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Abstract

The development of long-term structural health monitoring systems is recently

receiving a growing scientific interest in the field of Civil Engineering. In the

context of unsupervised learning processes, deviations of dynamic parameters

from their normal conditions can allow damage detection. However, due to

the fact that modal properties are highly sensitive to environmental and op-

erational factors, it is extremely important to remove such effects in order to

obtain suitable damage sensitive features. In this regard, the selection of a

proper statistical model for removing environmental effects is not a trivial issue

as the distribution of the residuals, the control chart and therefore the dam-

age detection inevitably depend on it. To overcome this problem, an original

methodology is developed in the present paper, based on Receiving Operating

Characteristic (ROC) curves in combination with Precision-versus-Recall (PR)

curves, with the aim to provide a new decision-support tool for the definition

of the best environmental effects’ removal technique. Specifically, ROC and PR
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curves are computed and compared for a variety of statistical models for data

normalization and different damage scenarios. The proposed approach is exem-

plified by application in two case studies of continuously monitored structures:

the Z24 Bridge in Switzerland and the Consoli Palace, a medieval masonry

building in Italy. The results highlight that the combined use of both ROC and

precision-versus-recall curves represents a suitable tool for defining the most ef-

fective data normalization method and the optimal damage threshold, in order

to minimize the occurrence of false alarms detection.

Keywords: Vibration-based SHM, ROC curves, Precision-recall

curves, Unsupervised learning, Damage detection

1. Introduction

In the last decades, Structural Health Monitoring (SHM) has become in-

creasingly popular, gaining a key role in the field of Civil Engineering. One of

the reasons lies in the urging need to better manage the large number of ageing

structures and infrastructures. Particular attention is paid to cultural heritage5

buildings, which necessarily require a strategy of maintenance and conservation

due to their vulnerability [1, 2, 3] and their exposure to various types of natural

hazards, such as earthquakes [4, 5]. In parallel, the whole society is becoming

aware of the importance of major structures like bridges, as they represent crit-

ical elements in modern transport networks. However, at the same time, they10

are inevitably subjected to materials’ degradation under normal conditions, as

well as to extreme events. As an illustrative example, the EU funded BRIME

project in 2001 identified that highway bridges in France, Germany and the

UK present lacks at a rate of 39%, 30% and 37%, respectively [6]. Furthermore,

catastrophic events as the collapse of the Genoa bridge in 2018 or the breakdown15

of the highway overpass close to Ancona in 2017 have recently brought to the

light the urgency to invest in infrastructure management. For all these reasons,

it is crucial to develop reliable monitoring tools with a fully non-destructive

character, in support to visual inspections and non-destructive evaluations, to
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ensure bridges safety [7, 8, 9, 10, 11].20

Within this context, the popularity of long-term vibration-based SHM systems

[12, 13, 14] has been steadily growing in the last years. Such methods ex-

ploit ambient acceleration records under normal operating conditions to ex-

tract modal parameter estimates through Operational Modal Analysis (OMA)

[15, 16, 17, 18]. Given that modal features depend upon the physical properties25

of the structure (mass, stiffness and energy dissipation properties), the idea is to

detect damage by tracking deviations of dynamic parameters from their normal

conditions through statistical pattern recognition [19]. This is what data-driven

approaches deal with, providing a base for unsupervised learning processes.

Thanks to the advances made in sensing technologies, data migration facilities30

and data pre/post processing algorithms, data-driven techniques are well suit-

able for continuous SHM systems, whose goals are manifold: (i) they allow to

track any change in the structural behaviour, due to some damage, starting

from the variation in time of modal parameters, (ii) they provide real-time in-

formation for safety assessment and early-stage damage identification [20], (iii)35

they permit optimal scheduling of local inspections and non-destructive evalu-

ation tests in view of recovery activities and (iv) they can be used for inverse

calibration of numerical models [21, 22].

Despite these advantages, it is worth highlighting that the main drawback of

dealing with changes in modal properties is represented by their high sensitivity40

to alterations in environmental and operational conditions [23, 24]. Regarding

this aspect, Cornwell et al. [25] studied the thermal fluctuations in the dynamic

features of the Alamosa Canyon Bridge and found about 5% daily changes in

the first three natural frequencies. Rohrmann et al. [26] observed that varia-

tions of frequencies in the Westend bridge produced by temperature can reach45

10% according to monitoring results obtained from 1994 to 1997. This kind of

information leads to the concept that alterations in modal properties due to the

temperature effects are often more remarkable than those caused by a medium

degree of structural damage [27] and operation loads [28], therefore the risk of

masking early stage damages is significant. For this reason, numerous works50
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have been recently devoted to estimating and removing environmental effects

from recorded monitoring data in order to define suitable damage-sensitive fea-

tures [1, 29, 30].

There are different techniques, known in the literature, to cope with the data

normalization problem. The basic idea beyond these theories is to create a sta-55

tistical model able to reproduce the part of variance in frequency estimates that

is associated with changes in environmental conditions.

Multiple Linear Regression (MLR) [29, 31, 32] is a statistical tool which exploits

linear correlations for predicting values of one or more dependent variables, as

can be natural frequencies, starting from a group of independent variables, which60

are tipically environmental and operational factors.

Another well-established methodology, Principal Component Analysis (PCA)

[33, 34, 35, 36], has the aim to convert a set of observations of possibly corre-

lated variables into a group of values of linearly uncorrelated variables called

principal components. The main advantage is that PCA does not require to65

measure the environmental parameters as they are taken into account as em-

bedded variables.

Within the context of bridge monitoring, Comanducci et al. [37] studied the

comparison between different statistical tools, while Sohn et al. [38] and Hu et

al. [31] applied the multiple regression model to remove temperature effects on70

the Alamosa Canyon Bridge and on a prestressed-concrete box girder bridge in

Berlin, respectively. Other researches carried out by Yan et al. [39] highlighted

the effectiveness of PCA in the Z24 bridge case study. Beyond that, the results

obtained from the combination of MLR and PCA were discussed by Ubertini et

al. [1], who analysed the damage detection of the bell-tower of the Basilica of75

San Pietro in Perugia.

Once a proper statistical model is defined, the prediction error is conceivably

calculated as the difference between the identified modal frequencies and those

independently estimated through the statistical model. These quantities, called

residuals, should be only minimally affected by environmental effects and there-80

fore suitable for damage detection purposes. Consequently, it is fair to say with
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a certain level of confidence that any anomaly in the residuals, in the form of

statistical outliers, corresponds to a damage condition. On this basis, Novelty

Analysis through control charts [40] is commonly used to infer the presence of

damage. Control charts assess certain statistical distances between newly ac-85

quired data and a baseline population (training period), which represents the

healthy state of the structure.

In this context, the definition of the threshold in the classification (damage or

non-damaged) represents one of the trickiest issues, which inevitably leads to

a certain number of erroneus predictions, including False Positives and False90

Negatives. All that may translate into a distorted interpretation of the control

chart, in view of a reasonable damage identification. Minimizing the rate of

damage detection errors is critical for an effective monitoring. To this aim, it

is crucial to select the most appropriate statistical tool for data normalization

for the specific case study. Hence, this paper proposes a new method where95

the statistical model selection problem is optimally solved by considering ROC

curves [41] and PR curves [42] that give a complete quantification assessment of

monitoring errors. More specifically, they are graphical-based tools for quantify-

ing the performance of a process, varying the threshold definition. ROC curves

find applications in several fields [43]. They are used in the medical disciplines100

for the evaluation of diagnostic tests [44], for damage detection techniques of

bridges by using Artificial Neural Networks [45], for the assessment of the dam-

age identification performance of guided wave SHM systems [46] and for the

design of the monitoring system of precast reinforced concrete (RC) industrial

buildings in seismic hazard zones [47]. However, using a ROC curve with an105

unbalanced dataset might be deceptive and lead to incorrect interpretations of

model’s performance. To overcome this issue, which is very common in machine

learning field, precision-versus-recall curves turned out to be a valid alternative

[42, 48].

Despite the manifold usages of ROC and PR curves in the literature, their use110

for optimal statistical pettern recognition in the context of damage detection

through control charts is still unexplored.
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In this regard, it is worth pointing out that the way the environmental effects

are removed influences the distribution of the residuals, the control chart and

therefore the damage detection. For this reason, comes to the light the need115

of a strategy aiming at choosing the best data normalization technique for a

reliable structural damage detection. Such a purpose is accomplished in this

paper by providing an original methodology which uses ROC and PR curves as

performance metrics. The basic idea is to supply objective criteria enabling to

define (i) which removal technique would ensure the best damage identification120

and (ii) which cut-off value minimizes the number of false positives.

Preliminarly, residuals obtained by the application of different environmental

effects removal techniques are plotted in control charts. Several ROC and PR

curves, each one referred to a particular data normalization procedure and to

a specific damage class, are afterwards computed. The performance of each125

curve is assessed by considering a linear combination between two helpful pa-

rameters, namely the area under the ROC curve and the area under the PR

curve. The procedure’s purpose is to maximize an objective function, involving

both parameters, to find out the most suitable model. Hence, the developed ap-

proach represents a new decision-support system for assessing the effectiveness130

of any data normalization technique as well as for selecting the optimal damage

threshold, leading to a minimization of false alarms detection. Since the out-

come of this method highly depends upon the damage scenario, it is important

to clearly define, in its practical applications, which is the damage mechanism

(or mechanisms) of interest. In those cases where damage data are not available,135

frequency decays ought to be obtained by non linear FEM simulations.

In order to support the advantages of the proposed approach, two case stud-

ies are presented: Palazzo Dei Consoli, a medieval masonry palace located in

Gubbio, Italy and the Z24 Bridge, located in the canton Bern near Solothurn,

Switzerland. In the firt case, the different damage scenarios have been simu-140

lated through a FEM model, while, in the second one, damage data had been

collected during field tests.

The paper is organized as follows. Section 2 overviews the theoretical back-
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groung of the statistical pattern recognition tools used in this work, Section 3

presents the new methodology aimed at the application of the ROC and PR145

curves for damage detection and minimization of false alarms under changing

environment, Section 4 describes the main characteristics and the monitoring

system of the Consoli Palace and the Z24 bridge, Section 5 illustrates the ability

of the aforementioned curves to provide reliable performance metrics in unsuper-

vised processes with reference to two case studies. Finally, Section 6 discusses150

the main conclusions of this paper.

2. Background

Numerous tools have been recently dedicated to estimating and removing en-

vironmental effects from monitoring data in order to be able to discern damage-

induced changes in the natural frequency time-histories. In this framework, the155

basic theory of MLR and PCA is briefly described hereafter. In addition, with

the aim of extending these approaches for the modelling of non-linear environ-

mental effects, a clustering approach based upon the Gaussian Mixture Model

(GMM) is also presented.

2.1. Multivariate Linear Regression (MLR)160

Multivariate Regression Models exploit linear correlations between a set of

n dependent variables (estimators) and a set of p independent variables (pre-

dictors). In this work, dependent variables are the identified modal frequencies,

while independent variables can be environmental parameters. The established

model is adopted to understand the influence of each predictor on the dependent

variables and therefore, to predict future values of the natural frequencies when

only the predictors are measured.

The mentioned linear model is characterized by the equation:

Y = βTZT + E (1)

where Y ∈ Rn×N is the observation matrix with n rows containing the identified

frequencies and N columns corresponding to the number of observations, Z ∈
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RN×(p+1) is a matrix that contains a first column of ones and N values of the

p independent variables in the remaining p columns, β ∈ R(p+1)×n is a matrix

with the parameters to be determined that weight the contribution of each

independent variable, while E ∈ Rn×N contains the values of the random errors

associated to the difference between the observed and fitted variables.

The main goal of the MLR approach is to estimate the coefficients contained

in β, which provide a good fit between the observations and the independent

variables predicted by the statistical model. They can be obtained by exploiting

the least squares method, whose task is to minimize the sum of the squares of

the residuals. Following this approach, the modal frequencies independently

estimated are computed as:

Ŷ = βTZT (2)

2.2. Principal Component Analysis (PCA)

It may sometimes occur that environmental variables are not measured but

their effects are merely observed from the variation of the modal parameters.

Therefore, in those cases where environmental factors are not known, Principal

Component Analysis (PCA) is a suitable solution. The main idea is to convert

a set of observations of possibly correlated variables into a set of values of un-

correlated variables, called principal components (PCs).

The original data are first projected into the vectorial space generated by the

PCs and then moved back to the original space by retaining only some of the

PCs. These statistically independent variables constitute an orthogonal basis

and yield different contributions to the variance of the original data. The basic

concept behind this theory is that the PCs that provide the largest contribu-

tions to the variance represent the independent environmental and operational

parameters that have to be retained in order to estimate the matrix Ŷ.

Operatively, the projection is based on the so-called loading matrix, T ∈ Rn×n,

computed as

T = UT (3)
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where matrix U comes from the singular value decomposition (SVD) of the

covariance matrix of the original data computed in the training period, namely

YYT = US2UT (4)

It should be noticed that each row of the loading matrix contains the coefficients

of a singular PC, while the singular values of the covariance matrix, contained

in the diagonal matrix S2, represent the variance contribution of each PC.

It is possible to obtain a rectangular reduced loading matrix, T̂ ∈ Rl×n, by

considering only the first l columns of matrix U in Eq. (3), that is, by retaining

only the first l PCs. Matrix Ŷ is therefore estimated as follows

Ŷ = T̂
T

T̂Y (5)

which applies the transformation from the space of the PCs to the original one

just to the first selected l PCs.

In this regard, the choice of the optimal number of PCs to be retained in the

statistical model, represents a key aspect for the reliability of damage detection.165

In particular, it should be equal to the number of independent variables produc-

ing the largest contribution to the variance in the data and whose effects have

to be removed. If this number is too small, part of environmental effects are not

properly removed; on the contrary, if it is too large, additional effects, including

damage, could be removed. A common rule usually consists in retaining the170

components which capture 70% - 90% of the variation.

2.3. Clustering-Gaussian Mixture Model (GMM)

Clustering tools are quite useful to group the damage sensitive features in

the training period into different clusters, in order to take into account the

presence of multiple environmental regimes, exhibiting non-linear environmen-

tal/operational effects. Gaussian Mixture Model (GMM) is a quite efficient tool

for this purpose.

Once defined the m resonant frequencies fi, i = 1, ...,m as damage sensitive fea-

tures, the vector xn = [f(1,n), ..., f(m,n)], containing the features at an instant n,
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n = 1, ..., N can be introduced. Then, a subset of tp data samples is selected as

the training period, with the aim to statistically describe the healthy state of the

structure. Since the data set in the training period is non-normally distributed,

it is useful to consider K clusters described by Gaussian distributions and to

utilize a linear superposition of them in order to give a better characterization

of the data set. Within this context, this approach assumes that the probability

density function p(x) of the data set in the training period X = {x1, ...,xtp}

can be represented as a linear superposition of K Gaussian components as:

p (x) =
K∑

k=1

πkN (x | µk,Σk) (6)

which is called a mixture of Gaussians. Each component of the mixture is

defined as a Gaussian density N (x | µk,Σk) and has its own mean µk and

covariance Σk. The parameters π = [π1, ..., πK ] are called mixing coefficients.

They vary from 0 to 1 (0 ≤ πk ≤ 1) and sum up to 1 (
∑K

k=1 πk = 1). One way

to set the model parameters µk, Σk and πk is to minimize the log-likelihood

function:

ln p (X | π,µ,Σ) =

tp∑
n=1

ln
{ K∑
k=1

πkN (xn | µk,Σk)
}

(7)

where µ = [µ1, ...,µK ] and Σ = [Σ1, ...ΣK ]. The maximum likelihood estimate

of the model parameters, namely µ, Σ and π, is achieved by using the iterative

Expectation-Maximization (EM) algorithm. In the expectation (E) step, after a

prior initial guess of the parameters, the posterior probability that xn is assigned

to the k-th cluster is evaluated by means of the so-called responsibilities γ(znk):

γ(znk) =
πkN (xn | µk,Σk)∑K
j=1 πjN (xn | µj ,Σj)

(8)

where znk represents an element of a K-dimensional binary random variable

z with the peculiarity that only one element in z is equal to 1 and all other
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elements are 0.

The posterior probability calculated in the previous E step is afterwards used

in the maximization (M) step to re-estimate the means, covariances and mixing

coefficients, as indicated in the following equations:

µk
new =

1

Nk

tp∑
n=1

γ(znk)xn (9)

Σk
new =

1

Nk

tp∑
n=1

γ(znk)(xn − µk
new)(xn − µk

new)T (10)

πnew
k = Nk/N, Nk =

tp∑
n=1

γ(znk) (11)

where Nk can be interpreted as the effective number of points assigned to cluster

k. Once the log-likelihood function in Eq. (7) is evaluated, this procedure is

iterated, using the updated parameters, to achieve the convergence of the log-175

likelihood function.

As opposed to k-means, a GMM model is able to provide the probabilities that a

given data point belongs to each of the possible clusters. However, on the other

hand, it requires significantly more computational efforts, due to the several

iterations needed to reach convergence. When new data are acquired, these are180

assigned to one of the previously obtained clusters K with minimal Mahalanobis

distance, whose definition can be found in [49].

2.4. Novelty analysis

The proposed statistical model should be able to reproduce the part of vari-

ance in frequency estimates associated with changes in environmental condi-

tions. Consequently, any damage pattern affects only data contained in Y but

not those in Ŷ. It follows the importance to take into account the residual error

matrix E, which can be straightforwardly calculated as:

E = Y− Ŷ (12)

Under the assumption that the statistical model is properly defined, quantities

in Eq. (12) are only minimally affected by environmental factors and therefore
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suitable to be adopted as damage sensitive features. This translates into a

conceivable detection of the damage by analyzing anomalies in the distribution

of E.

For this purpose, the classical statistical process tool, named Novelty Analysis,

is adopted to track the evolution in time of the identified natural frequencies in

order to detect any possible outlier, that is an observation which considerably

deviates from the data population.

The first step consists in the definition of a reference condition, in which data sets

are collected in a training period, so that the system can be able to compare any

new data point with the healthy state. It follows that any significant deviation

from normal conditions is associated with damage.

A common approach is the use of control charts, which are based on properly

defined statistical distances. One of the most common is the T 2-statistic, defined

as:

T 2 = r ·
(
E − E

)T
·
∑−1

·
(
E − E

)
(13)

where r is an integer parameter, named group averaging size, E is the mean of

the residuals computed in the subgroup of the last r observations, while E and185 ∑
are the mean value and the covariance matrix of the residuals statistically

estimated in the training period, respectively.

Once a value of the statistical distance lies above the Upper Control Limit

(UCL), it is considered as an outlier. The idea is to compute this threshold so

that every portion of the control chart is analysed. However, instead of referring190

the UCL to the confidence level of the whole monitoring period (with damage

included), it is useful to compute the limit based on the dependence on the stan-

dard deviation of the control chart in the training period. With this approach,

whichever range of T 2 values can be covered. Otherwise, by defining UCL as

a confidence level in the training period, the threshold can only assume values195

between 0 and the maximum statistical distance (T 2) in the training period.

Therefore, if a several number of dots steadily overcome the limit threshold (cor-

responding to a certain percentage of the standard deviation of the control chart
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in the training period), a change in the statistical distribution of the residuals

may have been occurred. Thus, damage-induced anomalies not encountered in200

the training period can be conceivably detected.

3. Methodology

The new approach developed in this work represents a decision-support sys-

tem for the definition of the most suitable technique to remove environmental

and operational effects as well as for the selection of the best damage threshold205

leading to a minimization of false alarms. This section aims at describing such

a novel methodology, based on the combined use of ROC and PR curves, to

evaluate and compare the performance of manifold statistical models.

3.1. ROC curves

A Receiver Operating Characteristic (ROC) curve represents a graphical tool210

which allows to quantify the performance of a process, varying the threshold

definition, as well as to enable the statistical evaluation of the errors related to

false detection.

Preliminarly, it should be taken into account that the control chart provides

four possible outcomes, as reported in Fig. 1:215

� if a single data set point prior to damage lies under the UCL, it is counted

as True Negative (TN);

� if a single data set point prior to damage lies above the UCL, it is counted

as False Positive (FP);

� if a single data set point after the damage lies under the UCL, it is counted220

as False Negative (FN);

� if a single data set point after the damage lies above the UCL, it is counted

as True Positive (TP);
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Figure 1: Control chart items’ classification: True Positive (TP), False Positive (FP), True

Negative (TN) and False Negative (FN).

Given TP, FP, TN and FN, the confusion matrix C can be constructed as

follows:

C =

TP FP

FN TN

 ; (14)

Known all the quantities in C, some statistical measures of the performance

of a binary classification test are introduced in order to characterize a ROC

curve.

The true positive rate TPr, known as sensitivity (SE) or probability of detection,

defines how many correct positive results occur among all positive samples:

TPr =
TP

TP + FN
=

True Positives

All positive cases
(15)

On the other hand the false positive rate FPr, known as probability of false

alarms, describes how many incorrect positive results occur among all negative

samples:

FPr =
FP

FP + TN
= 1− SP =

False Positives

All negative cases
(16)

where SP represents the so-called specificity or true nagative rate, counting

how many correct negative results occur among all negatives samples.225

A ROC curve is computed by plotting the true positive rate (TPr) against false

positive rate (FPr) at various threshold positions. It follows that each point of

the curve corresponds to the different classification thresholds varying from 0 to
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+∞. The basic idea is that a very high threshold could never indicate damage,

resulting in 0% of false and true positives, whereas a very low threshold classifies230

more items as positive, producing 100% of false and true positives. It is worth

pointing out that the closer the curve comes to the upper-left-hand corner of the

ROC space, the more accurate is the model, while the closer the curve comes

to the 45° diagonal in the ROC space, the less accurate is the model, as shown

in Fig. 2 a).235

A common method used to describe the behavior of a ROC curve is to calculate

the Area Under the Curve (AUC), indicated in Fig. 2 b). When using normal-

ized units, AUC values are between 0 and 1. Such a parameter is equal to the

probability that a classifier will rank a randomly chosen positive instance higher

than a randomly chosen negative one [43] and it can be defined as:240

AUC =

∫ 1

0

ROC(f)df (17)

where f is the false positive rate (FPr), while ROC(f) indicates the correspond-

ing true positive rate (TPr).

3.2. Precision-Recall curves245

PR curves have been often used, as an alternative to ROC curves, in Infor-

mation Retrieval [50] as well as in Machine Learning for assessing binary clas-

sification models [42]. In particular, when dealing with highly skewed datasets

with an interest in the minority class, they turned out to be a valid tool allow-

ing to improve the statistical evaluation of an algorithm’s performance [48]. In

PR space, recall against precision is plotted at various threshold positions, as

depicted in Fig. 2 d). Recall (RC) is defined the same as the true positive rate

(TPr):

RC =
TP

TP + FN
(18)

whereas Precision (PC) measures the fraction of items classified as positive

that are truly positives. Therefore, it describes how good a model is at predicting
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the positive class. It is computed as follows:

PC =
TP

TP + FP
(19)

In PR space the closer the curve comes to the upper-right-hand corner, the more

accurate is the model, while the closer the curve comes to a horizontal line at a

low precision, the less accurate is the model, as shown in Fig. 2 c).

Similarly to the ROC curves, it is possible to assess the performance of a

Precision-Recall curve by computing the AUC value, which goes from a mini-250

mum of 0 to a maximum of 1, as indicated in Fig. 2 d).

Figure 2: ROC curves: a) Different typologies: - Excellent; - Uninformative; b) Definition of

AUC. PR curves: c) Different typologies: - Excellent; - Uninformative; d) Definition of AUC.
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The main drawback of ROC curves comes to the light when there is a large

skew in the class distribution (Fig. 3). In these situations, they can present

an overly optimistic view of an algorithm’s perfomance. Conversely, PR curves

provide a more informative picture of an unbalanced dataset. If the number255

of negative samples greatly exceeds the number of positive samples, a large

change in the number of false positives can lead to a small change in the false

positive rate used in ROC analysis (Eq. (16)). This may translate into an

optimistic ROC curve. On the other hand, precision in Eq. (19) is able to

capture the effect of the large number of negative samples on the classifier’s260

performance, by comparing false positives to true positives rather than true

negatives. Therefore, the use of Precision-Recall is highly recommended when

the focus is on the positive class.

Figure 3: Examples of balanced and unbalanced data

3.3. Proposed approach for the selection of the best data cleansing technique

Numerous tools have been recently dedicated to estimating and removing

environmental effects from monitoring data in order to discern damage-induced

changes in the natural frequency time-histories. However, the selection of a

proper statistical model is not a trivial issue, as it is higly correlated with the

distribution of the residuals, the control chart and therefore with the damage

detection. For this reason, a novel methodology is proposed in this paper, based

on the combined use of ROC and PR curves. It is schematically presented in
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Fig. 4 a) and it is detailed below.

Preliminarly, m statistical models are built with the purpose to compare their

ability to predict the part of variance in frequency estimates that is associated

with changes in environmental conditions. Moreover, d damage scenarios, real

or simulated, are taken into account in order to find out how the performance

of a statistical model changes, varying the type of damage.

The case of simulated damage scenarios is largely predominant in civil engineer-

ing applications. In those cases, a suitable structural model able to predict the

variation of modal properties due to different types of damage is needed. Then,

such damage-induced variations are artificially introduced into the monitoring

data through constant shifts in the time series of identified modal frequencies.

Both steps (model prediction of damage-induced effects and assumption of a

constant-in-time damage-induced shift in modal frequencies) obviously come

with errors and therefore produce approximations. Accounting for such er-

rors is not in the aims of the present paper, where the proposed procedure is

deemed effective at selecting the best performing statistical pattern recognition

approach, in the understanding that the mentioned errors are sufficiently small

(thanks to an accurate modeling) and that they affect all statistical techniques

in a similar way.

Residuals are computed by using Eq. (12) and afterwards plotted in (m × d)

control charts. By varying the UCL and by counting the data set points belong-

ing to each class, labelled as FP, TP, FN and TN, (m× d) ROC and PR curves

are obtained straightforwardly. It should be highlighted that each curve is re-

ferred to a particular statistical model, or data normalization technique, and

to a specific damage scenario. Therefore, a useful metric already mentioned,

namely AUC, is introduced in order to be able to make a conceivable judge-

ment about the performance of different curves. According to the theory, the

goal is to select the one with the higher AUC, corresponding to a model with

an excellent capability in discerning between the positive and negative classes.

The basic idea of the proposed methodology is to consider, as a metric perfor-

mance, a linear combination between the area under the ROC curves and the
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area under the PR curves, given by the objective function fij :

fij = α ·AUCROC
ij + (1− α) ·AUCPR

ij (20)

i = 1, 2, ...,m (21)

j = 1, 2, ..., d (22)

where α ≤ 1 is a weight coefficient, while AUCROC
ij and AUCPR

ij represent the

areas under the ROC and PR curves, respectively, for the ith statistical model

and the jth damage scenario.

Based upon the case study of interest, one could decide to apply a different

weight to the two curves, varying the coefficient α.

Thus, in order to select the optimal model, the problem leads back to the

maximization of the objective function fij , as follows:

iopt = arg max (Ji) (23)

Ji =

d∑
j=1

fij (24)

It is worth asserting that a combined use of both curves allows to give a more265

informative picture of an algorithm’s performance. Using a ROC curve with

an imbalanced dataset might be deceptive and lead to incorrect interpretations

of the model skill. On the other hand, PR curves evaluate the fraction of

true positives among positive predictions and hence, they provide an accurate

prediction of future classification performance.270

3.4. Optimal threshold selection

Once the best performing model is defined, it comes to the light the necessity

to select the optimal threshold leading to a minimization of false alarms and

false negatives. Two helpful parameters are here proposed for this purpose. The

first one is the Youden index (Y ), representing the vertical distance between a

point on the ROC curve and the 45° line. Typically, the higher the Youden

index, the closer the ROC curve comes to the upper-left-hand corner, resulting
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in a high percentage of true positive rate over false positive rate. It can be

computed as follows:

Y = SE + SP− 1 (25)

The second parameter is the F1 score (F1), which combines precision and recall

into one metric by calculting the harmonic mean between those two. It reaches

its best value at 1 and can be evaluated as:

F1 = 2
PC · RC

PC + RC
(26)

The use of both coefficients allows to provide a broader view about the model’s

performance.

The basic idea is to compute Youden index as well as F1 score, varying threshold

positions, for each jth damage scenario. The maximum values, namely Ymax(j)

and F1max(j), obtained for every damage case, correspond to a certain thresh-

old, denoted as TY (j) and TF1(j), respectively. Thus, in order to reach a unique

value of the threshold T (j), the mean between TY (j) and TF1(j) is calculated:

T (j) =
TY (j) + TF1(j)

2
(27)

It should be noticed that this procedure leads to several thresholds, each one

related to a specific damage scenario. For this reason, in order to let the system

detect even the smallest damage, it is fair to assert that the optimal threshold

could be fixed as the minimum among the T (j), that is:

Topt = min {T (j)} (28)

The developed procedure is schematically presented in Fig. 4 b).

4. Description of the two case studies

4.1. The Z24 Bridge

The Z24 Bridge was an overpass of the highway located between Bern and275

Zurich, linking the villages of Koppigen and Utzenstorf. It was a post-tensioned

concrete box girder bridge with a main span of 30 m and two side spans of 14
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Figure 4: a) Flow chart of the proposed methodology; b) Flow chart of the methodology for

the optimal threshold selection.

m, for a global length of 60 m and a width of 8.6 m. The intermediate supports

were two concrete piers, clamped into the girders, situated at the end points of

the main span (Fig. 5). Both abutments, consisting of triple concrete columns,280

were connected with concrete hinges to the girder.

The bridge, dated from 1963, was demolished at the end of 1998 to build a

larger side span bridge, altough there were no known structural problems.

Before demolition, the Z24 bridge has been continuosly monitored from

November 1997 till September 1998 with the aim to provide both environmen-285

tal and vibration data. Therefore, sensors to measure accelerations as well as

environmental parameters like air temperature, humidity, rain, wind speed and

wind direction were installed in the bridge. The positions of the 16 accelerom-
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Figure 5: The Z24 Bridge: a,b) General view, c) Longitudinal section, d) Location and

orientation of accelerometers. (Maeck et al. [51], Steenackers et al. [52]).

eters, among which only 8 are considered functioning, is visible on Fig. 5 d).

The measurements were carried out on an hourly basis, resulting in 24 measure-290

ments per day. In particular, environmental parameters were acquired before

and after acceleration time histories.

Furthermore, in order to study the influence of different realistic damage scenar-

ios on the dynamic properties, progressive damage tests took place during the

summer of 1998, shortly before complete demolition of the bridge. A detailed295

description of the fifteen induced damage scenarios as well as of the AVT tests

results can be found in Kramer et al. [53] and Maeck et al. [51].
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4.2. The Consoli Palace

The Consoli Palace (Fig. 6) is located in the historical center of Gubbio, a

medieval town in the Central Italy. Considered the most representative monu-300

ment of the town, Consoli Palace was designed by Angelo da Orvieto and Matteo

Gattapone and built in gothic style between 1332 and 1349. The building has

hosted the Civic Museum since 1909, with a rich collection af art masterpieces,

while in the middle ages it hosted the Consuls who were elected to control both

legislative and executive branches of the government.305

The Palace is mainly made up of calcareous stone masonry and, in terms of

geometry, it has a rectangular plan of about 40 × 20 m2 and an elevation of

more than 60 m. It is constituted by thick bearing walls and masonry vaults as

horizontal elements. Due to the slope of the mountain, the building foundations

are placed on two distinct levels with an elevation difference of approximately 10310

m. The main façade of Consoli Palace is characterized by round arched windows

in the upper part and merlons above, supported by ogival arches. Moreover,

it overlooks towards East the central square of Gubbio, where the staircase en-

trance is positioned.

A long term mixed static-dynamic SHM system has been continuosly recording315

since July 2017. The SHM system is composed of three accelerometers, two

crack meters, two temperature sensors and one data acquisition system with

remote connection to a data analysis server located in the Laboratory of Struc-

tural Dynamics of University of Perugia. A detailed description of the building’s

geometry and the monitoring system is provided by Kita et al. [29]. Recently,320

the monitoring system has been updgraded to comprise a total of twelve ac-

celerometers, four crack meters and four temperature sensors.

For the purpose of natural frequency identification and tracking, data recorded

by three high sensitivity uniaxial piezoelectric accelerometers model PCB 393B12

(10 V/g sensitivity and ±0.5 g measuring range) placed on the roof of the Palace325

are considered in this paper, as shown in Fig. 6. Accelerations are sampled at

100 Hz and stored in consecutive separate files containing 30 min recordings.

Then, the recorded data are sent through the Internet to the remote server,
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where they are processed through a specific MATLAB code, called MOSS [20],

using each stored 30-minute-long recording file for automated modal analysis330

and anomaly detection.

Figure 6: General view of the Consoli Palace. Location and orientation of the three accelerom-

eters A1, A2, A3.

5. Validation of the procedure

Results obtained by application of the proposed methodology in the two

selected case studies are presented in this section.335
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5.1. The Z24 Bridge : numerical results

5.1.1. Definition of the damage scenarios

Based on the continuous monitoring data, six natural frequencies have been

identified by means of automated Stochastic Subspace Identification techniques

operating on covariance functions (SSI-COV) [8]. The main parameters adopted340

in the analysis are reported in Table 1, where n and i indicate the model’s order

and the number of output block rows of the Hankel matrix, respectively.

Parameters Adopted value

Maximum value of n 120

Minimum value of n 20

Maximum value of i 200

Minimum value of i 140

Step amplitude of n 2

Step amplitude of i 5

Frequency tolerance 0.01

Damping tolerance 0.03

MAC tolerance 0.01

Maximum reasonable damping 0.1

Threshold limit for clustering 0.03

Table 1: Adopted values for numerical parameters used in the automated system identification

procedure (SSI-COV).

Then, frequency tracking has been carried out over time to have a broad

view about the occurrence of any possible changes (Fig. 7). During the period

between August 10th and September 4th 1998, the bridge was subjected to345

progressive damage tests. In this framework, in order to analyse different types

of damage, the following four scenarios (d = 4) are taken into account:

� d1 indicates the whole damage period (10th August - 4th September);

� d2 indicates the first portion of damage period (10th August - 18th Au-

25



gust);350

� d3 indicates the second portion of damage period (19th August - 26th

August);

� d4 indicates the third portion of damage period (27th August - 4th Septem-

ber);

Figure 7: a) Frequency tracking of the Z24 Bridge; b) The relation between the first natural

frequency and the temperature; c) Frequency tracking referring to the period close to damage.
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5.1.2. Comparison between different statistical models355

In order to estimate residuals, four statistical models (m = 4) have been

adopted: Multiple Linear Regression (MLR), Principal Component Analysis

(PCA), Local MLR and Local PCA. In detail, a local model is so called when

MLR or PCA are carried out for every cluster identified in the training period

by means of a GMM model.360

By varying each damage scenario, all the statistical models are applied. As a

result, residuals are plotted in different control charts, each one referred to the

ith model and the jth damage condition. Following the developed methodology,

ROC and PR curves are computed straightforwardly, by varying the threshold

position and by counting false positives, true positives, false negatives and true365

negatives, outgoing from every control chart. As first step, AUC values of both

curves are calculated to give a basic idea about models’ quality, as reported in

Table 2.

d
PCA Local PCA MLR Local MLR

AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR

d1 0.979 0.813 0.994 0.934 0.973 0.750 0.984 0.792

d2 0.953 0.306 0.988 0.599 0.959 0.477 0.975 0.465

d3 0.988 0.587 0.996 0.827 0.971 0.392 0.984 0.487

d4 0.997 0.872 0.999 0.957 0.989 0.674 0.993 0.740

Table 2: AUCROC and AUCPR values for m statistical models and d damage scenarios.

It is possible to notice that all the statistical models perform better when

damage to be identified has a considerable severity (e.g. d3 or d4), because370

the probability to discern true positive items highly increases. Beyond this, the

curves exhibit a good behavior even by analysing the whole damage period (d1),

as demonstrated in Fig. 8 a,b). On the contrary, when damage is not so marked

(e.g. d2), AUCROC and AUCPR values get inevitably worse allowing, though,

to clearly distinguish the different performance level associated to the m models375

(Fig. 8).

As a first result, regardless of damage scenario, Local PCA seems to be the
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best technique to remove environmental effects, leading to extremely performing

ROC and PR curves.

Figure 8: Comparison between the different statistical models in terms of ROC and PR curves.

a, b) ROC and PR curves, respectively, computed for the whole damage period (d1). c, d)

ROC and PR curves, respectively, computed for the first portion of damage period (d2).

It is worth highlighting that, since the damage period is very short, resulting380

in a large skew in the data distribution, the use of precision-recall curves is

highly recommended. In such cases, this statistical tool, strictly focusing on the

positive class, is able to provide a more realistic view (less optimistic) about

the efficiency of the different models. In fact, by merely observing ROC curves,

it could be difficult to discern any difference between all data normalization385
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techniques (which apparently yield excellent results). Conversely, PR curves

allow to underline more visible differences between the models, as shown in Fig.

8 b,d). For this reason, a combined use of both curves should provide more

realistic results.

Using Eq. (20) and keeping α fixed at 0.5, the objective function fij is computed390

straightforwardly, whose values are reported in Table 3.

d
PCA Local PCA MLR Local MLR

f f f f

d1 0.896 0.964 0.861 0.888

d2 0.629 0.794 0.718 0.720

d3 0.787 0.911 0.681 0.735

d4 0.935 0.977 0.831 0.866

Table 3: The objective function fij computed for m statistical models and d damage scenarios.

The maximum value of the objective function iopt (Eq. (23)) corresponds to

the Local PCA model, which represents the best technique to remove environ-

mental and operational effects or, in other words, the statistical model with the

highest ability to correctly classify a certain outcome throughout the possible395

tresholds.

5.1.3. Selection of the optimal threshold

Once identifying Local PCA as the best performing model, the goal is to

choose a threshold leading to the higher TPr over the FPr, in order to minimize

false alarms and false negatives detection. Hence, Youden index and F1 score400

have been computed for every damage scenario, varying the threshold position.

Their maximum values, Ymax and F1max respectively, are reported in Table 4

which shows, in addition, the corresponding thresholds, namely TY and TF1, as

well as the mean value T .

By comparing the second and the fourth column of Table 4, it can be noticed405

that the use of Youden index and F1 score provides similar results in terms
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d
Local PCA

Ymax TY F1max TF1 T

d1 0.978 0.196 0.920 0.196 0.196

d2 0.978 0.196 0.800 0.197 0.197

d3 0.990 0.424 0.893 0.440 0.432

d4 0.993 0.493 0.973 0.574 0.534

Table 4: The maximum values of Youden index (Ymax) and F1 score (F1max) for every

damage scenario and the corresponding thresholds (TY and TF1, respectively).

of optimal threshold, even though this similarity seems to decrease with the

growing of damage severity. Moreover, when damage is significant, it is possible

to underline an increase of the optimal threshold, which is more remarkable

in the case of TF1. Fig. 9 highlights which is the trend of Youden index and410

F1 score, varying the threshold. In particular, it is noticeable how the interval

containing the maximum values of the two indexes gets larger as the damage

increases. Furthermore, by observing the Fig. 9 b,c), it is clear the relation

between F1 score and the values of recall and precision.

However, this procedure has yielded several thresholds, each one related to415

a specific damage scenario. Thus, it is necessary to be able to provide a unique

value, called as Topt, useful to set the UCL of the control chart. In order to

detect the smallest damage, translating in a more performing SHM system, the

idea is to fix the optimal threshold as follows:

Topt = min {T} = 0.196 (29)

The values of true positive rate (TPr), false positive rate (FPr), precision (PC)420

and specificity (SP) obtained by considering the best statistical model, that is

Local PCA, and the optimal threshold in Eq. (29), are reported in Table 5,

varying the type of damage.

Fig. 10 shows four control charts reflecting the performance of the different
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Figure 9: Youden index for d damage scenarios, varying the threshold (a) and the relation

between recall, precision and F1 score for d3 (b) and d4 (c).

statistical models for one specific damage scenario: d1. In particular, the opti-425

mal threshold for every model has been computed, following the steps in Fig.

4 b), and afterwards adopted to set each control chart. As a result, it is pos-

sible to notice that Local PCA represents the method which leads to a perfect

classification of the outcomes.
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d TPr FPr PC SP

d1 1 0.022 0.852 0.978

d2 1 0.022 0.667 0.978

d3 1 0.022 0.635 0.978

d4 1 0.022 0.667 0.978

Table 5: Values of TPr, FPr, PC and SP for every damage scenario d of the Z24 Bridge, fixing

Local PCA as statistical model and Topt as threshold.

Figure 10: The control charts of the Z24 Bridge obtained for a specific damage scenario (d1)

by considering Local PCA (a), Local MLR (b), PCA (c) and MLR (d).
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5.2. The Consoli Palace: numerical results430

5.2.1. Definition of the damage scenarios

The natural frequencies of the Consoli Palace, shown in Table 7, have been

identified with the SSI method, whose main parameters are reported in Table

6. Specifically, the model’s order and the number of output block rows of the

Hankel matrix are denoted with n and i, respectively.435

Parameters Adopted value

Maximum value of n 220

Minimum value of n 40

Maximum value of i 200

Minimum value of i 140

Step amplitude of n 4

Step amplitude of i 10

Frequency tolerance 0.01

Damping tolerance 0.03

MAC tolerance 0.01

Maximum reasonable damping 0.1

Threshold limit for clustering 0.03

Table 6: Adopted values for numerical parameters used in the automated system identification

procedure (SSI-COV).

Then, all the frequencies have been tracked from July 2017 till August 2019,

with the aim to observe any anomalies revealing the presence of damage (Fig.

11 a).

In order to study the structure behaviour for different types of damage,

manifold simulations through a finite element model (FEM) have been carried440

out by applying specific frequencies decays (∆f). In particular, the FEM model

has been already developed and calibrated by Kita et al. [29], who provided all

the information needed for this paper’s purposes.

In this context, two types of damage are taken into account (labelled with 1 and
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Figure 11: a) Frequency tracking of the Consoli Palace during the monitoring period; b) The

relation between the third natural frequency and the temperature.

2), associated to different severity degrees (labelled with a and b), for a total445

number d of damage cases equal to 4 (Table 7):

� d1a and d1b refer to the seismic damage scenario carried on through pushover

analysis along the main direction of the building (Fig. 12 a), where k1a

and k1b are the multiplicative coefficient of the elastic modulus of the

damaged elements;450

� d2a and d2b refer to the bell tower collapse (Fig. 12 b), where k2a and k2b

are the multiplicative coefficient of the elastic modulus of the bell tower;

5.2.2. Comparison between different statistical models

In order to estimate the variation of frequencies caused by environmental

conditions, five statistical models (m = 5) have been compared: PCA, Local455

PCA, MLR-T (with temperature as predictor) and finally, MLR-T-C and Local

MLR (with temperature and cracks as predictors).

By varying damage scenarios, each statistical model is applied in order to com-

pute residuals, whose distribution is plotted, as a result, in different control
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Freq. [Hz]
d1a d1b d2a d2b

k1a ∆f(%) k1b ∆f(%) k2a ∆f(%) k2b ∆f(%)

2.2956 0.5 2.71 0.8 0.8 0.9 0.23 0.94 0.1

2.9147 0.5 0.92 0.8 0.34 0.9 1.95 0.94 1.06

3.7253 0.5 - 0.8 - 0.9 - 0.94 -

4.0983 0.5 1.99 0.8 0.6 0.9 0.86 0.94 0.53

6.9209 0.5 - 0.8 - 0.9 - 0.94 -

Table 7: d damage scenarios simulated through a FEM model with the relative multiplicative

coefficients of the elastic modulus and the associated frequencies decays.

Figure 12: Simulated damage scenarios of the Consoli Palace.

charts. Following the developed methodology, ROC and PR curves are evalu-460

ated. Their ability to correctly classify the outcomes of the control chart comes

up by observing the Table 8, reporting the AUC values of both curves.

Regarding the pushover analysis used to simulate the first damage scenario,

it can be highligthed that low values of the damaged elements’ elastic modulus
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d
PCA Local PCA MLR-T MLR-T-C Local MLR

AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR AUCROC AUCPR

d1a 0.998 0.985 0.999 0.991 0.999 0.989 0.999 0.990 0.999 0.992

d1b 0.774 0.645 0.856 0.743 0.865 0.743 0.901 0.802 0.939 0.853

d2a 0.785 0.652 0.817 0.674 0.880 0.789 0.881 0.787 0.907 0.812

d2b 0.636 0.473 0.675 0.502 0.765 0.621 0.785 0.643 0.829 0.682

Table 8: Comparison between m statistical models in terms of AUCROC and AUCPR for

every damage scenario.

cause a very important damage and hence, easy to identify. Indeed, the curves465

associated to all the statistical models show AUCROC and AUCPR values close

to 1, denoting a great capability in obtaining reliable results. On the other hand,

if the severity of the first damage scenario decreases (e.g. d1b), the differences

between the models are more noticeable, as demonstrated by the Fig. 13 a), b).

The different performance level of the involved techniques, varying the type of470

damage, can be observed in Fig. 13. As a first result, it is possible to underline

that linear regression analysis, especially by considering temperature and cracks

as predictors (Local MLR and MLR-T-C), leads to the best performing curves.

This remark is common for both damage scenarios, even though the use of Local

PCA is not recommendable in those data stemming from the simulation of the475

bell-tower damage (Fig. 13 c,d). Moreover, it is worth pointing out that, in

this case study, ROC and PR curves provide the same information about the

models’ performance. This conclusion appears more clear by considering the

first damage scenario (Fig. 13 a,b), while the second one shows PR curves

which are less optimistic than ROC ones (Fig. 13 c,d).480

Following the Eq. (20) and keeping α fixed at 0.5, the objective function fij

can be evaluated straightforwardly, where i vary from 1 to 5 and j from 1 to 4.

All the values are reported in Table 9.

Consequently, the maximization of the function through Eq. (23) leads to

the selection of the best statistical model, that is Local MLR.485
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Figure 13: Comparison between m statistical models in terms of ROC and precision-recall

curves for the damage scenarios d1b (a,b) and d2b (c,d).

d
fij

PCA Local PCA MLR-T MLR-T-C Local MLR

d1a 0.992 0.995 0.994 0.995 0.996

d1b 0.710 0.800 0.804 0.852 0.896

d2a 0.719 0.746 0.835 0.834 0.860

d2b 0.555 0.589 0.693 0.714 0.756

Table 9: The objective function fij computed for d damage scenarios and m statistical models.
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5.2.3. Selection of the optimal threshold

Once identifying Local MLR as the best performing model, it is necessary to

choose a threshold leading to the minimization of false alarms detection. Thus,

Youden index and F1 score have been computed for every damage scenario,

varying threshold position. Table 10 shows their maximum values, Ymax and490

F1max respectively, the corresponding thresholds, namely TY and TF1 and, in

the last column, the mean value T .

d
Local MLR

Ymax TY F1max TF1 T

d1a 0.995 0.050 0.996 0.057 0.054

d1b 0.737 0.016 0.798 0.018 0.017

d2a 0.672 0.012 0.755 0.012 0.012

d2b 0.512 0.009 0.651 0.009 0.009

Table 10: The maximum values of Youden index (Ymax) and F1 score (F1max) for every

damage scenario, the corresponding thresholds (TY and TF1, respectively) and the mean

value (T ).

Focusing on the second and the fourth columns of Table 10, it can be no-

ticed that, for the second damage scenario d2, the use of Youden index and495

F1 score provides the same results in terms of optimal threshold, regardless of

the severity degree. On the other hand, slight differences appear between the

values of TY and TF1 when the first damage scenario d1 is considered. Overall,

by observing the mean value T in the last column, it is clear that the general

rule is respected, since the optimal threshold increases when damage becomes500

significant. A graphical demonstration is given by the Fig. 14, representing how

the values of Youden index and F1 score change, varying the threshold position.

With this procedure, several thresholds have been provided, each one asso-

ciated to a specific damage scenario. Hence, it is important to yield a unique
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Figure 14: Youden index for d damage scenarios, varying the threshold (a) and the relation

between recall, precision and F1 score for d1b (b) and d2a (c).

value, called as Topt, to set the UCL of the control chart. As already mentioned505

in the previous case study, the goal of the SHM system should be the detection

of the smallest damage, thus the optimal threshold can be fixed as follows:

Topt = min {T} = 0.009 (30)

The values of true positive rate (TPr), false positive rate (FPr), precision
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(PC) and specificity (SP) stemming from the selection of the best statistical

model, or Local MLR, and the optimal threshold in Eq. (30), are presented in510

Table 11, varying the type of damage.

d TPr FPr PC SP

d1a 1 0.362 0.522 0.638

d1b 0.985 0.400 0.518 0.600

d2a 0.906 0.268 0.596 0.733

d2b 0.778 0.268 0.560 0.733

Table 11: Values of TPr, FPr, PC and SP for every damage scenario d, fixing Local MLR as

statistical model and Topt as threshold.

Fig. 15 shows four control charts describing the performance of different

statistical models, namely Local PCA, PCA, Local MLR and MLR with tem-

perature and cracks as predictors, for one specific damage scenario: d1b. In

particular, following the step in Fig. 4 b), the optimal threshold for every515

model has been computed and utilized to set each control chart.

5.3. Discussion of the results

The developed procedure to find out the best technique to remove envi-

ronmental and operational effects has produced different results in the two case

studies of interest. The reason lies in the type of correlation existing between the520

identified natural frequencies and the temperature. Regarding the Z24 Bridge,

such relation is not linear, as shown in Fig. 7 b). Hence, Principal Compo-

nent Analysis applied to single clusters (Local PCA) reveals a high capability

in minimizing false alarms and false negatives, leading, therefore, to the best

classification of the outcomes.525

On the contrary, the natural frequencies of the Consoli Palace exhibit a quite

linear correlation with temperature, as depicted in Fig. 11 b). Thus, it is reason-

able to assert that linear regression models (MLR) perform well in such cases,

even though local approaches (with temperature and cracks as predictors) are
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Figure 15: The control charts of the Consoli Palace obtained for a specific damage scenario

d1b by considering Local PCA (a), Local MLR (b), PCA (c) and MLR-T-C (d).

able to provide the best results in terms of ROC and PR curves, according to530

the proposed procedure.

Fig. 16 shows the values of the objective function, varying the weight coefficient

α in the Eq. (20), for the damage scenario d1 of the Z24 Bridge (a) and for the

damage scenario d1b of the Consoli Palace (b). In both cases, the comparison

between the different statistical models allows to underline that a specific tech-535

nique (Local PCA and Local MLR, respectively) seems to be better than the

other ones, throughout the values of α. In this context, it is worth pointing out

the importance to introduce PR curves in the first case study for the model’s

perfomance evaluation (Fig. 16 a). Indeed, for α = 1, there is a clear difficulty
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in discerning any difference between the statistical models, due to the fact that540

ROC curves gives a too optimistic view if data set is strongly unbalanced. On

the contrary, fixing α = 0, the procedure allows to detect, in a more intelligible

manner, which technique leads to the maximization of the objective function.

Figure 16: The values of the objective function, varying the weight coefficient α, for the

damage scenario d1 of the Z24 Bridge (a) and for the damage scenario d1b of the Consoli

Palace (b).

6. Conclusions

This paper has presented a general methodology with the aim to provide a545

new decision-support tool for the definition of the best technique to remove en-

vironmental effects, as well as for the selection of the optimal threshold leading
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to the minimization of false alarms and false negatives detection. The proce-

dure exploits the combination between two statistical tools, namely ROC and

PR curves, which are computed and compared for a variety of statistical models550

and different damage scenarios. In particular, damage can stem from real data

or from non linear FEM simulations, especially in those cases where damaged

data are not available due to high costs or to practical constraints.

The use of precision-recall curves turned out to be particular meaningfull when

a large skew in the class distribution is present. Indeed, primarily focusing555

on the positive class, they are able to provide a more realistic view of an al-

gorithm’s performance. Through the maximization of an objective function,

involving both curves’ effects, the optimal statistical model is straightforwardly

identified.

Then, regarding the selection of the threshold, two coefficients, that are Youden560

index and F1 score, have been adopted. After assigning a certain threshold for

every damage scenario of interest, the proposed approach adopts the minimum

value among threshold values, so that the SHM system is able to detect even

the smallest damage.

In order to illustrate the proposed methodology, two case studies have been anal-565

ysed. With regards to the Z-24 bridge, whose data set is strongly imbalanced,

precision-recall curves have been yielded to less optimistic results in comparison

with ROC curves, helping to find out the best model in a more reasonable way.

However, since damage inferred to the bridge (by means of progressive tests)

was significant, all the statistical models managed to clearly detect it. Local570

PCA, though, showed a higher capability to correctly discern the outocomes of

the control chart, that’s why it has been considered as the optimal technique to

remove environmental effects.

The second case study refers to a medieval masonry building, namely Consoli

Palace. Two types of damage scenarios have been taken into account with dif-575

ferent severity degrees. The first one stems from pushover analysis, while the

second one is associated to a damage in the bell tower. ROC and PR curves,

in this case, seem to provide the same information about model’s performance.
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Moreover, the linear regression analysis leads to more appreciable results in

comparison with principal component analysis. Specifically, the use of Local580

MLR with temperature and cracks as predictors is associated to the best per-

forming curves.

Hence, the proposed methodology represents a valid tool to statistically evaluate

any model, by providing reliable performance metrics in unsupervised processes.

The procedure is general and can be easily implemented considering different585

statistical models and different damage scenarios.
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