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A B S T R A C T 

Electricity demand is shown to steadily increase in the last few years, and it is one of the 

key aspects of living standards and quantifying welfare effects. However, the 

irregularity of electricity demand is one of the main problems in this field. Therefore, it 

is important to accurately anticipate future expenditures in order to optimize energy 

generation and to avoid unexpected wastes. As a result, we developed Machine Learning 

models to predict electricity demand. In particular, our study has been performed using 

data of the Spanish Electricity Network from 2007 to 2019. To this end, we propose the 

implementation of a set of Machine Learning techniques using various frameworks. In 

particular, we implemented six different prediction models: Linear Regression, 

Regression Trees, Gradient Boosting Regression, Random Forests, Multi-layer 

Perceptron, and three types of recurrent neural networks. Our experimentation shows 

promising results in all cases, since our models provides better prediction than the one 

estimated by the Spanish Electricity Network with an improvement of 12% in the worst 

case and up to 37% for the best predictor, which turned out to be the Gated Recurrent 

Unit neural network. 
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1. Introduction

During the last two decades, Machine Learning (ML) has become a key tool in Information Technology and 

consequently a core of our daily life. At the present time, ML is one of the most used and in-demand technologies 

of the developing world [1]. According to the «2019 Data Science and Machine Learning Market Study» report 
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[2], data mining [3], advanced algorithms and predictive analytics are ranked one of the most priority projects in 

business and IT departments.  

ML methods have recently contributed to the advancement of forecasting models in order to enhance certain 

aspects of our daily life [4-6]. As an example, a neural-based classifier can be found in [7] to categorize activities 

with similar levels and build energy expenditure estimations in order to optimize performance. This study employed 

radial basis function (RBFN) and generalised regression neural networks (GRNN). But this is merely an instance 

of many solutions to many other energy-related fields such as ours, electricity demand (ED).  

The use of ML models in the electricity realm have shown to highly improve accuracy, robustness and precision 

with regard to the conventional tools for ED [8] which is key factor for economic and efficient consumption 

expenditure.  

The ED problem lies within the category of time series in the ML scope. In essence, a time-series is a discrete 

sequence of data points in time [9]. In this study, we focus on the electricity demand, specifically the Spanish 

territory. These data will be provided to a ML model so as to predict forthcoming consumption using previous 

values. To do so, we combined ML and time-series techniques. More specifically, we implemented linear 

regression, regression tree, gradient boosting regression, random forest, multilayer perceptron, long short-term 

memory neural networks, gated recurrent unit and the Jordan artificial neural network.  

The main target of this work is to compare different regression methods to predict electric demand in Spain. 

Once making these predictions, several metrics will be obtained. Accordingly, we propose the following tasks to 

attain this goal: 1) data acquisition, 2) cleaning and preprocessing, 3) exploratory analysis, 4) forecasting modelling 

and 5) comparison and validation of the results.  

The ED problem in Spain using time-series has previously been studied by other authors in literature, although 

their approach has several and significant differences with respect to our proposal. The following lines detail the 

former studies of ED, with special emphasis on those studies which dealt within the Spanish context.  

The first manuscript about this subject can be found in [10]. The authors introduce some scalable methods to 

predict long-lasting ED time-series in Spain. They suggest Apache Spark framework for distributed computation 

to accomplish scalability in forecasting methods. Besides, they used MLlib as a machine learning library to 

implement their models. However, the main MLlib’s drawback is that it does not allow multivariable regression 

which is the main problem of their solution. As a consequence, the authors divided the problem into ℎ sub-

problems, where ℎ stands for the number of future steps to compute. They adopted two tree-based techniques of 

different underlying approach: Gradient-Boosted Trees and Random Forests. In addition, they proposed the use of 

a Linear Regression method as a reference technique to validate the results. Two metrics were utilized to compare 

the models: Mean Relative Error (MRE) and Mean Absolute Percentage Error (MAPE). 

The second most important study was done by the same authors [11]. This paper introduces a deep learning 

method to address the problem of big data time-series prognosis [12]. Authors utilized a feed-forward artificial 

neural network from the H2O framework and the Apache Spark platform to arrange computation in a distributed 

manner. H2O presents the same problem found in [10], this framework does not allow the implementation of multi-

step regression. As a result, the authors elaborated a general-purpose methodology for time-series prediction 

regardless of the horizon’s length. Similarly, the solution consists of solving several forecasting sub-problems 
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according to how many values are going to be predicted. Therefore, the best model was obtained simultaneously, 

easing its parallelisation and adaptation to Big Data frameworks.  

Some studies endeavour to predict electric load for resources planning as it is a useful task to enhance efficiency 

in Smart grids. This is straightforward in the case of Hossen et al. [13] who proposed a multi-layered deep neural 

network to estimate the Spanish electric market. They implemented a TensorFlow model taking into account the 

MAPE metric for testing weekday and weekend variations. They achieved significant saving with their solution. 

Blázquez et al.’s research [14] illustrates this point clearly. They analysed the residential demand for electricity in 

Spain for 47 Spanish provinces and they computed a demand equation for electricity expenditure using a dynamic 

partial adjustment technique. With their proposal they managed to highlight some of the features of Spanish ED. 

Similarly, Pérez and Moral [15] presented a method for ED analysis using a simple growth rate decomposition. 

They recommend their method as a starting point for long-term prognosis, and they use Spain as a case study to 

compute demand estimations until 2030.  

Other techniques have been tested to predict ED in other countries. In a similar case in Australia, Al-Musaylh 

et al. [16] adopted multivariate adaptive regression spline, SVM and autoregressive integrated moving average 

(ARIMA) models to predict short-term ED with a 24-h horizon. One can find Grey Models (GM) applied to forecast 

electricity supply in Turkey [17] where, due to the economic uncertainty, electricity usage shows a chaotic and 

nonlinear trend. To solve this problem, the authors suggest predicting electricity consumption through the 

combination of grey predictions and a rolling mechanism, and their solution proved to be more accurate than the 

model implemented so far. Another interesting research done for Turkey was made by Erdogdu [18] who 

incorporated ARIMA modelling to co-integration analysis. China [19-23] and Canada [24-26] also present some 

investigations in this field, such as a neuro-fuzzy approach [25, 27, 28] or other hybrid solutions [20, 21, 23] using 

neural networks and classic methods.  

As discussed above, there are research works in literature where the ED has been studied in many contexts [8, 

13-15, 29], e.g., in Spain [10, 11] as in the case of this research. Most of them have developed big data-oriented

solutions using classic regression methods or even multi-layer perceptron neural networks. 

In contrast to the former studies, this work mainly introduces Recurrent Neural Networks (RNN) [30] in both 

its original version and its big data-oriented version using Spark, along with classic regression methods in its 

original version. These methods will be compared with the ones implemented in the aforementioned studies. Hence 

the final goal of this study is to analyse the most suitable approach for ED in Spain considering several metrics. 

The rest of the paper is structured as follows: the proposed methodology is detailed in section 2; section 3 

introduces all the experimentation carried out; the next point 4 focuses on describing the results; a discussion about 

the outcomes obtained is detailed in section 5; and finally section 6 compiles the conclusions achieved from this 

research.  
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2. Methodology 

The current research was developed in three main stages: First, data collection and pre-processing. Second, 

modelling of the problem and implementation of the proposed models. And finally, validation and analysis of the 

results. 

2.1. Dataset 

The dataset used in this work was obtained from the Spanish Electricity Network (SEN) [31]. The official website 

offers several elements that can be used to extract information from the Spanish ED, such as, a calendar to select a 

specific day of the ED, a graph for daily demand visualization, a data table to extract the numerical information, 

accumulated demand from diverse sources of electric energy and the selection of the electric system to be displayed.  

In the context of this piece of research, we focus on the first and second tab which provide the data needed for 

this work. More specifically, we use the following information: date (day and hour), actual (concerning the actual 

ED at the moment), expected ED (the forecasted ED made by the Spanish Electric Network) and scheduled (this 

stands for the operational time schedule, i.e., the planned production). All these values are provided in megawatts, 

and cover a timeline ranging comes from 2007 to 2019. Figure 1a shows all the data over the years and Figure 1b 

the corresponding histogram which provides information about how common are the values we can find in this ED 

time-series. From these graphs, we can see how the minimum would be about 15000 and the maximum would be 

around 45000. Moreover, as can be seen in these figures, the data are arranged close to the mean.  

Year

  

(a) (b) 

Figure 1. Illustration of a) the Spanish Electricity Demand and b) its corresponding histogram from 2007 to 2019. 

In order to detect outliers, we will display the whole time-series in the same graph and we will do the same for 

splitting the data into years. This was illustrated in Figure 2a and b respectively. The first plot exhibits some outliers 

in the top part of the boxplot. These points are fairly close to the maximum which stands for 𝑄3 + 1.5 ∙ 𝐼𝑄𝑅 as a 

consequence we can conclude that they may not be such outliers. And this hypothesis can be supported if we see 
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the second chart. Figure 2b does not display any outliers. What we can tell from these figures is that the lowest 

points remain quite stable, and the maximum demand slightly decreases. 

 

  

(a) (b) 

Figure 2. Boxplot of the Electricity Demand for a) the whole period (from 2007 to 2019) and b) each year. 

2.2. Preprocessing 

After obtaining the Spanish ED data, a preprocessing stage is needed to clean data. The first problem is rather 

straightforward as there are records that appears more than once, i.e., we have redundant information because of 

the repeated records. This can be seen from the official website of the Electricity Network at first glance. Another 

important problem but less obvious is missing values, i.e., there are empty rows, for example.  

As a result, our first labour is to solve the problem of duplicate information. To this end, we must consider the 

following: the data of the ED is in a 10-minutes basis from 21h of the previous day until 03:50 of the next day. 

This means that there are 18 values of the previous day, 144 values of the present day and 24 values of the next 

day. 

Accordingly, a regular year ought to have 52560 rows, and a leap year should have 52704 values. In our case, 

we have 3 leap years, 2008, 2012 and 2016. It is important to note that we only extracted data until July 22nd, 2019, 

which is the 203rd day of the year. Hence, after pre-processing and cleaning the data, one can check the number of 

rows per year, and we can compare the theoretical values and the actual ones.  

Furthermore, some records are empty. To handle this problem, we carried out the called missing-data imputation. 

First of all, we counted the number of missing items in every column. Only three years (2007, 2008 and 2015) had 

no data values stored for some of the variables in observation. Since we have three fairly correlated variables, we 

can utilize this extra information to employ a method such as the k Nearest Neighbours (kNN) to compensate for 

these values. Provided an instance with at least one of the ED values, one may compute the closest row to complete 

its empty registers. Finally, once these steps have been completed, we have three univariate time-series according 

to the «actual», «expected» and «scheduled» electricity demand. In this work context, we mainly focus on the 

«actual» demand for modelling. Nonetheless, the rest of the columns will be used to compare and validate our 

results. Additionally, the data were deseasonalised and detrended. We normalised the data and applied a sliding 

window (see Figure 3) to compute future values, modelling thus a one-step-ahead prediction. After that, the models 
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were applied to these pre-processed data. Note that errors are calculated after applying all these steps in reverse 

order, i.e., after de-normalisation and re-trending predictions.  

y(t)

t

Window

y(t)

t

Window

 

Figure 3. Representation of the sliding window used to preprocess the data. 

2.3. Technologies 

This section is intended to briefly describe the required methods for the ED forecasting, which include the Linear 

Regression (LR), Regression Tree (RT), Gradient Boosting Regression (GBR), Random Forest (RF) and Multi-

Layer Perceptron (MLP), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) and the Jordan 

Recurrent Neural Network (JRNN).  

LR is a statistical method that is widely used for analysis and prediction in the electricity field, amongst others 

[32]. It has been employed to estimate unknown values using other related variables, also called factors. In this 

technique, the scalar response is known as a dependent variable, and the rest of them, used for modelling, are 

identified as independent variables. LR attempts to model relationships between variables by fitting a linear 

equation to collected data [33].  

The second method is one of the most popular ML algorithms due to their simplicity and intelligibility [34]. 

This predictive model is also used in statistics, along with data mining and ML. It employs a ramified structure to 

go from observations to conclusions regarding a specific item. The former is commonly called leaves. This method 

follows a set of splitting rules to divide the predictor variable. It distributes the input into different parts and assigns 

an estimated value to every region [35].  

Thirdly, Gradient Boosting for Regression (GBR) builds an additive predictor in a forward stage-wise manner. 

In this fashion, GBR optimises the arbitrary differentiable loss function. In each phase, multiclass RTs fit on the 

negative gradient of the binomial or multinomial deviance loss function [36]. This tree ensemble technique is 

frequently a set of RT known as CART. It is also called like that as it uses a gradient descent algorithm to minimise 

loss when adding new RTs [37]. 
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A similar model is Random Forest (RF). This technique is often combined with regression analysis to perform 

different kinds of prediction, e.g., short-term [34]. It is characterized by feature selection and is an important 

extension and evolution of bagging algorithms for ensemble learning, i.e., it is a compound of several individual 

predictors, specifically RT. However, the bottom line of this model is how it splits training data into different 

samples of the same size after that a particular RT fits them. This sample is called bootstrap and may be chosen 

several times [38].  

Another technique used is the Artificial Neural Network (ANN) [9, 13, 23, 30, 36, 39]. In this study, we 

implemented four kinds of ANNs. The most common is the Multi-Layer Perceptron (MLP) which is a kind of 

feedforward ANN. MLP is made of at least three layers of nodes, also called neurons: an input, hidden and output 

layer. Each node employs a nonlinear activation function but for the input layer, this allows them to model 

nonlinearity in data.  

On the other hand, LSTM has turned out as one of the most popular ANN for sequence data processing. The 

idea behind LSTM is to memorise the past outputs in memory and use them for successive predictions. This 

learning of past trends is possible due to some gates together with a memory line added in this model [40]. To do 

so, LSTM has three gates: input, output and forget. 

Prior to explaining the next model, it becomes necessary to briefly introduce the concept of Recurrent Neural 

Network (RNN). RNNs are a type of artificial neural networks that not only takes the current input values but also 

it uses previous states of the neuron. Since the recurrent units have information about past values, this makes it 

possible to provide them with memory, and thus, enabling the model to handle information over time [41]. 

In contrast, Gated Recurrent Unit (GRU) is a class of ANN with two gates: reset and update. The function of 

the first ones is very similar to forget gates in LSTM, which were designed to give the memory cells ability to 

determine when to delete certain knowledge [42]. GRU was proposed as a simplification of LSTM and produce 

equally excellent results [43]. For that reason, we implemented this model as well. 

Lastly, a simpler version of those recurrent neural networks previously mentioned was developed, the Jordan 

Recurrent Neural Network (JRNN). JRNN extends the MLP with context units in which the output of the network 

is stored. There is another version where the values of the hidden neurons are saved instead of the output in the 

context units, in that case, it would be the Elman neural network [9]. These units provide the network with the 

ability to extract temporal information from historical data in both cases[44]. In this work we will implement the 

JRNN. 

As we mentioned before, we conducted a study using both Big Data and normal implementations of the 

algorithms in order to compare their performance. In many studies, the Big Data approach has contributed to 

improving the original algorithm concerning the accuracy in terms of prediction and its scalability [45]. It should 

be noted that a Big Data solution will provide us a framework to model process big data time series. At this point, 

a single-core approach is not enough and it becomes necessary to distribute the data and its processing across 

multiple structures using, for example, a cluster of machines.  

 



 M.C. Pegalajar et al./ 8 

3. Experiments 

This section attempts to explain the experimentation carried out in this study. It was done using an Intel Core i5-

4460 3.20 GHz (4 cores), 8GB RAM, Nvidia GeForce GTX 970, 1TB HDD and 250 GB SSD. Even though the 

experiments were conducted using a PC, the four cores of the CPU and the available GPU were used to speed up 

the calculations. It consists of running multiple regression algorithms on the actual ED from 2007 and 2019. The 

dataset is made up of 660378 samples. The regression algorithms developed belong to standard scientific Python 

libraries to ease experimental replication, and more specifically Scikit-learn was used to implement classic 

regression algorithms. The classic regression algorithms adapted to Big Data were implemented with MLlib, Keras 

was used for neural networks and BigDL which provides ANN for Big Data problems using Spark. 

In particular, from Scikit-learn and MLlib we utilized LR, RT, GBR and RF. From Keras, MLP, the CUDA 

version of LSTM and GRU, and the JRNN. Lastly, we implemented the best models obtained by Keras on BigDL. 

We remark that the final goal of this experimentation is to verify what kind of algorithm would get the best 

results, that is to know if classic regression using Scikit-learn is better than the Big Data-oriented regression 

algorithms in MLlib, the Keras’ ANNs or the same ANNs oriented to Big Data in BigDL. 

To train the regression models, the dataset was divided into 70% training and 30% test. Besides, when 

implementing Keras’ models we set 30% of the training data as validation for early stopping. We would like to 

point out that imputation methods were implemented to remove missing values. These points should not be included 

in the performance assessment because these methods somehow forecast the missing values. Hence it is expected 

that the error for such values tends to 0. In our case, we found less than 0,2% missing values (only in 2007, 2008 

and 2015), for this reason, it will not influence our result and we can skip this step. Since we will implement the 

same models for Keras and BigDL, the same number of epochs was defined, i.e., if it takes ten epochs to train a 

model in Keras, it will take the same iterations in BigDL. 

Finally, we have yet to decide what metrics will be used to measure the algorithms’ performance. In our case, 

we adopted four metrics: 

Root Mean Square Error (RMSE) is a quadratic scoring rule that measures the average magnitude of the error 

between prediction and actual value [46] can be calculated as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑦𝑖

2 − �̂�𝑖

𝑛

𝑖=1
 (1)  

Where 𝑦𝑖  are the actual value, �̂�𝑖 the estimated value and 𝑛 the number of samples. The second metric is the 

Mean Absolute Error (MAE) which measures the average magnitude of the errors in estimations regardless of their 

direction. This metric means if individuals’ differences have the same weight in the average. It is defined in the 

next equation: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1
 (2)  

Both MAE and RMSE provide information about the average forecasting error in models according to the 

observed variable. They can vary between 0 and ∞ and do not consider the error’s direction. The lower value of 

the metrics, the better performance.  
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Mean Absolute Percentage Error (MAPE) is a statistical metric that gives information about the accuracy of the 

forecasting system. It expresses the error size in terms of percentage on actual observations. It is often employed 

in quantitative prediction methods as it provides a criterion of relative overall fit [47]. Its equation is detailed 

hereunder: 

𝑀𝐴𝑃𝐸 = 100 ∙
1

𝑛
 ∑

|𝑦𝑖 − �̂�𝑖|

𝑦𝑖

𝑛

𝑖=1
 (3)  

Finally, we adopted 𝑅2, also called coefficient of determination, for goodness of fit. It is the proportion of 

variation of the dependent variable explained by explanatory variables. It is commonly used to compute the strength 

of the relationship in regression [48]. It is defined as: 

𝑅2 =
𝑆𝑆𝑅𝐸𝑆

𝑆𝑆𝑇𝑂𝑇
= 1 −

∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖

∑ (�̅�𝑖 − �̂�𝑖)2𝑛
𝑖

 (4)  

Where �̅�𝑖 is the average of the actual values, 𝑆𝑆𝑅𝐸𝑆 is the residual sum of squares and 𝑆𝑆𝑇𝑂𝑇  the sum of squares 

of 𝑦.  

 

4. Results 

In this section, we present the results obtained by each regression algorithm implemented. Due to restrictions of 

paper length, names in tables were abbreviated and some experiments were summarised. For instance, diverse sizes 

of the sliding window were tested and we only present the results considering the last 4 hours. Tables provide 

information about mentioned metrics which are in common, all of them have a subscript 𝑡𝑟 or 𝑡𝑠, and stands for 

training and test, respectively.  

The remaining columns are explained together with the specific algorithm as they are particular for each method. 

We will not show all the experiments done, but we will focus our attention on the best ones amongst all the 

experiments. Additionally, in order to put together and compare all the models of the same package, we use 𝑃1, 𝑃2 

and 𝑃3 to name first, second or third parameter of the related model, respectively. We remark that not all the models 

have three parameters, in that case, the associated column would be empty. Table 1 condenses the best results 

drawn from the whole battery of experiments for every model implemented in Scikit-learn. The first column reveals 

the experiment number and for the corresponding model. The second column is the window size set for that model. 

And the two next columns stand for parameters of the different models. As mentioned before, each model has its 

parameters. In this way, LR was tested changing the number of iterations 𝑃1 and a hyper-parameter to compute the 

learning rate 𝑃2, keep in mind that our LR was implemented using the SGD optimiser, that is the reason why we 

adjusted a learning rate in the LR, in particular, this parameter is referring to the initial learning rate for the 

algorithm. In the case of RT, we tried different max depth of a tree. We varied the number of iterations for the 

boosting process and the maximum depth of the tree for GBR. Finally, RF was tested modifying the number of 

trees and its depth. 

Likewise, Table 2 gathers the best models using MLlib. LR’s parameters were the number of iterations and 

solver. In the later parameter, 0 stands for the normal equations solver and 1 for the limited-memory BFGS 
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algorithm. Finally, not to replicate the same information, notice that RT, GBR and RF have the same parameters 

as in Table 1. 

Table 1. Summary of the best results from experiments done using Scikit-learn models (Linear Regression, 
Regression Tree, Gradient Boosting and Random Forest) along with the time cost of each model. 

Exp. Tam P1 P2 RMSEtr RMSEts MAEtr MAEts MAPEtr MAPEts R2
tr R2

ts T 

LR 
1 288 50 0.015 328.7208 403.4494 227.3449 231.8432 0.8082 0.824 0.9958 0.9922 2 

2 288 25 0.015 329.9763 404.5972 229.1941 233.9346 0.8165 0.833 0.9958 0.9922 2 

3 288 100 0.015 334.0839 407.1911 232.2885 236.5412 0.8205 0.8361 0.9957 0.9921 2 
4 144 50 0.015 355.1405 416.0412 250.8365 244.4454 0.8769 0.8614 0.9951 0.9917 1 

5 144 100 0.015 355.675 416.3586 250.9605 244.3789 0.8774 0.8612 0.9951 0.9917 1 

RT 
1 144 8 - 312.2878 396.8069 224.8896 222.9741 0.7910 0.7901 0.9962 0.9925 48 

2 288 8 - 312.2577 397.5609 224.8609 223.1169 0.7909 0.7907 0.9962 0.9924 99 

3 120 8 - 312.8648 398.5422 225.2019 223.2643 0.7921 0.7916 0.9962 0.9924 40 
4 72 8 - 313.2506 399.1396 225.6909 223.8552 0.7941 0.7941 0.9962 0.9924 23 

5 96 8 - 313.1921 399.3416 225.6597 223.9009 0.7940 0.7942 0.9962 0.9924 31 

GBR 
1 288 40 8 253.6752 348.6612 186.8594 188.7435 0.6623 0.6727 0.9975 0.9942 4702 

2 144 40 8 258.0805 351.4701 189.8079 191.7291 0.6723 0.6826 0.9974 0.9941 2339 

3 120 40 8 262.3728 356.0402 192.7429 194.4626 0.6821 0.6926 0.9974 0.9939 1951 
4 96 40 8 264.2656 357.9789 194.2077 196.1796 0.6871 0.6984 0.9973 0.9939 1605 

5 72 40 8 265.7438 358.6482 195.4219 197.0673 0.6909 0.7012 0.9973 0.9938 1152 

RF 
1 144 100 8 294.6795 376.4441 209.961 205.7714 0.7390 0.7298 0.9967 0.9932 3176 

2 288 100 8 294.4902 377.095 209.6186 205.5481 0.7376 0.7287 0.9967 0.9932 6503 

3 288 50 8 294.5727 377.132 209.7827 205.7433 0.7383 0.7295 0.9967 0.9932 3254 
4 288 75 8 294.649 377.1894 209.8399 205.8385 0.7385 0.7299 0.9967 0.9932 4878 

5 144 75 8 295.0017 377.3911 210.1893 206.1736 0.7398 0.7312 0.9967 0.9932 2383 

Table 2. Summary of the best results from experiments done using MLlib. 

Exp. Tam P1 P2 RMSEtr RMSEts MAEtr MAEts MAPEtr MAPEts R2
tr R2

ts T 

LR 

1 288 100 0 255.0306 369.4993 174.369 190.4164 0.62 0.6749 0.9975 0.9935 384 
2 288 25 0 255.0306 369.4993 174.369 190.4164 0.62 0.6749 0.9975 0.9935 355 

3 288 50 0 255.0306 369.4993 174.369 190.4164 0.62 0.6749 0.9975 0.9935 380 

4 144 25 0 274.9256 378.6962 189.1822 197.0916 0.669 0.6993 0.9971 0.9931 182 
5 144 50 0 274.9256 378.6962 189.1822 197.0916 0.669 0.6993 0.9971 0.9931 205 

RT 

1 144 8 - 376.8794 418.1501 268.8565 254.7893 0.937 0.9018 0.9945 0.9916 181 
2 288 8 - 378.5353 424.1225 269.9844 255.4362 0.9431 0.9053 0.9945 0.9914 341 

3 120 8 - 380.4739 425.1294 271.7144 257.137 0.9477 0.9105 0.9944 0.9913 127 

4 96 8 - 380.838 427.4098 272.6688 259.1983 0.9512 0.9184 0.9944 0.9913 147 
5 72 8 - 383.8138 427.8019 272.3971 257.6613 0.9489 0.9127 0.9943 0.9912 90 

GBR 

1 144 40 8 306.4551 399.4531 229.6932 237.6845 0.8126 0.8443 0.9964 0.9924 237 
2 96 40 8 311.13 403.7587 232.6496 239.238 0.8185 0.8476 0.9963 0.9922 359 

3 288 20 8 317.7092 407.2906 237.5599 242.4186 0.84 0.8609 0.9961 0.9921 7142 

4 120 40 8 310.8609 407.5713 231.8135 239.8807 0.8137 0.8492 0.9963 0.992 707 
5 144 20 8 325.6915 407.9497 242.7346 244.9422 0.8577 0.8696 0.9959 0.992 464 

RF 

1 288 75 8 349.5005 382.0851 246.9499 229.4487 0.8622 0.8118 0.9953 0.993 815 
2 288 100 8 349.3008 382.4324 246.8709 229.3205 0.8622 0.8117 0.9953 0.993 1308 
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3 288 50 8 349.2775 382.5711 247.3814 229.8821 0.864 0.8135 0.9953 0.993 979 

4 144 100 8 343.0349 384.566 247.53 232.0862 0.8686 0.8222 0.9955 0.9929 492 
5 288 25 8 351.2803 384.6812 249.1063 231.7701 0.8706 0.8203 0.9953 0.9929 794 

In a third battery of experiments, we implemented MLP with several number of hidden layers (𝑃1) and number 

of neurons (𝑃2). In the LSTM, GRU and JRNN, the parameter tested was the corresponding specific units of each 

model.  

Table 3. Summary of the best results obtained from experiments done using Keras’ models (Multilayer-
Perceptron, Long Short-Term Memory, Gated Recurrent Unit and Jordan Neural Networks). 

Exp. Tam P1 P2 RMSEtr RMSEts MAEtr MAEts MAPEtr MAPEts R2
tr R2

ts T 

MLP             

1 144 2 40 273.4883 366.8139 192.9394 199.8251 0.6776 0.7052 0.9971 0.9936 729 

2 144 2 50 277.22 366.9591 195.4519 199.8721 0.6876 0.7094 0.997 0.9936 742 

3 144 2 60 271.242 367.0705 189.2467 195.643 0.6669 0.6929 0.9972 0.9935 893 

4 144 2 20 277.2662 368.7141 196.6498 202.1508 0.6938 0.716 0.997 0.9935 577 

5 96 2 30 276.7211 369.6037 195.4608 200.1907 0.6916 0.7103 0.9971 0.9935 576 
LSTM             

1 96 30 - 247.3151 346.8803 171.8198 185.4786 0.6066 0.6542 0.9976 0.9942 2384 

2 144 30 - 247.2373 348.2311 172.5325 185.4745 0.6108 0.6561 0.9976 0.9942 2610 
3 72 50 - 249.9496 350.3873 174.1121 187.5957 0.6158 0.6644 0.9976 0.9941 1565 

4 72 100 - 248.3313 351.7054 172.4375 184.6535 0.6099 0.6534 0.9976 0.9941 2143 

5 120 30 - 254.5565 352.8263 175.8142 184.4917 0.6215 0.6529 0.9975 0.994 2183 
GRU             

1 288 40 - 244.7777 343.1917 169.8666 180.3092 0.6013 0.6397 0.9977 0.9944 3634 

2 144 100 - 240.7929 344.1562 167.7567 180.5029 0.5944 0.6398 0.9978 0.9943 2529 
3 288 100 - 240.7945 345.815 167.1048 182.8581 0.5919 0.6479 0.9978 0.9943 3938 

4 144 40 - 244.2612 345.8154 169.2886 180.9368 0.5984 0.6397 0.9977 0.9943 2766 

5 120 40 - 248.4505 347.7254 172.7622 184.7305 0.6098 0.6542 0.9976 0.9942 2909 
JRNN             

1 96 30 - 295.62 394.2566 205.796 206.7689 0.7214 0.7301 0.9966 0.9926 1353 

2 120 30 - 295.2136 396.5362 205.5229 207.8183 0.7208 0.7341 0.9966 0.9925 831 
3 144 30 - 296.4874 396.8505 206.5011 209.4509 0.7267 0.7413 0.9966 0.9925 989 

4 120 40 - 296.4495 397.4892 206.107 209.0169 0.7248 0.7394 0.9966 0.9924 1246 

5 72 30 - 298.3369 397.9798 207.6403 209.9763 0.7296 0.7423 0.9966 0.9924 1035 

Finally, the last set of experiments was implemented in BigDL using those Keras’ models that achieved the best 

results according to the RMSE in test. As we detailed before, from each metric one can obtain different information. 

In our case, the benefit of adopting the RMSE as our reference metric is its assessment of the error magnitude and 

mean error is an indicator of error direction. Besides, RMSE avoids the absolute value and in doing so, one gets 

the prediction error on the same scale as the output. Furthermore, the other advantage of RMSE is that it punishes 

large errors, even if the domain is small so that it becomes useful when large errors are particularly undesirable. As 

can be seen, LSTM and GRU have similar outcomes and are the best ones. Additionally, we selected the best 3 

models of each version. These results can be seen in Table 4. 

Table 4. Summary of the three best Keras’ models implemented in BigDL. 

Exp. Tam P1 RMSEtr RMSEts MAEtr MAEts MAPEtr MAPEts R2
tr R2

ts T 

LSTM            

1 72 50 282.2352 367.148 200.7304 201.0771 0.7038 0.708 0.9969 0.9935 6871 

2 96 30 277.3078 367.9254 194.1528 197.6941 0.6844 0.7007 0.997 0.9935 7295 
3 144 30 315.2163 396.6689 228.2929 229.6589 0.7931 0.804 0.9962 0.9925 9206 

GRU            

1 120 40 275.4454 355.2604 191.1378 188.0946 0.6732 0.6668 0.9971 0.994 10217 
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2 144 40 282.3179 363.0405 198.9298 194.2289 0.7028 0.69 0.9969 0.9937 10579 

3 288 40 334.6737 417.159 252.542 240.9043 0.866 0.8504 0.996 0.9916 19263 

So far, we have introduced our experiments and results obtained. All these results are discussed in the following 

section. Additionally, since we have tested many models and representing all of them could be unfeasible, we 

presented in Figure 4 the best prediction obtained by the GRU neural network using a 288-point window size and 

40 units. This figure gathers the results of both daily and weekly predictions. 

Sample

Actual
Predicted

Actual
Predicted

Sample

(a) (b) 

Figure 4. Prediction of the best model obtained for a) a representative day and b) its corresponding week. 

5. Discussion

We focused our experimentation on implementing a wide range of models to predict the ED in Spain. The first step 

is to introduce how accurate the SEN forecasts the electricity demand in order to compare and validate our proposal. 

To do so, we can make use of the ‘expected’ column provided by the SEN in the website and compute our metrics. 

These results can be seen in Table 5. Bearing in mind this table, we can now contrast the implemented models of 

each package and algorithm with the SEN’s. In this work, we set an importance order to evaluate how good a model 

is. Firstly, we focus on the RMSE. Secondly, the MAPE metric. Next, MAE. And finally, 𝑅2. In all cases, we will

analyse those metrics acquired from test data. In doing so, to determine what model is better, we will use RMSEts. 

If two models draw with this metric, we will use MAPE and so on.  

Table 5. Statistics obtained from the Spanish Electricity Network's predictions. 

RMSE MAPE MAE R2

471.6463 0.8802 249.8638 0.9909 

Table 1, Table 2, Table 3 and Table 4 show the results with the best model per algorithm and package 

respectively. In these tables the best models are already sorted best to worst. As can be seen from these four tables, 
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all the models make better predictions than the SEN. All the models get, for every metric in test, better results than 

the one provided by the SEN.  

Another interesting aspect is that all the window sizes tested appear in these tables but for the smallest values, 

i.e., 24 and 48. From this, one can ascertain that the smaller windows size, the worse results provide.  

Once we compared our best models with the ones deployed by the SEN, the next step is to analyse the 

performance of our models. If we compare all the rows corresponding to a particular model, in all the metrics, it is 

very difficult to see a great difference between the best result and the other four-best results, i.e., they are fairly 

similar. Likewise, if we compare all the models we can see a small difference between the best performance attained 

by the Keras’ GRU algorithm with a RMSE of 343,1917 and the last one in the ranking which would be MLlib’s 

RT with a 418,1501. The later has the highest difference of RMSE at only 21.84%. In contrast, SEN’s error 

increases by 37.43% comparing with our best models, which is virtually twice the difference between the best and 

SEN, and our worst and SEN. Hence, in our worst-best case, there would be an increasing difference in error of a 

12.79%. 

At first glance, one may conclude that the recurrent neural networks and MLP are the best models. Indeed, from 

these tables, we can anticipate that Keras’ GRU and LSTM were the best ones, which are recurrent networks. 

Therefore, the first hypothesis was right. Nonetheless, JRNN is another recurrent model as well, but it did not 

obtain as good results as its counterparts. This result may be a consequence of two factors. The first one, because 

of the fast convergence of the network; as can be seen in the previous tables, it takes shorter time to train the JRNN 

than the other neural networks. And secondly, which is linked with the previous reason, it may be owing to its 

structure, i.e., the JRNN’s architecture is also called «simple» recurrent neural network as it uses only one value of 

the input and output in the recurrent units. This method got the firth-worst position after Scikit-learn’s RT and LR, 

and MLlib’s RT and GBR. On the contrary, further analysis of the results showed that MLP is the firth-best model 

which is an acceptable position. 

On the other hand, BigDL’s GRU and LSTM reported good predictions too. However, they did not reach the 

accuracy of Keras’ solutions. Both Keras and BigDL utilized exactly the same architecture, hyper-parameters and 

epochs. In spite of that, BigDL attained slightly worse predictions in comparison with Keras.  

The most surprising aspect of these results is in the Scikit-learn’s GBR which achieved the third-best error, 

overcoming those estimations from BigDL and MLP.  

Finally, as a representative example of how good our best model predicted, Figure 4 showed the prediction of a 

day (Figure 4a) and a week (Figure 4b). At first glance, one could say that both series are virtually the same and 

we achieved excellent performance. Even though this claim seems to be true, we would like to objectively analyse 

these two graphs. The first aspect to pay attention is the high range of the data. Since the Spanish ED in this day 

and week ranges from 20000MW to 34000MW, a small variation apparently does not change the results, and yet 

it could turn out an unexpectedly sharp increase in energy. Having said that, we can conclude according to the 

aforementioned metrics that we managed to model the Spanish ED with very good accuracy, and it can be seen in 

these figures.  
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5.1. Time cost analysis 

The previous section is devoted to evaluating the models according to their accuracy and error. Getting the best 

accuracy is usually the most important goal when choosing a model. Nonetheless, this point loses interest if the 

selected algorithm takes too long to provide results. Thus, in some events, a faster method is a better option and 

this is why we implemented our models using a Big Data framework. To do so, we analyse the time cost which is 

the column T showed in the previous tables. Table 6 shows in a ranking-oriented view how long the different 

algorithm take. The first column is the name of the algorithm, the second one stands for the training time obtained 

by the most accurate model, and the last column corresponds to the average time spent to train all the models.  

Table 6. Running time in seconds of the most accurate model (second column) and the average time (third 
column) per model and framework.  

Algorithm 
Time (s) RMSE 

Best Average Best Worst Average 

LR Scikit-learn 2,93 0,89 403,45 719,35 519,40 

RT Scikit-learn 48,64 27,86 396,81 566,67 482,95 

RT Mllib 181,55 128,00 418,15 583,38 499,85 

GBR Mllib 237,20 562,93 399,45 510,26 446,16 

LR Mllib 384,86 162,79 369,50 486,91 402,50 

MLP Keras 729,99 365,68 366,81 465,03 390,03 

RF Mllib 815,87 264,84 382,09 586,83 478,05 

JRNN Keras 1353,94 1067,83 394,26 403,25 398,58 

LSTM Keras 2384,69 1618,62 346,88 398,48 366,92 

RF Scikit-learn 3176,08 1174,21 376,44 549,81 463,62 

GRU Keras 3634,52 1996,45 343,19 393,70 360,91 

GBR Scikit-learn 4702,07 839,18 348,66 685,87 518,44 

LSTM BigDL 6871,72 7790,67 367,15 396,67 377,25 

GRU BigDL 10217,09 13353,00 355,26 417,16 378,49 

(a) (b) 

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

L
R

 S
ci

k
it

-l
ea

rn

R
T

 S
ci

k
it

-l
ea

rn

R
T

 M
ll

ib

G
B

R
 M

ll
ib

L
R

 M
ll

ib

M
L

P
 K

er
as

R
F

 M
ll

ib

JR
N

N
 K

er
as

L
S

T
M

 K
er

as

R
F

 S
ci

k
it

-l
ea

rn

G
R

U
 K

er
as

G
B

R
 S

ci
k
it

-l
ea

rn

L
S

T
M

 B
ig

D
L

G
R

U
 B

ig
D

L

T
im

e 
(s

)

Best Average

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

G
R

U
 K

er
as

L
S

T
M

 K
er

as

L
S

T
M

 B
ig

D
L

G
R

U
 B

ig
D

L

M
L

P
 K

er
as

JR
N

N
 K

er
as

L
R

 M
ll

ib

G
B

R
 M

ll
ib

R
F

 S
ci

k
it

-l
ea

rn

R
F

 M
ll

ib

R
T

 S
ci

k
it

-l
ea

rn

R
T

 M
ll

ib

G
B

R
 S

ci
k
it

-l
ea

rn

L
R

 S
ci

k
it

-l
ea

rn

R
M

S
E

Best Worst Average



M.C. Pegalajar et al / 15 

Figure 5. Summary of the a) running time in seconds and b) the corresponding RMSE for each model. 

What is striking in Table 6 and Figure 5 is the rapid response of the Scikit-learn’s LR. On average, it takes less 

than a minute for a 660378-instances training set. This is as a consequence of the SGD optimiser which is extremely 

fast in problems with more than 10000 samples. Nevertheless, this algorithm provides one of the worst results, 

being the second last, although its predictions remain relatively good. On the other hand, those algorithms that take 

longer are the BigDL ones. On average, LSTM took approximately 2 hours and GRU 4 hours. By contrast, these 

two techniques ranked the third and fourth position in terms of error as can be seen in Figure 5b.  

6. Conclusions

This work proposed the implementation of different regression models to predict the Spanish electricity demand. 

To deal with this problem, a wide variety of models and experiments have been developed. The present results are 

significant in all the cases as they achieved better prediction than the one estimated by the Spanish Electricity 

Network. In the worst case our models attained an error 12% better than the SEN, up to a 37% in the best case. The 

results showed that Keras’ neural networks were the best models, in particular those with GRU and LSTM units. 

By contrast, LR turned out to be the one with highest error but it was the fastest algorithm using the SGD optimizer; 

it took 0,89 seconds on average. However, LR in MLlib needed more time than the Scikit-learn version, although 

its accuracy was better. In terms of ANN, MLP was the fastest neural network and obtained an acceptable error. 

On the other hand, ensemble algorithms (GBR and RF) in Scikit-learn reported to be more accurate than MLlib’s 

version.  

Finally, research questions that could be asked include hyper-parameters tuning and multi-step predictions using 

recurrent neural networks, that is to say, multiple estimations at once using the same window. Regarding hyper-

parameters, we conducted our experiments using the classical trial and error to find the best ones, however, we can 

find other modern approaches [49] in the literature that we recommend adopting in future works like the 

optimisation algorithm inspired by the COVID-19 [50]. Additionally, implementing more complex architectures 

may be an interesting improvement in terms of accuracy. 
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8. Abbreviations

ANN Artificial Neural Network 
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ARIMA Autoregressive Integrated Moving Average 

DM Data Mining 

ED Electricity Demand 

GBR Gradient Boosting Regression 

GM Grey Model 

GRU Gated Recurrent Unit 

JRNN Jordan Recurrent Neural Network 

kNN k Nearest Neighbours 

LoR Logistic Regression 

LR Linear Regression 

LSTM Long Short-Term Memory 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MAPE Mean Absolute Percentage Error 

ML Machine Learning 

MLP Multi-Layer Perceptron 

MRE Mean Relative Error 

RF Random Forest 

RMSE Root Mean Square Error 

RNN Recurrent Neural Networks 

RT Regression Tree 

SEN Spanish Electricity Network 

SVM Support Vector Machine 
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