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Within the field of supervised classification, the näıve Bayes (NB) classifier is a very sim-
ple and fast classification method that obtains good results, being even comparable with
much more complex models. It has been proved that the NB model is strongly depen-

dent on the estimation of conditional probabilities. In the literature, it had been shown
that the classical and Laplace estimations of probabilities have some drawbacks and it
was proposed a NB model that takes into account the a priori probabilities in order to
estimate the conditional probabilities, which was called m-probability-estimation. With

a very scarce experimentation, this approximation based on m-probability-estimation
demonstrated to provide better results than NB with classical and Laplace estimations
of probabilities. In this research, a new näıve Bayes variation is proposed, which is based

on the m-probability-estimation version and takes into account imprecise probabilities
in order to calculate the a priori probabilities. An exhaustive experimental research is
carried out, with a large number of data sets and different levels of class noise. From this
experimentation, we can conclude that the proposed NB model and the m-probability-

estimation approach provide better results than NB with classical and Laplace estimation
of probabilities. It will be also shown that the proposed NB implies an improvement over
the m-probability-estimation model, especially when there is some class noise.

Keywords: supervised learning; näıve Bayes; m-estimate; m-probability-estimation; im-
precise probabilities; noisy data.

1. Introduction

Supervised learning or classification1 has been considered as a crucial task in data

mining. This machine learning task starts with a data set of observations, each one

with an assigned value of a class variable, which is the variable under study. Each

observation is described via a set of attributes. The goal of classification is to extract

useful knowledge from the data in order to predict the value of the class label when

a new case or instance appears.

In the literature, a large number of techniques has been applied to carry out this

labor. Among these approaches stand out classical statistical methods2, Decision

Trees (DT)3, Bayesian Networks (BN)4 or Artificial Neural Networks (ANN)5. For

each one of these techniques, a lot of algorithms have been developed in order to
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improve the results of previous models. For instance, within DTs, ensemble models

such as bagging6, boosting7, or Random Forest8 emerged, obtaining better results

than classical DT algorithms, like ID39 or C4.53.

Among Bayesian networks models, the näıve Bayes (NB) algorithm10 is quite

popular. NB assumes that all attributes are conditionally independent given the

value of the class variable and all of the variables have the same influence on the

class. It is obvious that this independence condition is unsatisfied in many cases.

Despite this unrealistic assumption, NB shows remarkable results in terms of accu-

racy and it has been applied successfully in practice, often being comparable with

other far more complex models, especially when the attributes are not strongly

correlated11,12,13. In fact, NB has been effectively applied in a lot of practical appli-

cations, such as systems performance management14, text classification15 or gene

expression analysis16. Moreover, the NB model, as a consequence of its indepen-

dence assumption, is much faster than other more sophisticated models and the

required computational cost is significantly lower. Therefore, we can say that the

key to the success of the NB is its simplicity: no Bayesian network structure learn-

ing algorithm is required because its structure is fixed, the parameters of the model

need only to be estimated from the data set using only bi-dimensional statistics for

the class and each attribute and the classification process is very efficient17.

The NB classifier, like Bayesian classifiers, is based on Bayes formula. In this

particular case this formula is used näıvely, i.e assuming the independence condi-

tion. In (Cestnik18, 1990) it is shown that the evaluation of the näıve Bayesian

formula is pretty influenced by the estimation of conditional probabilities. Con-

cretely, in that work it is shown that the classical probability estimation through

relative frequencies has important issues. Furthermore, it is also illustrated that the

Laplace estimation19, which is used to solve those issues, has some drawbacks too.

For this reason, precisely in (Cestnik18, 1990), a new probability estimation is intro-

duced, that is called m-probability-estimation in contrast with Laplace-probability-

estimation and it is also known as m-estimatea. This estimation consists of taking

into account the a priori probabilities of the class variable when we estimate the

conditional probability of the class variable given the value of an attribute. The

m-probability-estimation technique has a parameter m as input which is related

to the amount of noise in the data. It was shown empirically18 that m-probability-

estimation provides better results than the previous approaches of conditional prob-

ability estimation, although the experimentation carried out was very scarce, using

only four databases without added noise. In addition, it is experimentally shown20

that this probability estimation in tree pruning improves the results of classical

standard methods.

In spite of the improvement of the performance of the NB model with this way of

aThe reader should be aware that, from a statistical perspective, the term m-estimate (coined by
Cestnik20) is an unfortunate choice, since M-estimation is already a well-known term in Statistics
and it refers to an entirely different approach.
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estimating probabilities, the algorithm is still quite sensitive to noise. This happens

because the estimation of the a priori probability is still done by the classical method

of computing relative frequencies, which is clearly deteriorated with the presence

of noise. For this reason, in this paper, we also use the Imprecise Dirichlet Model

(IDM)21 in order to estimate the a priori probability of the class variable. The

use of this imprecise model has been tested to be useful in order to improve the

performance of standard models when there is noise in the data. An example can

be found in the Credal-C4.5 algorithm22 which is based on the IDM and provides

better results than the classical C4.5, especially with the presence of class noise23.

In this work, we propose a new näıve Bayes algorithm, the Imprecise m-

probability-estimation näıve Bayes (ImNB), which combines the m-probability-

estimation with the IDM in order to obtain a classifier which is less sensitive to

class noise. An extensive experimentation is carried out where our new NB approach

is compared with the NB using the m-probability-estimation and the Laplace and

classical probability estimations. The mentioned algorithms are applied to a set

of data sets without noise and with different levels of added class noise. Another

contribution of this research is that the experimentation shows that Cestnik pro-

posal obtains much better results than NB with Laplace and classical estimations

of probabilities, with a much more exhaustive experimentation than in (Cestnik18,

1990). Besides, the experimental study shows that the new method performs better

than the Cestnik model, where the differences are significant when there is class

noise in the data.

The rest of this paper is structured as follows: Section 2 contains all the theo-

retical background that is necessary to know in order to understand the proposed

model. In section 3 our new näıve Bayes approach is explained. In section 4 our ex-

perimentation is described and the obtained results are commented. Finally, section

5 is devoted to the concluding remarks.

2. Previous knowledge

2.1. Preliminaries: Conditional Probability, Independence and

Bayes Theorem

Let X1 and X2 be two random variables. The conditional probability of X1 given

X2 is defined as follows:

P (X1|X2)=
P (X1, X2)

P (X2)
(1)

It is said that X1 and X2 are independent if it is verified that

P (X1, X2)=P (X1)P (X2) (2)

As can be observed from (1) and (2), the variables X1 and X2 are independent

if and only if P (X1|X2)=P (X1) and P (X2|X1)=P (X2).
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Now let X3 be another variable. It is said that X1 and X2 are conditionally

independent given X3 if:

P (X1, X2|X3)=P (X1|X3)P (X2|X3) (3)

The previous definitions of independence and conditional independence can be

extended to a general set of variables. Let X1, . . . , Xn be a set of variables, n ∈ N.

We say that X1, . . . , Xn−1 are conditionally independent given Xn if:

P (X1, . . . , Xn−1|Xn)=

n−1
∏

i=1

P (Xi|Xn) (4)

Once the preliminary definitions have been exposed the most important theorem

upon which Bayesian classifiers are based, the Bayes’ theorem can be shown.

Theorem 1.

Let X and Y be two set of variables. It is verified that

P (X|Y)=
P (Y|X)P (X)

P (Y)
(5)

2.2. The näıve Bayes model

We recall that the aim of supervised learning is to predict the value of the class

variable C from an instance given a set of attribute variables X1, . . . , Xn, and their

respective correspondent values x1
t1
, . . . , xn

tn
, n ∈ N of that instance and being Ti

the number of possible values of Xi. Suppose that the possible values of C are

{c1, . . . , ck}.

The NB classifier is a Bayesian classifier; these kind of classifiers predict the

class label by maximizing P (C|X1, . . . , Xn) over C, i.e, they assign the value c of

C that verifies

c=arg max
cj ,1≤j≤k

P (C=cj |X1=x1
t1
, . . . , Xn=xn

tn
) (6)

According to Theorem 1:

P (C=cj |X1=x1
t1
,. . ., Xn=xn

tn
)=

P (C=cj)P (X1=x1
t1
,. . ., Xn=xn

tn
|C=cj)

P (X1=x1
t1
,. . ., Xn=xn

tn
)

, ∀j

(7)

Thus, it is easy to observe that maximizing P (C=cj |X1=x1
t1
, . . . , Xn=xn

tn
) is

equivalent to maximize P (C=cj)P (X1=x1
t1
, . . . , Xn=xn

tn
|C=cj), ∀j.

The NB model assumes that the attributes are conditionally independent given

the class value. Hence,

P (X1=x1
t1
, . . . , Xn=xn

tn
|C=cj)=

∏

i

P (Xi=xi
ti
|C=cj), ∀j (8)
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In consequence, the NB algorithm assigns the class label c that verifies:

c =arg max
cj ,j=1,...,k

P (C=cj)
∏

i

P (Xi=xi
ti
|C=cj) (9)

Furthermore, according to Theorem 1:

P (Xi=xi
ti
|C=cj)=

P (C=cj |Xi=xi
ti
)P (Xi=xi

ti
)

P (C=cj)
, ∀i (10)

Therefore, the NB classifier assigns the value c of C that verifies

c = arg max
cj ,1≤j≤k

P (C=cj)
∏

i

hjti (11)

where

hjti =
P (C=cj |Xi=xi

ti
)

P (C=cj)
, ∀i (12)

2.3. Problems of classical and Laplace estimations of Probabilities

Let Nti be the number of cases of our data set in which Xi=xi
ti
, let N be the total

number of cases in the data set, Ncj the instances in the data set which verifies

that C=cj and let Nti,cj be the number of cases in which C=cj and Xi=xi
ti
. The

classical estimations of P̂ (C=cj |Xi=xi
ti
) and P̂ (C=cj) are given by:

P̂ (C=cj)=
Ncj

N
(13)

P̂ (C=cj |Xi=xi
ti
)=

Nti,cj

Nti

(14)

The main problem arises when Nti,cj =0. In this case P̂ (C=cj |Xi=xi
ti
)=0 and,

therefore, hjti =0 and P̂ (C=cj |X1=x1
t1
, . . . , Xn=xn

tn
)=0. Consequently, only the

value of one attribute can affect drastically the value of the probability of the class

label. In fact, this probability becomes zero when P̂ (C = cj |X1 = x1
t1
, . . . , Xi−1 =

xi−1
ti−1

, Xi+1 = xi+1
ti+1

, . . . , Xn = xn
tn
) may be pretty high. In addition, it may happen

that if Nti is very small, the estimation of P̂ (C=cj |Xi=xi
ti
) could be an unstable

estimation.

The Laplace’s law of succession19 was introduced to estimate probabilities when

there are few observations, or no observations at all (zero-probability events). With

that in mind, the Laplace’s law of succession was used for the estimation of the

probabilities in the NB with the aim of solving this problem. It assumes a uniform

distribution for all classes. Hence, it states that the probability that a new instance

with the value xti for the attribute Xi has the value cj for C is given by:
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P̂ (C=cj |Xi=xi
ti
)=

Nti,cj + 1

Nti + k
(15)

and the a priori probability P̂ (C=cj):

P̂ (C=cj)=
Ncj + 1

N + k
(16)

then

hjti =
Nti,cj + 1

(Nti + k)P̂ (C=cj)
(17)

where P̂ (C= cj) is determined by (16). This way of estimating probabilities using

the Laplace’s law of succession is called Laplace smoothing or additive smoothing.

Let us analyze the cases in which Nti =0 or Nti,cj =0:

• When Nti = 0, we obtain hjti = 1
kP̂ (C=cj)

; therefore hjti increases when

P̂ (C=cj) decreases and viceversa.

• When Nti,cj = 0, we obtain hjti =
1

(k+Nti
)P̂ (C=cj)

; consequently, we have

that hjtii is inversely proportional to P̂ (C = cj). This strange behavior is

due to the assumption of uniformity for the distribution of the class values.

2.4. The m-probability-estimation model

In order to correct the questionable behavior of the Laplace’s law of succession

in some cases, a more appropriate and flexible class of initial probabilities is

proposed24. According to this, after r success in N trials, the probability of getting

a success in a next trial is of the form:

P̂s(r,N)=
r + a

N + a+ b
(18)

where a > 0 and b > 0b. In (Cestnik18, 1990) the choice of parameters a and b was

as follows: a=mP̂ (C = cj) and b=m − a, where m is a parameter of this model,

and is called m-probability-estimation. In this way, the conditional probability is

estimated by:

P̂ (C=cj |X=xi
ti
)=

Nti,cj +mP̂ (C=cj)

Nti +m
(19)

∀j, ∀i. As can be observed, if the value of an attribute is known, this model also takes

into consideration the a priori probability of the class P̂ (C= cj) in the calculation

bThe Laplace estimation of probabilities is a particular case of Equation 18 where a = 1 and b = k.
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of P̂ (C = cj |Xi = xi
ti
). This a priori probability of the class is estimated using the

Laplace’s law of succession.

According to Cestnik, the higher the level of noise, the higher the value of the

parameter m should be.

2.5. The Imprecise Dirichlet Model

The Imprecise Dirichlet Model (IDM)21 is a specific type of reachable probabilities

intervals, a formal mathematical theory based on imprecise probabilities21, that also

represents a belief function25 that is employed to estimate probability intervals for

each value of a certain variable Xi in a data set. In concrete, the IDM establishes

that the probabilities that Xi has the value xi
ti

are within the interval

P (Xi=xi
ti
) ∈

[

Nti

N + s
,
Nti + s

N + s

]

, ∀i (20)

where s is a parameter of the model. It is easy to observe that the interval is getting

wider when the value of s increases and the interval is getting narrower when the

sample size is larger and the parameter s remains unchanged, that is, the parameter

s determines how quickly the lower and upper probabilities converge as more data

become available. Two values for the parameter s are suggested21: s=1 and s=2.

Through these probability intervals a convex set of probabilities on the variable

Xi, K(Xi), can be extracted25.

K(Xi)=

{

P |P (Xi=xi
ti
) ∈

[

Nti

N + s
,
Nti + s

N + s

]

,
∑

ti

P (Xi=xi
ti
)=1, ∀i

}

(21)

3. Imprecise m-probability-estimation näıve Bayes

We want to remark that the new NB approach, which we call Imprecise m-

probability-estimation näıve Bayes (ImNB), as a variation of the NB model, assigns

to a new instance the class label cj , ∀j that maximizes P̂ (C=cj |X1=x1
t1
, . . . , Xn=

xn
tn
), being Xi the attributes of the instance and xi

ti
their possible values,∀i. It has

been proved in section 2.2 that it is equivalent to maximize Equation 11.

The difference between the ImNB and the rest of the NB algorithms resides in

the estimation of the probabilities P̂ (C=cj) and P̂ (C=cj |Xi=xi
ti
).

The estimation of the a priori probability P̂ (C=cj), which we call P̂j , is based

on the credal set given in eq (21). We need to choose one probability distribution of

this set. We choose those distribution that maximizes the Shannon entropy26. It is

shown22,27 that the use of this probability distribution provides good results when

it is employed in C4.5, specially when there is noise in the data.

We can use Algorithm 1 to calculate the estimated probability P̂j .
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Procedure CalculateAPriori(s)

s′ = s;

for j = 1 to k do

N ′
cj

= Ncj ;

end

while s′ > 0 do

s
′′

= min {s′, 1};

Let A={cj |N
′
cj
=mini=1,...,kN

′
ci
};

for j = 1 to k do

if cj ∈ A then

N ′
cj

= N ′
cj

+ s
′′

|A| ;

end

end

s′ = s′ − 1;

end

for j = 1 to k do

P̂j=
N ′

cj

N+s
;

end

return P̂j

Algorithm 1: Procedure of calculating the a priori probability of P̂ (C=cj),

which is called P̂j .

In order to calculate the conditional probability P̂ (C = cj |Xi=xi
ti
), ∀j, ∀i the

m-probability-estimation model is taken as a reference, i.e. the a priori probabilities

are taken into account. However, these a priori probabilities are now the estimated

through Algorithm 1. According to (Cestnik18, 1990) the parameter m should be

greater with more amount of noise in the data, as happens with the parameter s of

the IDM27. For this reason the same values for s and m have been chosen.

Thus, the estimation of the conditional probability P̂ (C = cj |Xi =xi
ti
) is given

by:

P̂ (C=cj |Xi=xi
ti
)=

Nti,cj + sP̂j

Nti + s
(22)

where P̂j is the estimated a priori probability of P̂ (C=cj) obtained from Algorithm

1. Therefore, ImNB, for an instance, chooses the class value c that verifies:

c =arg max
cj ,j=1,...,k

P̂j

∏

i

P̂ (C=cj |Xi=xi
ti
)

P̂j

(23)

where P̂ (C=cj |Xi=xi
ti
) is given by (22), ∀j, ∀i.



ImNB

On the use of m-probability-estimation and imprecise probabilities in the näıve Bayes classifier 9

4. Experimental study

4.1. Description of the experiments and results

For the experiments, we have selected 75 well-known data sets, obtained from the

UCI repository of machine learning28. All these data sets have been widely used

in the specialized literature for comparing supervised learning algorithms. Table

1 shows the most relevant characteristics of each data set. As can be observed,

these data sets are different with respect to the number of instances, the number of

features, the number of states of the class variable, the type of the features (if they

are discrete or continuous) and the number of states of discrete variables.

Since the new algorithm only works with discrete variables the databases have

been discretized previously. For this purpose, the minimum description length prin-

ciple criterion29 has been employed.

In this experimentation, four algorithms have been compared. The first of them

is the NB with classical estimation of probabilities, called classical NB. The second

one is Laplace NB, i.e the näıve Bayes using the Laplace smoothing to estimate the

probabilities. The third algorithm is the näıve Bayes with m-probability-estimation

(which will be noted as mNB), explained in section 2.4. The fourth model is our

proposal, called ImNB, which was explained in section 3.

For the experimental research, the Weka software30 has been used. The four

algorithms considered in the experiments have been implemented in this software

taking the implementation of the standard NB as a reference. For the ImNB model,

in preliminary experiments, it has been noted that the method has a good perfor-

mance with m = 4 as the default value. Obviously, the results will improve if we

tune the value of the parameter m to the level of noise of the data, however, its

default value is used for the experiments. As regard to the mNB model, Cestnik did

not make any recommendation for the m value, we only know that it is related to

data noise, so a wide range of values for the parameter m have been considered. In

concrete, twenty values have been tested for mNB (m=1, . . . ,m=20) in order to

obtain the most appropriate value for each noise level.

Within the experiments, for each algorithm, four noise levels have been con-

sidered: 0%, 10%, 20%, and 30%. In our case only class noise has been taken into

account. The noise had been added only to training sets. Weka’s filters have been

used to add the noise in the different cases. The corresponding noise has been added

in each case by using a random procedure: Given a percentage x, an x% of the in-

stances are selected randomly of the training data set and the class label is changed

randomly to another possible class value. The instances belonging to the test data

set were left unmodified. To compare the results of the classifiers, 10 times a 10-fold

cross validation procedure was repeated for each data set and for each level of noise

and for each algorithm.

In order to compare the results the following procedure has been carried out for

each level of noise: The best value of the parameter m has been selected for the

mNB model. All the algorithms have been compared, all of them with their default
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Table 1. Data set description. Column ‘N’ is the number of instances in the data sets, column ‘Feat’

is the number of features or attribute variables, column ‘Num’ is the number of numerical variables,

column ‘Nom’ is the number of nominal variables, column ‘k’ is the number of cases or states of the class

variable (always a nominal variable) and column ‘Range’ is the range of states of the nominal variables

of each data set.

Dataset N Feat Num Nom k Range

acute-infl-nephritis 120 6 1 5 2 2

anneal 898 38 6 32 6 2-10

appendicitis 106 7 7 0 2 -

arrhythmia 452 279 206 73 16 2

audiology 226 69 0 69 24 2-6

autos 205 25 15 10 7 2-22

balance-scale 625 4 4 0 3 -

bank-marketing 4521 16 7 9 2 2-12

banknote-auth 1372 4 4 0 2 -

breast-cancer 286 9 0 9 2 2-13

breast-cancer-wisconsin 699 9 9 0 2 -

bridges-version1 107 11 3 8 6 2-54

bridges-version2 107 11 0 11 6 2-54

bupa 345 6 6 9 2 -

car 1728 6 0 6 4 3-4

cmc 1473 9 2 7 3 2-4

horse-colic 368 22 7 15 2 2-6

credit-rating-australian 690 15 6 9 2 2-14

credit-rating-german 1000 20 7 13 2 2-11

dermatology 366 34 1 33 6 2-4

diabetes-pima 768 8 8 0 2 -

dresses-sales 500 12 1 11 2 5-25

ecoli 366 7 7 0 7 -

fertility-diagnosis 100 9 9 0 2 -

flags 194 29 2 27 8 4-194

glass 214 9 9 0 7 -

glioma16 50 16 16 0 2 -

haberman 306 3 2 1 2 12

heart-disease-cleveland 303 13 6 7 5 2-14

heart-disease-hungarian 294 13 6 7 5 2-14

heart-statlog 270 13 13 0 2 -

hepatitis 155 19 4 15 2 2

hypothyroid 3772 30 7 23 4 2-4

ionosphere 351 35 35 0 2 -

iris 150 4 4 0 3 -

japanese-crx 690 15 6 9 2 2-14

kr-vs-kp 3196 36 0 36 2 2-3

letter 20000 16 16 0 26 -

liver-disorders 345 6 6 0 2 -

lsvt-voice-rehab 126 310 310 0 2 -

lymphography 146 18 3 15 4 2-8

mfeat-pixel 2000 240 0 240 10 4-6

mol-splice-junction 3190 60 0 60 3 4-5

nursery 12960 8 0 8 4 2-4

optdigits 5620 64 64 0 10 -

page-blocks 5473 10 10 0 5 -

parkinsons 195 22 22 0 2 -

pendigits 10992 16 16 0 10 -

postoperative-patient 90 8 8 0 3 2-4

primary-tumor 339 17 0 17 21 2-3

qsar-biodegradation 1055 41 41 0 2 -

qualitative-bankruptcy 250 6 0 6 2 3

saheart 462 9 8 1 2 2

segment 2310 19 16 0 7 -

seismic-bumps 2584 18 14 4 2 2-3

sick 3772 29 7 22 2 2

solar-flare2 1066 12 0 6 3 2-8

sonar 208 60 60 0 2 -

soybean 683 35 0 35 19 2-7

spambase 4601 57 57 0 2 -

spect 267 22 0 22 2 2

spectf 349 44 44 0 2 -

spectrometer 531 101 100 1 48 4

splice 3190 60 0 60 3 4-6

sponge 76 44 0 44 3 2-9

tae 151 5 3 2 3 2

thoracic-surgery 470 16 3 13 2 2-7

tic-tac-toe 958 9 0 9 2 3

turkiye-student 5820 32 32 0 13 -

vehicle 946 18 18 0 4 -

vote 435 16 0 16 2 2

vowel 990 11 10 1 11 2

waveform 5000 40 40 0 3 -

wine 178 13 13 0 3 -

zoo 101 16 1 16 7 2
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parameter values and mNB with its selected value of m.

Following the recommendation of Demšar31, we have used the Friedman test32,33

for the algorithms comparisons. It is a non-parametric test, which ranks the clas-

sification algorithms for each data set separately, according to their performance,

in ascending order (from the best-performing algorithm to the worst-performing

one). The null hypothesis is that all algorithms are equivalent. If this hypothesis is

rejected, then we compare the algorithms using the Holm’s procedure34. The level

of significance used is α=0.05.

To make the selection of the best value for the parameter m used in the mNB

algorithm, the Friedman ranking has been used. In this way, the chosen value for

the parameter m is the one which obtains a better value for the rank. For each noise

level, the results of these ranks can be observed in Table 2 and the best value of

the parameter m for each noise level is emphasized using bold fonts. For the sake

of clarity and simplification, the accuracy results obtained for the computation of

the Friedman test used to obtain the best value of the parameter m for mNB have

not been included.

With the selected values for the parameter m obtained in Table 2 for mNB,

all the studied approaches were used to classify the data sets. Table 3 presents

the average accuracy results of the methods used in the experimentation: Classical

NB, Laplace NB, mNB and ImNB. In this table, the best algorithm for each added

noise level is emphasized using bold fonts, the second best is marked with italic

fonts. Tables that present the detailed accuracy results of the different algorithms

for different percentages of class noise are described in Appendix A.1.

Table 2. Friedman ranks about the accuracy for the mNB approach with different values of m and

different levels of class noise.

m 0% Noise 10% Noise 20% Noise 30% Noise
1 7.93 9.63 11.75 12.49
2 8.14 8.95 10.74 11.92
3 7.98 8.99 10.41 11.51
4 8.11 9.35 10.30 11.07
5 8.65 9.59 10.21 11.04
6 9.05 9.67 10.19 10.66
7 9.39 9.39 10.71 10.11
8 9.23 9.28 9.99 10.27
9 9.55 9.68 10.15 10.29
10 10.25 10.26 10.15 10.26
11 10.49 10.71 10.05 10.48
12 10.87 11.11 10.20 10.23
13 11.67 11.59 10.17 9.52

14 11.95 11.58 10.17 9.73
15 12.15 11.81 10.18 9.77
16 12.01 11.44 10.64 9.81
17 12.65 11.49 11.07 9.77
18 12.93 11.74 11.03 9.88
19 13.35 11.94 10.81 10.45
20 13.63 11.80 11.09 10.75

Table 4 shows Friedman’s ranks about the accuracy of the studied NB variations

when they are applied on data sets with and without class noise. The best approach
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for each noise level is noted using bold fonts, the second best method is emphasized

with italic fonts.

Table 3. Average accuracy results of the NB variations when they are built from data sets with and

without added class noise.

Algorithm noise 0% noise 10% noise 20% noise 30%

Classical NB 77.05 74.69 73.08 71.08
Laplace NB 77.33 75.44 74.09 72.19
mNBBESTm 79.60 77.74 76.11 73.54
ImNB 79.88 78.67 77.17 74.64

Table 4. Friedman’s ranks about the accuracy of the algorithms when they are built from datasets with

different percentages of added noise.

Algorithm noise 0% noise 10% noise 20% noise 30%

Classical NB 2.76 3.12 3.05 2.97
Laplace NB 2.97 2.81 2.77 2.66
mNBBESTm 2.21 2.35 2.37 2.36
ImNB 2.07 1.73 1.81 2.01

Tables 5, 6, 7 and 8 show the p-values of the Holm test on the pairs of com-

parisons. In the event that there is a significative difference, the best algorithm is

marked with bold fonts. The figures 1, 2, 3 and 4 show the same information graph-

ically. These figures are critical difference (CD) diagrams, where average ranks of

examined methods are presented. Bold lines indicate groups of classifiers which are

not significantly different (their average ranks differ by less than critical difference

value).

Table 5. p-values of the Holm test about the

accuracy on data sets without added class

noise. Holm test rejects the hypotheses that the

methods are equivalent if the corresponding p-

value is ≤ 0.025.

i algorithms p

6 Laplace NB vs. ImNB 0.000020
5 Laplace NB vs. mNBm=1 0.000312
4 Classical NB vs. ImNB 0.001006
3 Classical NB vs. mNBm=1 0.008673

2 Classical NB vs. Laplace NB 0.326930
1 mNBm=1vs. ImNB 0.506640

Table 6. p-values of the Holm test about the

accuracy on datasets with 10% of added class

noise. Holm test rejects the hypotheses that the

methods are equivalent if the corresponding p-

value is ≤ 0.025.

i algorithms p

6 Classical NB vs. ImNB 0.000000
5 Laplace NB vs. ImNB 0.000000
4 Classical NB vs. mNBm=2 0.000244
3 mNBm=2 vs. ImNB 0.003272

2 Laplace NB vs. mNBm=2 0.029112
1 Classical NB vs. Laplace NB 0.137208

Since we are using data sets with label noise, it would be desirable to use a

robustness metric to establish the expected behavior of a classifier against noisy

data. A measure which considers performance and robustness individually for each
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Table 7. p-values of the Holm test about the

accuracy on datasets with 20% of added class

noise. Holm test rejects the hypotheses that the

methods are equivalent if the corresponding p-

value is ≤ 0.025.

i algorithms p

6 Classical NB vs. ImNB 0.000000
5 Laplace NB vs. ImNB 0.000005
4 Classical NB vs. mNBm=8 0.001125
3 mNBm=8 vs. ImNB 0.007900

2 Laplace NB vs. mNBm=8 0.053732
1 Classical NB vs. Laplace NB 0.184126

Table 8. p-values of the Holm test about the

accuracy on datasets with 30% of added class

noise. Holm test rejects the hypotheses that the

methods are equivalent if the corresponding p-

value is ≤ 0.016667.

i algorithms p

6 Classical NB vs. ImNB 0.000005
5 Laplace NB vs. ImNB 0.001942
4 Classical NB vs. mNBm=13 0.003622

3 mNBm=13 vs. ImNB 0.093737
2 Laplace NB vs. mNBm=13 0.137208
1 Classical NB vs. Laplace NB 0.154729

Fig. 1. Critical difference diagram about the
accuracy on data sets without added class
noise.

Fig. 2. Critical difference diagram about the
accuracy on data sets with 10% of added class
noise.

Fig. 3. Critical difference diagram about the
accuracy on data sets with 20% of added class
noise.

Fig. 4. Critical difference diagram about the
accuracy on data sets with 30% of added class
noise.

classifier is the Equalized Loss of Accuracy (ELA)35. This measure computes the

performance without added noise taking into account which algorithm is more ap-
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propriate to deal with noisy data. The approach with the lowest value for ELA will

be the most robust. In Table 9, it can be observed the obtained results of the ELA

metric for each NB variation (in bold it is marked the best one and in italic the

second best for each noise level).

Table 9. Values of the ELA measure obtained for each noise level.

Algorithm noise 10% noise 20% noise 30%

Classical NB 0.3285 0.3494 0.3753
Laplace NB 0.3176 0.3351 0.3596
mNBBESTm 0.2796 0.3001 0.3324
ImNB 0.2670 0.2858 0.3175

4.2. Analysis of the results

From a general point of view, we can state that the two approaches in which our

work is focused, i.e. mNB (tuned) and ImNB, have a better performance than the

näıve Bayes models used as reference (NB with and without Laplace smoothing) on

data sets with and without label noise. The improvement is not only with respect

to the classifier accuracy, via the tests of Friedman and Holm carried out, but

also in terms of robustness, via ELA measure. Furthermore, we can note that our

contribution obtains better results than Cestnik’s approach being this improvement

statistically significant in some cases.

Next, we are going to analyze in detail the experimental results with respect

to the level of noise, taking into account the following aspects: Average accuracy,

Friedman’s ranking, Holm test, and robustness:

• Average accuracy: According to this aspect, the methods based on m-

probability-estimation, i.e. mNB and ImNB, attains constantly the best

average accuracy, regardless of the level of added noise. The best result has

always been for our proposed method (ImNB) and the second best result

have been invariably obtained by the Cestnik’s approach (mNB) with tuned

parameter. In this regard, the worst results are invariably obtained by the

NB without Laplace smoothing (Classical NB). We want to emphasize that

this ordering from the best NB variation (ImNB) to the worst (Classical

NB) occurs independently of the percentage of added noise.

• Friedman’s ranking and Holm test: The outcomes of the set of sta-

tistical tests carried out, reinforce the comments made about the average

accuracy. The tuned mNB and the ImNB variations obtain the best Fried-

man’s rank for all levels of added noise, and always the finest classifier in

the ranking is our proposal (ImNB). According to the Friedman’s ranking,

the worst NB variation for data sets without added noise is, interestingly,

the NB with Laplace smoothing (Laplace NB). Notwithstanding, the NB
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without Laplace smoothing (Classical NB) obtain the worst score in the

rank for any level of added noise (10%, 20% or 30%).

With respect to the Holm test, our approach is the only one that outper-

forms always the NB classifiers with or without Laplace smoothing, regard-

less of the level of added class noise. The Cestnik proposal shows a less

consistent behavior, significantly outperforming the NB without Laplace

smoothing for all noise levels but it is only statistically better than NB with

Laplace smoothing when the level of noise is 0%. The differences between

ImNB and tuned mNB are not always statistically significant in accordance

with the Holm test, but the ImNB is statistically better than tuned mNB

when the level of noise is 10% or 20%.

• ELA measure: In relation to this metric, there is no doubt about what

methods of the comparison are the most robust to label noise. The ordering

presented in the average accuracy measure and the Friedman’s ranking is

the same that the sequence obtained by the ELA measure. Therefore, our

proposal is in the first place, the tuned mNB classifier is the second, the

NB with the Laplace smoothing is in the third place and the worst result

is obtained by the NB without Laplace smoothing (classical NB). This

outcome occurs independently of the percentage of added noise.

With the above analysis of the results we can conclude that the methods based

on m-probability-estimation outperform the conventional approaches of the NB,

that is, NB with and without Laplace smoothing. These outcomes are presented

consistently, regardless of whether the data sets suffer or not of class noise. Taking

into account differences statistically significant, we notice that the better outcomes

are achieved by our proposal.

5. Conclusions

In this research, two näıve Bayes approaches are the subject of our study: the first

one is the näıve Bayes using m-probability-estimation (mNB) proposed by Cestnik18

and the second one, our proposal, a näıve Bayes classifier using m-probability-

estimation and imprecise probabilities (ImNB). We believe that the Cestnik ap-

proach has not received sufficient attention from the scientific community and we

think this is why we have not found an extensive comparison where this model evi-

dences its worth. The second classifier in this study, our contribution, is a variation

of the Cestnik approach which achieves better results without parameter tuning.

We also consider that this paper studies different ways of estimating probabil-

ities in the näıve Bayes algorithm. In concrete, we have started with the classical

estimations and the Laplace smoothing, recalling their drawbacks. We have also

considered the m-probability-estimation model presented in (Cestnik18, 1990), the

NB model that estimates conditional probabilities taking into account the a priori

probabilities. Moreover, we have proposed a new way of estimating probabilities in

NB based on imprecise probabilities and the m-probability-estimations, our ImNB
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algorithm.

A wide experimentation has been carried out , considering 75 data sets with

different characteristics and different levels of noise. This experimental study has

indicated four things:

• The best choice of the parameter m in m-probability-estimation depends

on the level of noise in the data, being generally higher the more there is

noise in the data.

• tuned mNB and ImNB are clearly better than the näıve Bayes estimating

probabilities in a classical way and with Laplace smoothing, regardless of

the level of noise in the data.

• ImNB used with its default m value is always better than m-probability-

estimation even with parameter tuning, although the differences are not

statistically significant in some cases.

• ImNB is always statistically better than NB with and without Laplace

smoothing.

Hence, in this work, it has been demonstrated, with a far more exhaustive ex-

perimentation than in (Cestnik18, 1990), that the m-probability-estimation model

supposes a very considerable improvement over Laplace and classical estimations

of probabilities in näıve Bayes. Furthermore, we have presented a new way of esti-

mating probabilities in NB based on m-probability-estimation and imprecise prob-

abilities that involves an improvement.
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Appendix A. Appendices

A.1. Tables about accuracy results

Tables 10, 11, 12 and 13 show the accuracy results obtained by the different NB

methods when they classify data sets with different percentage of added noise. The

best algorithm for each data set is emphasized using bold fonts.
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Table 10. Accuracy results of Classical NB, Laplace NB, mNB and ImNB when they are used on data

sets without added class noise.

Dataset Classical NB Laplace NB mNBm=1 ImNBm=4

acute-infl-nephritis 95.17 95.00 100.00 100.00

anneal 93.44 86.59 97.26 96.50

appendicitis 85.21 85.21 85.25 86.20

arrhythmia 61.51 62.40 68.85 71.68

audiology 78.78 72.64 77.53 77.72

autos 60.11 57.41 69.30 65.41

balance-scale 90.53 90.53 71.56 71.56

bank-marketing 86.72 86.77 87.86 88.01

banknote-auth 84.01 84.01 91.98 92.03

breast-cancer 71.93 72.70 72.17 72.91

breast-cancer-wisconsin 96.07 96.07 97.18 97.11

bridges-version1 60.51 69.33 62.98 65.25

bridges-version2 60.59 67.25 63.64 66.25

bupa 55.03 54.89 56.85 56.85

car 85.86 85.46 85.90 84.80

cmc 50.51 50.48 50.01 50.15

horse-colic 78.24 78.70 79.98 81.19

credit-rating-australian 77.90 77.86 86.19 85.93

credit-rating-german 75.25 75.16 74.95 75.29

dermatology 97.73 97.43 98.23 97.93

diabetes-pima 75.77 75.75 75.25 75.51

dresses-sales 58.22 61.64 60.90 62.94

ecoli 85.59 85.50 81.39 81.31

fertility-diagnosis 86.50 86.50 88.00 88.00

flags 52.54 52.49 51.65 57.32

glass 49.54 49.45 72.75 73.09

glioma16 82.40 82.20 87.20 82.40

haberman 75.29 75.36 71.97 72.07

heart-disease-cleveland 83.11 83.34 83.47 83.47

heart-disease-hungarian 84.84 83.95 84.13 84.50

heart-statlog 83.59 83.59 82.56 82.70

hepatitis 84.38 83.81 85.42 85.23

hypothyroid 95.59 95.30 98.90 98.77

ionosphere 82.17 82.17 89.49 89.66

iris 95.53 95.53 93.20 93.33

japanese-crx 77.90 77.86 86.19 85.93

kr-vs-kp 87.81 87.79 87.81 87.24

letter 64.07 64.07 74.79 74.64

liver-disorders 55.03 54.89 56.85 56.85

lsvt-voice-rehab 54.33 54.33 76.45 81.37

lymphography 81.42 83.13 85.72 83.70

mfeat-pixel 75.55 93.36 93.74 93.58

mol-splice-junction 95.48 95.42 95.57 95.38

nursery 90.31 90.30 90.32 90.32

optdigits 91.39 91.39 92.24 92.21

page-blocks 90.03 90.01 93.88 93.82

parkinsons 70.14 70.14 79.53 81.01

pendigits 85.76 85.76 88.14 87.91

postoperative-patient 63.33 68.11 63.56 69.78

primary-tumor 47.41 49.71 48.92 49.83

qsar-biodegradation 75.88 75.89 80.99 81.00

qualitative-bankruptcy 99.60 99.32 99.60 99.24

saheart 71.10 71.05 67.68 68.65

segment 80.17 80.17 91.89 91.42

seismic-bumps 86.68 86.72 81.58 82.48

sick 92.59 92.75 96.75 97.09

solar-flare2 98.05 97.56 97.09 97.57

sonar 67.71 67.71 76.80 76.07

soybean 94.67 92.94 91.60 90.82

spambase 79.56 79.56 89.85 89.80

spect 80.29 78.68 79.66 82.92

spectf 71.72 71.75 79.18 79.81

spectrometer 41.96 42.06 45.08 45.16

splice 95.48 95.42 95.57 95.38

sponge 95.00 92.11 90.70 92.50

tae 55.12 54.01 46.32 42.59

thoracic-surgery 77.13 77.74 81.94 84.87

tic-tac-toe 69.57 69.64 69.57 71.15

turkiye-student 25.78 25.77 25.53 25.41

vehicle 44.68 44.68 61.04 61.16

vote 90.09 90.02 90.09 89.98

vowel 62.06 62.90 59.09 58.82

waveform 80.01 80.01 79.96 80.10

wine 97.46 97.46 98.37 98.54

zoo 96.35 95.07 96.15 91.80

Average 77.05 77.33 79.60 79.88
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Table 11. Accuracy results of Classical NB, Laplace NB, mNB and ImNB when they are used on data

sets with a percentage of added class noise equal to 10%.

Dataset Classical NB Laplace NB mNBm=2 ImNBm=4

acute-infl-nephritis 97.00 97.00 99.83 99.83

anneal 82.35 83.37 90.30 91.98

appendicitis 85.26 85.26 83.49 83.67

arrhythmia 55.40 58.26 70.37 72.35

audiology 70.54 70.61 71.78 73.25

autos 52.94 50.39 58.84 60.97

balance-scale 89.51 89.51 74.53 74.42

bank-marketing 86.32 86.33 87.59 87.82

banknote-auth 83.96 83.95 90.59 90.55

breast-cancer 71.45 72.29 71.83 72.50

breast-cancer-wisconsin 96.25 96.25 97.21 97.24

bridges-version1 52.55 65.67 58.35 60.01

bridges-version2 52.99 66.29 61.32 64.14

bupa 55.65 55.71 57.89 58.03

car 83.44 83.26 83.43 83.06

cmc 49.80 49.89 50.26 50.33

horse-colic 77.48 78.05 79.51 80.74

credit-rating-australian 78.12 78.17 85.38 85.46

credit-rating-german 75.07 74.91 73.79 74.17

dermatology 95.20 97.60 97.82 97.66

diabetes-pima 75.17 75.17 73.41 73.24

dresses-sales 57.62 60.02 59.94 61.24

ecoli 85.47 85.62 81.67 81.76

fertility-diagnosis 84.30 84.30 88.00 88.00

flags 47.79 49.53 50.00 55.08

glass 45.35 45.26 62.73 63.15

glioma16 80.00 80.00 82.60 80.20

haberman 75.16 75.16 71.52 71.96

heart-disease-cleveland 81.36 81.86 83.11 83.67

heart-disease-hungarian 83.23 82.32 83.07 83.41

heart-statlog 84.07 84.04 82.33 82.93

hepatitis 82.70 82.12 82.61 83.47

hypothyroid 94.14 94.07 97.21 97.22

ionosphere 81.97 81.94 88.63 88.94

iris 93.00 93.07 94.00 94.00

japanese-crx 78.12 78.17 85.38 85.46

kr-vs-kp 86.34 86.31 86.32 85.77

letter 62.24 62.24 72.86 72.84

liver-disorders 55.65 55.71 57.89 58.03

lsvt-voice-rehab 50.72 50.72 75.84 76.85

lymphography 80.02 82.24 80.20 81.17

mfeat-pixel 74.88 92.93 93.06 92.85

mol-splice-junction 93.36 93.45 93.45 93.62

nursery 90.39 90.40 90.40 90.40

optdigits 91.07 91.07 91.36 91.28

page-blocks 88.93 88.93 92.32 92.38

parkinsons 65.06 65.11 78.43 78.97

pendigits 85.43 85.43 86.24 86.18

postoperative-patient 59.78 64.11 60.44 64.33

primary-tumor 45.25 47.17 45.72 46.61

qsar-biodegradation 70.71 70.71 78.50 78.84

qualitative-bankruptcy 99.20 99.20 99.20 99.20

saheart 70.68 70.64 67.20 68.72

segment 72.41 72.40 89.36 89.23

seismic-bumps 85.80 85.83 85.46 86.61

sick 91.82 92.06 95.71 96.38

solar-flare2 98.30 97.51 98.31 98.53

sonar 66.23 66.23 73.34 71.67

soybean 92.59 91.92 90.07 89.92

spambase 71.30 71.30 89.12 89.12

spect 74.36 74.09 73.94 81.64

spectf 57.76 57.76 75.10 78.35

spectrometer 39.00 38.96 43.22 43.33

splice 93.36 93.45 93.45 93.62

sponge 89.16 79.63 63.29 91.07

tae 52.15 51.88 45.64 45.84

thoracic-surgery 76.32 76.79 82.43 84.91

tic-tac-toe 69.82 69.84 69.82 71.20

turkiye-student 24.37 24.35 26.96 26.97

vehicle 44.97 44.97 58.96 58.75

vote 89.97 89.90 89.81 89.88

vowel 57.30 58.28 54.05 54.30

waveform 78.24 78.24 79.05 79.24

wine 95.89 95.89 96.96 97.07

zoo 89.92 94.96 96.45 92.79

Average 74.69 75.44 77.74 78.67



ImNB

On the use of m-probability-estimation and imprecise probabilities in the näıve Bayes classifier 21

Table 12. Accuracy results of Classical NB, Laplace NB, mNB and ImNB when they are used on data

sets with a percentage of added class noise equal to 20%.

Dataset Classical NB Laplace NB mNBm=8 ImNBm=4

acute-infl-nephritis 97.83 97.67 98.58 98.75

anneal 79.26 81.82 88.65 89.56

appendicitis 83.75 83.65 80.28 80.76

arrhythmia 43.95 49.03 66.63 67.67

audiology 66.29 69.76 65.86 67.31

autos 49.79 48.89 56.25 59.02

balance-scale 88.55 88.55 74.22 74.22

bank-marketing 86.04 86.03 88.45 88.54

banknote-auth 82.57 82.57 88.22 88.02

breast-cancer 69.83 70.77 71.23 71.72

breast-cancer-wisconsin 96.27 96.27 96.72 96.78

bridges-version1 46.35 64.16 55.82 57.47

bridges-version2 47.88 64.33 59.55 63.06

bupa 54.63 54.66 57.86 58.01

car 82.49 82.45 82.44 82.38

cmc 49.55 49.58 50.03 50.12

horse-colic 76.31 76.85 77.91 79.57

credit-rating-australian 78.22 78.36 84.54 84.58

credit-rating-german 74.19 74.16 72.83 73.50

dermatology 94.71 97.43 97.63 97.30

diabetes-pima 75.07 75.09 73.35 73.37

dresses-sales 56.38 58.64 59.62 59.88

ecoli 83.59 83.53 79.81 80.11

fertility-diagnosis 81.90 81.70 88.00 88.00

flags 43.71 46.63 40.18 51.57

glass 42.34 42.06 56.79 56.47

glioma16 77.40 77.40 73.80 69.20

haberman 73.72 73.88 71.63 71.44

heart-disease-cleveland 80.74 81.43 83.37 83.40

heart-disease-hungarian 81.87 81.23 82.87 83.37

heart-statlog 83.74 83.74 78.93 78.85

hepatitis 82.24 81.93 82.03 82.22

hypothyroid 93.78 93.72 96.56 96.46

ionosphere 81.85 81.85 88.75 88.84

iris 90.60 90.67 93.53 93.73

japanese-crx 78.22 78.36 84.54 84.58

kr-vs-kp 85.53 85.54 85.55 84.98

letter 60.63 60.63 71.41 71.43

liver-disorders 54.63 54.66 57.86 58.01

lsvt-voice-rehab 49.49 49.49 72.06 69.53

lymphography 78.01 80.77 78.74 79.72

mfeat-pixel 75.72 92.55 92.59 92.58

mol-splice-junction 91.59 91.68 91.51 92.13

nursery 90.55 90.56 90.56 90.56

optdigits 90.02 90.02 90.64 90.56

page-blocks 88.51 88.51 91.64 91.60

parkinsons 63.85 63.85 77.05 79.46

pendigits 84.16 84.16 84.88 84.92

postoperative-patient 57.67 61.22 61.89 63.44

primary-tumor 42.98 46.08 44.69 45.87

qsar-biodegradation 68.01 68.01 75.20 76.40

qualitative-bankruptcy 99.16 99.16 99.16 99.20

saheart 70.42 70.40 67.51 68.12

segment 69.52 69.52 87.48 87.59

seismic-bumps 85.55 85.55 92.35 92.71

sick 91.59 91.73 96.41 96.59

solar-flare2 98.28 97.71 98.71 98.89

sonar 65.94 65.94 70.56 62.08

soybean 91.32 91.17 88.72 88.81

spambase 72.65 72.64 88.63 88.66

spect 72.70 72.74 71.69 81.83

spectf 54.50 54.50 72.05 74.92

spectrometer 36.03 35.73 35.85 37.08

splice 91.59 91.68 91.51 92.13

sponge 80.84 72.70 44.13 88.16

tae 48.15 47.82 44.64 43.52

thoracic-surgery 75.51 75.96 82.74 84.30

tic-tac-toe 69.25 69.30 69.36 70.52

turkiye-student 23.72 23.70 34.03 34.03

vehicle 44.14 44.13 56.72 56.59

vote 89.45 89.45 89.49 89.56

vowel 52.19 53.51 46.98 46.59

waveform 77.30 77.30 78.33 78.55

wine 94.77 94.77 93.82 94.37

zoo 89.31 93.20 93.65 92.20

Average 73.08 74.09 76.11 77.17
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Table 13. Accuracy results of Classical NB, Laplace NB, mNB and ImNB when they are used on data

sets with a percentage of added class noise equal to 30%.

Dataset Classical NB Laplace NB mNBm=13 ImNBm=4

acute-infl-nephritis 96.17 96.17 91.00 89.25

anneal 78.11 80.07 87.84 87.43

appendicitis 78.58 78.58 80.26 80.56

arrhythmia 39.29 43.52 58.67 59.25

audiology 61.12 67.42 58.06 64.82

autos 46.64 46.74 53.20 54.90

balance-scale 87.97 87.97 68.55 68.53

bank-marketing 84.84 84.86 88.69 88.74

banknote-auth 81.68 81.68 87.12 87.16

breast-cancer 66.50 67.49 69.02 70.42

breast-cancer-wisconsin 95.99 95.99 96.72 96.67

bridges-version1 43.70 63.99 54.15 55.30

bridges-version2 44.47 62.81 59.45 61.35

bupa 53.12 53.06 57.63 57.75

car 81.90 81.87 81.44 81.79

cmc 48.72 48.79 47.72 48.01

horse-colic 74.90 75.48 76.42 78.10

credit-rating-australian 75.87 75.96 83.26 83.14

credit-rating-german 71.36 71.41 70.56 71.53

dermatology 93.42 96.97 97.11 96.61

diabetes-pima 73.87 73.89 69.87 70.58

dresses-sales 53.68 54.84 56.82 57.24

ecoli 83.59 83.59 78.48 78.61

fertility-diagnosis 74.00 73.70 88.00 88.00

flags 40.88 42.73 36.72 48.81

glass 43.69 43.60 51.26 50.13

glioma16 69.40 69.40 63.60 62.20

haberman 69.47 69.93 70.29 68.67

heart-disease-cleveland 79.71 80.11 82.10 82.06

heart-disease-hungarian 80.72 80.55 82.66 83.27

heart-statlog 81.07 81.07 62.74 62.67

hepatitis 79.50 79.49 79.24 81.06

hypothyroid 93.33 93.28 96.19 96.01

ionosphere 82.32 82.32 84.52 80.99

iris 88.20 88.07 91.80 91.73

japanese-crx 75.87 75.96 83.26 83.14

kr-vs-kp 84.39 84.40 84.32 83.46

letter 59.23 59.22 70.17 70.21

liver-disorders 53.12 53.06 57.63 57.75

lsvt-voice-rehab 50.02 50.02 64.28 67.63

lymphography 76.01 78.38 75.97 77.20

mfeat-pixel 77.47 92.11 92.12 92.06

mol-splice-junction 90.03 90.16 89.89 90.70

nursery 90.58 90.59 90.60 90.59

optdigits 88.88 88.88 89.84 89.69

page-blocks 88.26 88.26 91.19 91.01

parkinsons 62.05 61.94 76.48 76.54

pendigits 82.64 82.64 83.57 83.61

postoperative-patient 56.00 59.67 60.78 62.00

primary-tumor 42.04 45.29 42.72 43.95

qsar-biodegradation 65.68 65.68 73.66 75.01

qualitative-bankruptcy 98.56 98.52 98.48 98.60

saheart 68.97 68.97 64.89 65.51

segment 67.28 67.28 85.92 85.87

seismic-bumps 81.54 81.53 93.19 93.17

sick 88.24 88.33 96.37 96.51

solar-flare2 97.58 97.07 98.62 98.54

sonar 65.35 65.35 60.09 55.21

soybean 90.18 90.18 86.91 87.41

spambase 72.50 72.50 88.31 88.40

spect 70.37 70.18 69.40 80.32

spectf 52.84 52.84 69.53 72.98

spectrometer 32.52 32.34 16.01 17.17

splice 90.03 90.16 89.89 90.70

sponge 68.39 64.16 39.32 80.84

tae 45.43 45.10 42.98 40.53

thoracic-surgery 72.43 73.34 81.68 83.68

tic-tac-toe 67.95 67.91 68.11 68.69

turkiye-student 22.91 22.91 35.19 35.19

vehicle 43.44 43.44 53.67 53.58

vote 89.40 89.40 89.38 89.36

vowel 47.56 49.03 38.70 37.77

waveform 76.73 76.73 77.90 78.10

wine 93.14 93.14 92.58 93.14

zoo 87.44 90.42 90.60 88.55

Average 71.08 72.19 73.54 74.64


