
6 B.6 0.002 99.999
7 B.7 0.000 99.999
8 B.8 0.000 99.999
----------------------------------

ROC.curve object of Fit2: explained in the previous Section, the plot of the ROC curve appears
Figure 3. This graph and the area under the ROC curve (100%) show an improvement of the prediction
ability of the fit with filtered functional principal components in comparison with ordinary functional
principal components.

5 Ordinary and filtered functional principal components included in the
model according to their prediction ability (stepwise method)

Escabias et al. (2004) proposed two alternative methods to include functional principal components
in the logit model for both FPCA types: ordinary or filtered. On the one hand, functional principal
components would be able to be included in the model in the order given by their explained variability.
In that case the user should decide the number of functional principal components to include in the
model for getting an accurate estimation of the functional parameter or for getting good prediction
ability for the response. On the other hand, an automatic selection method of functional principal
components could be used by a stepwise method. In this case the prediction ability of functional
principal components would be the criterium to select the functional principal components and data
would be the responsible of the model fit and prediction.

logitFD package contains two functions to fit the functional logit model after a stepwise selection
procedure of functional principal components (ordinary and filtered) and nonfunctional variables.
The fits obtained by these stepwise procedures are shown next.
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Fit3 <- logitFD.pc.step(Response=StationsVars$North,FDobj=list(TempMonth.fd,PrecMonth.fd),
nonFDvars = StationsVars[,c("altitude","longitude")])
Fit4 <- logitFD.fpc.step(Response=StationsVars$North,FDobj=list(TempMonth.fd,PrecMonth.fd),
nonFDvars = StationsVars[,c("altitude","longitude")])

Let us observe that for these functions it is not necessary to use a number of components parameter
in the functions. We call Fit3 for ordinary functional principal component analysis and Fit4 for
filtered functional principal component analysis.

The output of these function are R lists with the same elements as the ones seen in Fit1 and Fit2.
We only show and explain here some of the results.

glm.fit objects of Fit3 and Fit4: We can observe from these results that stepwise method selected
three functional principal components for Temperature and only one for Precipitation. Regarding
scalar predictors, the method selected the altitude variable. Note that stepwise selection included the
same components for both approaches, although the values of their parameters and standard errors
are different. The classification ability of these fits is 100% of correct classification rate and can be
obtained by using the same code shown fof Fit1 and Fit2.

-------------------------------------------------------
summary(Fit3$glm.fit)

Call:
glm(formula = Response ~ A.1 + altitude + A.7 + A.3 + B.5,
family = binomial, data = design)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.677e-04 -2.000e-08 2.000e-08 2.000e-08 2.960e-04

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 936.784 71065.432 0.013 0.989
A.1 -223.554 16658.601 -0.013 0.989
altitude -2.543 191.207 -0.013 0.989
A.7 4016.721 300525.378 0.013 0.989
A.3 -972.450 73148.168 -0.013 0.989
B.5 308.717 23326.153 0.013 0.989

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1.0086e+02 on 72 degrees of freedom
Residual deviance: 4.7820e-07 on 67 degrees of freedom
AIC: 12

Number of Fisher Scoring iterations: 25
------------------------------------------------------

------------------------------------------------------
summary(Fit4$glm.fit)

Call:
glm(formula = Response ~ A.1 + altitude + A.7 + A.3 + B.5,
family = binomial, data = design)

Deviance Residuals:
Min 1Q Median 3Q Max

-6.974e-04 -2.000e-08 2.000e-08 2.000e-08 5.753e-04

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.938e+03 3.312e+05 0.006 0.995
A.1 -3.899e+02 3.754e+04 -0.010 0.992
altitude -4.731e+00 6.218e+02 -0.008 0.994
A.7 6.724e+03 1.132e+06 0.006 0.995
A.3 -1.557e+03 8.121e+04 -0.019 0.985
B.5 6.409e+02 6.659e+04 0.010 0.992

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1.0086e+02 on 72 degrees of freedom
Residual deviance: 1.1402e-06 on 67 degrees of freedom
AIC: 12

Number of Fisher Scoring iterations: 25
------------------------------------------------------

betalist objects of Fit3 and Fit4: The graphs of estimated functional parameters are shown in
Figure 4. It can be seen the similarity in the forms of the functional parameters, in spite of the
evaluation values are different as can be seen next:

-----------------------------------------------------
Months Fit3.Beta1 Fit3.Beta2 Fit4.Beta1 Fit4.Beta2

1 Jan 693.10831 -63.47274 1172.6949 -24.28034
2 Feb -98.76707 -157.45404 -186.0346 -144.18907
3 Mar -229.11217 -122.61836 -423.5395 -199.28285
4 Apr 1711.91853 -70.18329 2831.9461 -170.88030
5 May 1152.29655 -24.62758 1904.3853 -76.25583
6 Jun -1640.56224 26.48668 -2761.1827 49.39343
7 Jul -1066.07148 66.45460 -1780.0473 143.75270
8 Aug 1580.73125 57.60667 2663.1874 126.59096
9 Sep 543.54551 24.31157 921.5509 29.89969
10 Oct -2086.28319 71.63066 -3481.0951 31.57623
11 Nov -1163.57269 171.95001 -1925.9015 198.33040
12 Dec 693.10831 -10.48963 1172.6949 326.95671
-----------------------------------------------------

The code used for thsese evaluations was similar as the one shown for Fit 1 and Fit 2: data.frame("Months"
= names(monthLetters),"Fit3.Beta1" = eval.fd(c(1:12),Fit3$betalist[[1]]),"Fit3.Beta2" =
eval.fd(c(1:12),Fit3$betalist[[2]]),"Fit4.Beta1" = eval.fd(c(1:12),Fit4$betalist[[1]]),"Fit4.
Beta2" = eval.fd(c(1:12),Fit4$betalist[[2]]))
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Ordinary FCPA and stepwise order

Filtered FCPA and stepwise order

Figure 4: Left and middle curves are the estimated functional parameters associated with Temperature
and Precipitation functional data respectively of Fit 3 (up) and Fit 4 (down). The graphs on the right are
the ROC Curve of the fits. These graphs are obtained from Fits 3 and 4 by means of logitFD.pc.step()
and logitFD.fpc.step() functions respectively.

PC.variance objects of Fit3 and Fit4: The objects of variance accumulation of the different func-
tional principal components analysis do not change from the ones shown in previous sections. We do
not show them here, the reader can check these equalities through the objects Fit3$PC.variance and
Fit4$PC.variance.

ROC.curve objects of Fit3 and Fit4: Roc objects with Roc areas provide an area under the roc curve
of 100% in each case. The plot of the ROC curves showing the good performance of the fits can be
seen in Figure 4.

6 Conclusions

In this work the functions of the logitFD package have been shown for fitting an extended functional
principal components logistic regression model. The package provides two alternative solutions (ordi-
nary and filtered FPCA) for the multicollinearity problem that arises when the functional predictors
and the parameter functions are assumed to belong to the same finite dimensional space generated
by a basis of functions. The dimension of the basis can be different in each functional variable in the
model. Likewise, for each of the proposed solutions, two ways of choosing the functional principal
components are provided: on the one hand, the users must manually choice the adequate number of
components to be included in the model in order of variability, i.e., the first q principal components that
overcome a certain variability percentage; on the other hand in the automatic order provided by the
stepwise method, that is, according to predictive ability of principal components and non-functional
variables.

The illustration of the use of the package’s functionalities has been carried out using a set of
functional and non-functional data, included in the fda.usc package. In particular, weather functional
variables observed in 73 Spanish weather stations, such as the mean monthly evolution of temperatures
and rainfall, and non-functional as the spatial location of the weather stations in the Spanish territory
are considered throughout the current manuscript.
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Figure 5: Diagram of steps for Functional Principal Components Logit Regression fit in its different
situations considered in logitFD package: (1) basis expansion representation from discrete observations
of curves, (2) choice the type of FPCA (ordinary or filtered) and (3) choice the method for scores
selection (variability order or stepwise order).

The conclusions we have reached after the fits can be summarized in that the variables that best
describe the North-South location of the meteorological stations are the mean monthly precipitation
and temperature (through their first, third and seventh principal components for temperature and
fifth for rainfall) and the own altitude of the weather stations. All the models provide good predictive
ability, with the solutions based on ordinary and filtering FPCA by stepwise selection being the best
(100 % CCR) due to their balance between reduced dimension and predictive ability. Likewise, the
filtered FPCA solution including the components in order of variability provides results equally
good to the previous ones but with more variables. The ordinary FPCA-based solution including the
components in order of variability provides results similar to those previously described.

As was stated in the Introduction section, the fregre.glm function of the fda.usc package aim to
achieve the same goal as the functions included in logitFD package, but through different point of
view: fregre.glm use a discrete based methodology of functional data and logitFD functions use a
purely functional approach using fd objects from the fda package. This approach makes the functional
models of scalar response to suffer of multicollinearity problems with the inaccurate estimation of the
functional parameters as a consequence (see Escabias et al., 2004). Two solutions based on functional
PCA are implemented in logitFD package: (1) classic functional PCA and (2) filtered functional
PCA. Each of PCA methods have been revealed to be useful in a different aspect: the first allow a
lower estimation error of the basic coefficients of the functional parameters, while the second allow a
lower estimation error of the proper curve, in terms of mean integrated quadratic error (see Escabias
et al., 2004). Moreover the literature has also shown for methods involving principal components,
that sometimes principal components with low variability explanation can be good predictors of the
response, so a stepwise selection method of functional principal components has been included. So
the main difference among logitFD functions and fregre.glm is that all the mentioned issues are
addressed in the logitFD package and solved in a fast and transparent way and they are not taken into
account in fregre.glm. Finally it is important to point out that the output of the functional elements of
the logitFD functions (as the functional parameters) are also fd objects and therefore all the functions
of the fda package could be used with them for plotting, evaluating, etc.

In short, logitFD package provides its users with the possibilities to deal with the functional logit
regression model from basis expansion methodology of sample curves and solving in a fast and
transparent way, the problems that arise through functional principal component analysis. In our
opinion, if we wanted to solve the same problems by using alternative R functions with similar goal, it
would be necessary give many steps that would make the process to be highly tedious. For this reason,
and due to logit regression is highly considered in real problems, we think that the current manuscript
can be very interesting for the readers given that they could use it as reference manual in their analysis

Figure 5 give a schematic diagram that summarize the steps of the methodology followed along
the paper
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