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Abstract 

Preference relations have been widely used in group decision making (GDM) problems. 

Recently, a new kind of preference relations called fuzzy preference relations with self-confidence 

(FPRs-SC) has been introduced, which allow experts to express multiple self-confidence levels 

when providing their preferences. This paper focuses on the analysis of additive consistency for 

FPRs-SC and its application in GDM problems. To do that, some operational laws for FPRs-SC 

are proposed. Subsequently, an additive consistency index which considers both the fuzzy values 

and self-confidence is presented to measure the consistency level of an FPR-SC. Moreover, an 

iterative algorithm which adjusts both the fuzzy values and self-confidence levels is proposed to 

repair the inconsistency of FPRs-SC. When an acceptable additive consistency level for FPRs-SC 

is achieved, the collective FPR-SC can be computed. We aggregate the individual FPRs-SC using 

a self-confidence indices-based induced ordered weighted averaging (SCI-IOWA) operator. The 

inherent rule for aggregation is to give more importance to the most self-confident experts. 

Additionally, a self-confidence score function for FPRs-SC is designed to obtain the best 

alternative in GDM with FPRs-SC. Finally, the feasibility and validity of the research is 

demonstrated with an illustrative example and some comparison analyses. 
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1. Introduction 

In group decision making (GDM) problems, a preference relation is the most 

common representation of information, because it is a useful tool in modeling 

decision processes. The main advantage of preference relations is that individuals can 

focus exclusively on two alternatives at a time, which facilitates the expression of 

their opinions [1, 2] and then makes them more accurate than non-pairwise methods 

[3]. To date, many different types of preference relations have been proposed and 

widely used in decision making [4-9]. 

Applicability of GDM in real contexts implies fields of knowledge such as 

mathematics, psychology and behavior, relating the computational processes with the 

behavior of experts [10, 11]. Self-confidence is one of the psychological behaviors of 

people and has important influence on decision making [12-14]. For example, Zarnoth 

and Sniezek [15] introduced self-confidence as a person’s belief that a statement 

represents the best possible response. Guha and Chakraborty [16] proposed that in any 

real GDM situations, when experts give their responses to a particular alternative, 

their self-confidence levels regarding the opinions are very important. Thus, it would 

be of great importance to discuss the influence of experts’ self-confidence levels on 

decision making. To do this, Liu, et al. [17] introduced a new kind of preference 

relations called fuzzy preference relations with self-confidence (FPRs-SC), which 

allow experts to express multiple self-confidence levels when providing their 

preferences. In an FPR-SC, elements are composed by two components: the 

preference degree between a pair of alternatives and the self-confidence level 

associated with the given preference. 

An important issue regarding preference relations is the consistency of the 

information provided by experts. Consistency is recognized as experts are being 

neither random nor illogical in their expression of pairwise comparisons. Moreover, 

consistency has direct influence on the ranking results of final decision [18]. Lack of 

consistency in preference information can lead to unreliable results and misleading 

ranking of alternatives [19, 20]. Therefore, in decision making process, it would be of 

great importance to analyze the consistency of preference relations. Generally, there 

are two main reasons that make consistency difficult to achieve: 

(1) The decision problem is complex, and experts do not possess a precise or 

sufficient level of knowledge of part of the problem. 

(2) The preference relations are based on pairwise comparisons of alternatives, 
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instead of being handled as a whole set of alternatives holistically. 

In order to obtain a rational result, a valid approach is to modify the original 

preference relations till they are consistent. In addition, we propose that the final 

improved preference relations should not only satisfy the consistency requirements 

but also preserve the initial preference information as much as possible. 

Up to now, many approaches have been proposed to discuss the consistency of 

different kinds of preference relations [2, 21-26]. Dong, et al. [21] proposed a 

consistency for linguistic preference relations. Herrera-Viedma, et al. [19] presented a 

study of the consistency for fuzzy preference relations (FPRs). An interval 

consistency index is introduced by Li, et al. [25] for hesitant fuzzy linguistic 

preference relations. Xu and Wei [27] proposed a consistency improving method in 

the analytic hierarchy process, and Xu, et al. [2] presented the inconsistency repair 

methods for FPRs. All the existing consistency studies have made considerable 

progress. However, they do not consider experts’ self-confidence levels and thus 

cannot analyze directly the additive consistency of FPRs-SC. 

To fill the gap mentioned above, we focus on the analysis of additive consistency 

for FPRs-SC and its application in GDM problems. The main novelty and 

contributions of this paper is listed as follows: 

(1) A new kind of preference relations, i.e., FPRs-SC, which take into account 

experts’ self-confidence levels, is extended to decision making problems. 

Meanwhile, some new operation laws for FPRs-SC are presented to analyze 

the additive consistency of FPRs-SC. 

(2) An additive consistency index (ACI) which considers both the fuzzy values 

and self-confidence levels is proposed to measure the consistency level of 

FPRs-SC. In case of unacceptable consistency, we give an iterative 

algorithm to improve the consistency of FPR-SC, which is able to adjust 

both components, the fuzzy values and the self-confidence levels. 

(3) After an acceptable additive consistency is reached for FPRs-SC, a 

self-confidence indices-based induced ordered weighted averaging 

(SCI-IOWA) operator is proposed to aggregate the individuals’ FPRs-SC 

into a collective one. The rule of aggregation is that more importance is 

given to the most self-confident ones. 

(4) A self-confidence score (SCS) function for FPRs-SC is designed to obtain 

the best alternatives in GDM with FRPs-SC. We rank alternatives by 
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computing the SCS of the collective FPR-SC. The best alternative as the one 

with the highest SCS. 

The feasibility and validity of this research is demonstrated by an illustrative 

example and some comparison analyses. From the results, we learn that adjusting both 

the fuzzy values and self-confidence levels will accelerate the inconsistency repair for 

FPRs-SC, while experts’ original preference information also can be retained as much 

as possible. In addition, we also find that experts’ self-confidence levels have 

influence on the results of alternative ranking of GDM with FPRs-SC. 

The rest of this paper is organized as follows. In Section 2, some preliminaries 

related to FPRs, 2-tuple linguistic ordinal scale model, and FPRs-SC are reviewed. In 

Section 3, additive consistency analysis of FPRs-SC is given, including consistency 

measurement and inconsistent improvement. In Section 4, the SCI-IOWA operator is 

introduced, and a detailed description of the selection process for GDM with 

FPRs-SC is presented. In Section 5, the illustrative example and comparison analyses 

are given to show the feasibility and validity of this study. The concluding remarks 

are pointed out in Section 6. 

2. Preliminaries 

Before introducing the additive consistency of FPRs-SC and its application in 

GDM problems, some related preliminaries regarding to the FPRs, the 2-tuple 

linguistic ordinal scale model, and the FPRs-SC are presented in this section. 

2.1. Fuzzy preference relations and 2-tuple linguistic ordinal scale model 

For simplicity, let {1,2, , }M m , {1,2, , }N n . Let 1 2{ , , , }nX x x x  

be a finite set of alternatives, where ix  denotes the i
th

 alternative. The definition of 

FPR is given below. 

Definition 1 [4]. A matrix ( )ij n nP p   is called an FPR, if 1ij jip p  , 0.5iip  ,
 

for ,i j , where ijp  denotes the preference degree of alternative ix  over jx . It is 

assumed that 1ij jip p  , 0.5iip  , for all ,i j N . 

For an FPR, Tanino [28] introduced the additive consistent FPR as follows: 
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Definition 2 [28]. Let ( )ij n nP p   be an FPR, then P has additive consistency if

0.5ij ik jkp p p   , for , ,i j k N  . 

To carry out ordinal computing with words when dealing with the linguistic 

self-confidence levels of experts in this study, the 2-tuple linguistic ordinal scale 

model is reviewed as follows. 

Let { | 0,1, , }iS s i g   be a linguistic term set. The term is  denotes a 

possible value of a linguistic variable. The ordinal ordering on set S is assumed that 

i js s  if and only if i j . Herrera and Martínez [29] introduced the concept of 

2-tuple fuzzy linguistic model as follows: 

Definition 3 [29]. Let [0, ]g   be a number in the granularity interval of the 

linguistic term set S. Let ( )i round   and i    be two values such that

[0, ]i g , and [ 0.5,0.5)  , then   is called a symbolic translation, and the round 

is the usual round operation. 

Afterwards, Herrera and Martínez [29] developed a linguistic representation 

model which represents the linguistic information by means of 2-tuples ( , )is  , 

is S  and [ 0.5,0.5)  . It is obvious that 2-tuple linguistic model defines a 

function to convert between linguistic 2-tuples and numerical values. 

Definition 4 [29, 30]. Let S be a linguistic term set with the granularity interval [0, ]g . 

Then the 2-tuple that expresses the equivalent information to [0, ]g   is obtained 

with the following function: :[0, ] [ 0.5,0.5)g S    , where 

( ) ( , )is   , with 
, ( )

, [ 0.5,0.5).

is i round

i



  




   
 

Obviously,   is one to one mapping function. Afterwards, Herrera and 

Martínez [29] proposed that for a linguistic term set S, and a 2-tuple ( , )is  , there is 

awalys an inverse function   such that from a 2-tuple it returns its equivalent 

numerical value [0, ]g  : 

 : [ 0.5,0.5) [0, ]S g     



6 
 

 ( , )is i      . 

Clearly, the conversion of a linguistic term into a linguistic 2-tuple consist of 

adding a value zero as symbolic translation ( ,0)i is S s  , i.e., ( ,0) ( )i is s    . 

In addition, some computations and operators were presented to deal with 2-tuple 

linguistic information in [29-31] as follows: 

(1)  2-tuples comparison operator: Let ( , )ks   and ( , )ls   be two 2-tuples, then: 

 if k l , then ( , )ks   is smaller than ( , )ls  ; 

 if k l , then 

a) if   , then ( , )ks  , ( , )ls   represents the same information; 

b) if   , then ( , )ks   is smaller than ( , )ls  ; 

(2)  Negation operator over 2-tuples as 

  ( , ) ( , )i iNeg s g s      (1) 

2.2. Fuzzy preference relations with self-confidence 

Suppose a linguistic term { | 0,1, , }SL

iS s i g   is used to characterize 

experts’ self-confidence levels over preference values. Without loss of generality, this 

paper assumes that experts use a set of nine linguistic terms 0 1 8{ , , , }SLS s s s  to 

express their self-confidence levels. Detailed information of 
SL

S  is shown in Fig. 1. 

 

 

Fig. 1. The expert’s self-confidence level language labels. 

The definition of FPR-SC proposed by [17] is given below: 

Definition 5 [17]. A matrix ( , )ij ij n nP p l   is called an FPR-SC if its elements have 

        

None Very low Low 

Slightly  

low Medium 

 

Slightly 

high  High Very high Prefect 

s0 s1 s2 s3 s4 s5 s6 s7 s8 
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two components: the first component, [0,1]ijp   represents the preference degree of 

the alternative ix  over jx , and the second element 
SL

ijl S  denotes the 

self-confidence level associated to the first component ijp . The following conditions 

are assumed: 1ij jip p  , 0.5iip  , ij jil l  and ii gl s  for ,i j N  . 

Remark 1. Considering Definition 5, any fuzzy value ijp  can be transformed into 

the following form: 

( , )ij ij gp p s , 

i.e., the traditional FPRs are a special case with prefect self-confidence level. The 

expert is absolutely self-confident of his/her comparisons. In addition, Liu, et al. [17] 

pointed that FPRs-SC can be considered, in some sense, a Z-number given by Zadeh 

[32] that both representations relate with reliability of information. 

Example 1. Let 1 2 3 4{ , , , }X x x x x  be a set of alternatives and 0 8{ , , }SLS s s  be 

a linguistic term set used to characterize experts’ self-confidence levels over the 

preference values. Then, an expert can provide her/his FPR-SC 4 4( , )ij ijP p l  , 

SL

ijl S  over the four alternatives in X. Assume the FPR-SC 4 4( , )ij ijP p l   given by 

the expert is as follows: 

8 5 7 8

5 8 6 4

7 6 8 5

8 4 5 8

(0.5, ) (0.1, ) (0.6, ) (0.7, )

(0.9, ) (0.5, ) (0.8, ) (0.6, )

(0.4, ) (0.2, ) (0.5, ) (0.6, )

(0.3, ) (0.4, ) (0.4, ) (0.5, )

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

. 

In the FPR-SC P , 12 0.1p   means the preference degree of the alternative 1x  

over 2x  is 0.1, and the 12 5l s  represents the expert’s self-confidence level 

associated with 12p  is 5s , i.e., the expert has slightly high confident for her/his 

judgment. Consequently, the rest of elements in P  can be explained in this way. 

Based on Definition 2, for an FPR-SC, Liu, et al. [17] introduced the definition 

of additive consistent FPR-SC as follows. 
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Definition 6 [17]. Let ( , )ij ij n nP p l   be an FPR-SC. If 0.5ij ik jkp p p    for 

, ,i j k and ijl s  for ,i j , then P  has additive consistency at the 

self-confidence level 
SLs S . 

Remark 2. Specifically, for any FPR-SC ( , )ij ij n nP p l  , if 0.5ij ik jkp p p    for 

, ,i j k , then it must have additive consistency at the self-confidence level 0

SLs S . 

3. The additive consistency analysis for FPRs-SC 

Consistency analysis relates to experts to express their preference information 

without contradictions. In this section, we propose an additive consistency analysis 

for FPRs-SC. The additive consistency measure for FPRs-SC is introduced in Section 

3.1. Afterwards, the ACI which considers self-confidence levels for FPRs-SC is given 

in Section 3.2. In Section 3.3, a method for repairing the inconsistency of FPRs-SC is 

presented. 

3.1. Additive consistency measure of FPRs-SC 

Before showing the additive consistency measure for FPRs-SC, some necessary 

new operational laws of 2-tuples in FPRs-SC are presented as follows. 

Definition 7. Assume ( , )k kp l  ( , )i ip l  be two 2-tuples, ip , kp  are the fuzzy 

values, and il , kl  are corresponding self-confidence values, where , SL

i kl l S , 

[0,1] . Then, we have the following operations: 

a) ( , ) ( , ) ( ,min{ , })k k i i k i k ip l p l p p l l   ; 

b) ( , ) ( , ) ( ,min{ , })k k i i k i k ip l p l p p l l   ; 

c) ( , ) ( , )k k k kp l p l    ; 

d) ( , ) (( ) , )k k k kp l p l  ; 

e) ( , ) ( , )k k k kp l p l  . 

Then, based on Definition 6 and Definition 7, we redefine the additive consistent 

FPR-SC as follows: 
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Definition 8. Let ( , )ij ij n nP p l   be an FPR-SC, and if the elements in P  satisfy: 

0.5ij ik kjp p p   ,                                              (2) 

for , ,i j k N  . Then, we call P  has additive consistency at self-confidence level 

s , where 
,

min{ }ij
i j

s l , and , SL

ijs l S . 

Remark 3. For the additive consistency property in [17], it only needs ijl s , and 

the value s  is not specified. As we mentioned in Remark 2, if an FPR-SC satisfy Eq. 

(2), it must be additive consistency at the self-confidence level 0s . The difference 

between Definition 6 and Definition 8 is that if an FPR-SC satisfies Eq. (2), then the 

highest self-confidence level is 
,

min{ }ij
i j

s l  in Definition 8, while the 

self-confidence level s  in Definition 6 could be between 0s  and 
,

min{ }ij
i j

l . 

As mentioned in Section 2, traditional FPRs can be seen as the special case of 

FPRs-SC in which experts are completely self-confidence for their comparisons. Let 

( )ij n nP p   and ( )ij n nZ z   be two FPRs, where 1

1
( ) 0.5

n

ij ik jkn k
z p p


   , Xu, 

et al. [2] introduced the consistency index (CI) of P  as follows: 

1
2

1 1

2
( ) ( , ) ( )

( 1)

n n

ij ij

i j i

CI P d P Z p z
n n



  

  

  (3) 

Obviously, the CI of FPRs proposed in [2] is computed by using the distance 

measure between FPRs and the corresponding additive consistent FPRs. However, Eq. 

(3) does not consider the self-confidence levels of experts. Therefore, we propose the 

new additive consistency measure of FPRs-SC which considers experts’ 

self-confidence levels. 

By Definition 8 and Eq. (3), we define the deviation level (DL) between 

FPRs-SC and the corresponding consistent FPRs-SC. 

Definition 9. Let ( , )ij ij n nP p l  , and ( , )ij ij n nZ z l   be two FPRs-SC, where 

1

1( , ) ( ( ) 0.5,min{ , | 1, , })
n

ij ij ik kj ik kjknz l p p l l k n


     ( i j ), , SL

ij ijl l S . Then, 
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the ( )DL P  is defined as follows: 

 
1 2

1 1

2
( ) ( , ) ( , ) ( , )

( 1)

n n

ij ij ij ij

i j i

DL P d P Z p l z l
n n



  

  

 , (4) 

where    
2

2( , ) ( , ) ( ) ,min{ , }ij ij ij ij ij ij ij ijp l z l p z l l   . 

Remark 4. Clearly, the value of ( )DL P  is also a 2-tuple since it is composed of a 

fuzzy value and the corresponding self-confidence level. Let us note ( ) ( , )DL P q v , 

then we have the following considerations: 

a) [0,1]q , and 
SLv S ; 

b) if 0q  , it means that the fuzzy values are fully consistent between P  and 

Z  at the self-confidence level v ; Otherwise, the greater q  is, the more 

inconsistent of the fuzzy values between P  and Z  will be. 

For simplicity, we call q  the consistency level of fuzzy values in P , and v  

represents the corresponding self-confidence level of experts. 

3.2. The additive consistency with self-confidence index of FPRs-SC 

According to the analysis in Section 3.1, we define the new ACI of an FPR-SC 

that considers the self-confidence levels of expert as follows: 

Definition 10. Let ( , )ij ij n nP p l   and ( , )ij ij n nZ z l   be two FPRs-SC, where

 1

1( , ) ( ) 0.5,min{ , | 1, , }
n

ij ij ik kj ik kjknz l p p l l k n


    ( i j ), , SL

ij ijl l S . Let

( ) ( , )DL P q v , which is obtained by Eq. (4). Then, the ( )ACI P  is defined as: 

 
( )

( ) (1 ) (1 )
v

ACI P q
g

 


    , (5) 

where [0,1]   is a parameter to control the weight of both the consistency level of 

fuzzy values and the self-confidence level of expert. 

Remark 5. In Definition 10, we have ( ) [0,1]ACI P  . Moreover, the higher the value 
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of ( )ACI P  is, the more consistent P  will be. In addition, in this paper, we assume 

that the consistency level of fuzzy values and the self-confidence levels of experts are 

equally important in GDM problems. Thus, we have 0.5  . 

3.3. A method for repairing the inconsistency of FPRs-SC 

The lack of consistency in preference information can lead to unreliable results 

and misleading rankings of alternatives [20]. Thus, to repair the inconsistency of 

FPRs-SC is an important and necessary work. Generally, in real GDM problems, due 

to the time pressure, lack of knowledge, and the limited experience, it is really 

difficult for experts to provide FPRs-SC with prefect additive consistency. Thus, in 

this paper, we only consider an acceptable ACI for FPRs-SC. We assume that if the 

ACI of FPRs-SC is equal to or greater than a predefined additive consistency 

threshold   ( [0,1]  ), i.e., ACI  . Then, an acceptable ACI of FPR-SC is 

reached. Otherwise, the FPR-SC is inconsistent, and needs to be improved. The 

consistency improving processes for FPRs-SC are depicted in Fig. 2. 

Fig. 2. Flowchart of the consistency improving process for FPRs-SC. 

Usually, in real GDM problems, self-confidence levels represent experts’ 

recognition of their knowledge, abilities and experiences. If an expert express low 

level of self-confidence for her/his assessment information, it means that she/he may 

not have enough knowledge or evidence to justify her/his judgment. In other words, 

Compute the DL(𝑃̃) 

ACI(𝑃̃) ≥δ? 

FPR-SC 𝑃̃ 

Improved FPR-SC 

Modify the  

FPR-SC  

No 

Yes 

Obtain the FPR-SC 𝑍 

with consistency 

Compute the ACI(𝑃̃) 
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the expert’s assessment information may lack of reliability. Based on this hypothesis, 

we propose to repair the inconsistency of FPRs-SC based on experts’ self-confidence 

levels. That is, to modify the fuzzy values in which the expert has the lowest 

self-confidence level. The detailed iterative algorithm which is used to repair the 

inconsistency of FPRs-SC is presented in Algorithm 1. 

Algorithm 1. The detailed repair of inconsistency for FRPs-SC. 

Input: The linguistic term set 0{ , , }SL

gS s s  in which self-confidence levels are 

expressed, the FPR-SC ( , )ij ij n nP p l  , SL

ijl S , the number of iterations t , the 

parameter   and the acceptable additive consistency threshold  . 

Step 1. Let ( , )ij ij n nZ z l   be an FPR-SC, where 

1

1( , ) ( ( ) 0.5,min{ , | 1, , })
n

ij ij ik kj ik kjknz l p p l l k n


     ( i j ), and =0t . 

Step 2. Calculate the ( )DL P  by using Eq. (4). Afterwards, utilize Eq. (5) to compute 

the 
( )( )tACI P . 

Step 3. If 
( )( )tACI P  , then go to Step 5; Otherwise, go to the next step. 

Step 4. Find the position of self-confidence level 
( )t

i jl
 

, where 
( )

,
min { }t

i j i j ijl l
 

 , i.e., 

the smallest expert’s self-confidence level on her/his preference. Then, return ( )tP  to 

the expert to construct a new FPR-SC 
( 1) ( 1) ( 1)( , )t t t

ij ij n nP p l  

 . If there exist two 

self-confidence elements that are equal, i.e., ' '

( ) ( )t t

i j i j
l l
   

 , then find the fuzzy values 
( )t

i jp
 

 

and ' '

( )t

i j
p

 

 which are corresponding to these two self-confidence levels, respectively. 

We have the following rules: 

a) if ' '

( ) ( )t t

i j i j
d d

   

 , then expert needs to improve ' ' ' '

( ) ( )( , )t t

i j i j
p l

   

; 

b) if ' '

( ) ( )t t

i j i j
d d

   

 , then expert needs to modify 
( ) ( )( , )t t

i j i jp l
   

; 

c) if ' '

( ) ( )t t

i j i j
d d

   

 , then expert can randomly choose any 
( ) ( )( , )t t

i j i jp l
   

 and 

' ' ' '

( ) ( )( , )t t

i j i j
p l

   

 to repair; 

where 
( ) ( ) ( ) 2( )t t t

i j i j i jd p z
     

  , and ' ' ' ' ' '

( ) ( ) ( ) 2( )t t t

i j i j i j
d p z

     

  . 

In order to repair the inconsistency of FPRs-SC while retain the original experts’ 
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information as much as possible, we present the following rules to construct the new 

FPR-SC 
( 1) ( 1) ( 1)( , )t t t

ij ij n nP p l  

 : 

 

( )

( 1)

( )

, , ;

, .

t

ijt

ij t

ij

z if i j
p

p otherwise




 
 


  (6) 

 2

( ) ( )

( 1)

( )

(( ( ) ( )), , , ;

, .

g

t t

g ij ij
t

ij
t

ij

s l if l s i j
l

l otherwise

 



    
 


  (7) 

Meanwhile, 
( 1) ( 1) 1t t

ij jip p   , 
( 1) ( 1)t t

ij jil l  , and ( 1) ( )t tP P  . Let 1t t   and return 

to Step 1. 

Step 5. Output the adjusted FPR-SC ( , )ij ijP p l    which has acceptable additive 

consistency, and the values ( )ACI P
 of P

. 

Remark 6. In Algorithm 1, when replacing a fuzzy values 
( 1)t

ijp 
 with 

( )t

ijz , the 

expert is advised to increase her/his corresponding self-confidence level, which will 

consist of a more acceptable additive consistency. Meanwhile, to ensure that expert’s 

minimum self-confidence (M-SC) level can been improved, i.e., 
( 1) ( )t t

ij ijl l   while the 

original expert’s information are retained as much as possible, we propose to modify 

the expert’s M-SC by comparing with the intermediate level /2gs . That is, if the 

M-SC of an expert is equal to or greater than /2gs , then, we assume that the M-SC of 

this expert is moderate. Note that, we only repair the fuzzy values while retain the 

self-confidence unchanged. Otherwise, the M-SC of expert needs to be modified in 

order to ensure that an acceptable additive consistency can be reached. 

4. Selection process for GDM with FPRs-SC 

In GDM problems, the selection process is usually composed of the aggregation 

process and the exploitation process [6]. The aim of the aggregation process is to 

obtain a collective preference relation, which denotes the group preference between 

every ordered pair of alternatives. The goal of the exploitation process is to choose the 

best alternative for the GDM problem by transforming the collective preference 

information about the alternatives into a collective ranking of them. 

In this section, we propose the selection process for GDM with FRPs-SC. The 
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aggregation process for FPRs-SC is provided in Section 4.1, and the exploitation 

process for GDM with FPRs-SC is given in Section 4.2. Additionally, Fig. 3 shows 

the flowchart of the selection process for GDM with FPRs-SC. 

4.1. Aggregation process 

The aggregate operator is an effective tool in aggregation process for decision 

making [8, 33-36]. The IOWA operator introduced by Yager [37], which is guided by 

fuzzy linguistic quantifiers, is one of the most effective operators to be used in the 

aggregation process of GDM [6, 7, 38]. The definition of the IOWA operator is given 

below: 

Definition 11 [37, 39]. An IOWA operator of dimension m is a mapping 

: mIOWA R R  that has an associated weighting vector 1( , , )T

mW w w  of 

dimension m, such that 
1

1
m

ii
w


  and [0,1]iw  , it is expressed as follows: 

 1 1 2 2 ( )

1

( , , , , , , )
m

W m m i i

i

u a u a u a w a


        ,  (8) 

where   is a permutation of {1,2, , }m  such that ( ) ( 1)i iu u    for 

1, , 1i m   . That is, ( ) ( ),i iu a    is a 2-tuple with ( )iu  is the i
th

 largest value 

in the set 1{ , , }mu u . 

The order inducing value is a parameter of the IOWA operator for a better control 

over the aggregation stage, as it introduces some semantics in the aggregation to guide 

the ordering process. As mentioned in Section 3, the self-confidence levels represent 

experts’ recognition of their knowledge, abilities and experiences. The higher the 

self-confidence levels of expert, the more the reliable of the expert’s assessment 

information. Thus, based on this hypothesis, we propose to make the aggregation 

process of GDM with FPRs-SC by measuring the overall self-confidence index (SCI) 

of the FPRs-SC provided by experts. Meanwhile, the SCI can be obtained by the 

deviation measure between the expert’s self-confidence matrix and the maximum 

self-confidence matrix. 

Generally, the FPR-SC ( , )ij ij n nP p l   given by an expert can be seen as the 

combination of an FPR ( )ij n nP p   and a self-confidence matrix ( )ij n nL l  . Then, 
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we define the self-confidence deviation level (SCDL) between the self-confidence 

matrix of FPR-SC and the maximal self-confidence matrix as follows: 

Definition 12. Let ( , )ij ij n nP p l   be an FPR-SC, and let ( )ij n nL l   be the 

corresponding self-confidence matrix of P . We assume that ( )g n nL s   is the 

maximal self-confidence matrix, where , SL

ij gl s S . Then, the SCDL of P  can be 

computed as follows: 

 
1 1

1 1 1 1

| ( ) ( ) |2 2
( ) ( , )

( 1) ( 1)

n n n n
ij g

i j i i j i

l s
SCDL P d L L

n n n n g

  

     

 
 

 
  .  (9) 

Clearly, the value of the ( )SCDL P  has the following characteristic: 

a) ( ) [0,1]SCDL P  ; 

b) if ( ) 0SCDL P  , it means that expert is fully self-confident in all of her/his 

preferences. In addition, the higher the value of ( )SCDL P , the smaller the 

level of self-confidence of expert on her/his valuations. 

Then, the SCI of the ( , )ij ij n nP p l   provided by the expert is computed by: 

 ( ) 1 ( )SCI P SCDL P    (10) 

Similarly, we have ( ) [0,1]SCI P  . The larger the value of the ( )SCI P , the 

higher the self-confidence level of expert for her/his opinions. Moreover, according to 

the rule that the higher the value of SCI of the FPR-SC provided by expert, the greater 

the weight of the expert should be assigned. The definition of the SCI-IOWA operator 

is given below: 

Definition 13. Let 1 2{ , , , }mE e e e  be a set of experts, 1 2{ , , , }nX x x x  be a 

set of alternatives. The experts give their comparison information using FPRs-SC

1 2, , , mP P P . The SCI-IOWA operator of dimension m, 
SCI

W , is an IOWA operator 

whose set of order inducing values is the SCI of the experts’ FPRs-SC, denoted as 

1 2{ , , , }mSCI SCI SCI , and represents the overall self-confidence of experts. Thus, 
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the collective FPR-SC ( , )SCI SCI SCI

ij ijP p l  can be computed as: 

1 ,1 ,1 2 ,2 ,2 , ,( ,( , ) , , ( , ) , , , ( , ) )SCI

W ij ij ij ij m ij m ij mSCI p l SCI p l SCI p l         

, ( ) , ( )

1

( , )
m

h ij h ij h

h

w p l 



 ,                                     (11) 

with ( 1) ( )h hSCI SCI    and 
1

1
m

hh
w


 . 

Using the SCI-IOWA operator to aggregate the individual information, the 

important problem is to set its associated weighting vector. Yager [40] introduced a 

fuzzy linguistic quantifier Q to compute the weights of the IOWA operator as follows: 

 
' '' '

1

( ) ( )1 1

i i

k kk k

i

u u
w Q Q

T T

 



 
   
    
   
   

 
,  (12) 

where '' ( )1

m

kk
T u


  denotes the overall sum of importance. 

Similarly, by Eq. (12), the weights of the SCI-IOWA operator are computed by: 

 
' '' '

1

1 1( ) ( )

h h

k kk k

h

SCI SCI
w Q Q

T T

 



 
 

   
   
   
   

 
  (13) 

with '' ( )1

m

kk
T SCI


  and '( )k

SCI


 is the 
'( )k th

 largest value of the set 

1{ , , }mSCI SCI . 

4.2. Exploitation process 

When the aggregation process is completed, the exploitation process follows to 

choose the best alternative for GDM with FPRs-SC. To do this, we define the SCS 

function of FPR-SC as follows: 

Definition 14. Let 1{ , , }nX x x  be an alternatives set, and ( , )ij ij n nP p l   be the 

associated FPR-SC, then the SCS function for any alternatives is defined as: 

1

1
( ) ( ( ))

n

i ij ij

j

SCS x p l
n





  , 1,2,...,i n                    (14) 
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Remark 7. In Definition 14, the higher the value of ( )iSCS x , the more expert’s 

self-confidence on the alternative ix . That is, if we have ( ) ( )i jSCS x SCS x , then 

i jx x , ,i jx x X . 

In addition, the selection process for GDM with FPRs-SC is depicted in Fig. 3 as 

follows: 

Fig. 3. The flowchart of selection process for GDM with FPRs-SC. 

5. Illustrative example and comparative analysis 

An illustrative example is provided in Section 5.1 to show how to select the best 

alternative for GDM with FPRs-SC. A comparative analysis is presented in Section 

5.2 to show that self-confidence levels have influence on decision making, and the 

proposed inconsistency improvements are effective for FPRs-SC. 

5.1. An illustrative example 

Let 0 2 8{ , , , }SLS s s s  be a linguistic term set which is used to express experts’ 

self-confidence levels for their judgments (the detailed information of 
SLS  can be 

found in Fig. 1) and 1 2 3 4{ , , , }X x x x x  be a possible solution for a GDM with 

Decision makers 

 (Experts) 

Individual  

FPRs-SC 

Compute the ACI of 

individual FPRs-SC 

Fuse the individual 

FPRs-SC 

Obtain the  

collective FPR-SC 

Optimal alternative  

of decision making 

Obtain the collective 

ranking of 

alternatives 

 

Modify the 

individual FPRs-SC 

Consistency 

analysis process 

Aggregation 

process 

No 

Yes 

ACI(𝑃̃) ≥δ? 

PROBLEM 

SET OF 

ALTERNATIVES 

 

Exploitation 

process 

SCI-IOWA  
operator 

SCS 
function 

Assessment 

process 
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FPRs-SC. There are four experts 1 2 3 4{ , , , }E e e e e  invited to make a pairwise 

comparison for the alternatives in X using FPRs-SC. Suppose the FPRs-SC 

, ,( , )m ij m ij mP p l  ( 1,2,3,4)m   are as follows: 

8 5 7 8

5 8 6 4

1

7 6 8 5

8 4 5 8

(0.5, ) (0.1, ) (0.6, ) (0.7, )

(0.9, ) (0.5, ) (0.8, ) (0.6, )

(0.4, ) (0.2, ) (0.5, ) (0.6, )

(0.3, ) (0.4, ) (0.4, ) (0.5, )

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

, 

8 3 5 2

3 8 4 6

2

5 4 8 3

2 6 3 8

(0.5, ) (0.6, ) (0.6, ) (0.2, )

(0.4, ) (0.5, ) (0.6, ) (0.7, )

(0.4, ) (0.4, ) (0.5, ) (0.4, )

(0.8, ) (0.3, ) (0.6, ) (0.5, )

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

, 

8 5 7 4

5 8 6 3

3

7 6 8 2

4 3 2 8

(0.5, ) (0.3, ) (0.4, ) (0.7, )

(0.7, ) (0.5, ) (0.2, ) (0.3, )

(0.6, ) (0.8, ) (0.5, ) (0.6, )

(0.3, ) (0.7, ) (0.4, ) (0.5, )

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

, 

8 5 4 5

5 8 6 3

4

4 6 8 7

5 3 7 8

(0.5, ) (0.4, ) (0.2, ) (0.1, )

(0.6, ) (0.5, ) (0.6, ) (0.2, )

(0.8, ) (0.4, ) (0.5, ) (0.1, )

(0.9, ) (0.8, ) (0.9, ) (0.5, )

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

. 

To ensure that the original expert’s information can be maintained as much as 

possible while an acceptable additive consistency is achieved, we assume an 

acceptable consistency threshold 0.7   and a maximum number of iterations

6t  . Then, the detailed processes of the proposed selection process for GDM with 

FPRs-SC are as follows: 

Step 1. Consistency measurement process. 

Compute 
(0)

mZ  ( 1,2,3,4)m   by using Definition 9: 

8 4 5 4

4 8 4 4(0)

1

5 4 8 4

4 4 4 8

(0.5, ) (0.275, ) (0.550, ) (0.575, )

(0.725, ) (0.5, ) (0.775, ) (0.800, )

(0.450, ) (0.225, ) (0.5, ) (0.525, )

(0.425, ) (0.200, ) (0.475, ) (0.5, )

s s s s

s s s s
Z

s s s s

s s s s

 
 
 
 
 
 

, 
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8 2 2 2

2 8 3 2(0)

2

2 3 8 2

2 2 2 8

(0.5, ) (0.425, ) (0.550, ) (0.425, )

(0.575, ) (0.5, ) (0.625, ) (0.500, )

(0.450, ) (0.375, ) (0.5, ) (0.375, )

(0.575, ) (0.500, ) (0.625, ) (0.5, )

s s s s

s s s s
Z

s s s s

s s s s

 
 
 
 
 
 

, 

8 3 2 2

3 8 2 2(0)

3

2 2 8 2

2 2 2 8

(0.5, ) (0.550, ) (0.350, ) (0.500, )

(0.450, ) (0.5, ) (0.300, ) (0.450, )

(0.650, ) (0.700, ) (0.5, ) (0.650, )

(0.500, ) (0.550, ) (0.350, ) (0.5, )

s s s s

s s s s
Z

s s s s

s s s s

 
 
 
 
 
 

, 

8 3 4 3

3 8 3 3(0)

4

4 3 8 3

3 3 3 8

(0.5, ) (0.325, ) (0.350, ) (0.025, )

(0.675, ) (0.5, ) (0.525, ) (0.200, )

(0.650, ) (0.475, ) (0.5, ) (0.175, )

(0.975, ) (0.800, ) (0.825, ) (0.5, )

s s s s

s s s s
Z

s s s s

s s s s

 
 
 
 
 
 

. 

Then, compute the ACI of 
(0)

mP  ( 1,2,3,4)m   by using Eq. (5): 

(0)

1( ) 0.6865ACI P  , 
(0)

2( ) 0.5525ACI P  , 

(0)

3( ) 0.5480ACI P  , 
(0)

4( ) 0.6430ACI P  . 

Experts me  ( 1,2,3,4)m   are advised to make adjustments for their FPRs-SC 

since the 
(0)( )mACI P   ( 1,2,3,4)m  . 

Step 2. Consistency improvement process. 

According to the proposed Algorithm 1, the adjustments of 
(0)

1P  and 
(0)

2P  are 

given below: 

(1) Inconsistency repair of 
(0)

1P . 

Find the position of self-confidence level 
(0)

,1i jl
 

, where 
(0)

,1 ,min { }i j i j ijl l
 

 . Since

(0) (0)

24,1 42,1 24,1 4min { }ijl l l s  , expert 1e  has the lowest self-confidence on fuzzy values 

(0)

24,1p  and 
(0)

42,1p . Then, replacing these two fuzzy values with the corresponding 

elements in 
(0)

1Z . Meanwhile, the corresponding self-confidence levels are also 

changed to 
(0) (0)

24,1 42,1 4l l s   by using Eq. (7). Then, we have 
(1)

1P : 



20 
 

8 5 7 8

5 8 6 4(1)

1

7 6 8 5

8 4 5 8

(0.5, ) (0.1, ) (0.6, ) (0.7, )

(0.9, ) (0.5, ) (0.8, ) (0.8, )

(0.4, ) (0.2, ) (0.5, ) (0.6, )

(0.3, ) (0.2, ) (0.4, ) (0.5, )

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

. 

Moreover, the 
(1)

1Z  is computed by Definition 9 as follows: 

8 4 5 4

4 8 4 4(1)

2

5 4 8 4

4 4 4 8

(0.5, ) (0.225, ) (0.550, ) (0.625, )

(0.775, ) (0.5, ) (0.825, ) (0.900, )

(0.450, ) (0.175, ) (0.5, ) (0.575, )

(0.375, ) (0.100, ) (0.425, ) (0.5, )

s s s s

s s s s
Z

s s s s

s s s s

 
 
 
 
 
 

. 

By using Eq. (5) we have 
(1)

1( ) 0.712ACI P   . Thus, the iteration of 
(1)

1P  is 

ended. 

(2) Inconsistency repair of 
(0)

2P  

Since 
(0) (0)

14,2 41,2 14,2 2min { }ijl l l s  , we replace the fuzzy values 
(0)

14 2p ，  and 
(0)

41,2p  

with the corresponding elements in 
(0)

2Z . The corresponding self-confidence levels 

are changed to 
(0) (0)

14,2 41,2 6l l s   by using Eq. (7). Then, we have 
(1)

2P : 

8 3 5 6

3 8 4 6(1)

2

5 4 8 3

6 6 3 8

(0.5, ) (0.6, ) (0.6, ) (0.425, )

(0.4, ) (0.5, ) (0.6, ) (0.7, )

(0.4, ) (0.4, ) (0.5, ) (0.4, )

(0.575, ) (0.3, ) (0.6, ) (0.5, )

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

. 

Meanwhile, the 
(1)

2Z  can be calculated by Definition 9: 

8 3 3 3

3 8 3 3(1)

2

3 3 8 3

3 3 3 8

(0.5, ) (0.481, ) (0.606, ) (0.538, )

(0.519, ) (0.5, ) (0.625, ) (0.556, )

(0.394, ) 0.375, ) (0.5, ) (0.431, )

(0.463, ) (0.444, ) (0.569, ) (0.5, )

s s s s

s s s s
Z

s s s s

s s s s

 
 
 
 
 
 

（
. 

The 
(1)

2( ) 0.6425ACI P    by using Eq. (5). Thus, the iteration of 
(0)

2P  is 

continued. 

In the second round of iterations, we find that the lowest self-confidence level of 
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expert 2e  is 
(1) (1) (1) (1)

12,2 21,2 34,2 43,2 3l l l l s    . Meanwhile, we have (1) (1)

12,2 34,2d d . Thus, 

the elements 
(1) (1)

12,2 12,2( , )p l  and 
(1) (1)

21,2 21,2( , )p l  in 
(1)

2P  should be adjusted. Replacing the 

fuzzy values with the corresponding elements in 
(1)

2Z . And the 
(1) (1)

12,2 21,2 5l l s   by 

using Eq. (7). After three iterations, we compute the 
(3)

2( ) 0.7260ACI P    by 

utilizing Eq. (5). It denotes that 
(3)

2P  is of acceptable consistency, thus the iteration 

ends. The detailed iterative processes for 2P  are depicted in Table 1. 

Table 1. The detailed consistency improving processes for 
2P . 

t ( )

2

tP  ( )

2( )tACI P  
( ) ( )

,2 ,2( , )t t

ij ijp l  

0 

8 3 5 2

3 8 4 6(0)

2

5 4 8 3

2 6 3 8

(0.5, ) (0.6, ) (0.6, ) (0.2, )

(0.4, ) (0.5, ) (0.6, ) (0.7, )

(0.4, ) (0.4, ) (0.5, ) (0.4, )

(0.8, ) (0.3, ) (0.6, ) (0.5, )

P

s s s s

s s s s

s s s s

s s s s



 
 
 
 
 
 

 (0)

2
( ) 0.5525ACI P   

(0)

14,2

(0)

41,2

(0) (0)

14,2 41,2 6

0.425

0.575

p

p

l l s





 

 

1 

8 3 5 6

3 8 4 6

5 4 8 3

6 6 3 8

(1)

2

(0.5, ) (0.6, ) (0.6, ) (0.425, )

(0.4, ) (0.5, ) (0.6, ) (0.7, )

(0.4, ) (0.4, ) (0.5, ) (0.4, )

(0.575, ) (0.3, ) (0.6, ) (0.5, )

P

s s s s

s s s s

s s s s

s s s s



 
 
 
 
 
 

 (1)

2
( ) 0.6425ACI P   

(1)

12,2

(1)

21,2

(1) (1)

12,2 21,2 5

0.481

0.519

p

p

l l s





 

 

2 

8 3 5 6

3 8 4 6

5 4 8 3

6 6 3 8

(2)

2

(0.5, ) (0.481, ) (0.6, ) (0.425, )

(0.519, ) (0.5, ) (0.6, ) (0.7, )

(0.4, ) (0.4, ) (0.5, ) (0.4, )

(0.575, ) (0.3, ) (0.6, ) (0.5, )

P

s s s s

s s s s

s s s s

s s s s



 
 
 
 
 
 

 (2)

2
( ) 0.6535ACI P   

(2)

34,2

(2)

43,2

(2) (2)

34,2 43,2 5

0.431

0.569

p

p

l l s





 

 

3 

8 3 5 6

3 8 4 6

5 4 8 3

6 6 3 8

(3)

2

(0.5, ) (0.481, ) (0.6, ) (0.425, )

(0.519, ) (0.5, ) (0.6, ) (0.7, )

(0.4, ) (0.4, ) (0.5, ) (0.431, )

(0.575, ) (0.3, ) (0.569, ) (0.5, )

P

s s s s

s s s s

s s s s

s s s s



 
 
 
 
 
 

 (3)

2
( ) 0.7260ACI P    

Similarly, 3P  and 4P  are of acceptable additive consistency after four and one 

iterations, respectively. Details are given in Tables 2-3, respectively. 

Table 2. The detailed consistency improving processes for 
3P . 

t  ( )

3

tP  ( )

3( )tACI P  
( ) ( )

,3 ,3( , )t t

ij ijp l  

0 

8 5 7 4

5 8 6 3

7 6 8 2

4 3 2 8

(0)

3

(0.5, ) (0.3, ) (0.4, ) (0.7, )

(0.7, ) (0.5, ) (0.2, ) (0.3, )

(0.6, ) (0.8, ) (0.5, ) (0.6, )

(0.3, ) (0.7, ) (0.4, ) (0.5, )

P

s s s s

s s s s

s s s s

s s s s



 
 
 
 
 
 

 (0)

3
( ) 0.5480ACI P   

(0)

34,3

(0)

43,3

(0) (0)

14,3 41,3 6

0.650

0.350

p

p

l l s





 
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1 

8 5 7 4

5 8 6 3

7 6 8 2

4 3 2 8

(1)

3

(0.5, ) (0.3, ) (0.4, ) (0.7, )

(0.7, ) (0.5, ) (0.2, ) (0.3, )

(0.6, ) (0.8, ) (0.5, ) (0.65, )

(0.3, ) (0.7, ) (0.35, ) (0.5, )

P

s s s s

s s s s

s s s s

s s s s



 
 
 
 
 
 

 (1)

3
( ) 0.6120ACI P   

(1)

24,3

(1)

42,3

(1) (1)

24,3 42,3 5

0.463

0.537

p

p

l l s





 

 

2 

8 5 7 4

5 8 6 3

7 6 8 2

4 3 2 8

(2)

3

(0.5, ) (0.3, ) (0.4, ) (0.7, )

(0.7, ) (0.5, ) (0.2, ) (0.463, )

(0.6, ) (0.8, ) (0.5, ) (0.65, )

(0.3, ) (0.537, ) (0.35, ) (0.5, )

P

s s s s

s s s s

s s s s

s s s s



 
 
 
 
 
 

 (2)

3
( ) 0.6865ACI P   

(2)

14,3

(2)

41,3

(2) (2)

14,3 41,3 4

0.553

0.447

p

p

l l s





 

 

3 

8 5 7 4

5 8 6 3

7 6 8 2

4 3 2 8

(3)

3

(0.5, ) (0.3, ) (0.4, ) (0.553, )

(0.7, ) (0.5, ) (0.2, ) (0.463, )

(0.6, ) (0.8, ) (0.5, ) (0.65, )

(0.447, ) (0.537, ) (0.35, ) (0.5, )

P

s s s s

s s s s

s s s s

s s s s



 
 
 
 
 
 

 (3)

3
( ) 0.7015ACI P   

(3)

14,3

(3)

41,3

(3) (3)

14,3 41,3 4

0.480

0.520

p

p

l l s





 

 

4 

8 5 7 4

5 8 6 3

7 6 8 2

4 3 2 8

(4)

3

(0.5, ) (0.3, ) (0.4, ) (0.480, )

(0.7, ) (0.5, ) (0.2, ) (0.463, )

(0.6, ) (0.8, ) (0.5, ) (0.65, )

(0.520, ) (0.537, ) (0.35, ) (0.5, )

P

s s s s

s s s s

s s s s

s s s s



 
 
 
 
 
 

 (4

3
( ) 0.7010ACI P    

Table 3. The detailed consistency improving processes for 
4P . 

t ( )

4

tP  ( )

4( )tACI P  
( ) ( )

,4 ,4( , )t t

ij ijp l  

0 

8 5 4 5

5 8 6 3(0)

4

4 6 8 7

5 3 7 8

(0.5, ) (0.4, ) (0.2, ) (0.1, )

(0.6, ) (0.5, ) (0.6, ) (0.2, )

(0.8, ) (0.4, ) (0.5, ) (0.1, )

(0.9, ) (0.8, ) (0.9, ) (0.5, )

P

s s s s

s s s s

s s s s

s s s s



 
 
 
 
 
 

 (0)

4
( ) 0.6430ACI P   

(0)

24,4

(0)

42,4

(0) (0)

24,4 42,4 5

0.2

0.8

p

p

l l s





 

 

1 

8 5 4 5

5 8 6 3(1)

4

4 6 8 7

5 3 7 8

(0.5, ) (0.4, ) (0.2, ) (0.1, )

(0.6, ) (0.5, ) (0.6, ) (0.2, )

(0.8, ) (0.4, ) (0.5, ) (0.1, )

(0.9, ) (0.8, ) (0.9, ) (0.5, )

P

s s s s

s s s s

s s s s

s s s s



 
 
 
 
 
 

 (1)

4
( ) 0.7065ACI P    

The adjusted FPRs-SC mP
 ( 1,2,3,4)m   are offered in the following: 

8 5 7 8

5 8 6 4

1

7 6 8 5

8 4 5 8

(0.5, ) (0.1, ) (0.6, ) (0.7, )

(0.9, ) (0.5, ) (0.8, ) (0.8, )

(0.4, ) (0.2, ) (0.5, ) (0.6, )

(0.3, ) (0.2, ) (0.4, ) (0.5, )

s s s s

s s s s
P

s s s s

s s s s



 
 
 
 
 
 

, 

8 3 5 6

3 8 4 6

5 4 8 3

6 6 3 8

2

(0.5, ) (0.481, ) (0.6, ) (0.425, )

(0.519, ) (0.5, ) (0.6, ) (0.7, )

(0.4, ) (0.4, ) (0.5, ) (0.431, )

(0.575, ) (0.3, ) (0.569, ) (0.5, )

s s s s

s s s s

s s s s

s s s s

P

 
 
 
 
 
 

, 
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8 5 7 4

5 8 6 3

7 6 8 2

4 3 2 8

3

(0.5, ) (0.3, ) (0.4, ) (0.480, )

(0.7, ) (0.5, ) (0.2, ) (0.463, )

(0.6, ) (0.8, ) (0.5, ) (0.65, )

(0.520, ) (0.537, ) (0.35, ) (0.5, )

s s s s

s s s s

s s s s

s s s s

P

 
 
 
 
 
 

, 

8 5 4 5

5 8 6 3

4 6 8 7

5 3 7 8

4

(0.5, ) (0.4, ) (0.2, ) (0.1, )

(0.6, ) (0.5, ) (0.6, ) (0.2, )

(0.8, ) (0.4, ) (0.5, ) (0.1, )

(0.9, ) (0.8, ) (0.9, ) (0.5, )

s s s s

s s s s

s s s s

s s s s

P

 
 
 
 
 
 

. 

Step 3. Aggregation process. 

For each 
*

mP  ( 1,2,3,4)m  , we have the self-confidence matrix ,( )m ij mL l  of 

each expert me  ( 1,2,3,4)m   as follows: 

5 78 8

5 8 6 4

1
7 56 8

58 4 8

s s s s

s s s s
L

s s s s

s s s s

 
 
 
 
  
 

 , 

8 5 5 6

5 8 4 6

2

5 4 8 5

6 6 5 8

s s s s

s s s s
L

s s s s

s s s s

 
 
 
 
 
 

, 

8 5 7 4

5 8 6 5

3

7 6 8 6

4 5 6 8

s s s s

s s s s
L

s s s s

s s s s

 
 
 
 
 
 

, 

8 5 4 5

5 8 6 5

4

4 6 8 7

5 5 7 8

s s s s

s s s s
L

s s s s

s s s s

 
 
 
 
 
 

. 

Then, compute the values of SCDL and SCI of me  ( 1,2,3,4)m   by using Eqs. 

(9) and (10), respectively. Results are given in Table 4. 

Table 4. The results of SCDL and SCI of the FPRs-SC given by me  ( 1,2,3,4)m  . 

 1e  2e  3e  4e  

SCDL 0.2709 0.3542 0.3126 0.3334 

SCI 0.7291 0.6458 0.6874 0.6666 

By using Eq. (13), we have 
4

( )1
( ) 2.7289k kk

T SCI P




  , (1) 1  , (2) 3  ,

(3) 4  , and (4) 2  . 

In addition, the linguistic quantifier “most of” provided in [41] is utilized to 

generate the weighting vector, i.e., 
1
2( )Q   . Thus, the weights of experts me  
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( 1,2,3,4)m   are as follows: 

 1 0.5169w  , 2 0.2036w  , 3 0.1532w  , 4 0.1263w  . 

Then, by using Eq. (11), the collective FPR-SC ( , )SCL SCL SCL

ij ijP p l  is computed 

as follows: 

8 5 4 4

5 8 4 4

4 4 8 5

4 4 5 8

(0.5, ) (0.2438, ) (0.4980, ) (0.5285, )

(0.7652, ) (0.5, ) (0.6219, ) (0.6268, )

(0.5020, ) (0.3781, ) (0.5, ) (0.5122, )

(0.4715, ) (0.3732, ) (0.4878, ) (0.5, )

SCL

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

. 

Step 4. Exploitation process. 

To calculate the ( )iSCS x  ( 1,2,3,4)i   by using Eq. (14). Then, we have: 

1( ) 2.320SCS x  , 2( ) 3.205SCS x  , 

3( ) 2.520SCS x  , 4( ) 2.454SCS x  . 

Thus, the alternative ranking of collective is 2 3 4 1x x x x , and the best 

alternative is 2x . 

5.2 A comparative analysis 

To further show the advantages and contributions of this paper, a comparative 

analysis is given below. 

(1) Comparison project 

As far as we know, the FPRs denote that experts are fully self-confident of their 

judgments. The self-confidence levels related to all fuzzy values are the same, that is,

ij gl s  for ,i j N  . Generally, the self-confidence levels are omitted for notation 

simplification in FPRs [17]. Thus, the FPRs can be seen a special case of FPRs-SC. 

Many kinds of additive consistency improvements for FPRs have been proposed [2, 

18]. Here, we compare the inconsistency repairs in [18] with the Algorithm 1 

proposed in this paper. 
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(2) Comparison criteria and results 

In this paper, we mainly focus on the study of FPRs-SC. Firstly, it is our aim to 

demonstrate that the self-confidence levels of experts have influence on decision 

making. In other words, the new kind of preference relation FPR-SC is useful in 

GDM problems. Secondly, for the repair of inconsistencies of FPRs-SC, we hope that 

the original experts’ information retained as much as possible while the acceptable 

consistency is achieved. Therefore, we propose the following three comparison 

criteria to evaluate the influence of self-confidence levels on decision results in GDM 

problems, as well as the advantage and utility of the proposed Algorithm 1. 

a) Experts’ self-confidence levels influence the results of alternative ranking 

Consider the special case of the illustrative example proposed in Section 5.1, in 

which, the self-confidence levels of experts are the same, i.e., , 8ij ml s  for all

, , {1,2,3,4}i j m  . Thus, it means that the weights of experts me  are equal with 

1/ 4mw  . The detailed decision results are shown in Table 5. 

Table 5. The decision results that considers the special case of proposed illustrative example. 

m mw  
mACI  Collective preference relation 

Alternative ranking 

of collective 

1 0.25 0.9365 0.5 0.35 0.45 0.43

0.65 0.5 0.55 0.45

0.55 0.45 0.5 0.43

0.57 0.55 0.57 0.5

 
 
 
 
 
 

 
4 2 3 1x x x x  

2 0.25 0.9275 

3 0.25 0.9230 

4 0.25 0.9555 

From Table 5, we observe that if experts are fully confident of their preferences, 

the alternative ranking of collective is 4 2 3 1x x x x , and the best alternative is 

not 2x  but 4x . It validates that the self-confidence levels of experts have influence 

on the final decision in GDM problems. 

b) The adjustment degree (AD) and adjustment ratio (AR) between original and 

modified FPRs-SC 

The AD represents the degree of difference between the original FPR-SC and the 

modified FPR-SC. The larger AD is, the less the original FPR-SC is retained. In 

addition, the AR represents the ratio of the elements which are modified in FPR-SC. 

The larger AR is, the more elements in FPR-SC are modified. Here, the AD and AR 
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are computed by the following way, respectively: 

Let 
(0) (0) (0)

, ,( , )m ij m ij mP p l  and , ,( , )m ij m ij mP p l    defined as before ( ,i j N , 

m M ). The AD for the mP  given by expert me  is: 

 

(0) (0)

, , , ,, 1 , 1

(0) (0)

, ,, 1 , 1

| | | ( ) ( ) |
(1 )

( )

n n

ij m ij m ij m ij mi j i j

m n n

ij m ij mi j i j

p p l l
AD

p l
 

   

 



 

  
  



 

 
. (15) 

The AR of the mP  given by expert me  is computed by 

 
, ,, 1 , 1

2 2
(1 )

n n

ij m ij mi j i j

m

f f
AR

n n
 

 
  
 

  (16) 

where 

(0)

, ,

,

0,

1,

ij m ij m

ij m

p p
f

otherwise

 
 


, 

(0)

, ,

,

0,

1,

ij m ij m

ij m

l l
f

otherwise

 
 


, and [0,1]   is a parameter 

to control the AD and AR of both the fuzzy values and the self-confidence levels of 

experts. As we mentioned in Section 3, this paper assumes that the fuzzy values and 

the self-confidence levels are equally important in GDM problems, thus, we have

0.5  . 

If we use Eq. (10) which is utilized by [18] as the FPRs-SC modifying strategy, 

that is, only adjust the fuzzy values while retain the self-confidence levels unchanged, 

we can obtain the consistency iteration process of expert 1e . The detailed result is 

depicted in Table 6 (setting the related parameter 0.5  ). 

Table 6. The consistency iteration of 
1P  by using Eq. (10) in [18]. 

t ( )

1

tP  ( )

1( )tACI P  

0 
(0)

1

8 5 7 8

5 8 6 4

7 6 8 5

8 4 5 8

(0.5, ) (0.1, ) (0.6, ) (0.7, )

(0.9, ) (0.5, ) (0.8, ) (0.6, )

(0.4, ) (0.2, ) (0.5, ) (0.6, )

(0.3, ) (0.4, ) (0.4, ) (0.5, )

P

s s s s

s s s s

s s s s

s s s s



 
 
 
 
 
 

 (0)

1
( ) 0.6865ACI P   

1 
(1)

1

8 5 7 8

5 8 6 4

7 6 8 5

8 4 5 8

(0.5, ) (0.188, ) (0.575, ) (0.638, )

(0.812, ) (0.5, ) (0.788, ) (0.7, )

(0.425, ) (0.213, ) (0.5, ) (0.563, )

(0.363, ) (0.3, ) (0.438, ) (0.5, )

P

s s s s

s s s s

s s s s

s s s s



 
 
 
 
 
 

 (1)

1
( ) 0.7185ACI P   

Then, the values of the AD and AR of expert 1e  by utilizing the proposed 
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Algorithm 1 and the Eq. (10) in [18], respectively, are shown in Table 7. 

Table 7. The values of the AD and AR of expert 1e . 

Utilize the proposed Algorithm 1  Utilize Eq. (10) in [18] 

AD1 AR1  AD1 AR1 

0.025 0.063  0.041 0.375 

Clearly, from Table 7, we find that the 1AD  by using Algorithm 1 is smaller 

than using the Eq. (10) in [18]. Thus, it demonstrates that our proposed Algorithm 1 

keeps more original information than the method given in [18]. Meanwhile, the value 

of 1AR  by using the Algorithm 1 is 0.063, which means that 93.7% elements in 1P  

are retained. However, the value of 1AR  by using the Eq. (10) in [18] is 0.375, it 

means that only 43.8% elements in 1P  are unchanged. Therefore, it also shows that 

our proposed Algorithm 1 retains the experts’ original information as much as 

possible. 

To save the space, the detailed consistency iteration processes for the other three 

FPRs-SC mP  ( 2,3,4m  ) are omitted here. We only show the values of the ACI of 

mP  ( 2,3,4m  ) in Table 8. 

Table 8. The values of ACI of 
mP  ( 2,3,4m  ) by using Eq. (10) in [18]. 

t ( )

2( )tACI P  ( )

3( )tACI P  ( )

4( )tACI P  

0 0.5525 0.5480 0.6430 

1 0.5890 0.5870 0.6660 

2 0.6065 0.6055 0.6765 

3 0.6160 0.6160 0.6810 

4 0.6185 0.6185 0.6875 

5 0.6250 0.6250 0.6875 

6 0.6250 0.6250 0.6875 

From Table 8, we see that after six iterations, the 
(6)

( ) 0.7
m

ACI P   , 

( 2,3,4m  ), which means that at the maximum number of iterations 6t  , the 

acceptable additive consistency of mP  ( 2,3,4m  ) is not achieved by using Eq. (10) 

in [18]. This represents that the inconsistency repair that only adjust the fuzzy values 

of FPRs-SC would not ensure that an acceptable consistency can be achieved. 

In addition, the trends of additive consistency iterations for experts me  
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( 2,3,4m  ) by using the Algorithm 1 are shown in Figs. 4-6, respectively. 

 

Fig. 4. The trend of consistency iteration for 2e . 

 

Fig. 5. The trend of consistency iteration for 3e  

 

Fig. 6. The trend of consistency iteration for 4e . 

Obviously, from Figs. 4-6, we observe that with the increases of the number of 

iterations, the values of the ACI and M-SC of experts me  ( 2,3,4)m   are generally 

increased. It means that the Algorithm 1 is feasible and effective for the inconsistency 

repair of FPRs-SC. Moreover, Fig. 7 shows the change trend between the values of 
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ACI and M-SC of experts me  ( 2,3,4m  ) in inconsistency repair process of the 

proposed illustrative example. From Fig. 7, we see that the values of ACI increase 

along with the increases of the expert’s M-SC. It shows that adjustments in expert’s 

M-SC will effectively improve the additive consistency of FPR-SC provided by 

experts. Meanwhile, it is also consistent with our previous hypothesis, i.e., the higher 

the levels of experts’ self-confidence, the greater the likelihood that they may grasp of 

the GDM problem, and then the assessment information given by the experts 

improves in terms of consistency. 

 

Fig. 7. The change trend between the values of M-SC and ACI of me  ( 2,3,4m  ) 

6. Concluding remarks 

This paper focuses on a new kind of preference relations, i.e., FPRs-SC, and 

proposes an analysis of additive consistency for FPRs-SC. And then studies its 

application in GDM problems. The major contributions of this paper are concluded as 

follows: 

(1) Some new operational laws of FPRs-SC have been presented to analyze the 

additive consistency and its application in GDM problems. Meanwhile, a 

new ACI which considers experts’ self-confidence levels has been proposed 

to measure the additive consistency level of FPRs-SC. 

(2) An iterative algorithm which adjusts both the fuzzy values and 

self-confidence levels of experts is provided to repair the inconsistency of 

FPRs-SC. From the comparison results, we find that the proposed 
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inconsistency improvement can ensure experts’ original information be 

retained as much as possible while an acceptable additive consistency is 

achieved. 

(3) An SCI is proposed to measure the self-confidence degree of expert for 

her/his preferences. And then, an SCI-IOWA operator, which makes the more 

importance give those experts which have more self-confident, is presented 

to aggregate individual FPRs-SC into a collective one. 

(4) An SCS function of FPR-SC is designed to obtain the alternative ranking of 

collective in GDM with FPRs-SC. Subsequently, we can select the best 

alternative as the one with the highest SCS value. 

With the rapid developments and applications of science and technology [42], 

more and more experts are involved in GDM problems. It makes large-scale group 

decision making (LSGDM) problems becoming a hotspot [43-48]. In addition, due to 

time pressure, lack of knowledge, and limited experience, experts may overestimate 

their judgments, i.e., experts may show overconfidence behaviors in decision making 

processes [49]. Thus, in future work, we will address to extend FPRs-SC to LSGDM 

problems and discuss the influence of over-confidence behaviors on decision making. 
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