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Annika Nordin,11 Paolo Airó,24 Claudio Lunardi,25 Paul Shiels,26 Jacob M. van Laar,27 Ariane Herrick,28

Jane Worthington,28 Christopher Denton,4 Fredrick M. Wigley,29 Laura K. Hummers,29 John Varga,30

Monique E. Hinchcliff,30 Murray Baron,31 Marie Hudson,31 Janet E. Pope,32 Daniel E. Furst,33

Dinesh Khanna,34 Kristin Phillips,34 Elena Schiopu,34 Barbara M. Segal,35 Jerry A. Molitor,36

Richard M. Silver,37 Virginia D. Steen,38 Robert W. Simms,39 Robert A. Lafyatis,39 Barri J. Fessler,40

Tracy M. Frech,41 Firas AlKassab,42 Peter Docherty,43 Elzbieta Kaminska,44 Nader Khalidi,45

Henry Niall Jones,46 Janet Markland,47 David Robinson,48 Jasper Broen,49,50

Timothy R.D.J. Radstake,49,50,52 Carmen Fonseca,4,52 Bobby P. Koeleman,51,52 and Javier Martin2,52

In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino
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1The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; 2Instituto de Parasitologı́a y Biomedicina López-Neyra, Consejo
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addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching

a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci,

including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-

DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed

peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, pro-

vided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for

detecting previously overlooked susceptibility loci.
Introduction

Systemic sclerosis (SSc, scleroderma [MIM 181750]) is an

autoimmune disease characterized by three main features:

(1) fibrosis of the skin and internal organs, (2) a noninflam-

matory vasculopathy, and (3) autoantibody production.1 It

is a multiorgan system disease with considerable pheno-

typic heterogeneity, resulting in a broad spectrum of dis-

ease severity. From a clinical point of view, SSc is divided

into limited cutaneous systemic sclerosis (lcSSc) or diffuse

cutaneous systemic sclerosis (dcSSc).2 From an immuno-

logical point of view, SSc is typically classified according

to mutually exclusive and disease-specific autoantibodies

(anticentromere antibodies [ACAs] and antitopoisomerase

antibodies [ATAs]), which are found in approximately 50%

of SSc cases.3

Several studies have established that SSc is a complex

genetic disease with contributions from multiple genetic

loci.4,5 The evidence supporting a genetic predisposition

for the disease has revealed a major contribution from

the major histocompatibility complex (MHC), as well as

a number of other gene regions.4–6 In fact, genome-wide

association studies (GWASs) have confirmed the MHC

class II region as the most significant genetic region associ-

ated with SSc.7,8 Interestingly, a recent report restricted the

MHC associations to the different autoantibody subsets.9

In addition, multiple non-MHC loci, such as IRF5 (MIM

607218), STAT4 (MIM 600558), CD247 (MIM 186780),

TNIP1 (MIM 607714), IRF8 (MIM 601565), IL12RB2

(MIM 601642), CSK (MIM 124095), KIAA0319L (MIM

613535), PXK (MIM 611450), JAZF1 (MIM 606246), BLK

(MIM 191305), ITGAM (MIM 120980), and TNFAIP3

(MIM 191163), have been associated with this condition

at the genome-wide significance level (p < 5 3 10�8).7–13

Both GWASs and candidate-gene strategies have clearly

identified SSc susceptibility factors involved in different

components of the immune system (innate immune

response, adaptive immune response, cytokines, cytokine

receptors, etc.), as well as genes involved in pathways

that might play a role in vascular damage and fibrotic

processes.4–6 Despite the success of these approaches,

innovative strategies are needed for dealing with the re-

maining unmapped SSc heritability.

Hence, the next step in the genetic dissection of com-

plex autoimmune diseases (AIDs) is to identify the causal

variants for the already established susceptibility loci, as

well as to discover variants with lower penetrance with

the use of larger cohorts. Furthermore, these goals need

to be achieved with a cost-efficient strategy.14,15 To this
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end, an international group of collaborators formed the

Immunochip Consortium to develop and implement the

Immunochip array, a custom SNP genotyping array that

provides high-density mapping of AID-associated loci for

large cohorts at reduced costs. The Immunochip is based

on an Illumina Infinium array platform containing

196,524 variants across 186 known autoimmunity risk

loci.14 The variants included in the Immunochip encom-

pass all variants that have been previously described for

white European populations (SNPdb, 1000 Genomes

Project February 2010 release, and other available

sequencing projects). Also, the Immunochip design in-

cludes several rare variants considered to have significant

functional effects and that might have been previously

overlooked.14,15

This approach has recently shown encouraging results

in different AIDs, such as celiac disease (CeD [MIM

212750]), rheumatoid arthritis (RA [MIM 180300]), auto-

immune thyroid disease (ATD [MIM 275000 and

140300]), psoriasis (PS [MIM 177900]), primary biliary

cirrhosis (PBC [MIM 109720]), juvenile idiopathic arthritis

(JIA [MIM 604302]), primary sclerosing cholangitis (PSC

[MIM 613806]), narcolepsy (MIM 161400), ankylosing

spondylitis (MIM 106300), atopic dermatitis (MIM

603165), and Takayasu arteritis (MIM 207600).16–27 These

studies resulted in the identification of susceptibility genes

and the narrowing of the associations in previously re-

ported risk loci. Moreover, these reports increased the

number of shared genetic markers between the different

disorders, further supporting the common genetic compo-

nent of autoimmunity.

Taking the above into consideration, the goal of this

study was to explore SSc risk loci shared with other autoim-

mune diseases included on the Immunochip and to fine

map these areas, which comprised many, but not all, previ-

ously associated SSc loci.
Subjects and Methods

Case Definition
SSc cases were defined on the basis of the 1980 preliminary classi-

fication criteria of the American Rheumatism Association (now

the American College of Rheumatology)28 or the presence of at

least three out of five CREST (calcinosis, Raynaud’s phenomenon,

esophageal dysmotility, sclerodactyly, telangiectasia) features

typical of SSc. The designation of lcSSc or dcSSc was determined

according to the method of Leroy.2 The SSc-specific autoanti-

bodies, ACA and ATA, were determined by standard means as

previously described.29
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Table 1. Main Clinical Features of the Studied Cohorts

Sample Population Total After QC

Status and Gender SSc Subgroups

Cases
% Female
Cases Controls

% Female
Controls lcSSc dcSSc ACAþ ATAþ

US discovery 3,697 956 89% 2,741 65% 594 327 281 155

Spain discovery 1,602 877 89% 725 66% 533 247 390 192

US and Canada
replication

1,845 927 86% 918 53% 584 339 279 163

Spain replication 1,237 449 89% 788 56% 238 108 160 85

Germany 1,110 694 83% 416 54% 345 240 237 179

Netherlands 1,470 385 71% 1,085 42% 250 117 90 99

Italy 1,918 648 92% 1,270 81% 436 156 301 213

Sweden 587 229 77% 358 75% 163 66 67 39

UK 1,785 685 84% 1,100 87% 491 191 253 118

Meta-analysis 15,251 5,850 86% 9,401 65% 3,634 1,791 2,058 1,243

Note: 62.17% of cases were lcSSc, and 30.53% were dcSSc (7.3% were not designated); 35.18% of cases were ACAþ, and 58.85% were ACA� (5.97% were not
designated); 21.26% of cases were ATAþ, and 72.15% were ATA� (6.59% were not designated); and 36.70% of cases were ACA�ATA� (6.86% were not desig-
nated). Abbreviations are as follows: ACAþ, anticentromere-antibody-positive cases; ATAþ, antitopoisomerase-antibody-positive cases; dcSSc, diffuse cutaneous
SSc; lcSSc, limited cutaneous SSc; and SSc, systemic sclerosis cases.
Sample Population
After quality-control (QC) measures were applied, the combined

data set consisted of 5,850 SSc cases and 9,401 unrelated healthy

controls. Table 1 shows the sample populations by sex, origin,

and SSc subtype. The discovery cohort consisted of 1,833 SSc cases

and 3,466 controls of white European ancestry from the US and

Spain. The validation cohort was drawn from an independent

group of cases and controls of similar ancestry fromNorth America

(US and Canada), Spain, Germany, the Netherlands, Italy, Sweden,

and the UK (4,017 SSc cases and 5,935 controls). The populations

included in this study partially overlapped with those in previ-

ously published SSc GWASs.7,9 This study was approved by the

local ethics committees of all the centers that recruited the partici-

pating individuals, and all participating individuals gave written

informed consent.

The discovery population’s power to detect an association with

an odds ratio (OR) ¼ 1.5 under an additive model at the 5 3 10�6

significance level was 100% (minor allele frequency [MAF] ¼ 0.2),

96% (MAF ¼ 0.1), 56% (MAF ¼ 0.05), and 1% (MAF ¼ 0.01). The

overall meta-analysis had a statistical power of 100% (MAF ¼
0.05) and 18% (MAF¼ 0.01) with anOR¼ 1.5 but reached a power

of 99% with an OR ¼ 2.00 (the remaining parameters were main-

tained as previously mentioned). Power calculations were per-

formed as implemented in Power Calculator for Genome-wide

Analyses.30

Genotyping
The genotyping for the Immunochip custom array of the discov-

ery cohorts was performed in accordance with Illumina protocols

in two centers: the Feinstein Institute for Medical Research

(Manhasset) and the Translational Research Institute at the Uni-

versity of Queensland Diamantina Institute (Brisbane). The US

and Spanish control cohorts have already been included in previ-

ous Immunochip studies.17,26

The genotyping of the replication cohorts was performed with

either (1) the TaqMan SNP genotyping technology in the Applied
The A
Biosystems 7900HT Fast Real-Time PCR System according to the

manufacturer’s suggestions or (2) the Immunochip platform (the

controls sets overlapped with those from previous Immunochip

reports).16–20,22–24,26

Genotype Calling and QC
Genotype calling on the discovery cohort was performed with the

Immunochip platform according to the manufacturer’s instruc-

tions with the use of the Illumina iScan System and the Genotyp-

ing Module (v.1.8.4) of the GenomeStudio Data Analysis software.

Stringent QC parameters were applied in all data sets: (1) individ-

uals who generated genotypes at<90% loci were not considered in

the analysis, (2) markers with call rates% 90% were excluded, and

(3) markers with allele distributions strongly deviating from

Hardy-Weinberg equilibrium (HEW) in controls (p < 1 3 10�5)

were discarded. After QC measures were applied, 126,270 markers

passing QC (101,692 of them showed a MAF > 0.001) were

included in the analysis of the discovery cohort, resulting in a

genotyping rate of 99.8%. A total of 1,886 SSc cases (895 Spanish

and 981 US cases) and 4,629 unaffected controls (781 Spanish and

3,848 US individuals) passed these genotyping QCs.

Individuals in the discovery phase were also excluded on the

basis of inferred ethnicity by principal-component analysis

(PCA) as implemented in SNP&Variation Suite v.7 (GoldenHelix).

The first three principal components for each individual were

plotted, and those individuals deviating from the cluster centroid

were discarded for further analysis. Considering the different re-

ported ancestries in the US control set, we includedHapMap Phase

2 samples as reference populations in an initial PCA. Then, we dis-

carded those individuals who deviated more than 6 SDs from the

European ancestry cluster centroid (Figure S1, available online). In

addition, individuals who deviated more than 4 SDs from the

centroid of their cohort were excluded from the analysis. More-

over, to identify duplicate pairs or highly related individuals

among data sets, we performed pairwise comparisons by using

the genome function in PLINK31 and HapMap2 populations as
merican Journal of Human Genetics 94, 47–61, January 2, 2014 49



references (which required Pi-HAT ofR 0.5), and we removed one

sample from each pair. By these means, 43 SSc cases (18 Spanish

individuals and 25 US individuals) and 1,163 controls (56 Spanish

and 1,107 US individuals) were not included in the analyzed dis-

covery cohort.

To calculate the genomic-inflation factor (l) while overcoming

the skewed nature of the SNP selection process in the Immuno-

chip design, we used a set of 3,120 ‘‘null’’ SNPs not associated

with autoimmune diseases (originated by J.C. Barrett and provided

by John Bowes, personal communications).19,22,23,25,26 The SNPs

that did not pass QC or showed an association p value above the

90th percentile in the SSc meta-analysis were discarded. The l for

the discovery sets was estimated at 1.07 (US) and 1.085 (Spain).

It has been demonstrated that l increases with sample size.32

Therefore, it is informative to calculate a rescaled l for an equiva-

lent study of 1,000 cases and 1,000 controls (l1,000).
32 In this

report, l1,000 was estimated at 1.049 (US) and 1.098 (Spain). In

the case of the discovery-phase meta-analysis, l ¼ 1.065 and

l1,000 ¼ 1.02 (including the associations in the 90th percentile,

l ¼ 1.209 and l1,000 ¼ 1.064). All loci showing one or more inde-

pendent genome-wide-significant associations in the discovery

phase remained significantly associated after correction for l.

However, all the identified loci (showing either genome-wide or

suggestive significance, Table S1) underwent a replication step.
Imputation
We performed SNP genotype imputation of the identified SSc

susceptibility loci (5 Mb regions centered in the lead SNP were

considered). We included only discovery-phase genotyped SNPs

that passed QC in the imputation process. Genotypes were

imputed as implemented in IMPUTE2 with the use of the 1000

Genomes Phase 3 integrated reference panel.33,34 We assessed

imputed SNP quality by establishing a probability threshold for

merging genotypes at 0.9. Moreover, after imputation, stringent

QC was applied: (1) individuals who generated genotypes at

<90% loci were not considered in the analysis, (2) markers with

call rates % 95% were excluded, (3) markers with allele distribu-

tions deviated from HWE in controls (p < 1 3 10�3) were dis-

carded, and (4) variants with MAF < 0.01 were not included in

the analyses. A total of 390 additional variants were imputed in

ATG5 (autophagy-related 5 [MIM 604261]), 541 in the SCHIP1

(schwannomin-interacting protein 1[MIM 612008])-IL12A (inter-

leukin 12A [MIM 161560]) locus, and 628 in DNASE1L3 (deoxyri-

bonuclease 1-like 3 [MIM 602244]).
Imputation of the HLA Region
The 5,955 SNPs obtained in the MHC after all QCs were used for

the imputation process. We used as a reference panel for the impu-

tation (1) 2,767 European-descent individuals35 with four-digit

typing of human leukocyte antigen (HLA) class I and II molecules

and (2) the genotypes ofmore than 7,500 common SNPs and indel

polymorphisms across the extendedMHC (xMHC).36 The imputa-

tion process was performed with Beagle software37 according to a

previously described method.38 Imputed data in the xMHC for

SNPs, amino acids, or the HLA four-digit code were filtered as

follows: (1) variants with a success call rate below 95%, (2) variants

with a MAF below 1%, and (3) all individuals with a SNP success

call rate below 95% were excluded. After these filters, a total of

7,261 SNPs remained. Also, through the imputation process, a

total of 449 polymorphic amino acid positions were obtained. At

last, the alleles of the class I MHC (HLA-A [MIM 142800], HLA-B
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[MIM 142830], and HLA-C [MIM 142840]) and class II MHC

(HLA-DPA1 [MIM 142880], HLA-DPB1 [MIM 142858], HLA-

DQA1 [MIM 146880], HLA-DQB1 [MIM 604305], and HLA-DRB1

[MIM 142857]) were obtained. In order to assess the accuracy of

the imputation, we used partial data from previously genotyped

HLA alleles from 490 individuals from the US and 466 individuals

from Spain forHLA-A,HLA-B,HLA-C,HLA-DPA1,HLA-DPB1,HLA-

DQA1, HLA-DQB1, and HLA-DRB1 at four digits, which were

partially included in previous reports.39,40 This resulted in an accu-

racy of 93.51% in the US cohort and 91.70% in the Spanish cohort

in the four-digit comparison (Table S2).
Statistical Analysis
The association statistics for the discovery cohorts were calculated

separately in each data set via logistic regression including sex as a

covariate. Then, meta-analysis combining ORs and SEs of both

cohorts was performed via the inverse-variance method under

the assumption of a fixed effect as implemented in PLINK

v.1.07.31 Heterogeneity across the data sets was assessed with

Cochran’s Q test, and those loci showing significant heterogeneity

(Q < 0.05) were not considered for the validation step.

The validation SNPs were chosen for the validation phase if they

(1) had a meta-analysis p < 5 3 10�6, (2) had a nominal associa-

tion in both cohorts at p < 0.05, (3) had consistent OR directions

in both cohorts, (4) were not located in a gene previously identi-

fied as SSc associated, (5) and mapped outside the HLA region

(considered the loci located in chr6: 20,000,000–40,000,000 bp).

The possibility of different independent signals in the same

locus was evaluated with a stepwise logistic regression as described

in Eyre et al.17 In brief, the most associated variant in the region

was considered a covariate and the association analyses were

calculated for the remaining variants. Independent signals should

have met the following criteria: (1) p < 5 3 10�6, (2) no high cor-

relation with the lead SNP (r2 < 0.6), and (3) no substantial differ-

ence between the conditioned and the unconditioned p values

(p < 5 3 10�4).

The combined analysis of the discovery populations with the

replication cohorts was performed via the inverse-variance

method under a fixed-effects model on the basis of population-

specific logistic regression results. Only variants showing a

genome-wide-significant association (p < 5 3 10�8), either in

the whole disease or in any of the subgroup analyses, were consid-

ered confirmed associations with SSc susceptibility.

For the analyses of the HLA region, we used logistic regression to

test for allelic association between the imputed variant and disease

status. Individual amino acid positions were tested with a model

including all the possible amino acid residues. Statistical signifi-

cance was established by comparison of the deviance model to

the null model.38 For the conditional analyses, we assumed that

the null model comprised the previously associated variants in a

stepwise manner until no genome-wide-significant associations

remained in the HLA region.
Functional Prioritization of Noncoding Variants
In addition to analyzing coding variants (functional prediction

was based on PolyPhen-2),41 we propose most likely functional

variants that might explain the associations on the basis of

noncoding element data. We used the Regulome, Genevar, and

Blood eQTL browser resources to explore the evidence of transcrip-

tion factor binding sites, DNase hypersensitivity sites, and ex-

pression quantitative trait loci (eQTLs) in the publicly available
14



ENCODE database and additional eQTL databases.42–44 Molecular

graphics and analyses of DNASE1L3, HLA-DPAb1, HLA-DQa1, and

HLA-DRb1 structure were performed with the UCSF Chimera

package.45
Results

The HLA region showed the most significant associations

in the discovery phase, and three already reported non-

HLA SSc risk factors (STAT4, PXK, and the TNPO3 [MIM

610032]-IRF5 locus)7,13,46–54 showed genome-wide-signifi-

cant associations with the disease (Table S3). No indepen-

dent signals as previously defined were observed in these

loci. Additionally, we calculated blocks of high linkage

disequilibrium (LD) for the leading signals (defined as

those SNPs showing r2 > 0.9 with the lead variant accord-

ing to the 1000 Genomes Project CEU [Utah residents with

ancestry from northern and western Europe from the

CEPH collection] population) in these loci.34 By these

means, we established an association region comprising

35 kb for the leading variant in STAT4, 126 kb in the case

of the TNPO3-IRF5 locus, and 91 kb in PXK. Because of

their proximity, we tested for possible dependence be-

tween the signals in PXK and DNASE1L3. Interestingly,

both the genome-wide association observed in our data

in PXK (rs4681851) and the reported association with SSc

in PXK (rs2176082)13 were dependent on the association

located in DNASE1L3 (pcond rs4681851 ¼ 0.19, pcond

rs35677470 ¼ 3.71 3 10�8; pcond rs2176082 ¼ 0.12, pcond

rs35677470 ¼ 6.41 3 10�11). In addition, several previ-

ously described SSc susceptibility factors showed signifi-

cant associations with SSc or the different subphenotypes

of the disease and were confirmed in our analysis (Table

S3). In this study, we performed a comprehensive analysis

of the associations in the HLA region and focused on the

associations previously undescribed in non-HLA loci.

Associations between the HLA Region and Systemic

Sclerosis

We also conducted the imputation of the HLA region

(chr6: 28,000,000–34,000,000 bp) in our data by using a

large reference panel as previously described. Resulting

from the imputation, we obtained 7,261 SNPs, 449 poly-

morphic amino acid positions, and 298 four-digit HLA

alleles for both class I and class II molecules. Compared

to HLA typing, the imputation had an overall accuracy

of 93.08%.

Taking into account the serologically restricted HLA

association in previous reports,9 we conducted different

analyses to compare total SSc, ACAþ, and ATAþ between

cases and controls in this locus. The overall results from

the analysis specific to the HLA region can be observed

in Figure 1 and Table 2. After stepwise conditional multiple

logistic regression analysis in the aforementioned groups,

we obtained a model composed of six polymorphic amino

acid positions (two and four of which were associated with

ACA and ATA, respectively, Table 2) and seven SNPs (five
The A
and two of which were associated with SSc and ACA,

respectively, Table 2), which successfully conditioned all

observed associations in the HLA region in either SSc or

any of its serological subphenotypes (Figure 1). Conse-

quently, the identified models conditioned the known

SSc-related HLA four-digit alleles (Table S4).39

Loci Revealed in the Immunochip Analyses

Eight SNPs were selected as putative SSc risk factors (Table

S1). We genotyped these variants in a large multicenter

replication cohort of European ancestry in order to

confirm the initial associations in the discovery phase.

One SNP failed to genotype in the North American replica-

tion cohort, as indicated in Table S5. As illustrated in

Figure 2 and Table 3, the meta-analysis of the European

and North American discovery and replication cohorts

identified three non-HLA loci to be associated with overall

SSc (p < 5 3 10�8, see Table S5 for results of all selected

SNPs in all groups). The associated variants included a

missense SNP (rs35677470) in DNASE1L3 at 3p14 (result-

ing in a cysteine substitution for arginine in the gene

product, Figure S2), a SNP (rs77583790) in the intergenic

region between SCHIP1 and IL12A at 3q25, and a SNP

(rs9373839) intronic to ATG5 at 6q21. In addition, a SNP

(rs7130875) in the intergenic region between TREH (treha-

lase [MIM 275360]) and DDX6 (DEAD-box RNA helicase 6

[MIM 600326]) at 11q23 showed suggestive association

(p ¼ 1.29 3 10�7, OR ¼ 1.17).17

The association signals forDNASE1L3 and SCHIP1-IL12A

were also significant in the lcSSc and ACAþ subgroups.

Moreover, in the case ofDNASE1L3, the signal was strongly

related to ACAþ SSc (p¼ 4.253 10�31, OR¼ 2.03), and the

most significant association in the SCHIP1-IL12A region

was found with lcSSc (p ¼ 1.53 3 10�11, OR ¼ 2.81)

(Table 3). Of note, there was no previously unreported

genome-wide-significant association with either the dcSSc

or the ATAþ subset of disease in this cohort. It is worth

mentioning that the risk effects for the replicated polymor-

phisms were maintained in all the analyzed populations

(Figure 2 and Figures S3 and S4).

In order to further dissect the associated loci, we

imputed the associated regions by using the 1000 Ge-

nomes Project reference panel, as described previously.

Imputation resulted in a significant increase in the number

of analyzed variants, but only slight differences between

the top genotyped SNPs and the top imputed SNPs were

observed. Considering the dense coverage of the fine-

mapped loci in the Immunochip, this low gain of informa-

tion from imputation was concordant with previous

Immunochip reports.22,26 As expected, the linked variants

in the regions surrounding the association peaks showed

concordant associations (Figure 3). However, no additional

independent signals, neither SNPs nor haplotypes, showed

up after conditioning on the lead variant (Figure 3).

In the case of DNASE1L3, the lead variant (rs35677470)

encodes a probably damaging nonsynonymous change,

as mentioned above. No additional variant in high LD
merican Journal of Human Genetics 94, 47–61, January 2, 2014 51



Figure 1. HLA Region: 28,000,000–36,000,000 bp
Manhattan plots in which each dot represents the p value of a variant (�log10(p value)) on the vertical axis and the position in chro-
mosome 6 on the horizontal axis. The ACA model comprised HLA-DRb1 amino acid 13, HLA-DQa1 amino acid 69, and SNPs
rs12528892 and rs6933319. The ATA model comprised HLA-DRb1 amino acids 67 and 86 and HLA-DPb1 amino acids 76 and 96. The
SSc model included the previously described ACA and ATA models and SNPs rs17500468, rs9277052, rs2442719, and rs4713605.
with this SNP (r2 > 0.9) was located in a coding region or

has been associated with eQTLs. Therefore, we suggest

that the lead variant itself might be the most suitable

causal candidate.

No variants linked with the ATG5 leading variant have

protein-coding consequences or have been associated

with eQTLs. Four variants located in the fifth ATG5 intron

(rs62422881, rs3804333, rs1885450, and rs698029) were

located in transcription factor binding sites and DNase

peaks (Regulome scores ¼ 2a–4). This region showed sug-

gestive evidence of binding of different proteins with roles

in the immune system (e.g., PRDM1, EP300, or CEBPB). In

addition, rs7763652, a variant in the ATG5 promoter re-

gion, showed minimal evidence of affecting the binding

of CTCF (Regulome score ¼ 4). Further research might

shed light on the functional relevance of this region.

Variants in the SCHIP1-IL12A locus showed only mini-

mal evidence of binding. Nevertheless, this lack of func-

tional information might be due to the low MAF.
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Discussion

In the present study, we were able to further dissect the

long-known association between the HLA region and

SSc. We narrowed the genetic factors in this region down

to a model of six amino acids and seven SNPs, all in the

ACAþ and ATAþ subgroups (except for rs17500468,

rs9277052, rs2442719, rs4713605, and rs443623, which

presented their association in the overall disease). We

further checked all associated SNPs for any functional

explanation of their association. Among other methods,

we checked whether any of the SNPs were in a putative

eQTL according to Westra et al.44 SNPs rs17500468 and

rs2442719 (associated with SSc) were in an eQTL affecting

the expression of the non-HLA gene TAP2 (MIM 170261;

p ¼ 4.90 3 10�10 and 4.23 3 10�8, respectively),

rs9277052 (associated with SSc) was in an eQTL affecting

the expression of HLA-DPB1 (p ¼ 2.86 3 10�69), SNP

rs4713605 was in an eQTL affecting the expression of
14



Table 2. All Independent Associations Found between the HLA Region and SSc or Any of Its Subphenotypes

SSc Subgroup Type Gene Variation
AA or
Nucleotide

Frequency in
Cases

Frequency in
Controls p Valuea ORb 95% CIb

ACAþ AA HLA-DRB1 AA 13c Tyr 0.048 0.139 1.79 3 10�39 0.295 0.22–0.38

Phe 0.232 0.136 1.817 1.56–2.11

ACAþ AA HLA-DQA1 AA 69c Leu 0.484 0.581 4.46 3 10�23 0.657 0.58–0.75

T 0.076 0.020 3.788 2.85–5.02

ACAþ SNP TAP2 rs12528892d T 0.064 0.011 2.74 3 10�11 9.137 6.49–12.85

ACAþ SNP HLA-DOA rs6933319 T 0.030 0.056 7.13 3 10�16 0.304 0.21–0.42

SSc SNP TAP2 rs17500468d G 0.186 0.082 5.87 3 10�62 2.868 2.52–3.25

SSc SNP HLA-DPB1 rs9277052d C 0.275 0.182 4.08 3 10�21 1.572 1.43–1.72

SSc SNP HLA-B rs2442719d G 0.491 0.410 9.55 3 10�23 1.512 1.39–1.64

SSc SNP HLA-DPB1 rs4713605d A 0.381 0.435 2.16 3 10�13 0.726 0.66–0.79

SSc SNP HLA-DOA rs443623 A 0.227 0.304 3.49 3 10�9 0.770 0.70–0.84

ATAþ AA HLA-DRB1 AA 67 Leu 0.227 0.388 3.55 3 10�22 0.461 0.38–0.55

Phe 0.311 0.173 2.158 1.80–2.58

ATAþ AA HLA-DPB1 AA 96 no Lys or Arge 0.037 0.001 3.21 3 10�23 75.230 28.09–201.50

ATAþ AA HLA-DRB1 AA 86c Val 0.573 0.476 1.77 3 10�5 1.423 1.21–1.67

ATAþ AA HLA-DPB1 AA 76c Ile 0.074 0.028 3.05 3 10�8 2.577 1.85–3.59

Abbreviations are as follows: AA, amino acid; ACAþ, anticentromere-antibody-positive cases; ATAþ, antitopoisomerase-antibody-positive cases; CI, confidence
interval; OR, odds ratio; and SSc, systemic sclerosis cases.
aLogistic regression omnibus test for variations with more than two alleles.
bORs and CIs for each of the associated alleles.
cAmino acid part of the binding pocket of the molecule.
dLocated in a putative eQTL with a p value of at least 5 3 10�8 according to Westra et al.
eThe absence of a lysine or an arginine in this position is the associated variant, which is very infrequent in healthy individuals of European ancestry.
HLA-DPB1 (p ¼ 2.26 3 10�81), and rs12528892 was also in

an eQTL affecting the expression of TAP2 (p ¼ 8.53 3

10�68). Finally, SNPs rs443623 and rs6933319 (associated

with SSc and ACA production, respectively) were not pre-

dicted to be in any eQTL or a likely transcription factor

binding site; the closest gene was HLA-DOA (MIM

142930), whose product forms an heterodimer with HLA-

DOb to assemble the HLA-DO molecule, found in lyso-

somes in B cells regulating HLA-DM-mediated peptide

loading on MHC class II molecules.55 Regarding the other

described genes affected by eQTL SNPs,HLA-DPB1 encodes

the b chain of the HLA-DP MHC receptor complex,

whereas TAP2 is involved in antigen presentation.56

Regarding the amino-acid-associated positions, we

found that the associated amino acid at position 13 in

HLA-DRb1 was part of the binding pocket of this molecule

with epitope,57 which was also the case with amino acid 69

in HLA-DQa1;58 both of these amino acids are associated

with ACA production (Figure S5). Amino acids 86 and 76

in HLA-DRb1 and HLA-DPb1, respectively (both associated

with ATA production), were also part of the binding pocket

of their respective molecules.57,59 Conversely, amino acids

67 and 96 in HLADRb1 and HLA-DPb1, respectively (asso-

ciated with ATA production, Table 2), were not part of

the binding pocket but could affect the 3D structure

of the MHC. Hence, the complexity and heterogeneity of
The A
the associations between the HLA region and SSc reflect

the complex and heterogeneous nature of this disorder.

Three non-HLA variants associated with SSc susceptibil-

ity were clearly identified in this report, increasing the

number of loci that have been associated with SSc and

providing additional insight into SSc pathogenesis. More-

over, the nonsynonymous risk variant in DNASE1L3

showed a highly significant association with the ACAþ

group considering the known non-HLA genetic associa-

tions with SSc.4–6

DNASE1L3 codes for deoxyribonuclease 1-like 3, a mem-

ber of the human DNase 1 family, which is expressed

primarily in the liver and spleen and secreted by

macrophages.60 This protein plays a role in DNA frag-

mentation during apoptosis and in the generation of re-

sected double-strand breaks in immunoglobulin-encoding

genes.61–63 Moreover, it has been implicated in susceptibil-

ity to SLE and RA.17,64 The nonsynonymous rs35677470

SNP in DNASE1L3 exon 8 results in a Arg-to-Cys sub-

stitution at amino acid position 206 of the protein

(p.Arg206Cys). This amino acid change results in the loss

of a hydrogen bond in the protein (Figure S2), and

in vitro studies have indicated that the protein constructed

with this substitution lacks DNase activity; this evidence

suggests a potential role in autoimmunity for this SNP.65

Moreover, the observed genome-wide associations in PXK
merican Journal of Human Genetics 94, 47–61, January 2, 2014 53



Figure 2. Forest Plots Showing the Pop-
ulation-Specific and Pooled Analyses of
the Variants at Genome-wide or Sugges-
tive Significance in the SSc versus Control
Analysis
(A) rs35677470 in DNASE1L3.
(B) rs77583790 in the SCHIP1-IL12A locus.
(C) rs9373839 in ATG5.
(D) rs7130875 in the TREH-DDX6 locus.
were in modest LD with and dependent on the DNASE1L3

variant. Thus, we hypothesize that because of its func-

tional implications, the rs35677470 polymorphism is

likely to be the causal variant for the reported associations

with SSc in the region. Considering that this variant is

exclusive to populations with European ancestry and

has a relatively low frequency and only two proxy SNPs

(r2> 0.8), it is not surprising that it remained undiscovered

and that fine mapping of the region was required for

identifying this highly significant association. Interest-

ingly, vascular injury and immune deregulation, which

are both SSc hallmarks, are related to cell damage and de-

regulated apoptosis.66 Therefore, the association between

SSc (especially ACAþ SSc) and the rs35677470 loss-of-

function variant in DNASE1L3 might provide a link

between a defective apoptotic DNA breakdown and the

production of ACA.

Utilizing the Immunochip fine-mapping platform, Eyre

et al. confirmed the same SNP as the SNPmost highly asso-

ciated with RA in the region,17 which supports the role of

this gene and this specific variant as a common autoimmu-

nity risk factor. Direct genotyping of this polymorphism in

nonfamilial SLE might shed light on the relevance of this
54 The American Journal of Human Genetics 94, 47–61, January 2, 2014
gene beyond the currently reported

association in familial SLE cases.63

As noted in the Subjects and

Methods, our study reachedahigh sta-

tistical power to detect associations

with large effects despite low fre-

quency of the minor allele. In fact, a

rare variant in the intergenic region

between SCHIP1 and IL12A has

been firmly associated with SSc,

particularly the lcSSc subset. The

same region was also identified in the

Immunochip analysis in CeD.16

Trynka et al. identified three different

signals (rs76830965, rs1353248, and

rs2561288) in this region.16 However,

these variants were not associated

in our data (p > 0.05), and our

lead SNP (rs77583790) was not

linked to the previously mentioned

polymorphisms. On the contrary,

rs80014155, one of the four signals

observed in PBC,20 showed r2 ¼ 0.97

with our lead SNP. Therefore, both sig-

nalswere equivalent. The locationof the SSc signal in the re-

gion upstream of IL12Amight point to an effect of this SNP

(or a linked variant) in the regulation of IL12A expression.

Moreover, different loci in the IL12 pathway have been

associated with SSc (i.e., IL12RB2 and STAT4), and altered

levels of IL12 have been detected in SSc-affected individ-

uals,7,11,52,54,67 supporting a relevant role for this inter-

leukin pathway in the disease. Nevertheless, because of

the lack of functional data on this variant, its low frequency,

and the high level of LD in this region, an unknown role of

SCHIP1 or other surrounding loci should not be discarded.

Regarding the association located in ATG5, the ATG5-

encoded protein forms a complex with ATG12 and assists

in autophagosomal elongation.68 Remarkably, this signal

at the genome-wide level links SSc with autophagy. Auto-

phagy is a degradation pathway that mediates pathogen

clearance and allows cells to degrade unwanted cyto-

plasmic material and to recycle nutrients.68 It plays a key

role in both innate and adaptive immune system develop-

ment and responses and has been associated with a num-

ber of AIDs.68 Along this line, several GWASs have found

associations between the autophagy-related gene ATG5

and SLE susceptibility, as well as risk of childhood and
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The A
adult asthma and decline in lung function.68 However,

recently published fine-mapping studies in RA, CeD, PS,

ATD, PBC, JIA, and narcolepsy did not find associations

with this gene region.16–24 Thus, this locus appears to be

restricted to some, but not all, AIDs. In any case, the

intronic location and the protein binding data of the vari-

ants in the ATG5 region suggest that the functional mean-

ing of these variants might be complex and involve distant

genes (even PRDM1 [MIM 603423], which maps down-

stream of ATG5 and has been associated with different

autoimmune diseases69–71). Moreover, there is evidence

of a possible binding of CTCF in the rs7763652 region.

This protein is involved in chromatin architecture and

DNA-loop formation,72 which brings up the possibility of

a complex DNA structure in the region. Therefore, we

consider that future research will be needed for deter-

mining the functional implications of this signal.

We also identified a suggestive association in the 11q23

intergenic region between TREH and DDX6, which has

been shown to be a shared susceptibility region among

several AIDs. Nevertheless, the different lead SNPs in

DDX6 in the Immunochip analysis of RA (rs4938573),17

CeD (rs10892258),16 and PBC (rs80065107)20 were not

linked with this SSc-suggestive variant. The gene product

of DDX6 (an RNA helicase that is important for efficient

miRNA-induced gene silencing) has been shown to regu-

late vascular endothelial growth factor under hypoxic con-

ditions, which might provide a clue to the vasculopathy

and fibrosis that characterize SSc.73

The association of these loci provides genetic evidence of

the possible role of defects in DNA elimination during

apoptosis, introduces autophagy as a pathogenic mecha-

nism, and reinforces the role of the IL12 pathway in the

pathogenic processes that lead to SSc onset and disease

progression. Therefore, we consider that the present study,

together with previous knowledge about the genetic

component of SSc, has contributed to the notion of this

disorder as a complex condition inwhich several biological

mechanisms, such as the innate immune response (Toll-

like receptor and type I IFN pathways), the adaptive

immune response (especially the IL12 pathway), tissue

damage, fibrotic processes, and now DNA-clearance mech-

anisms during apoptosis, interact. However, neither these

mechanisms nor the involved genetic loci should be

considered independent compartments but rather pleio-

tropic players in a genetic and phenotypic continuum.

The analysis of genome-wide associations in already

known loci resulted in the fine mapping of previously re-

ported signals in STAT4 and IRF5. STAT4 is a shared suscep-

tibility factor among RA, CeD, PBC, and JIA, but the most

associated SNPs in the different conditions vary.16,17,20–22

In the case of the TNPO3-IRF5 locus, different variants

have been associated with multiple autoimmune diseases

andprevious Immunochip analyses have reported different

lead SNPs in RA and PBC.17,20,21 In our study, the leading

signals in these genes were highly linked with the RA-asso-

ciated variants. The densemapping of these established SSc
merican Journal of Human Genetics 94, 47–61, January 2, 2014 55



Figure 3. Regional Plots of the Associations Replicated at Genome-wide Significance in SSc Cases or Different Subgroups in the
Overall Meta-analysis after Imputation
(A) DNASE1L3 associations in the ACAþ versus control comparison.
(B) DNASE1L3 associations in the ACAþ versus control comparison after conditioning on the lead variant (rs35677470).
(C) SCHIP1-IL12A locus associations in the lcSSc versus control comparison.
(D) SCHIP1-IL12A locus associations in the lcSSc versus control comparison after conditioning on the lead variant (rs77583790).
(E) ATG5 associations in the dcSSc versus control comparison.
(F) ATG5 associations in the dcSSc versus control comparison after conditioning on the lead variant (rs9373839).
p values correspond to the discovery phase.
susceptibility factors resulted in the confirmation of previ-

ous signals and narrowed association regions in these loci

(35 kb in STAT4 and 126 kb in IRF5, considering the SNPs

showing r2 > 0.9 with the lead variant in the locus accord-

ing to the 1000 Genomes Project CEU population).34
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In the case of IL12RB2 and TNIP1, both loci showed

suggestive associations but did not reach genome-wide sig-

nificance. In previous reports, similar results were observed

in the discovery phases in which these loci did not reach

genome-wide significance and large replication cohorts
14



were needed for confirming these associations.8,10,11

Therefore, we consider that our data reinforce the evidence

of a role for these genes in SSc; however, larger cohorts

should be fine mapped for narrowing down the observed

signals.

As a result of design limitations, not all the known vari-

ants in CD247 and CSK were included in the Immunochip

(which was planned prior to the SSc GWAS), and these re-

gions were therefore only covered by a tag SNP strategy.

Unfortunately, after QC, the tagging SNPs for the reported

associations in these regions were not maintained for

further analysis. Thus, the initial signals were not covered,

and this study could not address the confirmation of these

previous findings.

It is worthmentioning that, as intended in the Immuno-

chip design, our data showed an expected common ge-

netic background between SSc and other AIDs. The genetic

similarities between SSc and SLE are well known,4,13 but

our results reinforce the evidence of overlap with other

AIDs, such as RA or PBC. The identification of common

autoimmune risk factors is essential for the characteriza-

tion of different pathogenic mechanisms that contribute

to autoimmunity. Moreover, these common pathways

might shed light on the origin of coautoimmunity and

the preclinical stages of autoimmunity. In addition, rele-

vant information can be inferred from the existence of

different signals in the susceptibility regions or the lack

of association between certain loci and specific diseases.

Therefore, it has been suggested that platforms such as

the Immunochip will help to dissect the pathogenic mech-

anisms underlying multiple disease states and lead to both

more sensitive diagnostics and novel therapies.74

In summary, we have provided a comprehensive analysis

of associations between the HLA region and SSc and its

subphenotypes. Moreover, we report associations between

DNASE1L3, the SCHIP1-IL12A locus, and ATG5 and SSc

and a suggestive association between the TREH-DDX6

locus and SSc. The Immunochip-based interrogation of

the analyzed cohorts revealed shared associations with

other autoimmune diseases, which was the goal of the

Immunochip Consortium, but also identified intriguing

differences. Moreover, our data underline the need for

direct genotyping of virtually all functional polymor-

phisms and rare variants in large cohorts for identifying

variants that have strong effects in disease susceptibility

but that might have been ignored thus far.
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52. Dieudé, P., Guedj, M., Wipff, J., Ruiz, B., Hachulla, E., Diot, E.,

Granel, B., Sibilia, J., Tiev, K., Mouthon, L., et al. (2009). STAT4

is a genetic risk factor for systemic sclerosis having additive

effects with IRF5 on disease susceptibility and related pulmo-

nary fibrosis. Arthritis Rheum. 60, 2472–2479.

53. Tsuchiya, N., Kawasaki, A., Hasegawa, M., Fujimoto, M., Take-

hara, K., Kawaguchi, Y., Kawamoto, M., Hara, M., and Sato, S.

(2009). Association of STAT4 polymorphism with systemic

sclerosis in a Japanese population. Ann. Rheum. Dis. 68,

1375–1376.

54. Rueda, B., Broen, J., Simeon, C., Hesselstrand, R., Diaz, B.,
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