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Abstract

Finding a balance between diversity and convergence plays an important role in evolutionary

algorithms to avoid premature convergence and to perform a better exploration of the search

space. In the case of Genetic Programming, and more specifically for symbolic regression problems,

different mechanisms have been devised to control diversity, ranging from novel crossover and/or

mutation procedures to the design of distance measures that help genetic operators to increase

diversity in the population. In this paper, we start from previous works where Straight Line

Programs are used as an alternative representation to expression trees for symbolic regression, and

develop a similarity measure based on edit distance in order to determine how different the Straight

Line Programs in the population are. This measure is used in combination with the CHC algorithm

strategy to control diversity in the population, and therefore to avoid local optima to solve symbolic

regression problems. The proposal is first validated in a controlled scenario of benchmark datasets

and it is compared with previous approaches to promote diversity in Genetic Programming. After

that, the approach is also evaluated in a real world dataset of energy consumption data from a set

of buildings of the University of Granada.
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1. Introduction

In evolutionary computation, diversity and convergence play an important role in the explo-

ration of the search space. As many authors argued (Burke et al., 2004; Badran & Rockett,

2007; Chen et al., 2009), finding a balance between diversity and convergence is critical in genetic

algorithms, since premature convergence causes the end of the evolution in local optima, while

an uncontrolled divergence may reduce exploitation of the search space. Two main mechanisms

that guide the exploration of the search space in genetic algorithms have been identified in the

literature (Smit & Eiben, 2010): Variation, which promotes diversity, and Selection to reinforce

convergence. A suitable combination of these mechanisms helps to explore the search space to

avoid falling in local optima (Črepinšek et al., 2013). Indeed, many approaches emerged to tackle

the problem of premature convergence in genetic algorithms by proposing new evolutionary al-

gorithms or improving genetic operators with the aim of delaying a premature convergence. For

example, the work (Mc Ginley et al., 2011) implemented ACROMUSE, a genetic algorithm that

adapts crossover, mutation and parameter selection to preserve diversity in the population. Lozano

et al. (Lozano et al., 2008) proposed replacement strategies that consider both fitness quality and

the diversity of an individual in the population, in order to maintain individuals with high fitness

and diversity for the next generation. Aslam et al. (Aslam et al., 2018) presented a selection op-

erator that determines whether two individuals can be recombined considering their distance. On

the other hand, other authors established a criterion that helps to select the individuals that will

be combined: e.g. techniques based on neighborhoods such as niching methods (Mart́ın et al.,

2016) or approaches that consider behavior similarities by using fitness sharing (Ekárt & Németh,

2000, 2002). A recent article showed how multi-objective optimization can be used to promote

diversity in the population, considering both fitness and a diversity measure as objectives to be

optimized (Segura et al., 2017).

In addition to the aforementioned problems of diversity and convergence, Genetic Programming

(GP) has to deal with additional issues regarding the solution encoding (Koza, 1992). As the

encodings used in GP have a non-linear structure, such as trees, it is harder to tackle the control

of diversity (Burke et al., 2004). The problem of tree uncontrolled growth, known as the bloating

problem in GP, leads to premature convergence (dal Piccol Sotto & de Melo, 2016). Preventing this

problem is an implicit goal for researchers in GP, and different authors have proposed to modify
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genetic operators, fitness evaluation or selection schemes (Alfaro-Cid et al., 2008; Liu et al., 2007;

de Jong et al., 2001) to solve the bloating problem while maintaining diversity in the population.

Diversity measures may be classified into three main categories: (a) behavioural or phenotypic

diversity, that considers differences in solution performance (fitness value) (Kalkreuth et al., 2015;

Hildebrandt & Branke, 2015; Li et al., 2016), (b) syntactic or genotypic diversity, which computes

structural differences between individuals (shape and content of solutions in the population) (Qu

et al., 2015; Ferdjoukh et al., 2017) and (c) a combination of both previous approaches (Affenzeller

et al., 2017; Kelly et al., 2019).

In this piece of research, we focus on improving diversity in formal grammar evolution by

studying a combination of both phenotypic and genotypic approaches. As the solutions in GP

are encoded using tree data structures traditionally, genotypic diversity measures focus on this

type of representation (Ekárt & Németh, 2000, 2002; Burks & Punch, 2017; Pawlik & Augsten,

2016; Kulunchakov & Strijov, 2017; Burlacu et al., 2019). We may classify the cited methods as

distance measures or metrics: whereas a metric holds the properties of non-negativity, identity,

symmetry, and triangle inequality, the remaining distance measures fail to accomplish one or more

of these properties (usually the triangle inequality), but they can provide a value to estimate how

distant two encoded solutions are, and have provided good results in the problems they have been

used. Examples of (non-metric) distance measures are described in Burks et al. (Burks & Punch,

2017), which implement a density measure that considers a portion of each tree and determine

how genetic material is distributed in the population; or the work (Burlacu et al., 2019), that

uses isomorphic properties to measure structural diversity between two trees as the number of

common nodes. Regarding metric proposals, Mateusz et al. (Pawlik & Augsten, 2016) developed

a metric that determines the differences between two individuals as the sequence of minimum cost

of operations needed to transform one tree into another. Besides, Ekárt and Neméth described

in (Ekárt & Németh, 2000, 2002) a metric that computes the structural difference of two encoded

programs, distinguishing terminal and operator nodes.

Regarding phenotypic or behavioural diversity in genetic programming, the literature offers a

wide variety of works that obtain semantic information from individuals during the evolutionary

process and it is used it to improve the search space exploration in GP. These works range from

classical methods such as the traditional Ramped Half and Half method to prevent the insertion
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of duplication trees into the population (Koza, 1992) to more recent works such as (Castelli et al.,

2015) that proposed the Geometric Semantic Genetic Programming (GGSP) (Moraglio et al., 2012)

algorithm that designs an operator which measures semantic differences between two individuals to

guide the search space exploration, or Nguyen et al. (Uy et al., 2010) whose developed a Semantic

Similarity Crossover (SSC) which add semantic knowledge to control the changes of the semantic of

individuals by comparing similarities of random subtrees. In summary, the main works proposed to

directly or indirectly control diversity in Genetic Programming go from the structures used to rep-

resent the population to genetic operators and measures to control the population growth (Ursem,

2002).

In this piece of research, we focus on improving diversity in GP in two ways: (i) studying

alternative structures to classical trees and (ii) developing measures to control diversity during the

genetic procedure for these alternative structures. In previous works, we studied an alternative

representation scheme to tree encoding, using Straight Line Programs (SLP) (Rueda et al., 2019),

and we concluded that using this representation may help to overcome limitations of classic tree

encoding and to overcome local optima solutions. In this article, our main objective is to develop

a metric based on edit distance that allows us to quantify how different two SLPs are, and use

this metric to measure diversity in a population of SLPs to find a balance between diversity and

convergence that helps to improve the exploration of the search space. More specifically, we combine

the developed metric distance with the CHC algorithm (Eshelman, 1991), to achieve a balance in

the exploration and exploitation of the search space. Thus, the main novelty presented in this

manuscript is the design of the similarity measure for Straight Line Programs, the proof that this

measure is a metric, and its application in combination with a well tested evolutionary scheme

such as CHC to prove its practical application. We remark that the classic edit distance is applied

over sequences, and the similarity measure proposed in this work is adapted to grammars as formal

languages. As no previous works have been proposed to quantify the distance between Straight

Line Programs, we test our approach against tree-based encodings as baseline methods.

The remaining of the manuscript is structured as follows: Section 2 describes the background

of our research introducing the fundamentals of Symbolic Regression, the representation problem

and an outline of the classic CHC algorithm. Section 3 works out the proposed similarity measure.

Section 4 applies the proposed metric in combination with the CHC algorithm to control diversity
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and convergence in genetic programming. Section 5 shows the experimental results in synthetic

data and real energy consumption data and discusses the comparative study of the proposal with

state-of-the-art algorithms. Finally, Section 6 summarizes the conclusions obtained and describes

future works.

2. Background

2.1. Symbolic regression and the representation problem

Regression analysis (Harrell, 2015) is a statistical method that allows to find the relationships

between dependent and independent variables. More specifically, regression analysis is composed

by a model hypothesis f(x̄, w̄) + ε, a set of input data x̄ = {x1, x2, ..., xn}, a set of output data

ȳ = {y1, y2, ..., ym}, a set of constant parameters w̄ = {w1, w2, ..., wk}, and an error ε that represents

the part of the data that the model f(x̄, w̄) is unable to model. The main goal of regression analysis

is to approximate the best values for the parameters w̄ such that ȳ ≈ f(x̄, w̄). With the aim of

estimating the parameters, an error function is minimized such as e(f, ȳ) = ||ȳ − f(x̄, w̄)|| as the

sum of squared errors between the estimated functional model f(x̄, w̄) and the model hypothesis

response ȳ.

The main limitation of regression analysis arises when the model hypothesis f is unknown and

it is difficult to formulate manually. To solve this limitation, symbolic regression (SR) (Billard &

Diday, 2002) combines a set of primitive operators (such as +,−, ∗, /), independent variables x̄ and

parameters w̄ to build an algebraic expression f̃ as an approximation to the optimal model f . Since

symbolic regression is a NP-hard problem (Lu et al., 2016), Genetic Programming (Koza, 1992) or

Grammatical Evolution (O’Neill & Ryan, 2001) algorithms have been traditionally used to explore

the search space and to find the best approximation f̃ that minimizes an error measure with re-

spect to the desired output data. GP is an evolutionary method based on biological evolution and

simulates the evolutionary process. More specifically, GP builds a population of individuals which

stochastically transforms into a new population in order to simulate the evolutionary cycle. During

that cycle, it is expected that the best individual survives and will contribute to a better popu-

lation. Similarly, different mechanisms were studied to simulate the evolutionary cycle (crossover,

mutation, etc) (Angeline, 1994) as well as the individual representation. Indeed, with regards to

SR problems, tree structures have been highly used to encode algebraic expressions (McKay et al.,
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1995) achieving promising results. As the representation problem determines the size of the search

space, recent studies proved that alternative representations may reduce the search space, such as:

linear genetic programming (Brameier & Banzhaf, 2001), that encodes programs as a sequence of

instructions that operate over a memory equipped with a set of registers, instruction matrix (Li

et al., 2008) that evolves tree nodes and subtrees separately, or linear strings of integers (Miller &

Thomson, 2000) that encode a graph as a list of node connections and functions. Also, this is the

case of Straight Line Programs (Alonso et al., 2008; Rueda et al., 2019).

2.2. Straight Line Programs

A Straight Line Program (SLP) encodes a Straight Line Grammar (SLG) in Chomsky Normal

Form (Claude & Navarro, 2008). A SLG is a context-free non-recursive grammar (V, T, P, S) able

to generate a language with a single word, where V is the set of variables/non-terminal symbols of

the grammar, T is the set of terminal symbols, P is the set of production rules and S is the starting

non-terminal symbol of the grammar. Then, a SLP encodes a set of SLG production rules that can

be used in SR to generate a single algebraic expression. In the SR problem addressed in this work,

the set of terminal symbols is T ≡ Ou ∪Ob ∪X ∪W , where Ou is a set of unary operators, Ob is a

set of binary operators, X is a set of terminal input data variables {x1, x2, ..., xn}, and W is a set

of constant parameters {w1, w2, ..., wk}. A SLP contains N production rules U1, U2, ..., UN ∈ V ,

where UN is the starting symbol of the grammar and each production rule is of the form Ui → ouri1

or Ui → obri1ri2, where ou ∈ Ou, ob ∈ Ob are operators, and ri1 , ri2 ∈ X ∪W ∪ {Ui−1, Ui−2, ..., U1}

are the first and second operands, which can be a data terminal symbol or a non-terminal symbol

that references subsequent production rules to avoid recursion.

In SR, a subset of elements in Ob can have the commutative property. In these cases, we decide

to establish an order for the construction of each production rule to reduce the search space.

If a rule uses a commutative operator, then ri1 ≺ ri2 must be fulfilled, where the partial order

relationship ≺ is defined as: xi ≺ xj ⇐⇒ i < j, wi ≺ wj ⇐⇒ i < j, Ui ≺ Uj ⇐⇒ i < j,

xi ≺ wj∀i, j, and wi ≺ Uj∀i, j. Equation 1 shows a sample SLP (A) and its representation (A’)

considering the partial order relationship constraint. As it can be seen, such constraint reduces the

search space without shrinking the space of possible solutions to a SR problem. While the SLP A

generates the algebraic expression A = (w3
w2
−w1) ∗x1 + w3

w2
−w1, the SLP A’ derives the equivalent
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expression A′ = w3
w2
− w1 + x1 ∗ (w3

w2
− w1).

A =



U0 → / w3 w2

U1 → − U0 w1

U2 → ∗ U1 x1

U3 → + U2 U1

⇐⇒ A′ =



U0 → / w3 w2

U1 → − U0 w1

U2 → ∗ x1 U1

U3 → + U1 U2

(1)

2.3. CHC Algorithm

The CHC algorithm (Cross generational elitist selection, Heterogeneous recombination, and

Cataclysmic mutation) is an evolutionary algorithm proposed by Eshelman (Eshelman, 1991) for

binary encoding, and it was designed to hold a balance between diversity and convergence in

the population. This algorithm was adapted for real-coded chromosomes in (Eshelman & Schaffer,

1993) and (Cordón et al., 2006). Unlike a classical genetic algorithm, CHC does not use a mutation

operator, and introduces four components to achieve the aforementioned balance:

� An elitist selection. The N best individuals of the current and generated offspring populations

are selected to compose the new population in the next generation, where N stands for the

population size.

� The HUX (original binary encoding proposal (Eshelman, 1991)) or BLX-α (extended real-

coded CHC (Eshelman & Schaffer, 1993)) crossover operators, to avoid premature conver-

gence caused by recombination.

� An incest prevention mechanism to avoid crossover of similar solutions. If a distance measure

over two parent solutions is over a threshold τ , then the parent crossover is allowed. In the

original binary CHC proposal, the Hamming distance was used to compare parent chromo-

somes, and the value τ was calculated initially as L/4 (L is the size of the chromosomes). On

the other hand, the real-coded CHC used the Euclidean distance to measure the similarity

between two parents, and τ was initialized to 0.1 ∗ dmax (dmax is the maximum distance

between two elements in the population).

� A restart procedure to reinitialize the population if it has converged. If two populations

in consecutive algorithm iterations contain the same solutions, then τ is decreased. When
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τ ≤ 0, the population is reinitialized with random solutions and a copy of the best solution

found during the evolutionary process.

In this article, we use a variant of the real-coded CHC algorithm in Section 4 adapted to the

SLP encoding scheme. We use the metric proposed in Section 3 as a diversity measure between

SLPs.

3. Similarity measure for Straight Line Programs

Our goal is to define a similarity measure that provides the structural difference between SLPs

and can be computed efficiently. We are inspired by the edit distance metric (Ristad & Yianilos,

1998). Hence, the proposed similarity measure provides the minimum number of operations re-

quired to transform one SLP into another. As in edit distance, the available operations to compute

such transformation are insertions, deletions and substitutions. Then, the more similar two SLPs

are, the lower the proposed distance value should be and in contrast, the more dissimilar two SLPs

are, the greater value the measure should provide.

Given two SLPs A and B coming from two SLGs GA = (V, T, PA, As) and GB = (V, T, PB, Bs),

we define the similarity measure between both SLPs as d(A,B) = d(As, Bs), i.e. the similarity

measure between the starting symbols of each SLP. The definition of d(As, Bs) is provided as a

recursive formula with general and base cases.

Base case. Let t1, t2 ∈ T ∪ {ε} be two terminal symbols of the grammar (operators, data

variables, constant parameters, or the empty word). Then we define d(t1, t2) as shown in Equation

2.

d(t1, t2) =


1, t1 6= t2

0, t1 = t2

(2)

In the base case, d(t1, t2) = 1 means a substitution of t1 with t2, d(t1, ε) means deletion of t1,

and d(ε, t2) means insertion of t2.

General case. For the general case, we use the following notation: oAi , o
B
j ∈ Ou ∪ Ob are the

operators used in the i-th and j-th rules of SLPs A and B, respectively; rAi1, r
A
i2, r

B
j1, r

B
j2 ∈ V ∪T ∪{ε}

are the first and second operands of the i-th and j-th rules of SLPs A and B. We focus on rules

of the form UAi → oAi r
A
i1r

A
i2 and UBj → oBj r

B
j1r

B
j2 without loss of generality. In case oAi (respectively
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oBj ) is an unary operator, then it is assumed that rAi2 = ε (respectively rBj2 = ε). We also distinguish

a set C ∈ Ob as the subset of binary operators that meet the commutative property. With this in

mind, Equation 3 describes how to compute the distance d(UAi , U
B
j ) between the aforementioned

rules.

d(UAi , U
B
j ) =


d(oAi , o

B
j ) + d(rAi1, r

B
j1) + d(rAi2, r

B
j2) if oAi , o

B
j ∈ {Ou ∪Ob}\C

d(oAi , o
B
j ) +min{d(rAi1, r

B
j1) + d(rAi2, r

B
j2),

d(rAi1, r
B
j2) + d(rAi2, r

B
j1)}if oAi ∈ C ∨ oBj ∈ C

(3)

In Equation 3, we may observe that the similarity measure between rules UAi and UBj computes

the minimum number of insertion, deletion and substitution operations to transform UAi into UBj ,

considering special cases when the commutative property allows to exchange the order of the rule

operands.

A final consideration must be taken into account when computing the distance between operands,

as for instance d(rAi1, r
B
j1). We have defined the similarity measure for terminal symbols in Equa-

tion 2 and for non-terminal symbols in Equation 3. As two arbitrary rule operands (named as

u1, u2 ∈ V ∪ T ) being compared can be terminal or non terminal indistinguishably, we define

d(u1, u2) for these cases as Equation 4 shows.

d(u1, u2) =



d(o1, ε) + d(r11, u2) + d(r12, ε) if u1 ∈ V, u2 ∈ T, o1 ∈ {Ou ∪Ob}\C

d(o1, ε) +min{d(r11, u2) + d(r12, ε),

d(r11, ε) + d(r12, u2)} if u1 ∈ V, u2 ∈ T, o1 ∈ C

d(ε, o2) + d(u1, r21) + d(ε, r22) if u1 ∈ T, u2 ∈ V, o2 ∈ {Ou ∪Ob}\C

d(ε, o2) +min{d(u1, r21) + d(ε, r22),

d(ε, r21) + d(u1, r22)} if u1 ∈ T, u2 ∈ V, o2 ∈ C

(4)

The first two cases in Equation 4 assume that u1 → o1r11r12 is a non-terminal symbol and

u2 ∈ T , and distinguishes if the rule operator o1 meets the commutative property or not and, in

contrast, the latter two cases are met when u2 → o2r21r22 and u1 ∈ T , respectively.

An efficient algorithm with complexity O(N ∗M) can be designed using Dynamic Program-

ming (Ristad & Yianilos, 1998) to compute the distance between A and B, where N and M stand
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for the number of rules of A and B, respectively. As an example, we show the calculation of the

proposed measure using two sample SLPs A and B, with initial symbols A2 and B1, respectively

(see Equation 5).

A =


A0 → + x1 x1

A1 → / A0 A0

A2 → ∗ A1 w1

B =


B0 → / w1 x1

B1 → − B0 w1

(5)

Table 1 shows the arrangement of rules Ai of SLP A and Bj of SLP B in columns and rows,

respectively. Each cell contains the value of the distance d(Ai, Bj). The table must be filled from

top to the bottom and from left to right. As an example, the target value d(A2, B1) is computed

as follows:

d(A2, B1) = d(∗,−) + min{d(A1, B0) + d(w1, w1), d(A1, w1) + d(w1, B0)} = 6 (6)

ε x1 w1 A0 A1 A2

ε 0 1 1 3 7 9

x1 1 0 1 2 6 8

w1 1 1 0 3 7 8

B0 3 3 2 2 5 7

B1 5 5 4 5 6 6

Table 1: Example of calculation of d(A,B)

The proposed measure d(A,B) is a metric. To prove such statement, we follow the same

reasoning that was used in (Waterman et al., 1976) for the edit distance, although specified for

SLPs. For this reason, we must first provide some prior definitions.

Definition I (τ space). Let Q : V ∪ T ∪ {ε} → V ∪ T ∪ {ε} be a transformation of a

grammar symbol into another, plus the empty word. We define τ = {Q}, i.e. the set of all possible

transformations of symbols, including identity transformation I. As V ∪ T ∪ {ε} is finite, then τ

is finite and every transformation in τ can be numbered as τ = {Q1, Q2, Q3, ...}, and contains all

possible insertions, substitutions and deletions over the grammar symbols. Each transformation

Qi has an associated weight w(Qi). In our case, all weights w(Qi) = 1 except for the identity,
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w(I) = 0, according to equation 2.

Definition II (Transformation sequence). Suppose a SLP A and its j-th rule Uj → ojrj1rj2

and a transformation Q ∈ τ . We define Qj,0(A) = Uj → Q(oj)rj1rj2, Q
j,1 = Uj → ojQ(rj1)rj2,

Qj,2 = Uj → ojrj1Q(rj2), i.e. Qj,i is the use of transformation Q at the i-th symbol of the

consequent of the j-th rule.

We define a transformation sequence over a SLP A as Q̄(A) = (Qjl,ilkl
◦Qjl−1,il−1

kl−1
◦...◦Qj1,i1k1

)(A) =

Qjl,ilkl
(Q

jl−1,il−1

kl−1
(...(Qj1,i1k1

(A))...)). Each transformation sequence Q̄ has also a weight, that is calcu-

lated as w(Q̄) =
∑l

p=1w(Q
jp,ip
kp

).

Finally, we define {A→ B}τ = {Q̄(A) : Q̄(A) = B}, i.e. the set of sequences of transformations

in τ that transform SLP A into SLP B.

Definition III (Equivalence relation =). Let SLP be the set of all possible SLPs, and

A,B ∈ SLP two SLPs with starting symbols UAN , U
B
M respectively, and rules A = {UAi → oAi r

A
i1r

A
i2}

and B = {UBj → oBj r
B
j1r

B
j2}, where oAi , o

B
j ∈ Ou ∪ Ob; rAi1, rAi2, rBj1, rBj2 ∈ V ∪ T ∪ {ε}. We write

the subset of binary operators with commutative property as C ⊆ Ob. We define the equivalence

relation = (A,B), which we write as A = B, as follows:

A = B ⇔ UAN and UBM generates the same word or ∃i, j : 1 ≤ i ≤ N, 1 ≤ j ≤ M ∧ oAi , oBj ∈ C

such as the change of operands in the rules {UAi → oAi r
A
i2r

A
i1} and/or {UBj → oBj r

B
j2r

B
j1} make UAN

and UBM generate the same word. We remark that the existence of rules i and/or j does not have

to be unique.

It is easy to verify that A = A∀A ∈ SLP (reflexivity), A = B ⇔ B = A∀A,B ∈ SLP

(symmetry) and, if A = B and B = C then A = C,A,B,C ∈ SLP (transitivity), and therefore =

is an equivalence relation.

The defined equivalence relation states that two SLPs that provide two algebraic expressions

for a SR problem are considered equivalent if both expressions are the same even if their syntax

is different due to the effect of commutative operators. Also, = partitions the space into a set of

equivalence classes SLP/ =, where all SLPs that belong to the same class are equivalent under =.

Theorem: Let SLP be the set of all possible SLPs, and A,B ∈ SLP . The proposed similarity

measure d(A,B) is a metric over the quotient space SLP/ =.

Proof: If A,B,C are three different SLPs, and d(A,B) is a metric, then the following
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conditions must be met (Giles et al., 1987):

d(A,B) ≥ 0, (non negativity)

d(A,B) = 0 ⇐⇒ A = B, (identity)

d(A,B) = d(B,A) (symmetry),

d(A,C) ≤ d(A,B) + d(B,C) (triangle inequality)

Proof of conditions of non negativity and identity are trivial from Equations 2 and 3, since d(A,B)

is not allowed to have negative values, and two SLPs have d(A,B) = 0 only if A and B belong

to the same equivalence class. Condition of symmetry is also derived directly from the symmetric

property of the equivalence relation = in Definition III.

Regarding the triangle inequality condition, let us rewrite that the distance between the SLPs

A and B is computed as the weight of the transformation sequence with minimum number of

transformations in τ as d(A,B) = min{A→B}τ
∑l1

p=1w(Q
jpip
kp

).

Then, d(B,A) = min{B→A}τ
∑l2

p=1w(Q
jpip
kp

). As every transformation Q in set τ has an

inverse Q−1, (a deletion for an insertion and viceversa, and an inverse transformation for a

substitution), if d(A,B) is minimum then d(A,B) = d(B,A) = min{A→B}τ
∑l1

p=1w(Q
jpip
kp

) =

min{B→A}τ
∑l1

p=1w((Q
jpip
kp

)−1). Also, the distance from A and B to a third SLP C can be written

as d(A,C) = min{A→C}τ
∑l3

p=1w(Q
jpip
kp

) and d(B,C) = min{B→C}τ
∑l4

p=1w(Q
jpip
kp

).

As every transformation weight is unitary, except for the identity for which w(I) = 0, then:

min
{A→B}τ

l1∑
p=1

w(Q
jpip
kp

) + min
{B→C}τ

l4∑
p=1

w(Q
jpip
kp

) ≥ min
{A→C}τ

l3∑
p=1

w(Q
jpip
kp

) (7)

Meaning that the number of steps with unitary weight to transform A into B and then B into

C must be greater or equals than the number of steps with unitary weight to transform A into C

directly, and then

d(A,B) + d(B,C) ≥ d(A,C)

The opposite condition cannot hold, since all weights are unitary and negative weights are not

allowed in the defined distance, so that

min{A→C}τ
∑l3

p=1w(Q
jpip
kp

) < d(A,B) + d(B,C) is not possible according to Equations 2 and 3.

This concludes with the proof.
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4. Control of diversity of Straight Line Programs evolution with CHC

In this section we describe an application of the proposed metric to control diversity in Genetic

Programming using SLPs as representation for symbolic regression problems. More specifically,

we use the proposed distance as a diversity measure in an adapted CHC evolutionary algorithm as

incest prevention mechanism. We selected the CHC algorithm since it is a classic approach that

combines a balance in diversity and convergence and it has been widely tested in the literature.

We name our approach as SLP-CHC and it is based on the real-coded CHC adaptation (Eshelman

& Schaffer, 1993). As we evolve SLPs instead of real-coded chromosomes, we use the crossover

proposed in (Alonso et al., 2008).

The adaptation of classic CHC implementation to our proposal is shown in Algorithm 1. The

procedure starts by initializing a population P (t) of N random SLPs at iteration t = 0, then each

individual is evaluated by using the Mean Square Error (MSE) as fitness measure between the real

output data y and the computed ỹ (see Equation 9). The procedure averageDistance calculates

the distance threshold Th as the average distance between all individuals of the population, as it

is shown in Equation 8, where d is the proposed SLP distance, N is the population size and ci, cj

are the i-th and j-th SLPs in the population. After initialization, the main algorithm repeats until

a stopping criterion is fulfilled. In this work, the stopping criterion used is to reach a number of

solutions evaluated. Each algorithm iteration encompasses the following steps: elitist selection, SLP

recombination, solution evaluation and the divergence procedure. Firstly, we build our population

of parents by copying all individuals of the current population in random order. After that, the

SLP recombination operator (Alonso et al., 2008; Rueda et al., 2019) is applied to generate two

new offspring if the SLP distance between the candidate parents exceeds the threshold Th. Once

the recombination operator is used, each offspring is evaluated according to the fitness measure,

and the new population for the next iteration P (t + 1) is built with the N best SLPs between

parents and offspring.

Before next iteration starts, it is checked if P (t + 1) = P (t). If so, then the threshold Th is

decreased by rate. The value of rate is defined as rate = dmax ∗ T (where dmax is the maximum

distance between two individuals of the population during initialization, and T is a value in the

range (0, 1)), and controls the convergence speed according to the diversity of the whole population.

Afterwards, if the difference threshold Th is less than 0, the diverge procedure is triggered: The
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new population is composed by (N − 1) random SLPs and the best SLP found in the previous

generation. Then the difference threshold Th is recalculated by using Equation 8.

Th =
1

N(N − 1)

∑
1≤i<N

∑
i<j≤N

d(ci, cj) (8)

MSE =
1

N

n∑
i=1

(ỹ − y)2 (9)

5. Experimentation

The main goal of this experimentation is to test if the proposed metric together with the

CHC algorithm can improve the exploration and exploitation of the Symbolic Regression solution

space in Genetic Programming. As no previous works have been devised to measure similarities

between SLPs, we compare the approach with classic metrics for tree representation (Ekárt &

Németh, 2000, 2002) and Genetic Programming evolution of SLPs with no diversity control. In

particular, we want to compare our proposal with methods used in symbolic regression problems

that were specifically designed to increase the diversity of the population using genotypic diversity

measures, efficiently computed. More specifically, we used as baseline methods the proposals of

Ekart et al. (Ekárt & Németh, 2000, 2002). These approaches compute syntactical differences of

the population, represented with tree structures, using a metric based on the edit distance and

they demonstrated to be able to increase the diversity, achieving equivalent solutions than classical

Genetic Programming algorithms. Due to the approaches of Ekart et al. were able to achieve

as robust solution as classical GP algorithms as well as to increase diversity, we consider these

approaches as baseline methods of GP.

In order to clarify the comparison carried out in this section, we name each approach as follows:

SLP-GA for Genetic Programming using SLP representation (Rueda et al., 2019); SDM for

Genetic Programming approach using fitness sharing and tree representation (Ekárt & Németh,

2000); DDM for Genetic Programming that also used fitness sharing and adaptive maintenance

of diversity (Ekárt & Németh, 2002); and SLP-CHC to refer the method proposed in Section 4.

Finally, we performed two experiments to test if our proposal has potential over the mentioned

baseline methods: the first one is carried out over a set of synthetic data in subsection 5.1 with the
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Algorithm 1 SLP-CHC algorithm

Require: N , the number of individuals of the population

Require: T ∈ (0, 1)

Require: x̄ = {(x1, x2, ..., xn)} input data for SLP evaluation

Require: w̄ = (w1, w2, ..., wk) a set of constant parameters

Require: ȳ = {y1} output data for SLP evaluation

Ensure: SLP(1...N) a sequence of rules that encode the algebraic expression of the best individual

{Initialization of population}

Initialize P(t)

Evaluate(P(t), w̄, x̄, ȳ)

Set t = 1

Set d=averageDistance

{SLP-CHC procedure}

while No stopping criterion is fulfilled do

t = t+ 1

select C(t) from P(t-1)

C’(t)= SLP recombination(C(t))

Evaluate(C’(t), w̄, x̄, ȳ)

P(t) = elitist selection(P(t-1), C’(t))

if P (t) = P (t− 1) then

Th = Th− rate

if Th < 0 then

P(t)=diverge

Evaluate(P(t), w̄, x̄, ȳ)

Th=averageDistance

end if

end if

end while

return Best solution of P(t)

15



aim of validating each approach in a controlled environment. After that, in the second experiment

(section 5.2), we deal with a real world problem about energy consumption modelling.

5.1. Experimentation with Synthetic Data

5.1.1. Data acquisition and experimental settings

We use 19 benchmark algebraic expressions (see Equations 10 to 29) that are widely used in

the literature (Nicolau et al., 2015). For each algebraic expression, we generated 500 random data

in the domain [0.0,1.0] for each input variable. Finally, each dataset was randomly divided into

train (70% of data) and test (remaining 30%). We used the training data to evolve each algorithm

to find the best solution and the test data were used to validate each approach. Therefore, results

in Subsection 5.1.2 focus on the test set.

The available operators for the symbolic regression datasets are

{+,−, ∗, /, sin, cos, log,min,max} in all cases, and the set of constant parameters was set to w̄ =

(1, 2, 3). We performed a preliminary trial-and-error procedure to find the optimal parameters for

each algorithm and the best results were provided with the following parameters: we allowed a set

of 31 rules for SLP (SLP-GA and SLP-CHC) and 31 nodes for trees (SDM and DDM). The

population size was set to 100 individuals and the stopping criterion was having 20000 solutions

evaluated. Then, for SLP-GA we set the crossover and mutation probabilities as 90% and 10%

respectively; for both SDM and DDM we tuned the niche size (σ = 0.5), K = 1 and the crossover

and mutation probabilities to to 70% and 30% respectively. With regards to the SLP-CHC, the

value T used to compute the decrease rate was tuned to 0.3. The fitness measure used was the

mean square error (MSE), to be minimized. Finally, we performed 30 executions for each algorithm

and problem with different random seeds to carry out a statistical test that helped us to determine

if there exist significant differences between the results obtained.

f1(x1, x2) =
e−(x1−1)

2

1.2 + (x2 − 2.5)2
(10)

f2(x1, x2) = e−x1x31 cos(x1) sin(x1) ∗ (cos(x1) sin2(x1)− 1)(x2 − 5) (11)

f3(x1, x2, x3) = 30
(x1 − 1)(x3 − 1)

x22(x1 − 10)
(12)

f4(x1, x2) = 6 sin(x1) cos(x2) (13)
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f5(x1, x2) = (x1 − 1)(x2 − 3) + 2 sin((x1 − 4)(x2 − 4)) (14)

f6(x1, x2) =
(x1 − 3)4 + (x2 − 3)3 − (x2 − 3)

(x2 − 2)4 + 10
(15)

f7(x1, x2) =
1

1 + x−41

+
1

1 + x−42

(16)

f8(x1, x2) = x41 − x31 +
x22
2
− x2 (17)

f9(x1, x2) =
8

2 + x21 + x22
(18)

f10(x1, x2) =
x31
5

+
x32
2
− x2 − x1 (19)

f11(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = x1x2 (20)

+x3x4 + x5x6 + x1x7x9 + x3x6x10 (21)

f12(x1, x2, x3, x4, x5) = −5.41 + 4.9
x4 − x1 + x2

x5

3x4
(22)

f13(x1, x2, x3, x4, x5, x6) =
(x5x6)
x1
x2

x3
x4

(23)

f14(x1, x2, x3, x4, x5) = 0.81 + 24.3
2x2 + 3x23
4x34 + 5x45

(24)

f15(x1, x2, x3, x4, x5) = 32− 3
tan(x1)

tan(x2)

tan(x3)

tan(x4)
(25)

f16(x1, x2, x3, x4, x5) = 22− 4.2(cos(x1)− tan(x2)) ∗ (
tanh(x3)

sin(x4)
) (26)

f17(x1, x2, x3, x4, x5) = x1x2x3x4x5 (27)

f18(x1, x2, x3, x4, x5) = 12− 6
tan(x1)

ex2
(x3 − tan(x4)) (28)

f19(x1, x2, x3, x4, x5) = 2− 2.1 cos(9.8x1) sin(1.3x5) (29)

5.1.2. Results and discussion

The results obtained in the test datasets for each approach are shown in Table 2. Each row

is associated with the results of its corresponding benchmark dataset (Column 1). Then, for

each algorithm we show the median MSE and the average execution time measured in seconds.

We remark that we use the median value instead of the mean since the results do not follow a

normal distribution and, in these cases, the mean cannot be considered an appropriate statistic

summarization value. We have also included boxplots with the MSE distributions in the test sets
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to give support to our analysis in Figure 1, and they include information about the best and worst

solutions.

SDM DDM SLP-GA SLP-CHC

Test Time Test Time Test Time Test Time

f1 1.55 (3) 2.9 1.53 (3) 2.5 0.12 (2) 2.43 4.14× 10−2 (1) 4.2

f2 0.68 (3) 2.73 0.59 (3) 2.26 0.16 (2) 2.93 5.33× 10−2 (1) 5.46

f3 7.93× 106 (2) 3.03 7.94× 106 (2) 2.4 4.35× 106 (1) 2.36 4.59× 106 (1) 4.16

f4 1.47 (3) 2.9 1.46 (3) 2.6 0.21 (2) 2.83 6.27× 10−2 (1) 5.3

f5 8.01 (3) 2.96 7.42 (3) 2.93 1.9 (2) 2.7 0.89 (1) 4.6

f6 2.25 (3) 3 2.25 (3) 3 0.18 (2) 2.5 8.22× 10−2 (1) 4.9

f7 1.44× 10−2 (3) 3 1.51× 10−2 (3) 2.9 1.39× 10−2 (2) 2.73 1.33× 10−2 (1) 4.93

f8 2.49× 10−2 (3) 2.96 2.49× 10−2 (3) 2.93 6.92× 10−3 (2) 4 1.8× 10−3 (1) 5.33

f9 0.24 (3) 2.33 0.25 (3) 2.36 8.21× 10−2 (2) 2.93 1.99× 10−2 (1) 5.6

f10 3.45× 10−2 (3) 2.76 3.45× 10−2 (3) 2.73 1.47× 10−2 (2) 3.2 3.99× 10−2 (1) 4.96

f11 0.23 (3) 3 0.22 (3) 2.83 0.15 (2) 3 0.14 (1) 9.33

f12 3.99× 104 (2) 2.96 3.99× 104 (2) 2.96 1.113× 104 (1) 2.5 2.15× 104 (1) 5.96

f13 4.91× 102 (2) 3.03 4.89× 102 (2) 3 1.25× 102 (1) 2.73 1.19× 102 (1) 6.33

f14 6.99× 107 (3) 2.96 6.99× 107 (3) 2.96 1.65× 107 (1) 2.63 2.6× 107 (2) 5.1

f15 3.77× 104 (3) 2.76 3.8× 104 (3) 2.86 2.28× 104 (2) 2.43 8.53× 103 (1) 5.43

f16 8.81× 102 (1) 3 8.82× 102 (1) 2.96 9.42× 102 (1) 2.53 8.84× 102 (1) 5.16

f17 4.76× 10−3 (2) 2.2 4.76× 10−3 (2) 2.73 2.57× 10−3 (1) 2.63 1.79× 10−3 (1) 5.6

f18 0.6 (3) 2.9 0.55 (3) 2.86 1.42 (2) 2.53 1.26 (1) 4.63

f19 0.86 (3) 2.96 0.86 (3) 2.7 0.81 (2) 2.9 0.73 (1) 4.66

Table 2: Results of SDM, DDM, SLP-GA and SLP-CHC in benchmark algebraic expressions

The Shapiro-Wilk test has been applied to check if the results obtained for each approach follow

normality conditions. As the fitness distribution results did not follow a normal distribution, we

performed a non-parametric Kruskal-Wallis test (KW) with a 95% of confidence level to validate

if there are significant differences between each approach statistically. The results of the KW test

are presented together with the median fitness result of each approach in Columns 2, 4, 6 and

8 in Table 2, in brackets. More specifically, we performed a ranking between each approach and

benchmark algebraic expression from 1 (the best approach) to 4 (worst algorithm results). If there

are no significant differences between the two algorithms in a dataset, they are ranked with the
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(a) Benchmark algebraic expression f1 (b) Benchmark algebraic expression f2 (c) Benchmark algebraic expression f3

(d) Benchmark algebraic expression f4 (e) Benchmark algebraic expression f5 (f) Benchmark algebraic expression f6

(g) Benchmark algebraic expression f7 (h) Benchmark algebraic expression f8 (i) Benchmark algebraic expression f9

(j) Benchmark algebraic expression

f10

(k) Benchmark algebraic expression

f11

(l) Benchmark algebraic expression

f12

(m) Benchmark algebraic expression

f13

(n) Benchmark algebraic expression

f14

(o) Benchmark algebraic expression

f15

(p) Benchmark algebraic expression

f16

(q) Benchmark algebraic expression

f17

(r) Benchmark algebraic expression

f18

(s) Benchmark algebraic expression

f19

Figure 1: Boxplots of accuracy for each benchmark algebraic and approach

19



Figure 2: Diversity of SLP-GA (blue line) and SLP-CHC (red line) calculated as the average distance measure of

the population

same number.

In a first analysis of the results, we start with a comparison of the selected baseline methods

(SDM and DDM). Results of the applied statistical test suggest that there are no differences

regarding fitness in both approaches. This is consistent with the work of Ékart and Németh (Ekárt

& Németh, 2002), where they argued that diversity is increased using their method, but they did

not find improvement in the fitness of solutions.

In a previous work (Rueda et al., 2019) we discussed how the SLP representation may overcome

traditional limitations of tree representation. In the experimentation performed, this is validated

and SLP-GA improves SDM and DDM in 18 of 19 problems studied, according to Table 2 and

Figure 1. The remaining of the analysis focuses on the comparison of SLP-CHC and SLP-GA,

consequently.

We continue our analysis by comparing the results of SLP-GA and SLP-CHC with the aim

of verifying our initial hypothesis that the proposed metric together with the CHC algorithm helps

to improve the control of diversity and convergence and also overcomes local optima. SLP-CHC

has provided better results than SLP-GA in 13 cases, SLP-CHC and SLP-GA were equivalent

in 5 cases, and SLP-GA was the best algorithm in 1 case. This confirms that the proposed metric

can be used as a diversity measure in Genetic Programming to find a balance between exploration

and exploitation.

Regarding the best solutions found by SLP-GA and SLP-CHC, Figure 1 shows that SLP-

CHC provided the lowest fitness in 14 cases and SLP-GA achieved the lowest fitness in 5 ex-

periments. With regards to the worst fitness value, SLP-GA provided the worst solution in 13
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cases, meanwhile SLP-CHC did it in 4 experiments. In the remaining 2 cases, SLP-GA and

SLP-CHC obtained the same worst solution.

Regarding the algorithm robustness, Figure 1 also shows that SLP-CHC is more robust than

SLP-GA, since the distance between the intermediate quartiles in the boxplots are lower in 14

cases for SLP-CHC, meaning that it is expected that a random execution of SLP-CHC will

provide better results than SLP-GA.

The discussion follows with a diversity study of the results provided for both SLP-GA and

SLP-CHC. We selected the executions that provided the best SLP for each approach, with the aim

of analyzing the diversity behavior during the evolutionary process. Figure 2 describes a sample

for the problems f14, f16, where the axis X stands for the generation of each approach and the axis

Y for the average diversity in log scale, calculated as described in Equation 8. Blue lines represent

the diversity measured for SLP-GA and red lines stand for the diversity of SLP-CHC.

We may see that the SLP-GA approach was able to preserve diversity during the evolutionary

cycle, since the average distance was not decreasing during all generations. However, it was unable

to explore the solution space enough to overcome local optima. Nevertheless, the SLP-CHC

approach increased diversity in the population substantially, leading to a better exploration of the

search space. In the cases when the population diversity decreased, the diverge procedure allowed

to explore unknown areas since different individuals were included in the population. These facts

suggest us that an increase of population diversity may help to reduce the premature convergence,

allowing SLP-CHC to overcome the results of SLP-GA.

We conclude with this section with an analysis of the execution time. We can see in Table

2 that SLP-CHC was computationally more expensive than the remaining baseline approaches.

This fact is a consequence of both representation schemes used to encode individuals and the

similarity measure used in each approach. Whereas the metric used in SDM and DDM does

not take into account commutative operations and only compare two trees node by node, our

proposed similarity measure used in SLP-GA and SLP-CHC takes into account the grammar

that generates an algebraic expression, as well as commutative property of operators. Thus, an

increase in the execution time is expected, since for each pair of parents it is required to calculate the

distance before crossover is applied. However, the increase in computational time observed could

be palliated with the benefits of applying diversity control using the proposed metric, depending
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on the researcher needs to avoid local optima.

5.2. Experimentation with Real Data

5.2.1. Data Acquisition and experimental settings

With the approaches validated in a controlled environment, this section describes the exper-

imentation with real data. The data used in this experimentation were provided from a set of

energy consumption time series of different buildings coming from the University of Granada from

March 2013 to October 2015, hourly measured. More specifically, the buildings are two research

centres and two faculties, which we named as B1, B2, B3 and B4 for confidentiality reasons. The

energy consumption of these buildings are shown in Figure 3, where the axis X stands for the

time and the axis Y for the energy consumption in kW/h. Before using the data, it must be

preprocessed because could be missing data due to sensor failures or light cuts. The preprocessing

step encompasses an interpolation of the missing values (around a 5% of the data) and a time

alignment to obtain the data in the same temporal range. Finally, we aggregate the energy (kW)

consumed each 24 hours of the same day to get a final dataset. Our initial hypothesis in this

experimentation is that the energy consumption of a weekday can be modelled as a combination

of the energy consumption of the remaining working days in the same week. Consequently, we

carried out a correlation analysis of the energy consumption of each weekday and building with

the aim of understanding the energy consumption behavior. To that end, Figures 4 to 7 show the

correlation plot matrices for each working day and building. In each correlation plot, the diagonal

shows the histogram, which provides us information about the energy consumption distribution

for each working day. Moreover, the text red in the remaining scatter plots gathers the correlation

coefficient R, ranging from -1 to 1, between the days of the corresponding row and column of the

plot matrices. The mentioned correlation coefficient denotes whether exists a positive or negative

correlation between two variables. Values near to 1 denotes high positive correlation (respectively

to -1 with high negative correlation), meanwhile values closer to 0 mean low correlation. In this

way, the mentioned figures verify that there is a high (R > 0.7) or medium (0.3 ≤ R ≤ 0.7) positive

correlation between the energy consumption of the working days.

In the experiments, we divided each dataset into train (70%) and test (30%) data to avoid

over-fitting. The train set was used to build each model of each approach and then it was tested

over the test set to validate the quality of the solutions found. Moreover, as well as in synthetic
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Figure 3: Energy consumption data series of buildings B1, B2, B3 and B4

Figure 4: Energy consumption correlation between working days for building B1

Figure 5: Energy consumption correlation between working days for building B2
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Figure 6: Energy consumption correlation between working days for building B3

Figure 7: Energy consumption correlation between working days for building B4

data experiments, we performed 30 executions for each approach and problem with different seed

to perform statistical tests. Although we kept the same configuration for symbolic regression

(parameters w̄ and mathematical operators), we performed a preliminary trial-and-error procedure

to find the optimal parameter for each approach, and the best results were obtained with the

following parameters: we allow a set of 31 rules for SLP and 31 nodes for trees. The population

size was set to 200 individuals and the stopping criterion was 20000 solutions evaluated. Then,

for SLP-GA we tuned the crossover and mutation probabilities to 90% and 10% respectively. For

SDM and DDM we set the crossover and mutation probabilities to 80% and 20% respectively,

and the niche size (σ) to 0.05. Regarding the SLP-CHC approach, the value used to compute the

decrease rate was set to 0.3.
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5.2.2. Results and Discussion

Table 3 shows the results obtained for each approach and problem in test data. The columns

are organized in groups of two, for each algorithm analyzed (SDM, DDM, SLP-GA and SLP-

CHC). For each approach, we focus on the measurements Test which contains the median MSE

of 30 runnings and Time that gathers the average time spent by the algorithm in the 30 runnings,

measured in milliseconds. Then, the rows are organized in groups of 5, where each group references

the working day of each building (B1 to B4). On the other hand, to provide a better analysis of the

results, we included boxplots of the MSE distribution in all experiments in Figure 8. Each figure

contains the boxplots of the MSE for the algorithms being compared, i.e. SDM, DDM, SLP-GA

and SLP-CHC, for the same building and working day. Besides, we carried out a statistical test to

empirically validate if one approach has potential over them. We first performed a normality test

(Shapiro-Wilk test) to verify if the results provided for each approach follow a normal distribution.

As the results did not follow a normal distribution, we performed a non-parametric Kruskal-Wallis

test (KW) with a 95% confidence level. The results of the KW test were presented together with

the median results of each approach in brackets (Columns 2, 4, 6 and 8) as a sorted list that comes

from 1 to 4, where algorithms marked to 1 mean that were better than the algorithms marked

with 2, 3 and 4 respectively. If two approaches were marked with the same number meant that no

significant differences were found between each approach.

Similarly to the experimentation in benchmark data and the results of the work (Ekárt &

Németh, 2002), the baseline methods (SDM and DDM) did not present significant differences

in the results over real energy consumption data in terms of accuracy. Moreover, regarding the

results of Table 3 and the boxplots of Figure 8, SLP approaches overcame the results of SDM and

DDM in 15 of 20 problems.

Therefore, we focus the analysis of this experimentation on the results of SLP-GA and SLP-

CHC. Regarding the results of the median values of SLP-GA and SLP-CHC of Table 3 and the

results of the second quartile of the boxplots in Figure 8, we may verify that SLP-CHC provided

better results in 17 of 20 problems while SLP-GA did it in the remaining 3 experiments. With

regards to the KW results, SLP-CHC proved to be significantly better in 10 of 20 experiments,

meanwhile in the remaining 10 experiments no significant differences were found. Regarding the

execution time, similar conclusion to Section 5.1 may be achieved. Although the proposed similarity
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measure together with the CHC adaptation helped to avoid local optima and performed better

results, it caused an increase of the computational time of SLP-CHC, being more computational

expensive than the remaining approaches.

SDM DDM SLP-GA SLP-CHC

Test Time Test Time Test Time Test Time

Building B1

Monday 1.11× 104 (2) 1.63× 103 1.12× 104 (2) 1.33× 103 1.02× 104 (1) 6.4× 102 1.01× 104 (1) 2.86× 103

Tuesday 1.18× 104 (3) 1.33× 103 1.17× 104 (3) 1.07× 103 1.13× 104 (2) 6.32× 102 1.1× 104 (1) 2.99× 103

Wednesday 1.18× 104 (3) 1.37× 103 1.17× 104 (3) 1.07× 103 1.13× 104 (2) 6.43× 102 1.12× 104 (1) 2.69× 103

Thursday 1.05× 104 (2) 1.43× 103 1.03× 104 (2) 1.03× 103 7.72× 103 (1) 6.51× 102 7.62× 103 (1) 2.85× 103

Friday 1.05× 104 (3) 1.2× 103 1.04× 104 (3) 1.1× 103 7.77× 103 (2) 6.59× 102 7.64× 103 (1) 2.75× 103

Building B2

Monday 7.26× 103 (2) 1.53× 103 7.23× 103 (2) 1.4× 103 5.71× 103 (1) 6.34× 102 4.63× 103 (1) 3.19× 103

Tuesday 2.33× 103 (2) 1.4× 103 2.28× 103 (2) 1.33× 103 2.21× 103 (1) 6.81× 102 2.02× 103 (1) 2.68× 103

Wednesday 3.95× 103 (3) 1.33× 103 3.94× 103 (3) 1.27× 103 3.48× 103 (2) 6.46× 102 3.28× 103 (1) 2.85× 103

Thursday 3.97× 103 (3) 1.47× 103 3.97× 103 (3) 1.2× 103 3.49× 103 (2) 7.1× 102 3.22× 103 (1) 2.63× 103

Friday 1.89× 104 (3) 1.77× 103 1.89× 104 (3) 1.33× 103 7.04× 103 (2) 6.86× 102 5.63× 103 (1) 3.03× 103

Building B3

Monday 2.98× 103 (1) 1.33× 103 2.98× 103 (1) 1.17× 103 4.2× 103 (2) 6.45× 102 4.34× 103 (2) 2.62× 103

Tuesday 1.42× 103 (1) 1.43× 103 1.42× 103 (1) 1.3× 103 1.52× 103 (2) 7.67× 102 1.7× 103 (2) 3.2× 103

Wednesday 2.56× 103 (1) 1.4× 103 2.53× 103 (1) 1.17× 103 2.91× 103 (2) 6.4× 102 2.92× 103 (2) 2.69× 103

Thursday 2.57× 103 (1) 1.23× 103 2.57× 103 (1) 1.13× 103 2.93× 103 (2) 6.47× 102 2.92× 103 (2) 2.51× 103

Friday 5.26× 104 (3) 1.47× 103 5.26× 104 (3) 1.03× 103 5.22× 104 (2) 7.05× 102 4.93× 103 (1) 2.93× 103

Building B4

Monday 3.93× 104 (3) 1.47× 103 3.94× 104 (3) 1.33× 103 3.73× 104 (2) 6.4× 102 3.68× 104 (1) 2.91× 103

Tuesday 2.68× 104 (3) 1.43× 103 2.66× 104 (3) 1.3× 103 2.49× 104 (2) 6.17× 102 2.47× 104 (1) 2.79× 103

Wednesday 2.68× 104 (3) 1.43× 103 2.66× 104 (3) 1.37× 103 2.47× 104 (2) 6.62× 102 2.36× 104 (1) 2.86× 103

Thursday 3.1× 104 (1) 1.37× 103 3.1× 104 (1) 1.3× 103 3.14× 104 (1) 6.68× 102 3.11× 104 (1) 2.52× 103

Friday 8.31× 104 (2) 1.6× 103 8.3× 104 (2) 1.43× 103 5.33× 104 (1) 7.14× 102 4.91× 104 (1) 3.01× 103

Table 3: Results of SDM, DDM, SLP-GA and SLP-CHC in real energy consumption data

On the other hand, we have also carried out an analysis of the diversity measured during the

genetic procedure of both SLP-GA and SLP-CHC approaches. Figure 9 shows the diversity

registered (measured using Equation 8) during the training procedure for both SLP-GA and

SLP-CHC in two scenarios. As can be seen, SLP-CHC helped to increase the diversity of the

population and, consequently to achieve a better exploration of the search space. The results of

Table 3 together with the diversity analysis suggest that SLP-CHC has potential over SLP-GA.
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(a) B1 Monday (b) B1 Tuesday (c) B1 Wednesday

(d) B1 Thursday (e) B1 Friday (f) B2 Monday

(g) B2 Tuesday (h) B2 Wednesday (i) B2 Thursday

(j) B2 Friday (k) B3 Monday (l) B3 Tuesday

(m) B3 Wednesday (n) B3 Thursday (o) B3 Friday

(p) B4 Monday (q) B4 Tuesday (r) B4 Wednesday

(s) B4 Thursday (t) B4 Friday

Figure 8: Boxplots of accuracy for SDM, DDM, SLP-GA and SLP-CHC for each building and working day
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Figure 9: Diversity of SLP-GA (blue line) and SLP-CHC (red line) in energy consumption data on Monday of

building B2 (left) and on Thursday of building B3 (right). The diversity was calculated as the average distance

measure of the population.

To conclude with the analysis of this experimentation, Figure 10 shows the original datasets

and the results of the modelled data for each building. These results help us to conclude that

SLP-CHC is a promising alternative for real applications of symbolic regression because although

the results of Table 3 suggest a high MSE value, the plots verified that the modelled data fits

correctly the real data.

6. Conclusions

This manuscript has addressed the problem of holding a balance in diversity and convergence

in genetic programming, and more specifically symbolic regression. The outcomes of this piece

of research encompass both theory and practice. Regarding the theoretical dimension, we have

developed a metric that can be used to calculate the structural distance between symbolic regression

expressions represented as Straight Line Programs (SLP). Such metric works similarly to the edit

distance, and it is able to provide a similarity measure between algebraic expressions encoded

as SLPs. In addition, we have shown that it is possible to include certain semantic information

in the distance computation regarding properties of algebraic operators, such as commutativity.

In our opinion, this could be a relevant milestone that can help to develop new techniques that

trascend classic distance measurement models that are purely syntax-based, and become a nexus

with semantic ones to make a more effective comparison. We presume that the field of symbolic

reduction could provide some inspiration to achieve this goal. However, as it is shown in our

experimentation, the inclusion of a simple semantic analysis such as commutativity to compare
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(a) Building B1 (b) Building B2

(c) Building B3 (d) Building B4

Figure 10: Plots of real data (blue), SDM estimated data (red), DDM estimated data (yellow), SLP-GA estimated

data (violet) and SLP-CHC estimated data (green) for the buildings B1 to B4
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algebraic expressions could lead to higher computational requirements.

Beyond the specific use case of symbolic regression studied in this paper, we believe that the

theory behind the methodology used to obtain the metric can be easily expanded to other genetic

programming applications, such as computer program generation, grammar evolution, etc. For

example, in a near future research work, we plan to use the outcomes shown in this manuscript

for automatic generation of quantum algorithms using SLP-encoded genetic programming. We

also plan to use the metric design methodology described in this article to tackle the decoherence

problem of qubits in large quantum algorithm’s circuit design.

In regards to the experimental outcomes, we have adapted the developed metric into the in-

cest prevention mechanism of the CHC algorithm, to control diversity and convergence during the

evolutionary process of SLP-encoded algebraic expressions. As no previous works define a sim-

ilarity measure for SLPs, we have compared our approach with other tree-based representation

genetic programming proposals existing in the literature. Experiments in both benchmark and

real application datasets show that the proposed metric can be used by evolutionary algorithms to

increase diversity in the population, and that its integration within the CHC algorithm helps to

improve the balance in diversity and convergence. In particular, we tested the approach in a real

energy consumption modelling problem, where time series containing energy consumption of public

buildings at the University of Granada are provided as input. The results in the real dataset are

consistent with the results of the benchmark data, which suggests that the approach has potential

and can be extended to different real applications, and more specifically in time series modelling

domains.

An additional experimental outcome is that the proposal is able to overcome local optima found

by the state-of-the-art approaches. We consider that this fact is specially relevant considering that

previous research articles that propose distance measures for tree-based representation concluded

that the proposed distance models help to improve diversity in the population, but have no effect

in the final solution performance for the experiments carried out. Hence the article contribution

can be also assessed as a promising technique to improve performance of existing methods in time

series modelling problems. However, this improvement in performance comes at the cost of a higher

computational time required to calculate the distance among the members of the population.
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Ekárt, A., & Németh, S. Z. (2002). Maintaining the diversity of genetic programs. In Genetic Programming (pp.

162–171). Berlin, Heidelberg. doi:10.13140/RG.2.1.2876.0167.

Eshelman, L. J. (1991). The chc adaptive search algorithm: How to have safe search when engaging in nontradi-

tional genetic recombination. Foundations of Genetic Algorithms, 1 , 265 – 283. doi:https://doi.org/10.1016/

B978-0-08-050684-5.50020-3.

Eshelman, L. J., & Schaffer, J. D. (1993). Real-coded genetic algorithms and interval-schemata. In Foundations

of Genetic Algorithms (pp. 187 – 202). Elsevier volume 2 of Foundations of Genetic Algorithms. doi:https:

//doi.org/10.1016/B978-0-08-094832-4.50018-0.

Ferdjoukh, A., Galinier, F., Bourreau, E., Chateau, A., & Nebut, C. (2017). Measuring differences to compare sets

of models and improve diversity in mde.

Giles, J., Giles, J., & Society, A. M. (1987). Introduction to the Analysis of Metric Spaces. Australian Mathematical

Society Lecture Series. Cambridge University Press.

Harrell, F. (2015). Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal

Regression, and Survival Analysis. Springer Series in Statistics. Springer-Verlag New York. doi:10.1007/

978-3-319-19425-7.

Hildebrandt, T., & Branke, J. (2015). On using surrogates with genetic programming. Evolutionary Computation,

23 , 343–367. doi:10.1162/EVCO_a_00133.

de Jong, E. D., Watson, R. A., & Pollack, J. B. (2001). Reducing bloat and promoting diversity using multi-objective

methods. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation (pp. 11–18).

doi:10.5555/2955239.2955241.

Kalkreuth, R., Rudolph, G., & Krone, J. (2015). Improving convergence in cartesian genetic programming using

adaptive crossover, mutation and selection. In 2015 IEEE Symposium Series on Computational Intelligence (pp.

1415–1422). doi:10.1109/SSCI.2015.201.

Kelly, J., Hemberg, E., & O’Reilly, U.-M. (2019). Improving genetic programming with novel exploration - ex-

ploitation control. In Genetic Programming (pp. 64–80). Springer International Publishing. doi:10.1007/

978-3-030-16670-0_5.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection.

Cambridge, MA, USA: MIT Press. doi:10.5555/138936.

Kulunchakov, A., & Strijov, V. (2017). Generation of simple structured information retrieval functions by genetic

algorithm without stagnation. Expert Systems with Applications, 85 , 221 – 230. doi:https://doi.org/10.1016/

j.eswa.2017.05.019.

32

http://dx.doi.org/10.1109/TEVC.2008.2011742
http://dx.doi.org/https://doi.org/10.1016/j.imavis.2006.02.002
http://dx.doi.org/10.1007/978-3-540-46239-2_19
http://dx.doi.org/10.13140/RG.2.1.2876.0167
http://dx.doi.org/https://doi.org/10.1016/B978-0-08-050684-5.50020-3
http://dx.doi.org/https://doi.org/10.1016/B978-0-08-050684-5.50020-3
http://dx.doi.org/https://doi.org/10.1016/B978-0-08-094832-4.50018-0
http://dx.doi.org/https://doi.org/10.1016/B978-0-08-094832-4.50018-0
http://dx.doi.org/10.1007/978-3-319-19425-7
http://dx.doi.org/10.1007/978-3-319-19425-7
http://dx.doi.org/10.1162/EVCO_a_00133
http://dx.doi.org/10.5555/2955239.2955241
http://dx.doi.org/10.1109/SSCI.2015.201
http://dx.doi.org/10.1007/978-3-030-16670-0_5
http://dx.doi.org/10.1007/978-3-030-16670-0_5
http://dx.doi.org/10.5555/138936
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2017.05.019
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2017.05.019


Li, G., Wang, J., Lee, K., & Leung, K.-S. (2008). Instruction-matrix-based genetic programming. IEEE Transactions

on Systems, Man, and Cybernetics, Part B: Cybernetics, 38 , 1036–1049. doi:10.1109/TSMCB.2008.922054.

Li, Q., Cheng, H., & Yao, M. (2016). Adaptive multi-phenotype based gene expression programming algorithm.

Chinese Journal of Electronics, 25 , 807–816. doi:10.1049/cje.2016.08.041.

Liu, L., Cai, H., Ying, M., & Le, J. (2007). Rlgp: An efficient method to avoid code bloating on genetic programming.

In 2007 International Conference on Mechatronics and Automation (pp. 2945–2950). doi:10.1109/ICMA.2007.

4304028.

Lozano, M., Herrera, F., & Cano, J. R. (2008). Replacement strategies to preserve useful diversity in steady-state

genetic algorithms. Information Sciences, 178 , 4421 – 4433. doi:https://doi.org/10.1016/j.ins.2008.07.031.

Lu, Q., Ren, J., & Wang, Z. (2016). Using genetic programming with prior formula knowledge to solve symbolic

regression problem. Intell. Neuroscience, 1021378 , 1:1–1:1. doi:10.1155/2016/1021378.
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