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Abstract A Bayesian Network (BN) is a graphical structure, with associ-
ated conditional probability tables. This structure allows us to obtain different
knowledge than the one obtained from standard classifiers. With a BN, repre-
senting a dataset, we can calculate different probabilities about set of features
with respect to other ones. This inference can be more powerful than the one
obtained from classifiers. A BN can be built from data and have analytical and
diagnostic capabilities that make it very suitable for credit domains. Credit
scoring and risk-analysis are fundamental tasks for financial institutions with
the aim to avoid important losses. In these tasks and other domains, an ex-
cessive number of features can convert a BN in a complex and difficult to
interpret model, but a few number of features can represent a loss of infor-
mation obtained from data. A new method based on imprecise probabilities is
presented to select an informative subset of features. Using this new feature
selection method we can build a BN that has an excellent adjustment to the
data, considering a reduced number of features. Via a set of experiments, it is
shown that the adjustment is better than the ones obtained with: no previous
variable selection method; and with a similar and successful variable subset
selection method based on precise probabilities. Finally, a BN is built with two
important characteristics: (i) it represents a better adjustment to the data; and
(ii) it has a low complexity (better interpretability) due to the small number
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of important selected features. A practical example about inference on a BN
to help on credit risk analysis is also presented.

Keywords Credit domains · Bayesian networks · inference · feature selection ·
imprecise probabilities

1 Introduction

Nowadays, the analysis of risks is a general important issue for banks and
financial institutions, not only because they must measure credit risk1, but
because any small improvement would produce great profits [1]. A lot of effort
has been done to build models which allow to predict if a specific applicant for
credit is good or not. In [2],[3], [4], [5], [6] or [7], among other works, different
approaches have been applied to credit scoring and it has been studied their
behaviour as predictors of the goodness of a specific credit.

Bayesian networks (BNs) are very interpretable models, which allows for
the right to an explanation2, due to their graphical structures that represent
dependence relations among the features of the problem. They have been suc-
cessfully used to work with credit scoring datasets [8], [9], [10] or [11]. In fact,
a BN can be used as a classifier but it is not one of the principal virtues of
this model. BNs have different characteristics than the standard classifiers:

– BNs are interpretable probabilistic models, whereas some classifiers per-
form as black-boxes, such as e.g. some of the most popular and successful
models: Support Vector Machines (SVM)[12–14], Random Forest [15] or
Artificial Neural Networks (ANN) ([16,17]).

– If the classifier is also interpretable as BNs (for example, a decision tree)
we need to know the values of all the features associated with the case to
predict (all the values of the antecedent to know the consequent in a rule
generated by a decision tree). With a BN we can do inference regardless of
the number of observations about the features that we have. Furthermore,
BNs are capable of informing about the probability of each value from any
feature. These probabilities change when we know the values of any other
features. For example, knowing part of the credit applicant data, we will
be able to calculate the probability whether the credit is positive or not
through inference methods.

– With a BN we can do inference from causes to effects and from effects
to causes, whereas with a classifier we can only predict the class variable
(causes to effects). Knowing the values of some features, with a BN we can

1 Since the Basel second accord from 2004, known as Basel II and released by the Basel
Committee on Banking Supervision, the supervised financial institutions are required to use
internal ratings to measure credit risk

2 In the United States, credit score has a right to explanation under the Equal Credit
Opportunity Act (Regulation B of the Code of Federal Regulations), Title 12, Chapter X,
Part 1002. Likewise, in the European Union, the European Union General Data Protec-
tion Regulation extends the automated decision-making rights in the 1995 Data Protection
Directive to provide the right to an explanation.
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find the most probable combination of the rest of the features. For example,
let suppose that a credit is negative and the client is under twenty years
of age, then, we can find the most probable combination of values for the
rest of the client characteristics (features).

As with another data mining tools, the reduction of the number of features
can improve the performing and reduce the complexity of a NB. For that aim
it is important that the procedure used to select variables could find the most
informative features. A higher number of features does not necessarily imply
that the learned BN be a better representation of the data available. If we have
irrelevant features, the BN could use them and build a model with erroneous
relations. Redundant variables will usually deteriorate the goodness of a fitted
model. Furthermore, the models including a great number of features become
less interpretable because the network is bigger and more complex. For these
reasons, it is appropriate to take advantage of a good feature selection algo-
rithm that would remove any irrelevant/redundant variables before learning
the network.

On the other hand, a considerable number of mathematical models based
on imprecise probabilities have been developed with the goal of representing
the information [18], [19], [20]. The use of imprecise probabilities has several
advantages. The most important of them might be the suitable management
of the little reliable information, when the sample size is not enough or there
are noisy data. In particular, it has been developed a imprecise information
measure in order to build classification trees [21], which is called Imprecise
Info Gain (IIG). It has been shown that this measure works specially well on
noisy data; on credit scoring data; and for extracting a high number of quality
rules from traffic datasets ([3], [4], [22]). For this reasons, we think that the IIG
measure could be interesting to be used in a feature subset selection method
and to apply it before using BNs on credit data.

In this paper we define a new feature selection method to select a subset
of informative features. This method will be based on the IIG measure in
a forward way to add features. The new feature subset selection algorithm
will be called Forward Feature Selection based on Imprecise Information Gain
(FFSIIG). The principal aim of the paper is to show that if we build a BN from
data using the FFSIIG in a previous step, we obtain a better representation of
the data than the BN built with no previous subset feature selection. Moreover,
we will also show that the BN build with the features selected by the FFSIIG
is also more representative of the data than similar BN built with one of the
most used and successful procedures to select variables called Correlation-
Based Feature Selection (CFS) [23].

Currently, collecting of huge amounts of information is common. The prob-
lem arises in how to deal with a very large number of features or variables.
The reduction of such number is an important task in any information system.
If with a smaller number of variables we are able to correctly represent the
data, the information gain can be clearer and better. The use of BNs can allow
different ways to extract knowledge from data, but even if the set of variables



4 J.G. Castellano et al.

is reduced, the results can be easier to understand. The problem here is to
find a middle point between number of features and fit to the data. That is
the aim of this paper, to build BNs with a reduced number of features but
with a good fit to the data, to make inferences as correct as possible. When
we use the FFSIIG feature selection method, we are considering a few number
of important variables but with an excellent fit to the data

To prove the procedures, we carry out an experimentation where we will
consider five very known and used credit scoring datasets. For each one of
these datasets, we will learn BNs using different known learning methods of
BNs from data after we have selected the features through FFSIIG. Then, we
measure how representative are the networks built with respect to the original
data through the Kullback-Leibler divergence [24]. It is the more appropriate
measure to quantify the distance from a model to data [25–27]. We will com-
pare these divergences with the divergences obtained by applying the same
learning algorithms with (i) no previous variable selection method; (ii) using
the CFS approach. This experimentation will show that the models learned
applying previously our feature selection method represent the data in a better
way than the other procedures.

Finally, in this paper, we will present a practical case to illustrate the ad-
vantages of BNs in credit risk analysis. In concrete, we will consider an specific
learned BN after applying the FFSIIG method and we will show information
that we can extract from this model that we can not extract with other sys-
tems.

The rest of this paper is structured as follows: In Section 2 we describe
the previous knowledge about BNs and CFS algorithm. Section 3 deals with
the advantages of BNs versus other systems. In Section 4 we present our new
feature selection method. Section 5 presents the experimentation carried out,
the results obtained and the comments about the results. Section 6 consists of
a detailed example about a specific BN learned in this work. Finally, Section
7 is devoted to the conclusions about this work.

2 Previous knowledge

In this section we shall introduce the needed concepts about Bayesian Net-
works and the Correlation-Based Feature Selection algorithm.

2.1 Bayesian Networks

The probabilistic nature of Bayesian networks makes them adequate for rep-
resenting data uncertainty and for efficiently handle uncertain knowledge. A
BN [28] is a graphical model which encodes a joint probability distribution,
being composed of a qualitative part, a directed acyclic graph which represents
the dependencies among the variables, and a quantitative part, a collection of
numerical parameters, commonly conditional probability tables.
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Formally, let us consider a finite set of discrete random variablesX1, . . . , Xm,
each variable taking on values from a finite set, a BN is a pair (G, θ), where:

– G is a directed acyclic graph with a node for each variable of the problem
Xi (i = 1, . . . ,m). In this graph, a link represents direct dependence rela-
tionships between the variables. For example, Xj → Xi indicates that the
node Xi directly depends on the node Xj .

– θ is a set of conditional probability distributions. This set contains, for
each node, a conditional probability distribution of the variables on which
it depends directly, i.e, its parents. If a node has no parents, its distribution
is simply the probability distribution of the node.

In this way, let Pa(Xi) denote the set of parents of the variable Xi, where
Pa(Xi) = {Xj | Xj→Xi∈G}. Therefore, for each variable Xi we have a set of
conditional distributions P (Xi | Pa(Xi)). From these conditional distributions
we can recover the joint probability distribution [28]:

P (X1, . . . , Xm) =

m∏
i=1

P (Xi | Pa(Xi)) (1)

The independence relationships which make this decomposition possible
are graphically represented, using the d-separation criterion (see [28]), through
the existence or not of arcs between pairs of variables in G. The d-separation
criterion allows us to decide whether a set of variables is independent of another
set, given a third set. For example, each variable Xi is independent of its
nondescendants known Pa(Xi).

2.2 Learning of Bayesian Networks

A BN can be built manually from an expert but the common practice is to
obtain it automatically from a data set. There are also mixed methods to build
a Bayesian Network where the network can be learned automatically from
data and manually refined by an expert. Therefore, the problem of learning
automatically a BN from data is to find the network that, in some sense, best
represents the data.

Since a BN is composed of a qualitative part and a quantitative part, we
distinguish two types of machine learning:

– Structural learning : the learning of the graphical structure (a directed
acyclic graph), that is, the qualitative part.

– Parametric learning : the learning of the collection of numerical parame-
ters (a conditional probability distribution for each variable), that is, the
quantitative part.

Because parametric learning consists of estimating the conditional prob-
abilities given by the structure of the graph using the observed frequencies
on the data, we first must learn the topology of the network. The conditional
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probabilities can be computed by using a maximum likelihood estimation [29],
though it is normally done by using a Bayesian estimator based on the Dirich-
let distribution [30].

There are a lot of works on the automatic learning of the BN structures
from data and, consequently, many structural learning algorithms have been
developed that may be categorized into two general approaches: algorithms
based on conditional independence tests, and algorithms based on a metric
and a search procedure.

Algorithms based on conditional independence tests (also called constraint-
based algorithms)[31] [32] [33] perform a qualitative study of the dependence
and independence relationships between the variables. The aim of these meth-
ods is to find the network that best match these relationships by using condi-
tional independence tests. The most telling example of this kind of structural
learning is the PC algorithm [31] which, starting with a complete graph, first
eliminates as many edges as possible, and after it gives direction to the edges.
The elimination of edges is guided by the results of some statistical tests of
conditional independence applied to the data.

The second type of structural learning algorithms attempt to find a graph
that best represents the data by maximizing the selected metric and mini-
mizing the number of arcs. The metric or scoring function is a measure of fit
between the graph and the data. There are several proposals based on Bayesian
scoring functions, such as BD/BDe metric [30], BDeu metric [34] or K2 [35]
and other approaches based on information theory scoring functions, such as
entropy [36] or the Minimum Description Length [37]. Furthermore, a search
procedure is needed to find the best structures according to the selected met-
ric. Local search methods are commonly used [35] [30] due to the exponentially
large size of the search space.

2.3 Inference with Bayesian Networks

Once we have obtained a BN we usually need to determine various probabili-
ties of interest as we get new information or evidence. For example, in a credit
scoring problem we want to know the probability of grant a credit given the
data of a new client. Thus, we can define the probability propagation or prob-
abilistic inference [28] [38] as the computation needed to obtain the posterior
probability of one or several variables (e.g., grant a credit or not) given the
values of other variables (e.g., new client data) in the BN.

Cooper [39] proved that exact computation of probabilistic inference for
BN is NP-hard, even for a single variable. Therefore, any kind of probabilistic
inference has exponential complexity, even approximate inference is NP-hard.
For this reason, there are several approaches to probabilistic inference in BNs
that can be categorized in exact inference methods [40] [41] [42], [43] and
approximate inference methods [44] [45] [46] [47] .
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2.4 Correlation-Based Feature Selection

The aim of a feature selection algorithm is to select a subset of variables
which can effectively replace the original set of attributes while reducing the
unfavorable effects of irrelevant/redundant variables and provides good results
or, even better, improves the performance of the selected pattern recognition
technique.

The Correlation-Based Feature selection (CFS) algorithm [23] is one of the
most used method for feature selection [48]. This method was introduced to
find subsets of variables hat are highly correlated with the class and uncorre-
lated with each other. Hence, this algorithm ignores irrelevant features because
of their low correlation with the class and discards redundant features because
of their high correlation with the remaining variables. This state of the art
algorithm has proved to obtain very good results in several domains such as
bioinformatics [49], traffic accident analysis [50], network intrusion detection
[51] or credit scoring [52].

Other very recent works where the CFS algorithm is used as benchmark
are the following ones: [53], [54], [27] and [55].

The CFS algorithm uses a local search method which starts with an empty
set of variables and, in each step, selects the feature that, by adding to the
subset that we have in that moment, provides the maximum heuristic value for
the new set of variables. If there is not a variable that improves the heuristic
of the actual subset, then the algorithm stops and returns the actual subset
as the best feature subset found. The Figure 1 shows the pseudo-code for this
search algorithm.

1. χ = ∅
2. V = {X1, . . . , Xm}
3. I = 0
4. Stop = False
2. While !Stop

2.1. Select the variable v ∈ V \ χ that maximizes the heuristic of χ ∪ v
2.2. I2 = heuristic value of χ ∪ v
2.3. If I2 > I then I = I2, χ = χ ∪ {v} else Stop = True

3. Return χ

Fig. 1 Search algorithm used by the CFS method.

The evaluation function of this method is based on the next principle [23]:
“Good feature subsets contain features highly correlated with the class, yet un-
correlated with each other”. Hence, the heuristic evaluates fundamentally two
things about a feature subset: The average correlation among no-class features,
giving more heuristic value as long as this correlation is lower, and the average
correlation among the class and the rest of features, being the heuristic value
directly proportional to this average correlation. The heuristic is formalized in
the next equation, [56]:
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MeritS =
m′rcf√

m′ +m′(m′ − 1)rff
(2)

where MeritS is the heuristic value given to this feature subset, m′ the
number of variables in the feature, rcf is the average correlation among no-
class features and the class and rff is the average feature-feature correlation.

The numerator of the equation 2 indicates how relevant are the features
of the subset and the denominator indicates the grade of redundancy of the
features in the subset.

In [23] the case of that the class variable is numeric is also considered.
However, in this work the class variable will be always discrete. In this case
CFS discretizes numeric features using the technique given in [57] and, for
calculating the correlation among two features, X and Y , CFS algorithm uses
the next measure, known as Symmetrical Uncertainty (SU) [23]:

SU(X,Y ) = 2× H(X) +H(Y )−H(X,Y )

H(X) +H(Y )
(3)

being H the Shannon entropy defined in (4).

3 Advantages of Bayesian Networks versus other systems

A classic model for valuation of a loan to an individual client or a company,
is based on the score on various elements (variables or features) of the data
obtained on the client (person or company) and the loan type. If the variables
are qualitative, each state is assigned a score; and if they are quantitative,
each range of values is assigned a score too. The final valuation of the possible
transaction is done through the final score obtained, classifying the risk of the
loan according to the final intervals of that valuation.

Depending on the final score, for example, the possible customer loan would
be valued in the set C = { very good, good, medium, weak, bad }. In many
cases, the possible valuation corresponds to a binary variable, with C ={good,
bad}.

For example, we suppose that the features are {X1, X2, · · · , X10} and each
feature has a different weight because its importance but the final possible
score, obtained adding the ones of each features, is in the interval [0, 100]. An
example of valuation table is presented in Table 1:

The final position about the value obtained can be expressed using a set
of intervals for the Final Score:

[0, 25] −→ Bad
[26, 40] −→Weak
[41, 65] −→Medium
[66, 85] −→ Good
[86, 100] −→ V ery Good
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Table 1 Example of a scoring table based on 10 features and a Final Score in [0, 100]

Feature Type Values : score Current Score

X1 Qual.
a1 : 10
a2 : 8
a3 : 4

a1 10

X2 Quant.

X2 > 30 : 12
30 ≥ X2 > 10 : 5
10 ≥ X2 > 4 : 2
X2 ≤ 4 : 0

25 5

...

X10 Quant.
X10 > 300 : 7

300 ≥ X10 > 180 : 3
X10 ≤ 180 : 0

225 3

Final Score = 76

In the same way, if we have a decision tree type classifier, using the char-
acteristics (features) of the client, the possible loan is valued following the
branches of the tree according to these characteristics, until arriving at a leaf
node where we will have the valuation in the set C (as we will see in Figure
7).

In the above situations, a major problem arises when the value of one
or several variables on the characteristics of the loan and client are either un-
known or mistrusted. Suppose that for a company, we do not know or mistrust
(motivated by the results of an audit) the data provided on its profit balance
of the last quarter of the year, which is a very important variable for the fi-
nal analysis (high value in the scoring table). If the value is not known, we
cannot obtain a final scoring that gives us the valuation of the transaction.
If we distrust this value, the final valuation will have some uncertainty that
causes distrust even if the final scoring is good. Likewise, if this variable is
very important, it will surely be in the first levels of decision tree and will not
allow the final classification or it will be given with distrust.

A BN does not suffer in situations like the one raised above. We can dis-
pense with this variable and express with a probability the final valuation
taking into account the rest of the variables that are presented in the model,
even if we do not know any other. The idea is that with the available informa-
tion, in this case with the information of the variables in which we have more
confidence or knowledge, we can establish a final valuation that helps us in
the decisions. Surely, if the variable that gives us problems is important, the
valuations will have a lower level of probability. But it has sense because, in
this case, we are working only with the information on the variables of greater
confidence.

In general, we can compare BNs with standard systems for valuation of
a loan for a customer; or with a classifier when it is used for similar aim. In
the section 6 we will illustrate with a example some of these advantages in
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the field of credit scoring. The principal advantages can be resuming of the
following way:

1. BNs are quite interpretable models, unlike other accuracy procedures of
classification that performs as black-boxes (SVM, ANNs, Random Forest,
etc). But it is true that with a huge amount of variables in the graphic
representation, a BN become less interpretable. Hence the importance of a
previous variable selection procedure that does not harm the information
from data.

2. This probabilistic graphic model represents in an easy way the dependence
relations between the features. However, the majority of the other systems
do not let us know the dependence relations so easily.

3. BNs let do inference although we do not know the value of some variables.
One of the most interpretable predictors known thus far are decision trees
due to the rules which we are able to extract after building the model.
Nevertheless, in a decision tree we have to know the values of all antecedent
variables to know the consequent value, whereas with a BN we can make
inference even when we do not know the real value of some features. With
a classic system of a table for credit scoring, the lack of knowledge of some
values (even one) does not allow us to obtain a correct score to use in a
decision making.

4. With a BN we can extend our knowledge of the system via a risk analysis
in two directions: from causes to effects and from effects to causes. We can
know the probability of some events or to know the most probable combi-
nation of values of some variables knowing other variables, including the
information a posteriori with respect a loan. This means that we can do
inference from effects to causes and from causes to effects. However, in pre-
dictive models it is only possible to predict the class value or determinate
the probability that the class variable has a certain value. Moreover, BNs
let us make inference not only about the class variable, but any variable of
the network.

4 Forward Feature Selection based on Imprecise Info Gain
(FFSIIG)

Previously to introduce the new method to select subset of informative vari-
ables, we will see the principal differences between the criterion used in the new
method, based on imprecise probabilities and general uncertainty measures,
with respect to similar one based on classical probabilities.

4.1 Classic Info-Gain criterion vs. Imprecise Info Gain

We assume that we have the class variable C, whose possible values are
{c1, · · · , cK}; and letD a dataset about the observations of the featuresX1, . . . , Xm.
The Shannon Entropy [58] about the class variable C is defined as
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HD(C) =

K∑
i=1

p(ci) log2(1/p(ci)) (4)

where p(ci) is the estimation of the probability of ci based on the data D (by
computing relative frequencies).

Let now Xj , (1 ≤ j ≤ m) be a specific feature and suppose that its possible
values are {x1, . . . , xt}. The entropy of C given Xj is given by the following
expression:

HD(C|Xj) =

t∑
i=1

p(xi)H
Di(C|Xj = xi) (5)

where Di is the partition associated with the value xi, i.e, is the subset of D
in which Xj = xi, and p(xi) is the estimation of the probability that Xj = xi
in D, ∀i = 1, . . . , t.

Once we have defined the measures given by 4 and 5, then the classic
Info-Gain measure [59] can be defined as follows:

IG(C,Xj)
D = HD(C)−HD(C|Xj) (6)

The Imprecise Info-Gain (IIG) [21] is based on the Imprecise Dirichlet
Model [18]. According to this model, for each possible value of class C = ci,
an imprecise probability interval is obtained instead of a precise estimation:[

nci
N + s

,
nci + s

N + s

]
(7)

being nci the number of cases in which C = ci in the data set, ∀i = 1, . . . ;K,
s a given parameter of the model; and N the number of instances of the data
set. It is clear that the higher value of s is, the bigger the interval is. It is not
trivial to decide which is the most appropriate value of s. In [18] the value
s = 1 is recommended.

This set of probability intervals gives rise to a credal set of probabilities
on the variable C, which is defined in [60] as follows:

KD(C) = {p|p(ci) ∈
[
nci
N + s

,
nci + s

N + s

]
,∀i = 1, . . . ,K} (8)

On this credal set, we can apply the maximum of entropy function H∗:

H∗(KD(C)) = max{HD(p)|p ∈ KD(C)} (9)

For s ≤ 1, the procedure to obtain maximum of entropy attains its lower
computational cost [61]. This is other important reason to set the value of
s = 1.
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In a similar way we can define for each feature, Xj (j = 1, . . . ,m), the
average of the maximum entropy on C generated by Xj :

H∗(KD(C|Xj)) =
∑
i

p(Xj = xi)H
∗(KD(C|Xj = xi),

which are obtained using the values ncr,xi , with r ∈ {1, · · · ,K} and i ∈
{1, · · · , t}

With these two measures we can express the Imprecise Info Gain (IIG) [21]
of the following way:

IIG(C,Xj)
D = H∗(KD(C))−H∗(KD(C|Xj)) (10)

To calculate the probability in KD(C) that gives the maximum entropy, a
simple algorithm can be applied, which can be found in [61].

Unlike Info-Gain, the value of IIG can be negative. This is an important
characteristic that makes different both criteria. The application of the maxi-
mum entropy measure in fundamental for this result.

4.2 The new method

The IIG criterion explained in the above section is the basis of the new pro-
cedure to select variables that we present here. The procedure consists in a
search method with a heuristic based on the IIG. The search method applied
in this algorithm will be the same as in CFS, then we need to explain our
metric evaluation for feature subsets selection.

Let suppose we have a dataset D. We can define an Imprecise Info Gain
for a set of features χ = {X ′1, . . . , X ′m′}, m ≥ m′, as follows:

IIG(C,χ)D = H∗(KD(C))−H∗(KD(C|χ)) (11)

where H∗ is the maximum of entropy defined in (9) and

H∗(KD(C|χ)) =

w∑
j=1

PD(χ = χj)H
Dj (C|χ = χj) (12)

being χj an array of values of the m’-dimensional variable (X ′1, . . . , X
′
m′);

Dj the partition generated by χj and w the number of possible combinations of
values in χ, i.e. w = |X ′1||X ′2| . . . |X ′m′ |, where with |.| is expressed the cardinal
or number of possible states of a variable.

What we measure with this heuristic is the gain in information via the IIG
criterion, that we have with respect to the class variable using a specific set
of features. The Algorithm of the FFSIIG is expressed in the Figure 2, which
is similar to the one expressed in Figure 1, but considering that now the gain
in information, via the IIG, can be negative for a set of variables. Here the
maximum gain in information via the IIG criterion is stored as GIIG.
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1. χ = ∅
2. V = {X1, . . . , Xm}
3. GIIG = 0
4. Stop = False
2. While !Stop

2.1. Let v′ the variable v ∈ V \ χ that maximizes the value IIG(C|χ ∪ v)
2.2. Let G′

IIG = IIG(C|χ ∪ v′)
2.3. If G′

IIG < 0 or G′
IIG ≤ GIIG Stop=True

2.4. Else GIIG = G′
IIG and χ = χ ∪ {v′}

3. Return χ

Fig. 2 Algorithm used by the FFSIIG procedure.

5 Experimentation

For our experimentation, we have used Weka software [62] on Java 1.5. We have
added the necessary implementation of the new method for select variables
FFSIIG presented here. We have also used the Elvira System [63] to work
with BNs.

A brief description of the datasets used in the experimentation can be
found in Table 2, where “N” is the number of instances in the data sets,
column “N Good” is the number of instances labeled as good/positive, col-
umn “N Bad” is the number of cases classified as bad/negative and column
“N Features” is the number of features or attribute variables. All the datasets
have two states for the class variable.

Table 2 Dataset description.

Dataset N N Good N Bad N features

Australian 690 307 383 14
German 1000 700 300 20
Japanese 690 307 383 15

Polish 240 128 112 30
UCSD 2435 1836 599 38

The Australian, German and Japanese datasets were obtained from the
UCI repository of machine learning [64] and they are related with credit scor-
ing. The Polish data set [65] is about companies bankruptcy forecast. The
UCSD data set is a reduced version of a very large database used in the 2007
Data Mining Contest of the University of California, San Diego and is related
with residence refinance predictions.

To work with BN, the continuous variables have been discretized using the
procedure of [57], which is implemented in the Weka software [62]. Using this
approach, in some cases, a few continuous variables were discretized into a
single state, which is equivalent to irrelevant features and those variables had
to be removed.
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For each one of these discretized datasets we have applied two feature se-
lectors: CFS and FFSIIG. The CFS algorithm was already implemented in
Weka. However, for the FSSIIG algorithm, we have implemented the function
evaluation using Weka structures for evaluators in the package attributeSelec-
tion (we remember that the search method is the same for both algorithms).
The IDM parameter was set to s = 1 because the reason remarked in previous
sections.

After the preprocessing stage, we have used the Elvira System [63] to build
BNs via different methods. Three different approaches were taken into account
to learn the structure of the BNs: (1) the score-based K2 algorithm [35]; (2)
a local search approach with the BDeu metric [34]; (3) the PC algorithm [31],
chosen because it uses conditional independence tests instead of a metric and
a search procedure. The performance measure used is the Kullback-Leibler di-
vergence [24] as the distance between the joint probability distributions asso-
ciated with a candidate network and with the available data set. This measure
is accepted as a standard measure of error in the Bayesian networks literature
[30] [37] [28].

The Table 3 shows, for each dataset, the number of features of the original
database, as well as the number of features that selects the CFS method and
the number of features selected by the FFSIIG algorithm. In this table we do
not take into consideration the class variable.

Table 3 Number of features selected by each method.

Dataset Original features CFS Features FFSIIG features

Australian 14 7 4
German 20 5 5
Japanese 15 7 4

Polish 30 9 4
UCSD 38 7 4

The Tables 4, 5 and 6 show, for each learning approach and for each dataset,
the Kullback-Leibler divergences of the learned BNs from the original datasets
and the BNs built from the datasets obtained after applying CFS and FFSIIG.
The differences among the methods can be seen in a more clear way in Figures
3, 4 and 5.

s

Table 4 Kullback-Leibler divergence to the original data with the BNs learned with the
K2 algorithm.

Australian German Japanese Polish UCSD

original 2.3255 1.1034 3.0129 9.4337 11.1422
CFS 0.8247 0.1826 0.8907 3.3809 1.1054

FSSIIG 0.5994 0.2308 0.5994 1.1233 0.5376
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Table 5 Kullback-Leibler divergence to the original data with the BNs learned with local
search+BDeu.

Australian German Japanese Polish UCSD

original 2.1121 0.8701 2.7373 9.2547 10.8284
CFS 0.7064 0.1404 0.7249 3.3818 1.0435

FSSIIG 0.5682 0.1445 0.5682 1.007 0.5293

Table 6 Kullback-Leibler divergence to the original data with the BNs learned with the
PC algorithm.

Australian German Japanese Polish UCSD

original 1.8896 0.9075 2.4759 5.6511 9.5844
CFS 0.6828 0.1676 0.6571 1.7771 1.0185

FSSIIG 0.5607 0.1729 0.5682 0.7584 0.5397
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Fig. 3 Kullback-Leibler divergence to the original data with the BNs learned with the K2
algorithm.

5.1 Comments on the results

In a first overview of the results, we can observe that for the three learning
methods that we have considered, the BNs represent the data much better
when we apply a previous feature selection (CFS or FFSIIG). In fact, for all
datasets, the KL divergence to the original data is considerably higher for
the BNs learned with all the features. Therefore, we can observe that the
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Fig. 5 Kullback-Leibler divergence to the original data with the BNs learned with the PC
algorithm.

redundant and/or irrelevant features give rise to a less representative model
of the data.

Comparing the two best methods, the KL divergence is lower of the BNs
learned with the features selected by FFSIIG than the divergence of the BNs
learned after selecting features by applying CFS for all datasets, except for
the German database where the CFS obtains better results. So, in general the
results obtained with FFSIIG method are better than the obtained with CFS.
FFSIIG is better in 4 of 5 datasets. Moreover, for the German dataset, where
the KL divergence is lower for the CFS, the difference is not as significant as
in the rest of datasets, where the KL divergence for the CFS is considerably
higher than the ones obtained with the FFSIIG.
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The difference in the German dataset is slightly better when the BN is
learned with the K2 algorithm, which obtains the worst results for this dataset
than the local serach+BDeu approach and the PC algorithm. These last two
learning approaches obtain better results in terms of KL divergence and the
differences are difficult to appreciate visually in Figures 4 and 5 for the German
dataset. Therefore, we believe that the differences are not significant if we also
take into account that the subset of features obtained by CFS and FFSIIG
methods is very similar for this particular dataset.

With the experimentation carried out, we can conclude that: (i) a previous
variable selection method can improve notably the adjustment on the data
when we build a BN; (ii) the new method to select subsets of variables, FFSIIG,
obtains BNs that have a better adjustment than the ones obtained by the
known method of CFS; and (iii) the BNs obtained with the FFSIIG, as a
previous step, are more simple (explicative) because they are built with a
lower number of features than the ones built using previously the CFS.

6 A practical example

In this section we want to show an example of the utility of BNs in credit
domains that cannot be obtained using other systems. We shall work with
the German dataset applying the FFSIIG algorithm in a previous step. After
using FFSIIG, we shall work only with 4 features and the class variable. The
meaning of the possible values of these five variables is shown in Table 7. We
shall consider the BN learned using the PC algorithm. In Figure 6 we can see
the graph of this BN.

Table 7 Description of the values of the variables in the Bayesian Network.

feature value meaning

credit history 0 The client has no taken credits or
he has paid back all credit duly

1 The client has paid back all credits at this bank duly
2 The client has paid all existing credits duly until now
3 The client has ever delayed paying off

some credit in the past
4 The account is critical

or the client has other credit existing at other bank
credit amount 0 The amount of credit to loan at this client is

lower than 3913.5
1 The amount of credit to loan at this client is

higher than 3913.5
other payment plans 0 Payment thorough a bank

1 Payment thorough stores
2 None

checking status 0 The client has a checking account less than one day ago
1 The client has a client account between 1 and 200 days
2 The client has a client account more than 200 days ago
3 The client has no checking account

class 0 The client has paid back the credit
1 The client has not paid back the credit
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Fig. 6 Bayesian network learned with German database after applying FSSIIG thorough
PC algorithm.

According to this graph, the variable other payment plans does not depend
on any other variable. The same situation appears with credit amount and
checking status. Credit history depends directly on other payment plans and
on credit amount. Here, the class variable depends directly on credit history,
credit amount and checking status.

As we said in Section 2, besides to the graph, a BN contains for each
node, a conditional probability of the node given its parents. What we can
see in Figure 6 is the probability distribution of each node. These probability
distributions represent the prior probability for each value of each variable i.e.
the probability before any observation.

Examples of inference via this model can be described as follows:

(1) Analysis from causes to effects. It is obvious that this BN is more in-
terpretable than other systems to express the information like some known
classifiers (as SVM, ANN or Random Forest). Thus, for an economist, a
BN model is more useful in the sense that it can provide information about
the dependence relation among the variables, which can be a relevant in-
formation for the expert.
When we compare the model based on BN with one based on one of the
most interpretable models for classification, as are decision trees, we can
find some problems in particular situations. Let consider the decision tree
generated by C4.5 algorithm when it is applied with German database
selecting before the same variables than the BN. This tree in shown in
Figure 7.
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Fig. 7 Decision Tree generated by C4.5 algorithm when it is applied with German database
selecting before the same variables than the Bayesian network

Suppose that we know that checking status has the value 1, which is equiv-
alent to the value 0 <= X < 200 in the tree, that credit amount has the
value 1 ((3913.5 − inf)) and that credit history has the value 0 (no cred-
its/all paid). If we do not know the value of the variable other payment plans
we can not know if the credit is good or bad. This situation represents an
important inconvenient for an expert in credit scoring because not always
it is possible to know all the data about a credit.
Nevertheless, with a BN it is possible to determinate the probability that
the credit is good or not. In fact, The Figure 8 shows the probability dis-
tributions of each one of the variables of the BN (in particular, the class
variable) once we have these observations.

(2) Analysis from effects to causes. BNs allow us to do inference in both
directions, from effects to causes and viceversa, whereas in other predic-
tors it is only possible to predict the class value. For instance, suppose now
that we only know that checking status has the value 3 (no checking), in
particular the value for the feature credit amount is not known. If we do
inference with this observation we obtain the probability distributions for
each variable, which we can see in Figure 9. According with these probabil-
ity distributions, in this case the BN would predict that the credit would
be given. As we can observe, the decision tree of Figure 7 also would pre-
dict that the credit would be good. BNs and decision trees have carried out
forward inference in this case. However, we could not know nothing about
the credit amount through the tree, unless we knew previously the value



20 J.G. Castellano et al.

Fig. 8 Probability distributions of the variables of the Bayesian network once we know that
checking status = 1 that credit history = 0 and that credit amount = 1

of this variable. This may be problematic for a credit analyst because it
may be crucial to have an estimation about the borrowed amount.
The previous problem (not to have an estimation of the value for credit amount
when the tree of Figure 7 is used) is solved with BNs. If we know that there
is no checking (checking status = 3) and the credit is good (class = 0) we
can do inference with the BN in order to obtain the probability distribu-
tions of the rest of variables, among them, credit amount, as we can see in
Figure 10. It would be an important advantage for a credit analyst because
he could have an estimation about the credit amount that he should give
to a client. The credit amount is an essential issue since small amounts can
relieve the losses if the credit is bad.

7 Conclusions

In this paper we have emphasized on the capabilities of the Bayesian Networks
when they are applied on credit domains. We have presented a method to select
features that can be combined with any method to build a BN. The method is
based on imprecise probabilities and uncertainty measures on general theories
to represent the information; and it selects in a forward procedure a subset of
informative features. This method has been called Forward Feature Selection
based on Imprecise Information Gain (FFSIIG). The principal advantages of
this combination of FFSIIG + BN is that the final model expresses a reduction
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Fig. 9 Probability distributions of the variables of the Bayesian network once we know that
checking status = 3

Fig. 10 Probability distributions of the variables of the Bayesian network once we know
that checking status = 3 and that class = 0
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of the complexity of the initial problem, because a few number of features are
considered; and represents a better fit on data.

Our proposal has been compared, via experiments on known datasets about
credit scoring, with: (i) BNs build without a previous step of variable selection;
and (ii) BNs build with a previous step of variable selection carried out by
a similar model than the one of our proposal but considering a very known
variable selection method based on precise probabilities and classical measures
of information. The results show that our proposal, in general, obtains a better
adjustment on the data that the methods used to compare.

The final conclusion of the results of this paper is that we propose a method
to make inference in credit domains that reduce the complexity of the problem
and can be considered as a better representation of the data available.
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