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Abstract: In recent times, studies about the accuracy of algorithms to predict different aspects of
energy use in the building sector have flourished, being energy poverty one of the issues that has
received considerable critical attention. Previous studies in this field have characterized it using
different indicators, but they have failed to develop instruments to predict the risk of low-income
households falling into energy poverty. This research explores the way in which six regression
algorithms can accurately forecast the risk of energy poverty by means of the fuel poverty potential
risk index. Using data from the national survey of socioeconomic conditions of Chilean households
and generating data for different typologies of social dwellings (e.g., form ratio or roof surface area),
this study simulated 38,880 cases and compared the accuracy of six algorithms. Multilayer perceptron,
M5P and support vector regression delivered the best accuracy, with correlation coefficients over
99.5%. In terms of computing time, M5P outperforms the rest. Although these results suggest that
energy poverty can be accurately predicted using simulated data, it remains necessary to test the
algorithms against real data. These results can be useful in devising policies to tackle energy poverty
in advance.

Keywords: fuel poverty potential risk index; multilayer perceptron; K-nearest neighbors; tree models;
support vector regression

1. Introduction
1.1. Energy Poverty: Definition and Conceptualization

Energy poverty, also called fuel poverty or energy vulnerability, takes place when
households cannot keep comfortable temperatures inside their homes or cannot access
energy services at a reasonable cost [1,2]. This phenomenon has received the attention
of the scientific community and society in recent years due to its political and social
implications [3,4]. Previous research has shown that energy poverty is a driver for the
physical deterioration of residents [5,6] and is even responsible for a higher death rate in
winter due to the poor thermal conditions inside buildings [7,8]. There is a wide consensus
about the fact that energy poverty stems from a combination of high-energy prices, low
family income, inefficient buildings, and outdated electrical household appliances [9,10].
Additionally, occupant behavior can contribute to new cases of energy poverty [11,12].

The measurement of energy poverty is a challenge because its condition is culturally
sensitive and private, as well as temporal and dynamic [2]. It is a relative concept influ-
enced by different variables, whose importance may vary depending on the context [13].
The limited availability of data and indicators, together with a lack of consensus on how
energy poverty should be conceptualized and measured, makes the matter even worse.
Energy poverty indicators are thus a pressing need in this research and political land-
scape [14]. The United Kingdom pioneered the study of fuel poverty in 1991, with the
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publication of the seminal work by Boardman [15] that later spread across other Euro-
pean countries. Nowadays, several European countries, such as Slovakia, France and
Ireland, have conceptualized fuel poverty building upon a multidimensional approach
based on indicators [16]. Those can be divided into six categories: (i) indicators based on
the relationship between household income and expenses [17,18]; (ii) multidimensional
indicators [19,20]; (iii) indicators based on self-reported housing condition [21]; (iv) indi-
cators of econometric analysis [22,23]; (v) indicators associated with the energy rating of
dwellings [24,25]; and (vi) indicators calculated according to the thermal comfort [26]. From
a wider perspective, energy poverty includes other factors, such as social exclusion [5] and
the limited availability of some energy sources [19]. Outside Europe, fuel poverty has been
addressed mainly from the economic perspective, that is, as a balance between household
income and expenses. Nevertheless, in countries like Japan, more recent attention has
focused on the multiple facets of fuel poverty [27]

A considerable amount of literature has been published on fuel poverty in developed
countries, but the existing accounts fail to describe the situation in underdeveloped or
developing countries. In this regard, Chile’s current situation is worth to be noted for
two reasons: First, the country has continuously implanted, since the mid-20th century,
a strong policy on social housing, providing the vulnerable strata of society with affordable
dwellings; as per the last census of 2016, around one million and a half dwellings have been
completed [28]. On the contrary, the geography of the country gives a very particular energy
market; Chile has one of the highest prices of electricity among the member countries of
the OECD [29]. Despite being a member of this organization since 2011, the gap between
the richest and poorer strata of society is still evident. Previous research has shown that
a considerable number of families face difficulties in paying the energy to keep their
homes comfortable [30], and many others cannot adequately ventilate or heat them up [31].
According to a recent report by the Chilean government, 20% of the homes do not have
hot water, and the indoor temperature in summer and winter is not acceptable in 76% of
the surveyed homes [30]. A study conducted by the Chilean Chamber of Construction has
presented the breakdown of the energy use of Chilean households: 56% is allocated for
keeping their homes within acceptable thermal conditions, 18% for hot water, and 26% for
electrical appliances [29].

These circumstances compelled the Chilean government to take action. In 2014 the
Chilean Ministry of Energy presented the Energy Agenda, whose main tasks was the design
and execution of a long-term Energy Policy for 2050 [32], which builds upon four aspects:
(i) security and quality in the supply chain, (ii) energy as a driver for the development
of the country, (iii) compatibility with the environment, and (iv) energy efficiency and
education. Within the second aspect, one of the lineaments was the conceptualization and
measurement of energy poverty to establish specific policies towards it. The objective is
to reduce energy poverty levels by 50% by 2035 and by 100% by 2050 [33]. As previously
mentioned, owing to the fact that measuring energy poverty strongly depends on the
culture, climate, and socioeconomic conditions of each country [34], the government of
Chile signed an agreement with The United Nations Development Program to elaborate a
conceptual and methodological framework specifically designed for Chile [35].

1.2. Energy Poverty in Chile

Over the past decade, the conceptualization of energy poverty has progressed in Chile,
but much of the research has exclusively focused on identifying this issue ex-post. However,
there has been little discussion on how energy poverty can be predicted in advance thus
far; that is before a family moves into a new house with new heating and cooling systems,
electrical appliances and energy consumption. Understanding this research gap, the
authors took the lead and started a new line of research that offered some important
insights into the importance of predicting energy poverty in advance [31,36,37]. Evidence
for these studies suggests that two main factors should be considered: The household
income and the adopted comfort model; both of them are introduced below.
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According to the Chilean national socioeconomic survey, Chilean families can be
divided into 10 different groups (called deciles) depending on their income. The 10th decile
corresponds to the wealthiest families and the 1st decile to the poorest. Table 1 indicates
the ranges of the mean monthly income corresponding to each decile in 2006, 2009, 2011,
and 2013.

Table 1. Variation of ranges of Chilean deciles in recent years [38].

Year

Mean Monthly Household Income [$]

Decile

I II III IV V VI VII VIII IX X

2006 88,955 216,673 293,257 364,414 428,116 513,218 642,546 790,981 1,097,094 2,464,055
2009 65,151 211,744 283,602 370,674 417,867 510,817 632,655 776,025 1,093,990 2,543,369
2011 84,243 229,739 304,091 385,760 448,741 520,257 636,893 793,491 1,099,645 2,505,654
2013 100,707 261,125 353,135 428,817 510,310 630,642 730,877 901,626 1,291,669 2,857,726

Second, the energy expenditure of households can be modeled according to the gap
between the indoor and outdoor temperature. In this regard, a much-debated question is
whether to use a static or an adaptive thermal comfort model. The static comfort model,
which is adopted by many national standards, considers static setpoint temperatures.
However, it fails to explain people’s ability to adapt themselves to the thermal variations
inside their homes within certain limits. Current Chilean standards use this approach
(Table 2).

Table 2. Comfort limits indicated in the sustainable construction standards for housing in Chile.

Comfort Limits (◦C)

Day Night

Lower Upper Lower Upper

20 27 17 27

The adaptive comfort model builds upon the fact that inhabitants can adapt to thermal
variations taking certain actions: Adapting their clothing and ventilating the building.
These adaptive measures are feasible when indoor temperature, which is a function of the
outdoor thermal variations [39], is within a certain range. Previous research has shown that
adaptive thermal models can better represent the real energy consumption of buildings,
which can vary between 10% and 18% when compared with the theoretical approach of
the static model [40].

Since evidence suggests that the adaptive comfort model can better explain the real
energy consumption of buildings, the authors have recently examined the influence of the
application of such a model on the quantification of energy poverty and have developed
a new index called the fuel poverty potential risk index (FPPRI). The theoretical basis is
detailed in previous publications by the authors [41] and also has been tested against dif-
ferent scenarios of climate change in Chile [42], also using advanced simulation techniques,
such as multiple linear regression [37].

Evidence from these previous studies suggests that these techniques can predict the
risk of fuel poverty with acceptable accuracy, but it still remains unknown whether other
advanced techniques may outperform the former. There is still uncertainty whether fuel
poverty can be predicted with different regression algorithms. The specific objective of this
study is to test the accuracy of six regression algorithms to predict the risk of fuel poverty,
expressed by the FPPRI (i) multilayer perceptron (MLP); (ii) K-nearest neighbors (K-NN);
(iii) classification and regression tree (CART); (iv) random forest (RF); (v) M5P; and (vi)
support vector regression (SVR). These algorithms were chosen because they are commonly
used in the prediction of energy consumption in the building industry, as pointed out by a
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recent study [43], which concluded that interplay between the architecture of the models
and the predicted phenomenon exerted a strong influence on the final accuracy. Debate
continues about, which is the algorithm that best-fits each problem, and therefore this
exploratory study aims to unravel the accuracy of these six advanced regression techniques
in predicting the risk of falling into fuel poverty of financially deprived households in
Chile by means of the FPPRI index.

It is expected that this research will contribute to a better understanding of how to
predict energy poverty in advance, therefore making it possible to detect and tackle the
problem in a swift and effective way. This new understanding should help designers and
policymakers in building and delivering affordable and efficient social dwellings and in
allocating financially deprived families in new houses whose energy expenditure would
be suitable for their income level.

This paper is organized in the following way: First, an explanation of the predictive
models is provided. Second, the predictor variables for the models are determined, and
afterward, the data processing and results are presented. Finally, the results obtained
by all models are compared and evaluated, which leads to the discussion of results and
conclusions on the feasibility of such models.

2. Materials and Methods
2.1. Regression Algorithms

As previously mentioned, six regression algorithms were considered in this study.
For each one of them, a brief explanation of its architecture and its main characteristics is
provided. This information will be used later on to discuss the results of each one of them.

2.1.1. Multilayer Perceptron

A neural network is a statistical model simulating the neurological brain structure to
solve linear and nonlinear problems [44]. This model is a computation paradigm, which
allows complex problems, both classification [45,46] and regression problems [47,48], to be
tackled. Neural networks have been widely used in the field of energy analysis over the
last years: (i) Deb et al. [49] developed a neural network model to predict the energy saving
associated with HVAC in office buildings and compared the results to multiple linear
regression. The results determined a better performance for the neural network than linear
regression, with a correlation coefficient higher than 37.25%; (ii) in a later study also by
Deb et al. [50], a model was developed to predict the cooling load of the next day using
data of the previous five days. The methodology showed an adequate accuracy, with a
correlation higher than 94% in the days analyzed; (iii) Magalhães et al. [51] developed
an artificial neural network model to predict the heating energy demand based on the
occupants’ behavior. The results obtained models with a correlation coefficient higher
than 93%; (iv) Kljajic et al. [52] developed a neural network to predict the efficiency of
boilers according to the operating performance as well as to predict possible improvement
measures; and (v) Kialashaki and Reisel [53] conducted a large-scale application of the
algorithm, designing a model to estimate the energy demand in the residential sector of
the United States using historical data from the last years.

From the various architectures of artificial neural networks, MLPs are those provid-
ing the best features because they are supervised models with universal approximation
capacities [54,55]. The MLPs are characterized by presenting an architecture of three or
more layers (see Figure 1): an input layer, one or several intermediate layers, and an
output layer. There are a series of nodes in each layer. The output value of each neuron
is obtained by the sum of values of the input neurons weighted by synaptic weights and
by applying an activation function (Equation (1)). These connections spread to the output
layer (Equation (2)), obtaining the model’s response (ŶMLP).

yk = σ

(
d

∑
j=1

w(1)
kj xj + w(1)

k0 x0

)
(1)
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ŶMLP = σ

(
M

∑
k=1

w(2)
lk σ

(
d

∑
j=0

w(1)
kj xj

)
+ w(2)

l0 y0

)
(2)

where xj are the values of the input layer, w(1)
k0 and x0 are the weight and the input value of

the bias neuron of the input layer, respectively, w(1)
kj are the weights of the hidden layer,

w(2)
l0 and y0 are the weight and the input value of the bias neuron of the hidden layer,

respectively, w(2)
lk are the weights of the output layer, yk is the output of a neuron of the

hidden layer, and σ is the activation function. For this study, a sigmoidal activation function
was used both in the hidden and the output layer (Equation (3)). The advantage of this
kind of function is the possibility of comprising an infinite input set into a finite output set.

σ =
1

1 + e−x (3)
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The main objective of the algorithm is the adjustment of synaptic weights guaranteeing
that the predicted output value for each input vector is near to the actual output value.
For this purpose, a learning algorithm is applied to a training dataset. The models were
trained by backpropagation [56], using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm [57], which belongs to the set of quasi-Newton methods. The number of nodes
and the number of hidden layers is analyzed to determine the best model [47]. For this
study, architectures of 1 hidden layer were considered because they had better performance
than more complex structures [58], but the number of nodes in such layer was analyzed.

2.1.2. K-Nearest Neighbors

The K-NN algorithm (also known as instance-based learning with parameter K) classi-
fies observations based on the majority class between the nearest observations [59]. These
observations, or neighbors, are chosen from the training dataset in which the classification
value is known. The K-NN algorithm is used for class label problems [60] and regres-
sion analysis [61], implying their use in the energy analysis of installations and buildings:
(i) Ramakrishna Madeti and Singh [62] developed a K-NN model to detect failures in
photovoltaic devices. The percentage of instances correctly classified by this model was
higher than 98%, obtaining better performance than other existing models; (ii) Rodger [63]
developed a K-NN model to predict the heating energy demand. The values predicted by
the model presented a correlation higher than 94% with respect to the actual values; and
(iii) a model to determine the number of occupants inside the building during the monitor-
ing was used [64]. The results obtained by the model designed in this study presented a
higher accuracy that those obtained by linear discriminant functions.

In the regression analysis, the K-NN algorithm determines the value of the observation
analyzed as an average of the nearest neighbors’ values (K) of the training dataset. To deter-
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mine the closeness between observations, a metric distance is used. This distance strongly
affects the performance of the model [65], so it is necessary to study which distance presents
a better performance in the model. In the present study, the Minkowski distance was used
(Equation (4)). This distance is characterized by the fact that the Minkowski distance is
equal to other metric distances depending on the value assigned to q [66]: (i) the Manhattan
distance (q equal to 1); (ii) the Euclidean distance (q equal to 2); and (iii) the Chebyshev
distance (when q is near to the positive infinity). After determining the distances, the
output value of the model is given by Equation (5). The output value (ŶkNN) is obtained as
the average of values (ym) of the K nearest points. As can be seen, K is a key parameter in
the model’s response [67]. Both q and K were therefore analyzed due to their influence on
the performance of the model.

dq =

[
p

∑
r=1

(
xir − xjr

)q
]1/q

(4)

ŶkNN =
1
K

K

∑
m=1

ym (5)

2.1.3. Classification and Regression Tree

The CART algorithm, developed by Breiman et al. [68], constructs models in a reverse
tree shape. Such models divide the input space into subregions, simplifying complex with
simple problems [69]. Trees are composed of internal nodes corresponding to variables,
arches to values of the root node, and leaves to the value of the dependent variable. Trees
are easy to interpret because a scheme of nodes and leaves is available, thus easing the
understanding of the solution adopted for the problem [70]. For this reason, trees are used
in several works: (i) Tso and Yau [71] developed models to predict energy consumption by
using three different algorithms: CART, MLP, and linear regression. The results revealed
that both the CART and the MLP model obtained better performance than the linear
regression; (ii) Mousa et al. [72] analyzed the use of a CART model to estimate the air
change rate in buildings; and (iii) in another study [73], a CART model was developed
to predict the monthly energy consumption in residential buildings. The results showed
that the tree model obtained better performance than linear regression and multivariate
adaptive regression splines.

The optimal structure is obtained by the binary recursive partitioning process during
the development of the model: each node of the model has a partitioning rule. This rule is
established by decreasing the total residual sum square. After carrying out the induction,
the application of the pruning (that is, the removal of the inefficient nodes) allows the
complexity of the model to be generalized and reduced [74]. The depth of the tree and the
minimum number of instances per node is needed to be established in the configuration
of the algorithm. These parameters affect the complexity and performance of the model,
so they were analyzed.

2.1.4. Random Forest

As indicated above, the simplicity and interpretation of CART models make their use
easier. However, many studies reflect the limitations of such models [75,76]. RF allows
a solution to these problems to be adopted by creating a set of CART models generated
in parallel to reduce the variance and the bias of the RF model [77,78]. RF is an ensemble
learning algorithm, which obtains a better behavior than an individual model [79]. Another
advantage of RF is the possibility of using large datasets, as well as not being affected
by atypical values [80]. This aspect allows this model to be used to predict energy con-
sumption. In this sense, Li et al. [81] developed an RF model to predict the daily electricity
consumption in companies. The model had a more accurate prediction than artificial neural
networks and support vector machines. Likewise, its monthly [82] and hourly [83] use as a
predictive control system of HVAC systems has been analyzed in some studies.



Sustainability 2021, 13, 2426 7 of 30

For the RF training, N bootstrapped sample sets are drawn from the training dataset [78].
Each bootstrapped sample allows a forest regression tree to be generated. Moreover, each
node of each tree is divided using a subset of predictors m randomly selected. This reduces
the influence of the strongest predictors. After generating the set of T-trees and following
the RF model structure (see Figure 2), the regression estimator (ŶRF) is as follows:

ŶRF =
1
T

T

∑
t=1

Ŷt (6)

where T is the number of trees, and Ŷt is the output of the t-th tree.
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The number of trees used by the model influences its performance [84]. For this
reason, different numbers of trees were analyzed to obtain the model with the most
efficient behavior.

2.1.5. M5P

The M5P algorithm (also known as M5) is an evolution of the CART algorithm [85,86].
Unlike the CART model, M5P combines decision trees with multiple regression: a decision
tree is constructed following the same structure of reverse tree from the CART model, but a
multiple linear regression (MLR) model is adjusted in each leaf of the model (Equation (7)).
The algorithm, therefore, develops an MLR model in each subregion. In the development
of the M5P tree, the internal variation of subsets for the class values of each branch is
minimized instead of maximizing the information gain. After constructing the model, the
pruning allows the overfitting to be reduced. The advantages of the models generated
by this algorithm are the efficient use of huge amounts of numeric variables and their
robustness because of the lack of values in the instances of the dataset analyzed [87,88].
The use of this model for the energy characterization of buildings has therefore increased in
recent years. In this sense, Li et al. Afsarian et al. [89] developed an M5P model to predict
the total energy consumption in a reference building. The results obtained a R2 greater than
90% in most datasets. In another study by Jeffrey Kuo et al. [90], a comparative study of
regression models was conducted to estimate the energy consumption in convenience stores
of Taiwan. The use of four different models (M5P, Gaussian processes, linear regression,
and support vector regression) was compared. The results obtained by M5P obtained a
more accurate estimation than the other models. Likewise, M5P has a good performance
in determining oscillations in energy prices. In a study by Azofra et al. [91], a model
was developed to determine the variations of the cost of electricity tariffs because of the
generation of photovoltaic and wind power in Spain. The model was used to analyze
various scenarios, thus determining the possible saving in the cost of electricity tariff.

ŶMLR = β0 +
v

∑
i=1

(βixi) + ε (7)
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where β0 is the independent term, βi are the regression coefficients, xi are the predictor
variables, and ε is the error.

2.1.6. Support Vector Regression

SVR is an application for regression analysis of the support vector machines [92]. SVR
consists of transforming the root input variable in the space of higher dimension where
two classes are separated by an optimal hyperplane [93,94]. Some advantages of SVR are
the facts that they are less subject to overfitting [95] and their good behavior when tackling
nonlinear problems [96]. It is an algorithm widely developed in the energy control of
installations, such as lighting [97] and HVAC systems [98]. Likewise, SVR has been used
in some studies to estimate the energy consumption in residential buildings [99,100] and
offices [101,102].

For their mathematical approach, support vector machines approach the relationship
between the output and input parameters by using the following equation:

f (x) = wT ·ϕ(x) + b (8)

where ϕ(x) is representative of a nonlinear mapping function, w is a weight vector, and
b is the bias term. w and b can be predicted by minimizing the regularized risk function
(Equation (9)), guaranteeing the restrictions of Equation (10).

min

{
C

N

∑
i=1

(ξi + ξ∗i ) +
‖ w ‖2

2

}
(9)

yi − wT ·ϕ(xi)− b ≤ ψ + ξi i = 1, 2, . . . , N
wT ·ϕ(xi) + b− yi ≤ ψ + ξ∗i i = 1, 2, . . . , N

ξi, ξ∗i ≥ 0
C > 0

(10)

where N is the sampling number, C is penalty parameter to control the compensation
between the regularization term (‖ w ‖2) and the training error, ψ is the maximum error
allowed, ξi and ξ∗i represent the distance of the actual values from the upper and lower
limit of the error allowed, respectively.

Finally, the output of the SVR (Equation (11)) is obtained by introducing Lagrange
multipliers (δi and δ∗i ) and a Kernel function (K(x, xi)). In this regard, it is essential to
determine which kernel function is used. There are different kernel functions: linear,
polynomial, sigmoidal, and radial basis function (RBF). For this study, the RBF kernel is
used (Equation (12)) because models with the best performance are obtained, and a lower
number of parameters should be considered to improve the behavior of the model [74,103].

f (x) =
N

∑
i=1

(δi + δ∗i )·K(x, xi) + b (11)

K(x, xi) = exp
(
−γ ‖ x− xi ‖ 2

)
(12)

The parameters that should be considered to improve the performance of the model
are C and γ. To determine the model with the best performance, different combinations of
C and γ were used.

2.2. Dataset and Model Construction
2.2.1. Description of the Dataset

Based on the calculation methodology by Pérez-Fargallo et al. [31,36], the procedure
to determine the dataset was described in a previous study [37]. The case studies were
configured using different parameters of the A1 and B1 typology of the social dwelling
of the Chilean Ministry of Housing and Urbanism (MINVU in Spanish) [104]. A total
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of 7776 case studies were configured. Likewise, each case study is considered to belong
to each of the 5 poorest deciles [105]. Thus, 5 different datasets per decile, composed of
7776 instances, were obtained. In total, 38,880 cases were considered.

The predictor variables were as follows: (i) orientation (OR), (ii) form ratio (FR),
(iii) volume (V), (iv) surface in contact with the ground (SG), (v) horizontal surface area in
contact with another dwelling (SH), (vi) roof surface area (SR), (vii) vertical surface area in
contact with another dwelling (SV), (viii) shadow distance (D), (ix) shadow height (H), (x)
energy price (EP), and (xi) income (IN). Figure 3 shows Pearson’s correlation coefficients
and the p-values. For nearly all of them, the null hypothesis can be rejected, and the
Pearson’s coefficient shows no evident correlation. A more surprising correlation is found
between the group of variables related to the design of the dwelling (SG, SR, SH, SV and V),
for, which the null hypothesis cannot be rejected, and moderate correlations are found in
some cases. This is because those are interweaved in the design of the dwelling, but this
does not compromise the accuracy of the model. The dependent variable was the FPPRI,
which was logarithmically transformed to improve the accuracy of the final model.
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2.2.2. Training and Validation Procedure

As indicated above, five datasets containing 7776 instances were obtained per decile.
Likewise, a full dataset with the case studies of the five deciles was generated (38,880 ob-
servations). These datasets were used to generate 6 different models for each regression
algorithm: one per each decile (D1, D2, D3, D4, and D5) and another per all deciles (T). The
datasets were randomly divided into two sets: 75% of the observations corresponded to
the training dataset, and the remaining 25% to the testing dataset.
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For the models’ training, a 10-fold cross-validation was carried out. Cross-validation
allows the bias and the variance of the model to be reduced [106]. All training datasets
were randomly divided into 10 subsets. For each fold, 9 subsets were used for the training,
and the remaining for the testing (Figure 4). The performance of the model is obtained by
the average value of the 10-fold.
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Three statistical parameters were used to evaluate the performance of the models:
(i) the correlation coefficient (R2) (Equation (13)), the root mean square error (RMSE)
(Equation (14)), and the mean absolute error (MAE) (Equation (15)). The use of these
parameters allows the performance of the models to be correctly defined [107] and also
are amongst the most used when comparing the performance of algorithms with different
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architecture [43]. The lower the value of RMSE and MAE, the greater the accuracy. The
threshold value of R2 was set at 0.95 to consider the predictions sufficiently accurate [37,48].

R2 =

(
1− ∑n

i=1(ti −mi)
2

∑n
i=1
(
ti − ti

)2

)
(13)

RMSE =

(
∑n

i=1(ti −mi)
2

n

)1/2

(14)

MAE =
∑n

i=1|ti −mi|
n

(15)

where mi is the model’s prediction, ti is the actual value, and n is the number of instances
in the dataset.

3. Results and Discussion

This section is organized as follows: First, the results from each algorithm are pre-
sented, along with a discussion of the particular features of their architecture. Finally, all
algorithms are compared on the basis of the three parameters: R2, MAE, and RMSE.

3.1. Performance of the Models
3.1.1. MLP Models

The performance of the MLPs model was analyzed on the basis of the number of
neurons in the hidden layer. As mentioned in Section 2.1, only one hidden layer was
considered because it usually delivers better performance than more complex architec-
tures [58]. Table 3 indicates the optimal number of neurons obtained for each model and
the performance obtained in both the training and testing phases. What stands out in this
table is that the optimal number of neurons in the hidden layer was very similar between
the different models (between 12 and 14 nodes). Regarding the accuracy, R2 was greater
than 99.8% for all models in the training and testing phases, MAE was lower than 0.010,
and RMSE lower than 0.012. The accuracy did not vary when considering the full dataset
or each decile separately.

Table 3. Results of training and testing of the MLP models.

Model and Dataset Number of
Nodes

Training Testing

R2 MAE RMSE R2 MAE RMSE

MLPD1 (D1) 13 0.998 0.009 0.012 0.998 0.010 0.012
MLPD2 (D2) 13 0.999 0.009 0.012 0.999 0.009 0.011
MLPD3 (D3) 12 0.998 0.010 0.013 0.999 0.009 0.012
MLPD4 (D4) 12 0.998 0.011 0.014 0.999 0.008 0.011
MLPD5 (D5) 13 0.998 0.009 0.012 0.999 0.009 0.011

MLPT (Fulldataset) 14 0.999 0.009 0.011 0.999 0.008 0.010

3.1.2. K-NN Models

For K-NN models, two parameters, q and K, have an influence on its accuracy. In this
case, values of K ranged between 1 and 25, and values of q between 1 and 4 (Figure 5).
A different behavior was observed depending on the type of dataset used: for models
per deciles, a value of q of 2 (corresponding to the Euclidean distance) obtained the best
performance, whereas, for K-NNT, a value of q of 4 obtained the best statistical parameters.
In this regard, the number of close instances used by the model varied: for models per
deciles, values of K between 9 and 11 obtained acceptable results (in the testing, MAE was
between 0.059 and 0.072, and RMSE between 0.076 and 0.094), whereas, for K-NNT, the
number of K was 2. The performance of K-NNT was lower than models per deciles because
a low number of instances was used to obtain a representative result (in the testing, MAE
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was 0.082 and RMSE was 0.110). In this sense, both in the training and testing phases, R2

was always below 0.95, except for one case, MAE and RMSE were very similar for all sets
of data (Table 4).
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Table 4. Results of training and testing of the K-nearest neighbors (K-NN) models.

Model and Dataset
Training Testing

q K R2 MAE RMSE R2 MAE RMSE

K-NND1 (D1) 2 10 0.948 0.059 0.076 0.952 0.059 0.076
K-NND2 (D2) 2 9 0.943 0.071 0.092 0.942 0.072 0.094
K-NND3 (D3) 2 11 0.946 0.069 0.089 0.947 0.068 0.088
K-NND4 (D4) 2 10 0.946 0.066 0.085 0.944 0.066 0.086
K-NND5 (D5) 2 10 0.945 0.065 0.085 0.948 0.063 0.082

K-NNT (Fulldataset) 4 2 0.915 0.084 0.113 0.917 0.082 0.110

3.1.3. CART Models

In this model, the parameters of depth and instances per node were analyzed: the
depth of the tree oscillated between 2 and 12 (the maximum value was established accord-
ing to the number of variables of the dataset), and the number of observations per node
ranged between 2 and 30. Figure 6 is a sample of the analysis carried out. The performance
of the model is strongly influenced by the depth of the tree: the higher the depth, the
greater the correlation (values of R2 greater than 97.80%) and the lower the MAE and
RMSE. The most optimal depth for all models was, therefore, the maximum suggested
(12 levels). Although this could mean overfitting to training data, the performance ob-
tained in the testing phase was similar to that obtained in training (Table 5); therefore,
it was not considered necessary to generalize the tree (i.e., to simplify it) to obtain a better
performance in new observations. When comparing the accuracy for the full dataset and
for each decile, the full model (CARTT) delivered better results than each decile separately
in the testing phase. R2 increased between 1.0 and 1.3%, and MAE and RMSE had values
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lower than 0.008 and 0.010, respectively. This is because the structure obtained is better
adjusted to the full dataset than to the models per deciles.
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Table 5. Results of training and testing of the CART models.

Model and Dataset
Training Testing

R2 MAE RMSE R2 MAE RMSE

CARTD1 (D1) 0.978 0.033 0.042 0.980 0.033 0.041
CARTD2 (D2) 0.982 0.035 0.045 0.983 0.035 0.044
CARTD3 (D3) 0.981 0.035 0.044 0.981 0.034 0.043
CARTD4 (D4) 0.980 0.034 0.043 0.981 0.034 0.042
CARTD5 (D5) 0.980 0.035 0.043 0.981 0.034 0.042

CARTT (Fulldataset) 0.992 0.027 0.034 0.993 0.027 0.034

3.1.4. RF Models

In this model, the number of trees influences the performance of the model. For this
reason, the behavior of the model with a number of trees between 1 and 200 was analyzed
by using both the same depth and number of instances used in the CART models. Figure 7
represents the performance obtained for the RFD1 model, whereas Table 6 indicates the
values obtained for all models. As can be seen in Figure 7, the performance of the model
improved as the number of trees increased. However, when the optimal value was reached
(149 in the case of D1), the performance of the model did not improve: the number of
trees only increased the time required to train the model. Likewise, the optimal number
obtained for each model was very similar, varying between 143 and 153. With respect to
the models obtained, the performance was very similar for models per deciles and the
full model. In this sense, R2 obtained values between 99.3 and 99.6%, whereas MAE and
RMSE oscillated between 0.021 and 0.023 and between 0.027 and 0.030, respectively.
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Table 6. Results of training and testing of the RF models.

Model and Dataset Number of Trees
Training Testing

R2 MAE RMSE R2 MAE RMSE

RFD1 (D1) 149 0.993 0.021 0.027 0.993 0.022 0.027
RFD2 (D2) 148 0.994 0.023 0.030 0.994 0.023 0.029
RFD3 (D3) 148 0.993 0.023 0.029 0.994 0.022 0.028
RFD4 (D4) 143 0.993 0.022 0.028 0.993 0.022 0.028
RFD5 (D5) 144 0.993 0.022 0.028 0.994 0.021 0.027

RFT (Fulldataset) 153 0.996 0.022 0.028 0.996 0.022 0.028

3.1.5. M5P Models

In M5P models, no parameter was analyzed to optimize their performance. As can
be seen in Figure 8, M5P determines the optimal depth of the model. Therefore, it is
not necessary to analyze this aspect in such performances. Regarding the values of the
statistical parameters, the performance was very similar (Table 7): R2 was between 0.995
and 0.998, MAE between 0.014 and 0.016, and RMSE between 0.018 and 0.020.

3.1.6. SVR Models

As indicated in Section 2.1.6, both C and γ affect the performance of the SVR models.
Different combinations of these two parameters were therefore analyzed. In this sense, C
adopted values between 0.1 and 4, whereas γ was analyzed using values between 0.05
and 0.2. Figure 9 represents the results of the various combinations in SVRD1, and Table 8
indicates the optimal configuration and the results obtained by each model. Several aspects
can be appreciated from the analysis: (i) optimal values of the models were obtained from
values of γ of 0.15. Although best values in the statistical parameters were obtained as the
value of γ increased, the value of C obtained the same values for lower values of γ. Values
γ lower than 0.15 did not obtain the same optimal performance; (ii) high values of γ and C
influenced the training time. In this regard, the time difference between different values of
γ was greater than 1000 s, slowing down the training with high γ. Thus, the optimal value
of γ obtained for all models was 0.15, whereas the value of C varied between 1.6 and 2.1
(Table 8). Likewise, the performance obtained both in the training and testing phases was
similar. SVRT presents R2 quite similar to models per deciles in the testing, MAE is greater
than 0.002, and RMSE ranges between 0.004 and 0.006.
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Table 8. Results of training and testing of the support vector regression (SVR) models.

Model and Dataset C γ
Training Testing

R2 MAE RMSE R2 MAE RMSE

SVRD1 (D1) 2.0 0.15 0.999 0.008 0.011 0.998 0.009 0.012
SVRD2 (D2) 1.6 0.15 0.999 0.010 0.013 0.999 0.009 0.013
SVRD3 (D3) 1.9 0.15 0.999 0.009 0.012 0.999 0.009 0.011
SVRD4 (D4) 2.0 0.15 0.999 0.009 0.012 0.999 0.009 0.012
SVRD5 (D5) 2.0 0.15 0.999 0.009 0.012 0.999 0.009 0.012

SVRT (Fulldataset) 2.1 0.15 0.999 0.012 0.018 0.998 0.011 0.017

3.2. Comparison of Models

The algorithms were compared on the basis of two parameters: (I) the individual
performance obtained by each decile and (ii) the performance obtained in the estimation
of the 5 deciles together. Figure 10 shows the scatter plots comparing the actual and
predicted values of the total dataset (as well as the values of the statistical parameters),
and Table 9 is a compilation of the statistical parameters obtained per deciles separately.
Likewise, the point obtained by each model per decile is represented in Appendix A
(Figures A2–A6). Several aspects regarding the comparative analysis are worth noting.
First, the estimation conducted by each model was merged in a combined estimation
(D1–5) with the corresponding values of R2, MAE, and RMSE. Then, the full model of
each algorithm was used to evaluate the estimation conducted in each decile.

Regarding the performance obtained by each decile, there were different results. The
algorithm that delivered with the worst performance was K-NN: R2 was lower than 95%
for almost all decile models (only D1 obtained R2 of 95%), whereas K-NNT had a different
behavior depending on the decile analyzed, obtaining the best behavior in deciles 3, 4, and
5, and the worst in deciles 1 and 2 (0.880 and 0.939). Therefore, the performance obtained
using the K-NN algorithm was not considered adequate (see Figure 10).

The use of the other algorithms gave optimal correlation coefficients (higher than 98%
in all cases). The analysis of the error parameters revealed that CART and RF models ob-
tained error values higher than MLP, M5P, and SVR: MAE and RMSE increased regarding
the highest value of M5P of 21.43% and 23.53%, respectively. Therefore, the performance
obtained by these two models, although being acceptable, did not present the adjustment
degree of MLP, M5P, and SVR. Regarding these three algorithms, the results were quite
similar for all the cases analyzed: R2 oscillated between 0.996 and 0.999, MAE between
0.008 and 0.018, and RMSE between 0.010 and 0.026. Despite the performance obtained by
the full models in each decile was optimal, SVRT had the worst performance in deciles 1
and 2. This aspect influenced the estimation conducted by the full model, which was worse
than that conducted by the set of decile models (MAE decreased by 0.002, and RMSE by
0.005). On the other hand, the scatter plots obtained by MLP and M5P were similar, both
with an adequate adjustment.

Thus, these two algorithms obtained the best performance, particularly if the time
required to train the SVR models is considered (Table 10). The time needed to carry out the
training of these models was more than 1990s, and SVRT needed more than 18 h for the
training. The remaining algorithms needed quite short times: MLP and K-NN consumed
more time (391.2 and 653.2 s, respectively).
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Table 9. Statistical parameters were obtained by each regression algorithm in the testing phase per each decile.

Test Per Each Decile Model Test Per Total Model

Model R2 MAE RMSE Model R2 MAE RMSE

MLP MLP
MLPD1 (D1) 0.998 0.010 0.012 MLPT (D1) 0.999 0.008 0.011
MLPD2 (D2) 0.999 0.009 0.011 MLPT (D2) 0.999 0.008 0.010
MLPD3 (D3) 0.999 0.009 0.012 MLPT (D3) 0.999 0.008 0.010
MLPD4 (D4) 0.999 0.008 0.011 MLPT (D4) 0.999 0.008 0.010
MLPD5 (D5) 0.999 0.009 0.011 MLPT (D5) 0.999 0.008 0.010

K-NN K-NN
K-NND1 (D1) 0.952 0.059 0.076 K-NNT (D1) 0.880 0.077 0.106
K-NND2 (D2) 0.942 0.072 0.094 K-NNT (D2) 0.939 0.058 0.082
K-NND3 (D3) 0.947 0.068 0.088 K-NNT (D3) 0.963 0.045 0.062
K-NND4 (D4) 0.944 0.066 0.086 K-NNT (D4) 0.968 0.043 0.059
K-NND5 (D5) 0.948 0.063 0.082 K-NNT (D5) 0.967 0.045 0.062

CART CART
CARTD1 (D1) 0.980 0.033 0.041 CARTT (D1) 0.988 0.023 0.031
CARTD2 (D2) 0.983 0.035 0.044 CARTT (D2) 0.992 0.023 0.030
CARTD3 (D3) 0.981 0.034 0.043 CARTT (D3) 0.992 0.023 0.029
CARTD4 (D4) 0.981 0.034 0.042 CARTT (D4) 0.992 0.022 0.028
CARTD5 (D5) 0.981 0.034 0.042 CARTT (D5) 0.991 0.023 0.029

RF RF
RFD1 (D1) 0.993 0.022 0.027 CARTT (D1) 0.994 0.020 0.027
RFD2 (D2) 0.994 0.023 0.029 CARTT (D2) 0.996 0.018 0.024
RFD3 (D3) 0.994 0.022 0.028 CARTT (D3) 0.996 0.017 0.021
RFD4 (D4) 0.993 0.022 0.028 CARTT (D4) 0.996 0.017 0.021
RFD5 (D5) 0.994 0.021 0.027 CARTT (D5) 0.995 0.021 0.028

M5P M5P
M5PD1 (D1) 0.996 0.015 0.019 M5P T (D1) 0.996 0.014 0.018
M5PD2 (D2) 0.996 0.016 0.020 M5P T (D2) 0.997 0.014 0.017
M5PD3 (D3) 0.996 0.016 0.019 M5P T (D3) 0.997 0.014 0.017
M5PD4 (D4) 0.996 0.016 0.019 M5P T (D4) 0.997 0.014 0.017
M5PD5 (D5) 0.996 0.016 0.020 M5P T (D5) 0.997 0.015 0.018

SVR SVR
SVRD1 (D1) 0.998 0.009 0.012 SVRT (D1) 0.995 0.018 0.026
SVRD2 (D2) 0.999 0.009 0.013 SVRT (D2) 0.997 0.013 0.021
SVRD3 (D3) 0.999 0.009 0.011 SVRT (D3) 0.999 0.009 0.011
SVRD4 (D4) 0.999 0.009 0.012 SVRT (D4) 0.999 0.008 0.011
SVRD5 (D5) 0.999 0.009 0.012 SVRT (D5) 0.999 0.008 0.011

Table 10. Time required in the training of models.

Algorithm

Time (s)

Model

D1 D2 D3 D4 D5 T

MLP 77.3 71.6 66.0 66.1 71.2 391.2
K-NN 5.3 5.6 5.7 5.8 5.6 653.2
CART 2.4 2.3 2.1 2.0 2.1 11.3

RF 20.3 20.6 21.3 20.2 21.1 95.1
M5P 5.1 4.9 5.1 5.4 5.2 26.2
SVR 2188.2 1991.3 2195.3 2130.3 2142.0 67,771.3

4. Conclusions

The present exploratory study set out with the aim of clarifying the best algorithm to
predict FPPRI of financially deprived households in Chile. Considering their performance,
it can be concluded that multilayer perceptron, support vector regression and M5P are, in
this order, the best option. Correlation coefficients were higher than 99.5%, and the values
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of MAE and RMSE were lower than 0.018 and 0.026, respectively. Including computing
time as a variable, SVR should be discarded in favor of M5P and MLP. Finally, since M5P
delivers the shortest computing time for all of them, it could be labeled as the best option
in terms of speed and performance.

Comparison of the findings with those of a previous study by the authors that as-
sessed the accuracy of multiple linear regression (MLR) models also confirms that M5P
outperforms the former [37]. The MLR delivered values of R2 between 0.807 and 0.963
and values of RMSE between 0.013 and 0.091. A possible explanation for this might be
the architecture of the M5P model itself, which combines a CART algorithm with an MLR
model in each subregion; that is, each leaf of the tree has one MLR model, which is the
regression algorithm used in the previous study. As pointed out by other authors, the
particular architecture of this model seems to be suited for the prediction of the variations of
energy prices [91] and the energy consumption [89], as in our case. In terms of computing
time, the CART algorithm was the fastest, and adding an MLR model to each leaf doubles
computing time but still places this algorithm as the second-fastest. Additionally, this
study has clarified that the design of the M5P model should follow some recommendations.
Even though the model automatically determines the depth of the tree, caution should be
exercised so as not to consider more than 150 trees, as the results from the original CART
model suggest.

These results also have two main methodological implications. First, the M5P models
can be easily programmed in different languages because it is composed by if-then rules,
and also because it divides the input space into a linear regression model, delivering
an equation whose mathematical meaning is easier to grasp. Second, the FPPRI was
tested against a nationally representative sample size in the Chilean context, but the
methodology can be extrapolated to other countries by making the necessary adjustments
in the predictor variables.

The most important limitation of the present study lies in the fact that the tested
algorithms are data-driven or black-box models; that is, all data were artificially generated.
Further studies need to be carried out using real data from the energy expenditure of
Chilean households in order to validate the results from the present study. The biggest
challenge would be compiling a statistically representative pool of data about the energy
expenditure of households. The CASEN survey still does not cover this aspect, which
should be considered in the future as part of the so-called “multidimensional poverty”.

Overall, and considering its scientific contribution and also its limitation, this study
has provided a deeper insight into the prediction of fuel poverty by using different data-
driven algorithms. These findings may have a number of important implications for the
design of future policies tackling energy poverty before reallocating families into a new
house, thus providing the basis towards a sustainable development of social housing that
considers the economic situation of financially deprived households.
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Abbreviations
Symbols

b Bias term (support vector regression)
C Penalty parameter (support vector regression)
dq Minkowski distance (K-nearest neighbors)
EC Energy consumption
ECR Real energy consumption
ECS Simulated energy consumption
ECSC Average monthly cooling energy consumption starting from the simulation
ECSE+L Average monthly energy consumption of equipment and lighting from the simulation
ECSH Average monthly heating energy consumption from the simulation
FPI Fuel poverty index
FPIadaptative Fuel poverty index with the approach by Pérez-Fargallo et al.
Hc Occupied hours in thermal comfort applying category III of EN 15,251
Hd Unoccupied hours of the analyzed period
Ht Total hours of the analyzed period
I Household income
K Nearest neighbors’ number (K-nearest neighbors)
K(x, xi) Kernel function (support vector regression)
mi Model’s prediction
MAE Mean absolute error
n Number of instances in the dataset
N Sampling number (support vector regression)
P Energy price used
PC Electricity price for cooling
PE+L Electricity price for equipment and lighting
PH Energy of fuel price for heating
R2 Correlation coefficient
RMSE Root mean square error
ti Actual value
T Number of trees (random forest)
TI Threshold income
w Weight vector (support vector regression)

w(1)
k0 Weight of the bias neuron of the input layer (multilayer perceptron)

w(1)
kj Weights of the hidden layer (multilayer perceptron)

w(2)
l0 Weight of the bias neuron of the hidden layer (multilayer perceptron)

w(2)
lk Weights of the output layer (multilayer perceptron)

x0 Input value of the bias neuron of the input layer (multilayer perceptron)
xi Predictor variables of multiple linear regression
xj Values of the input layer (multilayer perceptron)
y0 Input value of the bias neuron of the hidden layer (multilayer perceptron)
yk Output of a neuron of the hidden layer (multilayer perceptron)
ym Values of the K nearest points (K-nearest neighbors)
ŶkNN Output value of K-nearest neighbors
ŶRF Output value of random forest
Ŷt Output of the t-th tree (random forest)

Greek letters
β0 Independent term of multiple linear regression
βi Regression coefficients of multiple linear regression
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δi Lagrange multiplier (support vector regression)
δ∗i Lagrange multiplier (support vector regression)
ε Error of multiple linear regression

ξi
Distance of the actual values from the upper limit of the error allowed
(support vector regression)

ξ∗i
Distance of the actual values from the lower limit of the error allowed
(support vector regression)

µDn Average of income distribution of decile n
σ Activation function (multilayer perceptron)
σ2

Dn
Variance of income distribution of decile n

ψ Maximum error allowed (support vector regression)
Abbreviations

BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm
CART Classification and regression tree
D Distance to the closest building
EP Energy price
FPPRI Fuel poverty potential risk index
FR Form ratio
H Shadow height
IN Income
K-NN K-nearest neighbors
MINVU Chilean Ministry of Housing and Urbanism
MLP Multilayer perceptron
MLR Multiple linear regression
OR Orientation
RF Random forest
SG Surface in contact with the ground
SH Horizontal surface area in contact with other dwellings
SR Roof surface area
SV Vertical surface area in contact with other dwellings
SVR Support vector regression
V Volume
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