
Analysis and enhanced prediction of the Spanish

Electricity Network through Big Data and Machine

Learning techniques

M.C. Pegalajara *, L. G. B. Ruiza,b,*, M.P. Cuéllara, R. Ruedaa

mcarmen@decsai.ugr.es*,bacaruiz@ugr.es*, manupc@decsai.ugr.es, ramonrd@ugr.es

a Department of Computer Science and Artificial Intelligence, University of Granada, Spain.

b Department of Software Engineering, University of Granada, Spain.

A B S T R A C T

Electricity demand is shown to steadily increase in the last few years, and it is one of the

key aspects of living standards and quantifying welfare effects. However, the

irregularity of electricity demand is one of the main problems in this field. Therefore, it

is important to accurately anticipate future expenditures in order to optimize energy

generation and to avoid unexpected wastes. As a result, we developed Machine Learning

models to predict electricity demand. In particular, our study has been performed using

data of the Spanish Electricity Network from 2007 to 2019. To this end, we propose the

implementation of a set of Machine Learning techniques using various frameworks. In

particular, we implemented six different prediction models: Linear Regression,

Regression Trees, Gradient Boosting Regression, Random Forests, Multi-layer

Perceptron, and three types of recurrent neural networks. Our experimentation shows

promising results in all cases, since our models provides better prediction than the one

estimated by the Spanish Electricity Network with an improvement of 12% in the worst

case and up to 37% for the best predictor, which turned out to be the Gated Recurrent

Unit neural network.

© 2021 Elsevier Science. All rights reserved

Keywords:

Deep learning

Electricity demand

Machine Learning

Time-series forecasting

1. Introduction

During the last two decades, Machine Learning (ML) has become a key tool in Information Technology and

consequently a core of our daily life. At the present time, ML is one of the most used and in-demand technologies

of the developing world [1]. According to the «2019 Data Science and Machine Learning Market Study» report

———
* Corresponding author. Tel.: +34 958-241-000 / Ext. 20466; e-mail: mcarmen@decsai.ugr.es, bacaruiz@ugr.es. At c/ Periodista Daniel

Saucedo Aranda, s.n., 18071 Granada, Spain.

The published version of this accepted manuscript can be found at
https://doi.org/10.1016/j.ijar.2021.03.002

http://www.sciencedirect.com/science/journal/09596526
http://www.elsevier.com/locate/ijar
mailto:mcarmen@decsai.ugr.es
mailto:bacaruiz@ugr.es
mailto:manupc@decsai.ugr.es
mailto:ramonrd@ugr.es
mailto:mcarmen@decsai.ugr.es,%20bacaruiz@ugr.es
https://www.editorialmanager.com/ija/viewRCResults.aspx?pdf=1&docID=2294&rev=1&fileID=23089&msid=8a953002-4dd4-4528-8ab1-2c2e533832a8
https://www.editorialmanager.com/ija/viewRCResults.aspx?pdf=1&docID=2294&rev=1&fileID=23089&msid=8a953002-4dd4-4528-8ab1-2c2e533832a8
https://doi.org/10.1016/j.ijar.2021.03.002

M.C. Pegalajar et al./ 2

[2], data mining [3], advanced algorithms and predictive analytics are ranked one of the most priority projects in

business and IT departments.

ML methods have recently contributed to the advancement of forecasting models in order to enhance certain

aspects of our daily life [4-6]. As an example, a neural-based classifier can be found in [7] to categorize activities

with similar levels and build energy expenditure estimations in order to optimize performance. This study employed

radial basis function (RBFN) and generalised regression neural networks (GRNN). But this is merely an instance

of many solutions to many other energy-related fields such as ours, electricity demand (ED).

The use of ML models in the electricity realm have shown to highly improve accuracy, robustness and precision

with regard to the conventional tools for ED [8] which is key factor for economic and efficient consumption

expenditure.

The ED problem lies within the category of time series in the ML scope. In essence, a time-series is a discrete

sequence of data points in time [9]. In this study, we focus on the electricity demand, specifically the Spanish

territory. These data will be provided to a ML model so as to predict forthcoming consumption using previous

values. To do so, we combined ML and time-series techniques. More specifically, we implemented linear

regression, regression tree, gradient boosting regression, random forest, multilayer perceptron, long short-term

memory neural networks, gated recurrent unit and the Jordan artificial neural network.

The main target of this work is to compare different regression methods to predict electric demand in Spain.

Once making these predictions, several metrics will be obtained. Accordingly, we propose the following tasks to

attain this goal: 1) data acquisition, 2) cleaning and preprocessing, 3) exploratory analysis, 4) forecasting modelling

and 5) comparison and validation of the results.

The ED problem in Spain using time-series has previously been studied by other authors in literature, although

their approach has several and significant differences with respect to our proposal. The following lines detail the

former studies of ED, with special emphasis on those studies which dealt within the Spanish context.

The first manuscript about this subject can be found in [10]. The authors introduce some scalable methods to

predict long-lasting ED time-series in Spain. They suggest Apache Spark framework for distributed computation

to accomplish scalability in forecasting methods. Besides, they used MLlib as a machine learning library to

implement their models. However, the main MLlib’s drawback is that it does not allow multivariable regression

which is the main problem of their solution. As a consequence, the authors divided the problem into ℎ sub-

problems, where ℎ stands for the number of future steps to compute. They adopted two tree-based techniques of

different underlying approach: Gradient-Boosted Trees and Random Forests. In addition, they proposed the use of

a Linear Regression method as a reference technique to validate the results. Two metrics were utilized to compare

the models: Mean Relative Error (MRE) and Mean Absolute Percentage Error (MAPE).

The second most important study was done by the same authors [11]. This paper introduces a deep learning

method to address the problem of big data time-series prognosis [12]. Authors utilized a feed-forward artificial

neural network from the H2O framework and the Apache Spark platform to arrange computation in a distributed

manner. H2O presents the same problem found in [10], this framework does not allow the implementation of multi-

step regression. As a result, the authors elaborated a general-purpose methodology for time-series prediction

regardless of the horizon’s length. Similarly, the solution consists of solving several forecasting sub-problems

M.C. Pegalajar et al / 3

according to how many values are going to be predicted. Therefore, the best model was obtained simultaneously,

easing its parallelisation and adaptation to Big Data frameworks.

Some studies endeavour to predict electric load for resources planning as it is a useful task to enhance efficiency

in Smart grids. This is straightforward in the case of Hossen et al. [13] who proposed a multi-layered deep neural

network to estimate the Spanish electric market. They implemented a TensorFlow model taking into account the

MAPE metric for testing weekday and weekend variations. They achieved significant saving with their solution.

Blázquez et al.’s research [14] illustrates this point clearly. They analysed the residential demand for electricity in

Spain for 47 Spanish provinces and they computed a demand equation for electricity expenditure using a dynamic

partial adjustment technique. With their proposal they managed to highlight some of the features of Spanish ED.

Similarly, Pérez and Moral [15] presented a method for ED analysis using a simple growth rate decomposition.

They recommend their method as a starting point for long-term prognosis, and they use Spain as a case study to

compute demand estimations until 2030.

Other techniques have been tested to predict ED in other countries. In a similar case in Australia, Al-Musaylh

et al. [16] adopted multivariate adaptive regression spline, SVM and autoregressive integrated moving average

(ARIMA) models to predict short-term ED with a 24-h horizon. One can find Grey Models (GM) applied to forecast

electricity supply in Turkey [17] where, due to the economic uncertainty, electricity usage shows a chaotic and

nonlinear trend. To solve this problem, the authors suggest predicting electricity consumption through the

combination of grey predictions and a rolling mechanism, and their solution proved to be more accurate than the

model implemented so far. Another interesting research done for Turkey was made by Erdogdu [18] who

incorporated ARIMA modelling to co-integration analysis. China [19-23] and Canada [24-26] also present some

investigations in this field, such as a neuro-fuzzy approach [25, 27, 28] or other hybrid solutions [20, 21, 23] using

neural networks and classic methods.

As discussed above, there are research works in literature where the ED has been studied in many contexts [8,

13-15, 29], e.g., in Spain [10, 11] as in the case of this research. Most of them have developed big data-oriented

solutions using classic regression methods or even multi-layer perceptron neural networks.

In contrast to the former studies, this work mainly introduces Recurrent Neural Networks (RNN) [30] in both

its original version and its big data-oriented version using Spark, along with classic regression methods in its

original version. These methods will be compared with the ones implemented in the aforementioned studies. Hence

the final goal of this study is to analyse the most suitable approach for ED in Spain considering several metrics.

The rest of the paper is structured as follows: the proposed methodology is detailed in section 2; section 3

introduces all the experimentation carried out; the next point 4 focuses on describing the results; a discussion about

the outcomes obtained is detailed in section 5; and finally section 6 compiles the conclusions achieved from this

research.

 M.C. Pegalajar et al./ 4

2. Methodology

The current research was developed in three main stages: First, data collection and pre-processing. Second,

modelling of the problem and implementation of the proposed models. And finally, validation and analysis of the

results.

2.1. Dataset

The dataset used in this work was obtained from the Spanish Electricity Network (SEN) [31]. The official website

offers several elements that can be used to extract information from the Spanish ED, such as, a calendar to select a

specific day of the ED, a graph for daily demand visualization, a data table to extract the numerical information,

accumulated demand from diverse sources of electric energy and the selection of the electric system to be displayed.

In the context of this piece of research, we focus on the first and second tab which provide the data needed for

this work. More specifically, we use the following information: date (day and hour), actual (concerning the actual

ED at the moment), expected ED (the forecasted ED made by the Spanish Electric Network) and scheduled (this

stands for the operational time schedule, i.e., the planned production). All these values are provided in megawatts,

and cover a timeline ranging comes from 2007 to 2019. Figure 1a shows all the data over the years and Figure 1b

the corresponding histogram which provides information about how common are the values we can find in this ED

time-series. From these graphs, we can see how the minimum would be about 15000 and the maximum would be

around 45000. Moreover, as can be seen in these figures, the data are arranged close to the mean.

Year

(a) (b)

Figure 1. Illustration of a) the Spanish Electricity Demand and b) its corresponding histogram from 2007 to 2019.

In order to detect outliers, we will display the whole time-series in the same graph and we will do the same for

splitting the data into years. This was illustrated in Figure 2a and b respectively. The first plot exhibits some outliers

in the top part of the boxplot. These points are fairly close to the maximum which stands for 𝑄3 + 1.5 ∙ 𝐼𝑄𝑅 as a

consequence we can conclude that they may not be such outliers. And this hypothesis can be supported if we see

 M.C. Pegalajar et al / 5

the second chart. Figure 2b does not display any outliers. What we can tell from these figures is that the lowest

points remain quite stable, and the maximum demand slightly decreases.

(a) (b)

Figure 2. Boxplot of the Electricity Demand for a) the whole period (from 2007 to 2019) and b) each year.

2.2. Preprocessing

After obtaining the Spanish ED data, a preprocessing stage is needed to clean data. The first problem is rather

straightforward as there are records that appears more than once, i.e., we have redundant information because of

the repeated records. This can be seen from the official website of the Electricity Network at first glance. Another

important problem but less obvious is missing values, i.e., there are empty rows, for example.

As a result, our first labour is to solve the problem of duplicate information. To this end, we must consider the

following: the data of the ED is in a 10-minutes basis from 21h of the previous day until 03:50 of the next day.

This means that there are 18 values of the previous day, 144 values of the present day and 24 values of the next

day.

Accordingly, a regular year ought to have 52560 rows, and a leap year should have 52704 values. In our case,

we have 3 leap years, 2008, 2012 and 2016. It is important to note that we only extracted data until July 22nd, 2019,

which is the 203rd day of the year. Hence, after pre-processing and cleaning the data, one can check the number of

rows per year, and we can compare the theoretical values and the actual ones.

Furthermore, some records are empty. To handle this problem, we carried out the called missing-data imputation.

First of all, we counted the number of missing items in every column. Only three years (2007, 2008 and 2015) had

no data values stored for some of the variables in observation. Since we have three fairly correlated variables, we

can utilize this extra information to employ a method such as the k Nearest Neighbours (kNN) to compensate for

these values. Provided an instance with at least one of the ED values, one may compute the closest row to complete

its empty registers. Finally, once these steps have been completed, we have three univariate time-series according

to the «actual», «expected» and «scheduled» electricity demand. In this work context, we mainly focus on the

«actual» demand for modelling. Nonetheless, the rest of the columns will be used to compare and validate our

results. Additionally, the data were deseasonalised and detrended. We normalised the data and applied a sliding

window (see Figure 3) to compute future values, modelling thus a one-step-ahead prediction. After that, the models

 M.C. Pegalajar et al./ 6

were applied to these pre-processed data. Note that errors are calculated after applying all these steps in reverse

order, i.e., after de-normalisation and re-trending predictions.

y(t)

t

Window

y(t)

t

Window

Figure 3. Representation of the sliding window used to preprocess the data.

2.3. Technologies

This section is intended to briefly describe the required methods for the ED forecasting, which include the Linear

Regression (LR), Regression Tree (RT), Gradient Boosting Regression (GBR), Random Forest (RF) and Multi-

Layer Perceptron (MLP), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) and the Jordan

Recurrent Neural Network (JRNN).

LR is a statistical method that is widely used for analysis and prediction in the electricity field, amongst others

[32]. It has been employed to estimate unknown values using other related variables, also called factors. In this

technique, the scalar response is known as a dependent variable, and the rest of them, used for modelling, are

identified as independent variables. LR attempts to model relationships between variables by fitting a linear

equation to collected data [33].

The second method is one of the most popular ML algorithms due to their simplicity and intelligibility [34].

This predictive model is also used in statistics, along with data mining and ML. It employs a ramified structure to

go from observations to conclusions regarding a specific item. The former is commonly called leaves. This method

follows a set of splitting rules to divide the predictor variable. It distributes the input into different parts and assigns

an estimated value to every region [35].

Thirdly, Gradient Boosting for Regression (GBR) builds an additive predictor in a forward stage-wise manner.

In this fashion, GBR optimises the arbitrary differentiable loss function. In each phase, multiclass RTs fit on the

negative gradient of the binomial or multinomial deviance loss function [36]. This tree ensemble technique is

frequently a set of RT known as CART. It is also called like that as it uses a gradient descent algorithm to minimise

loss when adding new RTs [37].

 M.C. Pegalajar et al / 7

A similar model is Random Forest (RF). This technique is often combined with regression analysis to perform

different kinds of prediction, e.g., short-term [34]. It is characterized by feature selection and is an important

extension and evolution of bagging algorithms for ensemble learning, i.e., it is a compound of several individual

predictors, specifically RT. However, the bottom line of this model is how it splits training data into different

samples of the same size after that a particular RT fits them. This sample is called bootstrap and may be chosen

several times [38].

Another technique used is the Artificial Neural Network (ANN) [9, 13, 23, 30, 36, 39]. In this study, we

implemented four kinds of ANNs. The most common is the Multi-Layer Perceptron (MLP) which is a kind of

feedforward ANN. MLP is made of at least three layers of nodes, also called neurons: an input, hidden and output

layer. Each node employs a nonlinear activation function but for the input layer, this allows them to model

nonlinearity in data.

On the other hand, LSTM has turned out as one of the most popular ANN for sequence data processing. The

idea behind LSTM is to memorise the past outputs in memory and use them for successive predictions. This

learning of past trends is possible due to some gates together with a memory line added in this model [40]. To do

so, LSTM has three gates: input, output and forget.

Prior to explaining the next model, it becomes necessary to briefly introduce the concept of Recurrent Neural

Network (RNN). RNNs are a type of artificial neural networks that not only takes the current input values but also

it uses previous states of the neuron. Since the recurrent units have information about past values, this makes it

possible to provide them with memory, and thus, enabling the model to handle information over time [41].

In contrast, Gated Recurrent Unit (GRU) is a class of ANN with two gates: reset and update. The function of

the first ones is very similar to forget gates in LSTM, which were designed to give the memory cells ability to

determine when to delete certain knowledge [42]. GRU was proposed as a simplification of LSTM and produce

equally excellent results [43]. For that reason, we implemented this model as well.

Lastly, a simpler version of those recurrent neural networks previously mentioned was developed, the Jordan

Recurrent Neural Network (JRNN). JRNN extends the MLP with context units in which the output of the network

is stored. There is another version where the values of the hidden neurons are saved instead of the output in the

context units, in that case, it would be the Elman neural network [9]. These units provide the network with the

ability to extract temporal information from historical data in both cases[44]. In this work we will implement the

JRNN.

As we mentioned before, we conducted a study using both Big Data and normal implementations of the

algorithms in order to compare their performance. In many studies, the Big Data approach has contributed to

improving the original algorithm concerning the accuracy in terms of prediction and its scalability [45]. It should

be noted that a Big Data solution will provide us a framework to model process big data time series. At this point,

a single-core approach is not enough and it becomes necessary to distribute the data and its processing across

multiple structures using, for example, a cluster of machines.

 M.C. Pegalajar et al./ 8

3. Experiments

This section attempts to explain the experimentation carried out in this study. It was done using an Intel Core i5-

4460 3.20 GHz (4 cores), 8GB RAM, Nvidia GeForce GTX 970, 1TB HDD and 250 GB SSD. Even though the

experiments were conducted using a PC, the four cores of the CPU and the available GPU were used to speed up

the calculations. It consists of running multiple regression algorithms on the actual ED from 2007 and 2019. The

dataset is made up of 660378 samples. The regression algorithms developed belong to standard scientific Python

libraries to ease experimental replication, and more specifically Scikit-learn was used to implement classic

regression algorithms. The classic regression algorithms adapted to Big Data were implemented with MLlib, Keras

was used for neural networks and BigDL which provides ANN for Big Data problems using Spark.

In particular, from Scikit-learn and MLlib we utilized LR, RT, GBR and RF. From Keras, MLP, the CUDA

version of LSTM and GRU, and the JRNN. Lastly, we implemented the best models obtained by Keras on BigDL.

We remark that the final goal of this experimentation is to verify what kind of algorithm would get the best

results, that is to know if classic regression using Scikit-learn is better than the Big Data-oriented regression

algorithms in MLlib, the Keras’ ANNs or the same ANNs oriented to Big Data in BigDL.

To train the regression models, the dataset was divided into 70% training and 30% test. Besides, when

implementing Keras’ models we set 30% of the training data as validation for early stopping. We would like to

point out that imputation methods were implemented to remove missing values. These points should not be included

in the performance assessment because these methods somehow forecast the missing values. Hence it is expected

that the error for such values tends to 0. In our case, we found less than 0,2% missing values (only in 2007, 2008

and 2015), for this reason, it will not influence our result and we can skip this step. Since we will implement the

same models for Keras and BigDL, the same number of epochs was defined, i.e., if it takes ten epochs to train a

model in Keras, it will take the same iterations in BigDL.

Finally, we have yet to decide what metrics will be used to measure the algorithms’ performance. In our case,

we adopted four metrics:

Root Mean Square Error (RMSE) is a quadratic scoring rule that measures the average magnitude of the error

between prediction and actual value [46] can be calculated as follows:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑦𝑖

2 − �̂�𝑖

𝑛

𝑖=1
 (1)

Where 𝑦𝑖 are the actual value, �̂�𝑖 the estimated value and 𝑛 the number of samples. The second metric is the

Mean Absolute Error (MAE) which measures the average magnitude of the errors in estimations regardless of their

direction. This metric means if individuals’ differences have the same weight in the average. It is defined in the

next equation:

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1
 (2)

Both MAE and RMSE provide information about the average forecasting error in models according to the

observed variable. They can vary between 0 and ∞ and do not consider the error’s direction. The lower value of

the metrics, the better performance.

 M.C. Pegalajar et al / 9

Mean Absolute Percentage Error (MAPE) is a statistical metric that gives information about the accuracy of the

forecasting system. It expresses the error size in terms of percentage on actual observations. It is often employed

in quantitative prediction methods as it provides a criterion of relative overall fit [47]. Its equation is detailed

hereunder:

𝑀𝐴𝑃𝐸 = 100 ∙
1

𝑛
 ∑

|𝑦𝑖 − �̂�𝑖|

𝑦𝑖

𝑛

𝑖=1
 (3)

Finally, we adopted 𝑅2, also called coefficient of determination, for goodness of fit. It is the proportion of

variation of the dependent variable explained by explanatory variables. It is commonly used to compute the strength

of the relationship in regression [48]. It is defined as:

𝑅2 =
𝑆𝑆𝑅𝐸𝑆

𝑆𝑆𝑇𝑂𝑇
= 1 −

∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖

∑ (�̅�𝑖 − �̂�𝑖)2𝑛
𝑖

 (4)

Where �̅�𝑖 is the average of the actual values, 𝑆𝑆𝑅𝐸𝑆 is the residual sum of squares and 𝑆𝑆𝑇𝑂𝑇 the sum of squares

of 𝑦.

4. Results

In this section, we present the results obtained by each regression algorithm implemented. Due to restrictions of

paper length, names in tables were abbreviated and some experiments were summarised. For instance, diverse sizes

of the sliding window were tested and we only present the results considering the last 4 hours. Tables provide

information about mentioned metrics which are in common, all of them have a subscript 𝑡𝑟 or 𝑡𝑠, and stands for

training and test, respectively.

The remaining columns are explained together with the specific algorithm as they are particular for each method.

We will not show all the experiments done, but we will focus our attention on the best ones amongst all the

experiments. Additionally, in order to put together and compare all the models of the same package, we use 𝑃1, 𝑃2

and 𝑃3 to name first, second or third parameter of the related model, respectively. We remark that not all the models

have three parameters, in that case, the associated column would be empty. Table 1 condenses the best results

drawn from the whole battery of experiments for every model implemented in Scikit-learn. The first column reveals

the experiment number and for the corresponding model. The second column is the window size set for that model.

And the two next columns stand for parameters of the different models. As mentioned before, each model has its

parameters. In this way, LR was tested changing the number of iterations 𝑃1 and a hyper-parameter to compute the

learning rate 𝑃2, keep in mind that our LR was implemented using the SGD optimiser, that is the reason why we

adjusted a learning rate in the LR, in particular, this parameter is referring to the initial learning rate for the

algorithm. In the case of RT, we tried different max depth of a tree. We varied the number of iterations for the

boosting process and the maximum depth of the tree for GBR. Finally, RF was tested modifying the number of

trees and its depth.

Likewise, Table 2 gathers the best models using MLlib. LR’s parameters were the number of iterations and

solver. In the later parameter, 0 stands for the normal equations solver and 1 for the limited-memory BFGS

M.C. Pegalajar et al./ 10

algorithm. Finally, not to replicate the same information, notice that RT, GBR and RF have the same parameters

as in Table 1.

Table 1. Summary of the best results from experiments done using Scikit-learn models (Linear Regression,
Regression Tree, Gradient Boosting and Random Forest) along with the time cost of each model.

Exp. Tam P1 P2 RMSEtr RMSEts MAEtr MAEts MAPEtr MAPEts R2
tr R2

ts T

LR
1 288 50 0.015 328.7208 403.4494 227.3449 231.8432 0.8082 0.824 0.9958 0.9922 2

2 288 25 0.015 329.9763 404.5972 229.1941 233.9346 0.8165 0.833 0.9958 0.9922 2

3 288 100 0.015 334.0839 407.1911 232.2885 236.5412 0.8205 0.8361 0.9957 0.9921 2
4 144 50 0.015 355.1405 416.0412 250.8365 244.4454 0.8769 0.8614 0.9951 0.9917 1

5 144 100 0.015 355.675 416.3586 250.9605 244.3789 0.8774 0.8612 0.9951 0.9917 1

RT
1 144 8 - 312.2878 396.8069 224.8896 222.9741 0.7910 0.7901 0.9962 0.9925 48

2 288 8 - 312.2577 397.5609 224.8609 223.1169 0.7909 0.7907 0.9962 0.9924 99

3 120 8 - 312.8648 398.5422 225.2019 223.2643 0.7921 0.7916 0.9962 0.9924 40
4 72 8 - 313.2506 399.1396 225.6909 223.8552 0.7941 0.7941 0.9962 0.9924 23

5 96 8 - 313.1921 399.3416 225.6597 223.9009 0.7940 0.7942 0.9962 0.9924 31

GBR
1 288 40 8 253.6752 348.6612 186.8594 188.7435 0.6623 0.6727 0.9975 0.9942 4702

2 144 40 8 258.0805 351.4701 189.8079 191.7291 0.6723 0.6826 0.9974 0.9941 2339

3 120 40 8 262.3728 356.0402 192.7429 194.4626 0.6821 0.6926 0.9974 0.9939 1951
4 96 40 8 264.2656 357.9789 194.2077 196.1796 0.6871 0.6984 0.9973 0.9939 1605

5 72 40 8 265.7438 358.6482 195.4219 197.0673 0.6909 0.7012 0.9973 0.9938 1152

RF
1 144 100 8 294.6795 376.4441 209.961 205.7714 0.7390 0.7298 0.9967 0.9932 3176

2 288 100 8 294.4902 377.095 209.6186 205.5481 0.7376 0.7287 0.9967 0.9932 6503

3 288 50 8 294.5727 377.132 209.7827 205.7433 0.7383 0.7295 0.9967 0.9932 3254
4 288 75 8 294.649 377.1894 209.8399 205.8385 0.7385 0.7299 0.9967 0.9932 4878

5 144 75 8 295.0017 377.3911 210.1893 206.1736 0.7398 0.7312 0.9967 0.9932 2383

Table 2. Summary of the best results from experiments done using MLlib.

Exp. Tam P1 P2 RMSEtr RMSEts MAEtr MAEts MAPEtr MAPEts R2
tr R2

ts T

LR

1 288 100 0 255.0306 369.4993 174.369 190.4164 0.62 0.6749 0.9975 0.9935 384
2 288 25 0 255.0306 369.4993 174.369 190.4164 0.62 0.6749 0.9975 0.9935 355

3 288 50 0 255.0306 369.4993 174.369 190.4164 0.62 0.6749 0.9975 0.9935 380

4 144 25 0 274.9256 378.6962 189.1822 197.0916 0.669 0.6993 0.9971 0.9931 182
5 144 50 0 274.9256 378.6962 189.1822 197.0916 0.669 0.6993 0.9971 0.9931 205

RT

1 144 8 - 376.8794 418.1501 268.8565 254.7893 0.937 0.9018 0.9945 0.9916 181
2 288 8 - 378.5353 424.1225 269.9844 255.4362 0.9431 0.9053 0.9945 0.9914 341

3 120 8 - 380.4739 425.1294 271.7144 257.137 0.9477 0.9105 0.9944 0.9913 127

4 96 8 - 380.838 427.4098 272.6688 259.1983 0.9512 0.9184 0.9944 0.9913 147
5 72 8 - 383.8138 427.8019 272.3971 257.6613 0.9489 0.9127 0.9943 0.9912 90

GBR

1 144 40 8 306.4551 399.4531 229.6932 237.6845 0.8126 0.8443 0.9964 0.9924 237
2 96 40 8 311.13 403.7587 232.6496 239.238 0.8185 0.8476 0.9963 0.9922 359

3 288 20 8 317.7092 407.2906 237.5599 242.4186 0.84 0.8609 0.9961 0.9921 7142

4 120 40 8 310.8609 407.5713 231.8135 239.8807 0.8137 0.8492 0.9963 0.992 707
5 144 20 8 325.6915 407.9497 242.7346 244.9422 0.8577 0.8696 0.9959 0.992 464

RF

1 288 75 8 349.5005 382.0851 246.9499 229.4487 0.8622 0.8118 0.9953 0.993 815
2 288 100 8 349.3008 382.4324 246.8709 229.3205 0.8622 0.8117 0.9953 0.993 1308

 M.C. Pegalajar et al / 11

3 288 50 8 349.2775 382.5711 247.3814 229.8821 0.864 0.8135 0.9953 0.993 979

4 144 100 8 343.0349 384.566 247.53 232.0862 0.8686 0.8222 0.9955 0.9929 492
5 288 25 8 351.2803 384.6812 249.1063 231.7701 0.8706 0.8203 0.9953 0.9929 794

In a third battery of experiments, we implemented MLP with several number of hidden layers (𝑃1) and number

of neurons (𝑃2). In the LSTM, GRU and JRNN, the parameter tested was the corresponding specific units of each

model.

Table 3. Summary of the best results obtained from experiments done using Keras’ models (Multilayer-
Perceptron, Long Short-Term Memory, Gated Recurrent Unit and Jordan Neural Networks).

Exp. Tam P1 P2 RMSEtr RMSEts MAEtr MAEts MAPEtr MAPEts R2
tr R2

ts T

MLP

1 144 2 40 273.4883 366.8139 192.9394 199.8251 0.6776 0.7052 0.9971 0.9936 729

2 144 2 50 277.22 366.9591 195.4519 199.8721 0.6876 0.7094 0.997 0.9936 742

3 144 2 60 271.242 367.0705 189.2467 195.643 0.6669 0.6929 0.9972 0.9935 893

4 144 2 20 277.2662 368.7141 196.6498 202.1508 0.6938 0.716 0.997 0.9935 577

5 96 2 30 276.7211 369.6037 195.4608 200.1907 0.6916 0.7103 0.9971 0.9935 576
LSTM

1 96 30 - 247.3151 346.8803 171.8198 185.4786 0.6066 0.6542 0.9976 0.9942 2384

2 144 30 - 247.2373 348.2311 172.5325 185.4745 0.6108 0.6561 0.9976 0.9942 2610
3 72 50 - 249.9496 350.3873 174.1121 187.5957 0.6158 0.6644 0.9976 0.9941 1565

4 72 100 - 248.3313 351.7054 172.4375 184.6535 0.6099 0.6534 0.9976 0.9941 2143

5 120 30 - 254.5565 352.8263 175.8142 184.4917 0.6215 0.6529 0.9975 0.994 2183
GRU

1 288 40 - 244.7777 343.1917 169.8666 180.3092 0.6013 0.6397 0.9977 0.9944 3634

2 144 100 - 240.7929 344.1562 167.7567 180.5029 0.5944 0.6398 0.9978 0.9943 2529
3 288 100 - 240.7945 345.815 167.1048 182.8581 0.5919 0.6479 0.9978 0.9943 3938

4 144 40 - 244.2612 345.8154 169.2886 180.9368 0.5984 0.6397 0.9977 0.9943 2766

5 120 40 - 248.4505 347.7254 172.7622 184.7305 0.6098 0.6542 0.9976 0.9942 2909
JRNN

1 96 30 - 295.62 394.2566 205.796 206.7689 0.7214 0.7301 0.9966 0.9926 1353

2 120 30 - 295.2136 396.5362 205.5229 207.8183 0.7208 0.7341 0.9966 0.9925 831
3 144 30 - 296.4874 396.8505 206.5011 209.4509 0.7267 0.7413 0.9966 0.9925 989

4 120 40 - 296.4495 397.4892 206.107 209.0169 0.7248 0.7394 0.9966 0.9924 1246

5 72 30 - 298.3369 397.9798 207.6403 209.9763 0.7296 0.7423 0.9966 0.9924 1035

Finally, the last set of experiments was implemented in BigDL using those Keras’ models that achieved the best

results according to the RMSE in test. As we detailed before, from each metric one can obtain different information.

In our case, the benefit of adopting the RMSE as our reference metric is its assessment of the error magnitude and

mean error is an indicator of error direction. Besides, RMSE avoids the absolute value and in doing so, one gets

the prediction error on the same scale as the output. Furthermore, the other advantage of RMSE is that it punishes

large errors, even if the domain is small so that it becomes useful when large errors are particularly undesirable. As

can be seen, LSTM and GRU have similar outcomes and are the best ones. Additionally, we selected the best 3

models of each version. These results can be seen in Table 4.

Table 4. Summary of the three best Keras’ models implemented in BigDL.

Exp. Tam P1 RMSEtr RMSEts MAEtr MAEts MAPEtr MAPEts R2
tr R2

ts T

LSTM

1 72 50 282.2352 367.148 200.7304 201.0771 0.7038 0.708 0.9969 0.9935 6871

2 96 30 277.3078 367.9254 194.1528 197.6941 0.6844 0.7007 0.997 0.9935 7295
3 144 30 315.2163 396.6689 228.2929 229.6589 0.7931 0.804 0.9962 0.9925 9206

GRU

1 120 40 275.4454 355.2604 191.1378 188.0946 0.6732 0.6668 0.9971 0.994 10217

M.C. Pegalajar et al./ 12

2 144 40 282.3179 363.0405 198.9298 194.2289 0.7028 0.69 0.9969 0.9937 10579

3 288 40 334.6737 417.159 252.542 240.9043 0.866 0.8504 0.996 0.9916 19263

So far, we have introduced our experiments and results obtained. All these results are discussed in the following

section. Additionally, since we have tested many models and representing all of them could be unfeasible, we

presented in Figure 4 the best prediction obtained by the GRU neural network using a 288-point window size and

40 units. This figure gathers the results of both daily and weekly predictions.

Sample

Actual
Predicted

Actual
Predicted

Sample

(a) (b)

Figure 4. Prediction of the best model obtained for a) a representative day and b) its corresponding week.

5. Discussion

We focused our experimentation on implementing a wide range of models to predict the ED in Spain. The first step

is to introduce how accurate the SEN forecasts the electricity demand in order to compare and validate our proposal.

To do so, we can make use of the ‘expected’ column provided by the SEN in the website and compute our metrics.

These results can be seen in Table 5. Bearing in mind this table, we can now contrast the implemented models of

each package and algorithm with the SEN’s. In this work, we set an importance order to evaluate how good a model

is. Firstly, we focus on the RMSE. Secondly, the MAPE metric. Next, MAE. And finally, 𝑅2. In all cases, we will

analyse those metrics acquired from test data. In doing so, to determine what model is better, we will use RMSEts.

If two models draw with this metric, we will use MAPE and so on.

Table 5. Statistics obtained from the Spanish Electricity Network's predictions.

RMSE MAPE MAE R2

471.6463 0.8802 249.8638 0.9909

Table 1, Table 2, Table 3 and Table 4 show the results with the best model per algorithm and package

respectively. In these tables the best models are already sorted best to worst. As can be seen from these four tables,

 M.C. Pegalajar et al / 13

all the models make better predictions than the SEN. All the models get, for every metric in test, better results than

the one provided by the SEN.

Another interesting aspect is that all the window sizes tested appear in these tables but for the smallest values,

i.e., 24 and 48. From this, one can ascertain that the smaller windows size, the worse results provide.

Once we compared our best models with the ones deployed by the SEN, the next step is to analyse the

performance of our models. If we compare all the rows corresponding to a particular model, in all the metrics, it is

very difficult to see a great difference between the best result and the other four-best results, i.e., they are fairly

similar. Likewise, if we compare all the models we can see a small difference between the best performance attained

by the Keras’ GRU algorithm with a RMSE of 343,1917 and the last one in the ranking which would be MLlib’s

RT with a 418,1501. The later has the highest difference of RMSE at only 21.84%. In contrast, SEN’s error

increases by 37.43% comparing with our best models, which is virtually twice the difference between the best and

SEN, and our worst and SEN. Hence, in our worst-best case, there would be an increasing difference in error of a

12.79%.

At first glance, one may conclude that the recurrent neural networks and MLP are the best models. Indeed, from

these tables, we can anticipate that Keras’ GRU and LSTM were the best ones, which are recurrent networks.

Therefore, the first hypothesis was right. Nonetheless, JRNN is another recurrent model as well, but it did not

obtain as good results as its counterparts. This result may be a consequence of two factors. The first one, because

of the fast convergence of the network; as can be seen in the previous tables, it takes shorter time to train the JRNN

than the other neural networks. And secondly, which is linked with the previous reason, it may be owing to its

structure, i.e., the JRNN’s architecture is also called «simple» recurrent neural network as it uses only one value of

the input and output in the recurrent units. This method got the firth-worst position after Scikit-learn’s RT and LR,

and MLlib’s RT and GBR. On the contrary, further analysis of the results showed that MLP is the firth-best model

which is an acceptable position.

On the other hand, BigDL’s GRU and LSTM reported good predictions too. However, they did not reach the

accuracy of Keras’ solutions. Both Keras and BigDL utilized exactly the same architecture, hyper-parameters and

epochs. In spite of that, BigDL attained slightly worse predictions in comparison with Keras.

The most surprising aspect of these results is in the Scikit-learn’s GBR which achieved the third-best error,

overcoming those estimations from BigDL and MLP.

Finally, as a representative example of how good our best model predicted, Figure 4 showed the prediction of a

day (Figure 4a) and a week (Figure 4b). At first glance, one could say that both series are virtually the same and

we achieved excellent performance. Even though this claim seems to be true, we would like to objectively analyse

these two graphs. The first aspect to pay attention is the high range of the data. Since the Spanish ED in this day

and week ranges from 20000MW to 34000MW, a small variation apparently does not change the results, and yet

it could turn out an unexpectedly sharp increase in energy. Having said that, we can conclude according to the

aforementioned metrics that we managed to model the Spanish ED with very good accuracy, and it can be seen in

these figures.

M.C. Pegalajar et al./ 14

5.1. Time cost analysis

The previous section is devoted to evaluating the models according to their accuracy and error. Getting the best

accuracy is usually the most important goal when choosing a model. Nonetheless, this point loses interest if the

selected algorithm takes too long to provide results. Thus, in some events, a faster method is a better option and

this is why we implemented our models using a Big Data framework. To do so, we analyse the time cost which is

the column T showed in the previous tables. Table 6 shows in a ranking-oriented view how long the different

algorithm take. The first column is the name of the algorithm, the second one stands for the training time obtained

by the most accurate model, and the last column corresponds to the average time spent to train all the models.

Table 6. Running time in seconds of the most accurate model (second column) and the average time (third
column) per model and framework.

Algorithm
Time (s) RMSE

Best Average Best Worst Average

LR Scikit-learn 2,93 0,89 403,45 719,35 519,40

RT Scikit-learn 48,64 27,86 396,81 566,67 482,95

RT Mllib 181,55 128,00 418,15 583,38 499,85

GBR Mllib 237,20 562,93 399,45 510,26 446,16

LR Mllib 384,86 162,79 369,50 486,91 402,50

MLP Keras 729,99 365,68 366,81 465,03 390,03

RF Mllib 815,87 264,84 382,09 586,83 478,05

JRNN Keras 1353,94 1067,83 394,26 403,25 398,58

LSTM Keras 2384,69 1618,62 346,88 398,48 366,92

RF Scikit-learn 3176,08 1174,21 376,44 549,81 463,62

GRU Keras 3634,52 1996,45 343,19 393,70 360,91

GBR Scikit-learn 4702,07 839,18 348,66 685,87 518,44

LSTM BigDL 6871,72 7790,67 367,15 396,67 377,25

GRU BigDL 10217,09 13353,00 355,26 417,16 378,49

(a) (b)

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

L
R

 S
ci

k
it

-l
ea

rn

R
T

 S
ci

k
it

-l
ea

rn

R
T

 M
ll

ib

G
B

R
 M

ll
ib

L
R

 M
ll

ib

M
L

P
 K

er
as

R
F

 M
ll

ib

JR
N

N
 K

er
as

L
S

T
M

 K
er

as

R
F

 S
ci

k
it

-l
ea

rn

G
R

U
 K

er
as

G
B

R
 S

ci
k
it

-l
ea

rn

L
S

T
M

 B
ig

D
L

G
R

U
 B

ig
D

L

T
im

e
(s

)

Best Average

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

G
R

U
 K

er
as

L
S

T
M

 K
er

as

L
S

T
M

 B
ig

D
L

G
R

U
 B

ig
D

L

M
L

P
 K

er
as

JR
N

N
 K

er
as

L
R

 M
ll

ib

G
B

R
 M

ll
ib

R
F

 S
ci

k
it

-l
ea

rn

R
F

 M
ll

ib

R
T

 S
ci

k
it

-l
ea

rn

R
T

 M
ll

ib

G
B

R
 S

ci
k
it

-l
ea

rn

L
R

 S
ci

k
it

-l
ea

rn

R
M

S
E

Best Worst Average

M.C. Pegalajar et al / 15

Figure 5. Summary of the a) running time in seconds and b) the corresponding RMSE for each model.

What is striking in Table 6 and Figure 5 is the rapid response of the Scikit-learn’s LR. On average, it takes less

than a minute for a 660378-instances training set. This is as a consequence of the SGD optimiser which is extremely

fast in problems with more than 10000 samples. Nevertheless, this algorithm provides one of the worst results,

being the second last, although its predictions remain relatively good. On the other hand, those algorithms that take

longer are the BigDL ones. On average, LSTM took approximately 2 hours and GRU 4 hours. By contrast, these

two techniques ranked the third and fourth position in terms of error as can be seen in Figure 5b.

6. Conclusions

This work proposed the implementation of different regression models to predict the Spanish electricity demand.

To deal with this problem, a wide variety of models and experiments have been developed. The present results are

significant in all the cases as they achieved better prediction than the one estimated by the Spanish Electricity

Network. In the worst case our models attained an error 12% better than the SEN, up to a 37% in the best case. The

results showed that Keras’ neural networks were the best models, in particular those with GRU and LSTM units.

By contrast, LR turned out to be the one with highest error but it was the fastest algorithm using the SGD optimizer;

it took 0,89 seconds on average. However, LR in MLlib needed more time than the Scikit-learn version, although

its accuracy was better. In terms of ANN, MLP was the fastest neural network and obtained an acceptable error.

On the other hand, ensemble algorithms (GBR and RF) in Scikit-learn reported to be more accurate than MLlib’s

version.

Finally, research questions that could be asked include hyper-parameters tuning and multi-step predictions using

recurrent neural networks, that is to say, multiple estimations at once using the same window. Regarding hyper-

parameters, we conducted our experiments using the classical trial and error to find the best ones, however, we can

find other modern approaches [49] in the literature that we recommend adopting in future works like the

optimisation algorithm inspired by the COVID-19 [50]. Additionally, implementing more complex architectures

may be an interesting improvement in terms of accuracy.

7. Acknowledgments

This work has been developed with the support of the Department of Computer Science and Artificial Intelligence

of the University of Granada, TIC111.

8. Abbreviations

ANN Artificial Neural Network

M.C. Pegalajar et al./ 16

ARIMA Autoregressive Integrated Moving Average

DM Data Mining

ED Electricity Demand

GBR Gradient Boosting Regression

GM Grey Model

GRU Gated Recurrent Unit

JRNN Jordan Recurrent Neural Network

kNN k Nearest Neighbours

LoR Logistic Regression

LR Linear Regression

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

MLP Multi-Layer Perceptron

MRE Mean Relative Error

RF Random Forest

RMSE Root Mean Square Error

RNN Recurrent Neural Networks

RT Regression Tree

SEN Spanish Electricity Network

SVM Support Vector Machine

9. Bibliography

1. Rahul, K., et al., Machine Learning Algorithms for Big Data Analytics, in Computational Methods and

Data Engineering. 2020, Springer. p. 359-367. [http://link.springer.com/book/10.1007%2F978-981-15-

6876-3#about]

2. Services, D.A., Data Science and Machine Learning Market Study. Wisdom of Crowds' Series, 2019.

[http://gumroad.com/l/dTfno]

3. Martínez-Álvarez, F., et al., A Survey on Data Mining Techniques Applied to Electricity-Related Time

Series Forecasting. Energies, 2015. 8(11). [http://dx.doi.org/10.3390/en81112361]

4. Li, J.H., et al., Effects of light-emitting diodes under capped daily energy consumption with

combinations of electric power and photoperiod on cultivation of Chlorella pyrenoidosa. Bioresource

Technology, 2016. 205: p. 126-132. [http://dx.doi.org/10.1016/j.biortech.2016.01.041]

5. Rueda, R., et al., An Ant Colony Optimization approach for symbolic regression using Straight Line

Programs. Application to energy consumption modelling. International Journal of Approximate

Reasoning, 2020. 121: p. 23-38. [http://dx.doi.org/10.1016/j.ijar.2020.03.005]

6. Alvarez, F.M., et al., Energy Time Series Forecasting Based on Pattern Sequence Similarity. IEEE

Transactions on Knowledge and Data Engineering, 2011. 23(8): p. 1230-1243.

[http://dx.doi.org/10.1109/TKDE.2010.227]

http://link.springer.com/book/10.1007%2F978-981-15-6876-3#about
http://link.springer.com/book/10.1007%2F978-981-15-6876-3#about
http://gumroad.com/l/dTfno
http://dx.doi.org/10.3390/en81112361
http://dx.doi.org/10.1016/j.biortech.2016.01.041
http://dx.doi.org/10.1016/j.ijar.2020.03.005
http://dx.doi.org/10.1109/TKDE.2010.227

 M.C. Pegalajar et al / 17

7. Lin, C., et al., A Wearable Sensor Module With a Neural-Network-Based Activity Classification

Algorithm for Daily Energy Expenditure Estimation. IEEE Transactions on Information Technology in

Biomedicine, 2012. 16(5): p. 991-998. [http://dx.doi.org/10.1109/TITB.2012.2206602]

8. Eseye, A.T., et al., Machine Learning Based Integrated Feature Selection Approach for Improved

Electricity Demand Forecasting in Decentralized Energy Systems. IEEE Access, 2019. 7: p. 91463-

91475. [http://dx.doi.org/10.1109/ACCESS.2019.2924685]

9. Ruiz, L.G.B., et al., Energy consumption forecasting based on Elman neural networks with evolutive

optimization. Expert Systems with Applications, 2018. 92(Supplement C): p. 380-389.

[http://dx.doi.org/10.1016/j.eswa.2017.09.059]

10. Galicia, A., et al. Scalable Forecasting Techniques Applied to Big Electricity Time Series. 2017. Cham:

Springer International Publishing. [http://dx.doi.org/10.1007/978-3-319-59147-6_15]

11. Torres, J.F., et al., A scalable approach based on deep learning for big data time series forecasting.

Integrated Computer-Aided Engineering, 2018. 25: p. 335-348. [http://dx.doi.org/10.3233/ICA-180580]

12. Galicia, A., et al., Multi-step forecasting for big data time series based on ensemble learning.

Knowledge-Based Systems, 2019. 163: p. 830-841.

[http://dx.doi.org/https://doi.org/10.1016/j.knosys.2018.10.009]

13. Hossen, T., et al. Short-term load forecasting using deep neural networks (DNN). in 2017 North

American Power Symposium (NAPS). 2017. [http://dx.doi.org/10.1109/NAPS.2017.8107271]

14. Blázquez, L., N. Boogen, and M. Filippini, Residential electricity demand in Spain: New empirical

evidence using aggregate data. Energy Economics, 2013. 36: p. 648-657.

[http://dx.doi.org/10.1016/j.eneco.2012.11.010]

15. Pérez-García, J. and J. Moral-Carcedo, Analysis and long term forecasting of electricity demand trough

a decomposition model: A case study for Spain. Energy, 2016. 97: p. 127-143.

[http://dx.doi.org/10.1016/j.energy.2015.11.055]

16. Al-Musaylh, M.S., et al., Short-term electricity demand forecasting with MARS, SVR and ARIMA

models using aggregated demand data in Queensland, Australia. Advanced Engineering Informatics,

2018. 35: p. 1-16. [http://dx.doi.org/10.1016/j.aei.2017.11.002]

17. Akay, D. and M. Atak, Grey prediction with rolling mechanism for electricity demand forecasting of

Turkey. Energy, 2007. 32(9): p. 1670-1675. [http://dx.doi.org/10.1016/j.energy.2006.11.014]

18. Erdogdu, E., Electricity demand analysis using cointegration and ARIMA modelling: A case study of

Turkey. Energy Policy, 2007. 35(2): p. 1129-1146. [http://dx.doi.org/10.1016/j.enpol.2006.02.013]

19. Wang, Y., et al., Application of residual modification approach in seasonal ARIMA for electricity

demand forecasting: A case study of China. Energy Policy, 2012. 48: p. 284-294.

[http://dx.doi.org/10.1016/j.enpol.2012.05.026]

20. Zhu, S., et al., A seasonal hybrid procedure for electricity demand forecasting in China. Applied

Energy, 2011. 88(11): p. 3807-3815. [http://dx.doi.org/10.1016/j.apenergy.2011.05.005]

21. Bao, G., et al., Hybrid Short-term Load Forecasting Using Principal Component Analysis and MEA-

Elman Network, in Intelligent Computing Methodologies: 12th International Conference, ICIC 2016,

Lanzhou, China, August 2-5, 2016, Proceedings, Part III, D.-S. Huang, K. Han, and A. Hussain, Editors.

2016, Springer International Publishing: Cham. p. 671-683. [http://dx.doi.org/10.1007/978-3-319-

42297-8_62]

22. Xie, Y. and Q. Weng, Detecting urban-scale dynamics of electricity consumption at Chinese cities using

time-series DMSP-OLS (Defense Meteorological Satellite Program-Operational Linescan System)

nighttime light imageries. Energy, 2016. 100: p. 177-189.

[http://dx.doi.org/10.1016/j.energy.2016.01.058]

23. Qin, S., et al., A hybrid model based on smooth transition periodic autoregressive and Elman artificial

neural network for wind speed forecasting of the Hebei region in China. International Journal of Green

Energy, 2016. 13(6): p. 595-607. [http://dx.doi.org/10.1080/15435075.2014.961462]

24. Douthitt, R.A., An economic analysis of the demand for residential space heating fuel in Canada.

Energy, 1989. 14(4): p. 187-197. [http://dx.doi.org/10.1016/0360-5442(89)90062-5]

http://dx.doi.org/10.1109/TITB.2012.2206602
http://dx.doi.org/10.1109/ACCESS.2019.2924685
http://dx.doi.org/10.1016/j.eswa.2017.09.059
http://dx.doi.org/10.1007/978-3-319-59147-6_15
http://dx.doi.org/10.3233/ICA-180580
http://dx.doi.org/https:/doi.org/10.1016/j.knosys.2018.10.009
http://dx.doi.org/10.1109/NAPS.2017.8107271
http://dx.doi.org/10.1016/j.eneco.2012.11.010
http://dx.doi.org/10.1016/j.energy.2015.11.055
http://dx.doi.org/10.1016/j.aei.2017.11.002
http://dx.doi.org/10.1016/j.energy.2006.11.014
http://dx.doi.org/10.1016/j.enpol.2006.02.013
http://dx.doi.org/10.1016/j.enpol.2012.05.026
http://dx.doi.org/10.1016/j.apenergy.2011.05.005
http://dx.doi.org/10.1007/978-3-319-42297-8_62
http://dx.doi.org/10.1007/978-3-319-42297-8_62
http://dx.doi.org/10.1016/j.energy.2016.01.058
http://dx.doi.org/10.1080/15435075.2014.961462
http://dx.doi.org/10.1016/0360-5442(89)90062-5

 M.C. Pegalajar et al./ 18

25. Zahedi, G., et al., Electricity demand estimation using an adaptive neuro-fuzzy network: A case study

from the Ontario province – Canada. Energy, 2013. 49: p. 323-328.

[http://dx.doi.org/10.1016/j.energy.2012.10.019]

26. Farhat, A.A.M. and V.I. Ugursal, Greenhouse gas emission intensity factors for marginal electricity

generation in Canada. International Journal of Energy Research, 2010. 34(15): p. 1309-1327.

[http://dx.doi.org/10.1002/er.1676]

27. Yang, X., F. Yu, and W. Pedrycz, Long-term forecasting of time series based on linear fuzzy

information granules and fuzzy inference system. International Journal of Approximate Reasoning, 2017.

81: p. 1-27. [http://dx.doi.org/10.1016/j.ijar.2016.10.010]

28. Sadaei, H.J., et al., Short-term load forecasting method based on fuzzy time series, seasonality and long

memory process. International Journal of Approximate Reasoning, 2017. 83: p. 196-217.

[http://dx.doi.org/10.1016/j.ijar.2017.01.006]

29. Wijaya, T.K., T. Ganu, and D. Chakraborty, Consumer segmentation and knowledge extraction from

smart meter and survey data. Proceedings of the 2014 International Conference on Data Mining, 2014:

p. 226-234. [http://dx.doi.org/10.1137/1.9781611973440.26]

30. Ruiz, L.G.B., M.I. Capel, and M.C. Pegalajar, Parallel memetic algorithm for training recurrent neural

networks for the energy efficiency problem. Applied Soft Computing, 2019. 76: p. 356-368.

[http://dx.doi.org/10.1016/j.asoc.2018.12.028]

31. Network, S.E., Spanish Electricity Demand in real-time. 2020. [http://demanda.ree.es/visiona/home]

32. Saber, A.Y. and A.K.M.R. Alam. Short term load forecasting using multiple linear regression for big

data. in 2017 IEEE Symposium Series on Computational Intelligence (SSCI). 2017.

[http://dx.doi.org/10.1109/SSCI.2017.8285261]

33. El Mouatasim, A., Simple and Multi Linear Regression Model of Verbs in Quran. American Journal of

Computational Mathematics, 2018. 8(1): p. 68-77. [http://dx.doi.org/10.4236/ajcm.2018.81006]

34. Liu, J. and Y. Li, Study on environment-concerned short-term load forecasting model for wind power

based on feature extraction and tree regression. Journal of Cleaner Production, 2020. 264: p. 121505.

[http://dx.doi.org/10.1016/j.jclepro.2020.121505]

35. Upadhya, S.S. and A.N. Cheeran, Performance Comparison of Regression Techniques In Predicting

Parkinson Disease Severity Score Using Speech Features. Biomedical Engineering: Applications, Basis

and Communications, 2018. 30(04): p. 1850025. [http://dx.doi.org/10.4015/s1016237218500254]

36. Sboev, A., et al., Evaluation of the Cardiovascular Risk in Middle-aged Workers: An Artificial Neural

Networks-based Approach. Procedia Computer Science, 2016. 80: p. 2418-2422.

[http://dx.doi.org/10.1016/j.procs.2016.05.540]

37. Punmiya, R. and S. Choe, Energy Theft Detection Using Gradient Boosting Theft Detector With Feature

Engineering-Based Preprocessing. IEEE Transactions on Smart Grid, 2019. 10(2): p. 2326-2329.

[http://dx.doi.org/10.1109/TSG.2019.2892595]

38. Lahouar, A. and J. Ben Hadj Slama, Day-ahead load forecast using random forest and expert input

selection. Energy Conversion and Management, 2015. 103: p. 1040-1051.

[http://dx.doi.org/10.1016/j.enconman.2015.07.041]

39. Umematsu, T., et al. Improving Students' Daily Life Stress Forecasting using LSTM Neural Networks. in

2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). 2019.

[http://dx.doi.org/10.1109/BHI.2019.8834624]

40. Siami-Namini, S. and A.S. Namin, Forecasting economics and financial time series: ARIMA vs. LSTM.

arXiv preprint, 2018. [http://arxiv.org/abs/1803.06386]

41. Davis, A., et al., Neural attention mechanisms for malware analysis. 2017, Google Patents.

[http://patents.google.com/patent/US9705904B1/en]

42. Lee, K., et al. CNN and GRU combination scheme for Bearing Anomaly Detection in Rotating

Machinery Health Monitoring. in 2018 1st IEEE International Conference on Knowledge Innovation

and Invention (ICKII). 2018. [http://dx.doi.org/10.1109/ICKII.2018.8569155]

http://dx.doi.org/10.1016/j.energy.2012.10.019
http://dx.doi.org/10.1002/er.1676
http://dx.doi.org/10.1016/j.ijar.2016.10.010
http://dx.doi.org/10.1016/j.ijar.2017.01.006
http://dx.doi.org/10.1137/1.9781611973440.26
http://dx.doi.org/10.1016/j.asoc.2018.12.028
http://demanda.ree.es/visiona/home
http://dx.doi.org/10.1109/SSCI.2017.8285261
http://dx.doi.org/10.4236/ajcm.2018.81006
http://dx.doi.org/10.1016/j.jclepro.2020.121505
http://dx.doi.org/10.4015/s1016237218500254
http://dx.doi.org/10.1016/j.procs.2016.05.540
http://dx.doi.org/10.1109/TSG.2019.2892595
http://dx.doi.org/10.1016/j.enconman.2015.07.041
http://dx.doi.org/10.1109/BHI.2019.8834624
http://arxiv.org/abs/1803.06386
http://patents.google.com/patent/US9705904B1/en
http://dx.doi.org/10.1109/ICKII.2018.8569155

M.C. Pegalajar et al / 19

43. Goodfellow, I., et al., Deep learning. Vol. 1. 2016: MIT press Cambridge.

[http://synapse.koreamed.org/upload/SynapseData/PDFData/1088HIR/hir-22-351.pdf]

44. Malleswaran, M., V. Vaidehi, and N. Sivasankari, A novel approach to the integration of GPS and INS

using recurrent neural networks with evolutionary optimization techniques. Aerospace Science and

Technology, 2014. 32(1): p. 169-179. [http://dx.doi.org/10.1016/j.ast.2013.09.011]

45. Pérez-Chacón, R., et al., Big data time series forecasting based on pattern sequence similarity and its

application to the electricity demand. Information Sciences, 2020. 540: p. 160-174.

[http://dx.doi.org/https://doi.org/10.1016/j.ins.2020.06.014]

46. Zheng, B., et al. A Hybrid Machine Learning Model for Range Estimation of Electric Vehicles. in 2016

IEEE Global Communications Conference (GLOBECOM). 2016.

[http://dx.doi.org/10.1109/GLOCOM.2016.7841506]

47. Sutheebanjard, P. and W. Premchaiswadi. Stock Exchange of Thailand Index Prediction Using Back

Propagation Neural Networks. in 2010 Second International Conference on Computer and Network

Technology. 2010. [http://dx.doi.org/10.1109/ICCNT.2010.21]

48. Kasuya, E., On the use of r and r squared in correlation and regression. Ecological Research, 2019.

34(1): p. 235-236. [http://dx.doi.org/10.1111/1440-1703.1011]

49. Torres, J.F., et al., Deep Learning for Time Series Forecasting: A Survey. Big Data, 2020.

[http://dx.doi.org/10.1089/big.2020.0159]

50. Martínez-Álvarez, F., et al., Coronavirus Optimization Algorithm: A Bioinspired Metaheuristic Based

on the COVID-19 Propagation Model. Big Data, 2020. 8(4): p. 308-322.

[http://dx.doi.org/10.1089/big.2020.0051]

http://synapse.koreamed.org/upload/SynapseData/PDFData/1088HIR/hir-22-351.pdf
http://dx.doi.org/10.1016/j.ast.2013.09.011
http://dx.doi.org/https:/doi.org/10.1016/j.ins.2020.06.014
http://dx.doi.org/10.1109/GLOCOM.2016.7841506
http://dx.doi.org/10.1109/ICCNT.2010.21
http://dx.doi.org/10.1111/1440-1703.1011
http://dx.doi.org/10.1089/big.2020.0159
http://dx.doi.org/10.1089/big.2020.0051

