
Micromechanics-based phase-field fracture modeling of CNT-brittle matrix
composites

Leonel Quinterosa,∗, Enrique Garcı́a-Macı́asa,b, Emilio Martı́nez-Pañedaa
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Abstract

We present a novel micromechanics-based phase-field approach to model crack initiation and propagation in

carbon nanotube (CNT) based composites. The constitutive mechanical and fracture properties of the nanocom-

posites are first estimated by a mean-field homogenisation approach. Inhomogeneous dispersions of CNTs are also

accounted for by means of equivalent inclusions representing agglomerated CNTs. Detailed parametric analyses

are presented to appraise the effect of the main micromechanical properties upon the fracture behaviour of CNT-

based composites. The second step of the proposed approach incorporates the previously estimated constitutive

properties into a 3D finite element based phase-field model to simulate crack initiation and propagation properties

in macroscopic CNT-based composites. The effectiveness of the proposed approach is demonstrated trough three

case studies, namely a single notched plate subjected to traction and shear and for a holed plate under traction

loading.

Keywords: Carbon nanotubes, Composite material, Finite Element Analysis, Fracture toughness,

Micromechanics, Phase-Field

1. Introduction

The development of nano-modified composite materials is crucial for futures technologies, offering a wide

range of applications in structural, biomedical, electronics, automobiles, aircraft, and pipeline engineering [1]. In

particular, CNT reinforced composite materials have attracted much attention due to their remarkable multifunc-

tional properties [2–4], finding a vast variety of applications in the literature such as sensing for Structural Health

Monitoring (SHM) [5, 6], design of high-strength materials [2–4], and hydrogen storage [7]. Such exceptional

properties are a result of to the unique mechanical, electrical and thermochemical stability properties of CNTs [8–

11]. Nevertheless, the development of reliable predictive models that can enable virtual testing of CNT reinforced

components remains at early stages, particularly regarding the fracture behaviour of these composites.

In the literature, many attempts to calculate the effective elastic properties of CNTs reinforced composites

have been reported using different techniques. A computationally efficient approach is offered by mean-field ho-

mogenisation methods, which allow using closed form expressions to estimate the effective elastic moduli for a

wide variety of composite materials. In that regard, Hori and Nemat-Nasser [12] presented a double inclusion
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scheme (extendable for multiple inclusions) to calculate the elastic properties when an interface between the in-

clusion and the matrix material is accounted for. Garcı́as-Macı́as et al. [13] proposed an extended double inclusion

method to predict the elastic properties of partially saturated composites. Wang and co-authors [14] also employed

a similar approach to study the effects of the microvoids in unidirectional fiber-reinforced composites.

Successfully have been the implementation to predict crack propagation of the extended FEM (XFEM) [15],

the interface finite element [16, 17] and the embedded finite element (EFEM) [18], among others. The modelling

of failure mechanisms in solids based on sharp cracks may lead to complex crack topologies, costly tracking meth-

ods of discontinuities, convoluted formulations, to mention a few [19]. This situation may be overcome using a

variational approach that uses a smooth variable as an interpolator between the unbroken and fully broken material

states called the phase-field fracture method [20]. This method has been successfully implemented with the finite

element methods (FEMs) for elastic solids [21], and it has been extended for dynamic brittle fracture [22] and

for ductile materials [23]. An attractive feature of this approach for modelling cracking relates to its ability to

predict crack formation and propagation without requiring adaptive mesh schemes, therefore not being necessary

to know the location of the crack initiation points beforehand. Some recent application cases are in the hydrogen

storage area, showing vast potential for hydrogen embrittlement [24], microscopic fracture of fibre reinforced ma-

terials [25], and reproduction of crack trajectories in functionally graded materials [26]. However, the modelling

of the fracture properties of CNT reinforced composites is also a challenging task due to the difficulties involved

in the estimation of the fracture energy properties. The mechanisms involved in the fracture phenomenon varies

depending of the composite [27–30]. For fibre-brittle matrix system, the two main toughness contributions are

the pull-out and the CNT fracture mechanism [31, 32], whose relative contributions are governed by the filler

embedment length [33, 34]. Negi et al. [35] simulated the fracture of CNT reinforced composites by means of

extended FEM (XFEM) of thin composite plates, calculating the fracture energy under the assumption of aligned

straight CNTs perpendicular to the crack faces. However, the supposition of fully aligned CNTs may not be re-

alistic. Since, in the manufacturing process of thermosetting polymers (e.g compounding and injection moulding

processes), changes in the fibre orientation often occur [36–38].

There are plenty of phenomena that may considerably affect the performance of CNT-based composites [39,

40]. These may include filler waviness, agglomeration, variability in the length and direction of CNTs in the

composite. Among all the previous defects, the CNTs agglomeration phenomena are difficult to avoid. The large

surface area of CNTs induces strong van der Waals adhesion forces between the nanofillers, resulting in their ag-

glomeration [41–43]. The modelling of the agglomeration using mean-homogenisation models was first explored

by the two-parameter model proposed by Shi et al. [44], which conceives the composite as a two-phase material,

including clusters or zones of agglomerated fillers and the surrounding matrix with less dispersed fillers [40]. Ag-

glomeration has been also adressed by means of extended Halpin–Tsai (HT) models [45]. Regarding the fracture

energy, only a few attempts have been made to calculate the agglomeration effects. Zeidenidi et al. [46] modified

the fracture energy for straight CNTs, modifying the filler volume fraction through an empirical rule to be fitted

by experiments.

This paper proposes a novel methodology to predict the crack propagation properties of brittle CNT reinforced

composites, including the elastic and fracture constitutive energy properties utilizing a micromechanical approach.

Also, a novel stochastic agglomeration model is proposed to account for inhomogeneous dispersion of CNTs
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through probability distribution of the number of CNTs immerse in a bundle. Then due to the crack simulation

complexity, the phase-field fracture method is implemented to predict the initiation and propagation of cracks.

Then, three study cases are performed. Namely, a single-edge notched plate subjected to uniaxial loading, shear

loading, and a holed plate. In which the load-displacement curves between the homogeneous dispersed CNTs and

the plate with agglomerated CNTs are compared.

2. Micromechanics Modelling of CNT-reinforced composites

The structure of this section is divided in two parts. In Section 2.1, the micromechanics model used to estimate

the elastic tensor is presented, while Section 2.2 gives the micromechanics basis to compute the fracture energy of

CNT based composites.

2.1. Effective elastic properties

2.1.1. Effective elastic moduli using a double-inclusion model

To estimate the elastic properties a micromechanical model is developed, including the matrix, the particle

inclusions, and the interface between them, which are denoted by indexes m, p, and i, respectively. Let V be the

representative volume element (RVE) of a matrix doped with CNTs as shown in Fig. 1. This RVE must contain a

sufficient number of fillers such that the overall properties of the composite are statistically represented. A local

system coordinate K′ ≡
{
0; x′1x′2x′3

}
is fixed at each particle and two Euler angles, θ and γ, are defined to describe

the relative orientation of the filler with respect to the global coordinate system. The geometrical dimensions of

the CNTs are assumed constant throughout the RVE, including their length Lcnt, diameter Dcnt, and the interphase

thickness t. Following the notation of Hori and Nemat-Nasser [12], a CNT and its surrounding interphase is
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Figure 1: Schematic representation of a CNT-based composite plate, RVE, and local orientation of a CNT defined by the Euler

angles, θ and γ.

modelled as a double inclusion as shown in Fig. 1. Using the linear elastic tensors of the constituent phases,

Cm, Cp, and Ci, and the corresponding volume fractions as fm, fp and fi, the effective contitutive tensor of the

three-phase composite can be obtained as [13, 47]:

C̄ = ( fmCm + fi〈Ci : Ai〉 + fp〈Cp : Ap〉) : ( fmI + fi〈Ai〉 + fp〈Ap〉)−1, (1)
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where I is the fourth-order identity tensor, whereas Ai and Ap refers to the concentration tensors for the interphases

and the inclusions, respectively, which can be written as a function of the dilute concentration tensors Adil
i and

Adil
p [12] as:

Aχ = Adil
χ : ( fmI + fiAdil

i + fpAdil
p )−1, χ = p, i (2)

where,

Adil
χ = I + S : Tχ, χ = p, i (3)

Tχ = −(S + Mχ)−1, χ = p, i (4)

Mχ = (Cχ − Cm)−1 : Cm, χ = p, i (5)

Tensor S in Eqs. (3) and (4) correspond to the Eshelby’s tensor for an spheroidal particle, determined by the

aspect ratio κ = Lcnt/Dcnt and the matrix’s Poisson ratio, νm.

The angle brackets 〈·〉 in Eq. 1 denote the orientational average over the Euler space weighted by an orientation

distribution function (Ω), Specifically, the orientational average of a certain function F reads:

〈F〉 =

∫ 2π

0

∫ π/2

0
F(γ, θ)Ω(γ, θ) sin(θ)dθdγ, (6)

the particular case of random filler orientations, the orientation distribution function takes a constant value Ω(γ, θ) =

1/2π.

Note that for soft interphases, the intherphase valume fraction fi can be calculated using the formulae derived

by Xu et al. [48] as,

fi = (1 − fp)
(
1 − exp

{
−

6 fp

1 − fp

[
η

n(κ)
+

(
2 +

3 fp

n2(κ)(1 − fp)

)
η2 +

4
3

(
1 +

3 fp

n(κ)(1 − fp)

)
η3

]})
, (7)

with η being the ratio of the interfacial thickness t and the equivalent diameter Deq (i.e. η = t/Deq). The equivalent

diameter denotes the diameter of an equivalent sphere with the same volume as the particles [49] and, in the case

of CNTs, with aspect ratio k > 1, it can be determined as Deq = Dcntκ
1/3. Finally, the term n(κ), denotes the

sphericity of the CNTs, and it is defined as the ratio of the surface area between the equivalent sphere and that of

the particles, which is:

n(κ) =
2κ2/3 tanϕ
tanϕ + κ2ϕ

, (8)

with ϕ = arcos(β), and β = 1/κ.

2.1.2. Agglomeration of CNTs

In order to incorporate agglomeration effects into a mean-field homogenization framework, Shi et al. [44]

developed a two parameter model distinguishing the filler concentration in bundles and matrix. The entire volume

of the RVE, V , and the volume of CNTs Vr can be written as:

V = Vbundles + Vmatrix, Vr = Vbundles
r + Vm

r , (9)

where Vbundles and Vmatrix refer to the volume of the bundles and the matrix, respectively, whereas Vbundles
r and

Vmatrix
r stand for the CNT concentration in the bundles and in the matrix, respectively. Now, two parameters, χ

and ζ, can be defined as follows:

χ =
Vbundles

V
, ζ =

Vbundles
r

Vr
, (10)
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thus, defining fp = Vr/V as the total CNTs volume fraction, the filler concentrations in the bundles fbundle and in

the matrix fmatrix can be obtained as:

fbundles =
Vbundles

r

Vbundles
=
ζ

χ
fp, fmatrix =

Vmatrix
r

Vmatrix
=

1 − ζ
1 − χ

fp. (11)

A two step homogenisation model inspired by reference [13], is implemented as sketched in Fig. 2. The first

step consists in the estimation of the effective properties of the clusters and the homogeneously dispersed CNTs

in the surrounding matrix independently. To do so, the double-inclusion model of Eq. 1 is applied considering

spheroidal bundles. The resulting constitutive tensors are denoted by C̄m, which is the phase with CNTs homo-

geneously dispersed in the matrix, and C̄b is the CNTs bundles. Then, the the overall constitutive tensor of the

composite is obtained by applying the two-phase Mori-Tanaka [50] as,

C̄ = C̄m + χ(C̄b − C̄m) : A, (12)

where,

A = Adil : ((1 − χ)I + χAdil)−1, (13)

and

Adil = (I + S : C−1
m ) : (Cb − Cm)−1. (14)

The Eshelby’s tensor in Eq. 14 depends upon the geometry of the clusters, which, as mentioned earlier, are

assumed to be spheroidal. is important to note that the volume fraction of the bundles is given by the parameter χ.

Matrix Interphase Inclusion

��

CNTs bundles

Double 
inclusion 
scheme

Double 
inclusion 
scheme

Mori-Tanaka 
scheme

�

Figure 2: Scheme of the two step micromechanics model to incorporate CNT agglomeration effects.

2.2. Fracture energy formulation

2.2.1. Fracture Energy: pull-out and fracture

The fracture in CNT-based composites occurs in two stages. The first, in which matrix fracture energy G0 is

reached, and then, the energy increase due to the bridging effect granted by the fibres. The critical fracture energy

Gc can be obtained by adding to the matrix fracture energy G0 the two main toughening mechanisms considered

in the literature [33, 51], the fracture of CNTs and the CNTs pull-out, as:

Gc = G0 + GPF , (15)

where GPF is the fracture energy contributions given by the CNT pull-out and CNT fracture, sketched in Fig. 3(a).
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Figure 3: Scheme of the CNT-induced bridging mechanism (a) CNT pull-out and CNT rupture mechanism (b) Agglomeration

model (c) Cross-section plane of the agglomeration model.

The critical length Lcθ [33, 51] is a threshold value that allows to differentiate between both mechanisms. That

length can be obtained from a force balance in a CNT as [52]:

Acntσultθ = Pcntlτinteµθ. (16)

where l is the CNT embedded length, Acnt is the area of the CNT cross-section, Pcnt is the perimeter of the cross-

section, τint is the interfacial frictional shear stress, and σultθ is the fracture stress of oblique fibres. For brittle

fibres σultθ is given by [53]:

σultθ = σult(1 − A tan(θ)), (17)

where σult is the fracture stress of a CNT, and A is a constant determining the fibre inclined strength. Then, if the

CNT length is lower than l = Lcθ/2, the CNT will pull out, else the CNT rupture mechanism will take place. To

calculate the fracture energy the work done W of a single CNT under pull-out and fracture is estimated as [33],

W(l, θ) =


l2τintPcnt exp(µθ)/2 if l < Lcθ

2

Acntσ
2
ultLcnt/ (2Ecnt) if l ≥ Lcθ

2

, (18)

in which Lcnt is the CNT length, Ecnt is the Young’s modulus, and µ is the snubbing friction coefficient for mis-

aligned CNTs [52]. Then, the fracture energy for a constant CNT length Lcnt, without supposing any shape of the

CNT, can be obtained as [32],

GPF =
2 fp

AcntLcnt

∫ π/2

θ=0

∫ Lcnt/2

l=0
cos(θ)W(l, θ)g(θ)dldθ, (19)

where g(θ) is the orientation distribution, defined in the next section. Eqs. (18) and (19) are commonly developed

supposing that the CNTs has cylindrical shape, then Acnt = πD2
cnt/4 and Pcnt = πDcnt.

2.2.2. CNTs orientation dependency

During the manufacture of CNT-reinforced composites, CNTs can be oriented in multiples directions. Al-

though the orientation of CNTs is three-dimensional in nature, just one angle θ between the loading direction and

the fibre axis suffices to capture the effect of the fibre orientation in short-fibre composites [51, 54]. In statistical

terms, a PDF g(θ) can be defined to describe the planar orientation distribution of the CNTs as [55, 56]:

g(θ) =
sin(θ)2p−1 cos(θ)2q−1∫ θmax

θmin

[
sin(θ)2p−1 cos(θ)2q−1] dθ

, (20)
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The orientation angle θ spans between θmin and θmax, which are the minimum and maximum CNT inclinations

with respect to the load direction, while p ≥ 1/2 and q ≥ 1/2 are shape parameters that determine the shape of the

PDF (see ref. [51]).

2.2.3. CNT agglomeration effects

The previous formulation assumes well-dispersed CNTs. However, as discussed in Section 2.1.2, CNTs tend

to agglomerate in bundles, with the subsequent detrimental effect upon the fracture toughness [30, 57]. In order

to include such an effect, a new agglomeration formulation is proposed in this work. Since no assumptions about

the filler shape have been made in Eqs. (18) and (19), the CNT agglomeration will be estimated from the cross-

section properties. The number of CNT with diameter Dcnt immerse in the bundle controls its cross-section, so in

this work will be assumed that the bundle cross-section is constituted of smaller CNTs of diameter Dcnt packed

in a bigger circle of diameter Ded as sketched in Fig. 3(b), following the so-called “equal circles packed in circle

problem” [58] pattern as sketched in Fig. 3(c) for 19 circles. The perimeter of the CNT bundle is approximated

to the perimeter of the enclosing circle diameter Ded, while the bundle cross-section area is the area of a single

CNT multiplied by the number of N CNTs immerse in it. Some examples values of the equal circles packed

in circle problem are shown in Table 1, the ratio is defined as R = Ded/Dcnt, while the density is expressed as

ρA = (NAcnt)/Aed, where Aed is the enclosing circle area.

Table 1: Ratio and density in function of the number of CNTs inside the enclosing circle diameter

Number of CNTs N Ratio R = Ded/Dcnt Density ρA = (NAcnt) /Aed

1 1 1

2 2 0.5

5 2.701 0.685

10 3.813 0.687

20 5.122 0.762

50 7.947 0.791

100 11.0821 0.8142

The approximated agglomerated perimeter function Pagg(N,Dcnt) is defined as Pagg(N,Dcnt) = π(Ded) =

π(RDcnt), and the area as a function of the number CNTs inmerse in the agglomeration Aagg(N,Dcnt) can be

calculated as Aagg(N, Acnt) = NAcnt. Now, with the functions Pagg(N,Dcnt) and Aagg(N, Acnt) well defined from the

data of Table. 1 (see ref. [58]), the fracture energy for agglomerated CNTs can be estimated as,

Gagg
PFN(N) =

2 fp

Aagg(N, Acnt)L

∫ π/2

θ=0

∫ L/2

l=0
cos(θ)W(l, θ,N)g(θ)dldθ, (21)

with, W(l, θ,N)) defined as,

W(l, θ,N) =


l2τintPagg(N,Dcnt) exp(µθ)/2 if l < Lcθ

2

Aagg(N, Acnt)σ2
ultL/ (2Ecnt) if l ≥ Lcθ

2

. (22)

It is worth notice that the fracture energy for agglomerated CNTs is the same as the fracture energy for a single

CNT since the area is simplified from the Eqs. (22) and (21). So, the only important mechanism is the CNT

pull-out. Another important assumption is that the critical length Lcθ will be the same as the critical length for a
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single CNTs. Since the CNTs are not unified as a big CNT, the force balance of Eq. (17) on each CNT will remain

the same. So, the inhomogenities would not change the length which distinguish between the CNT pull-out and

the CNT fracture on CNTs that constitutes it.

In order to simulate the randomness in the number of fillers clustered in the agglomerates, the number of

CNTs N will be defined in statistical terms through a Weibull PDF p(D) with parameters λ and k. On this basis,

the CNTs fracture can be estimated by integrating Gagg
PFN weighted by p(N) between Nmin and Nmax as,

Gagg
PF =

∫ Nmax

Nmin

Gagg
PFN p(N)dN (23)

The shape parameters λ and k can be calculated numerically given the mean of the Nµ and the standard

deviation Nσ. The two-parameter agglomeration approach previously presented in Section 2.1.2 is also introduced

here. To do so, the classical rule of mixtures is used to combine the contributions of agglomerated and the well

dispersed CNTs, leading to:

Gc = GI0 + (1 − ζ)GPF( fp) + ζGagg
PF ( fp), (24)

where GPF and Gagg
PF are the fracture energy contributions of uniformly dispersed and agglomerated CNTs, respec-

tively. Note that the formulation in Eq. (24) only depends on ζ. This is due to the linearity between the volume

fraction and the fracture energy in Eq. (21).

3. Phase-field fracture method applied to brittle materials

Consider a solid domain Ω which includes a discontinuous surface Γ. To characterises a discrete crack an

auxiliary field variable field φ is defined that takes values from φ = 0 to φ = 1, which correspond to intact and

fully broken state of the material, respectively. From a continuum mechanics approach, variable φ describes the

development of micro-cracks and micro-voids. The size of the regularised crack surface is dominated by the length

scale parameter `. The selection of a suitable value ` determines the accuracy of the simulation; it must not depend

on the size of mesh elements [21] nor affect the material strength [25]. The fracture energy can be approximated

as, ∫
Γ

GcdΓ ≈

∫
Ω

GcΓ`(`, φ)dΩ =

∫
Ω

Gc

(
1
2`
φ2 +

`

2
|∇φ|2

)
dΩ (25)

where Gc is the critical energy release rate. Then, taking the integration over the boding and including the phase-

field contribution, the following expression Ψ is obtained ,

Ψ =

∫
Ω

(
g(φ)ψ0 + Gc

(
1
2`
φ2 +

`

2
|∇φ|2

))
dΩ (26)

in which ψ0 is the strain energy density of the undamaged solid and the term g(φ) = (1 − φ)2 + k describes the

degradation of the stored energy with evolving damage. The parameter k is chosen to be small as possible to keep

the system of equations well-conditions; k = 1 × 107 will be employed throughout this work.

Then, applying Gauss theorem in (26), the coupled system to be solve is,

g(φ)∇ · σ = 0 in Ω

Gc

(
1
`
φ − `∆φ

)
− 2(1 − φ)ψ0 = 0 in Ω

(27)

Here, σ denotes the Cauchy stress tensor.
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4. Results and discussion

In the subsequent analyses, we asses the potential of the proposed micromechanics-based phase-field approach

are for predicting the fracture behaviour of epoxy doped with multiwalled carbon nanotubes (MWCNTs). The

material parameters, which are kept constant throughout the study, are reported in Table 2. For better illustration,

this section is divided into two parts. In the first place, the effective properties of CNT-reinforced composites

computed by the micromechanics method from Section 2 are discussed in Section 4.1. Section 4.2 reports the

macroscopic crack propagation analyses of three different case studies.

Table 2: Micromechanical variables of MWCNT/epoxy composites. Taken from refs. [59] and [33].

Name Symbol Value

Length of CNTs Lcnt 3.21 µm

Outer diameter of CNTs Dcnt 10.35 nm

CNT volume fraction fcnt 1 %

Elastic modulus of CNTs Ecnt 700 GPa

Elastic modulus of epoxy Em 2.5 GPa

Possion’s ratio of CNTs νcnt 0.3

Possion’s ratio of epoxy νm 0.28

Interphase thickness t 31.00 nm

Elastic modulus of interphase Ei 2.17 GPa

Strength of CNTs σcnt 35 GPa

Agglomeration parameter χ χ 0.2

Agglomeration parameter ζ ζ 0.4

Interfacial shear strength τcnt 47 MPa

Experimental orientation limit angle A 0.083

Fracture energy of unmodified epoxy Gmatrix 133 J/m2

PDF Mean value of the number of CNT in the agglomeration Nµ 10

PDF Standard deviation of the number of CNT in the agglomeration Nσ 0.1Nµ

Minimum number of CNTs in the agglomeration NMin 1

Maximum number of CNTs in the agglomeration NMax 50

Minimum CNT orientation angle θmin 0

Maximum CNT orientation angle θmax π/2

4.1. Effective mechanical properties of CNT-reinforced composites

4.1.1. Uniformly dispersed CNTs

The mechanical properties of composites doped with uniformly dispersed CNTs are first studied. Figure 4(a)

depicts the effective Young’s modulus as a function of the filler aspect ratio Lcnt/Dcnt, for different CNT volume

fractions. The Young’s modulus exhibits a slight increase at low filler aspect ratios although it tends to converge

a stable value for moderate to large aspect ratios (Lcnt/Dcnt ≥ 400). It is noted in this figure the leading role of

the CNT volume content upon the effective elastic modulus of the composite. For instance, it is found that the

addition of only 0.5% volume fraction of CNTs leads to an increase of around 20% of the elastic modulus of

pristine epoxy.

The fracture energy exhibits instead a more complicated behaviour. Firstly, the effect of filler orientation

upon the fracture energy is investigated in Fig.4(b). This figure shows fracture energy Gc as a function of the
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Figure 4: Effective elastic modulus of MWCNT-reinforced composites as a function of the CNT aspect ratio Lcnt/Dcnt for dif-

ferent filler volume fractions and assuming uniformly dispersed CNTs (a). Fracture energy of MWCNT-reinforced composites

as a function of the filler aspect ratio Lcnt/Dcnt, considering different CNT contents (b).

filler volume fraction, changing the CNT mean angle direction θµ of the distribution. The parameters p and q

are obtained for a fixed standard deviation θσ = 0.05 π
2 , increasing mean values θµ from 0◦ to 90◦ and a random

distribution fixing p = q = 1/2. It is observed that all the cases approximately follow a linear relationship with

the CNT volume fraction. It is also noted that filler misalignment diminishes the fracture energy.

In Figure 5(a) reports the effects of the filler aspect ratio and the filler volume content upon the fracture energy

of CNT-based composites, assuming random CNTs orientation. Note that all the curves increase until a particular

aspect ratio around 370 is reached. On those curves, firstly the CNT pull-out contribution dominates the fracture

behaviour, and then, the rupture mechanism does. Figure 5(b) depicts the fracture energy as a function of the

aspect ratio for different CNT mean angle θµ. The critical aspect ratio increase when the CNTs are aligned with

the load.
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Figure 5: Fracture energy of MWCNT-reinforced composites as a function of the filler aspect ratio Lcnt/Dcnt. Considering

different CNT filler content (a). Considering different CNT orientation distributions (b).
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4.1.2. Inhomogeneous CNT dispersions

This section assesses the theoretical approach proposed for the modelling of filler agglomeration effects upon

the elastic moduli and fracture energy of CNT-based composites. The same parameters of Table. 2 are adopted

throughout this section.

Fig. 6(a) presents the Young’s modulus as a function of the CNT filler volume fraction for different values of

the agglomeration parameter ζ. It is noted that all the curves start at 2.5 GPa, which is the value for the Young’s

modulus of pristine epoxy. If the agglomeration parameter ζ increases, the curve will have a lower slope. In that

case, the CNTs volume fraction goes from a uniformly dispersed matrix to concentrate all the CNTs in bundles

generating discontinuities in the materials, losing the general stiffness. Figure 6(b) depicts the elastic modulus

as function of the filler aspect ratio, considering different volume fractions. This Figure is identical to the Figure

presented in Fig. 4(a), however the Young’s modulus values is substantially lower due to the effect of the CNTs

inhomogeneities. The effect of the filler aspect ratio is almost negligible because it just affects the specific range

of aspect ratios between 200 and 400. After that interval, the Young’s modulus exhibits a constant trend.
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Figure 6: Estimation of the effective elastic modulus of MWCNT-reinforced composites as a function of the volume fraction,

and considering the diameter based agglomeration model. The effect of the agglomeration parameter ζ, is assessed for a

constant value of χ = 0.2 (a). Young’s modulus as a function of the aspect ratio Lcnt/Dcnt for different volume fraction fp

values.

The effect of the filler agglomeration upon the fracture energy is investigated in Figs. 7 and 8. The mean

number of CNTs in a bundle Nµ is a crucial factor as highlighted in Fig. 7. The case Nµ = 1 corresponds to the case

of an homogeneous dispersion of CNTs. It is clear in Fig. 7 that increasing Nµ (i.e. more severe agglomeration)

substantially decreases the effective fracture energy of the composite in the filler aspect ratios dominated by the

pull-out mechanism. This is due to the increase of the cross-section of the equivalent agglomerated fillers in

Eq. (22). Nevertheless, the detrimental effects of agglomeration decreases as the filler aspect ratio increases,

tending to a common slope from an aspect ratio of 800. This is due to the effect of the fracture energy induced

by fibre fracture in Eq. (22), which is proportional to the number of CNTs, which keep constant the trend in

the fibre fracture domain section of the fracture energy. It is important to remark that, in these cases, some of

the phenomena related to filler agglomeration and reported from experimentation that are not considered herein

may play a leading effect. These include the formation of microcracks due to stress concentrations as reported

11



in reference [60], which considerably reduce the energy contribution of CNT fracture. Such effects are hardly

conceivable within a mean-field homogenization approach, and atomistic simulations accounting for the local

interaction between the filler and the matrix phases becomes imperative. Nevertheless, given that the aspect ratios

of CNTs are typically below 1000, the presented approach is assumed accurate for the aim of the present work.

The effect of the agglomeration parameter ζ is shown on the fracture energy is illustrated in Fig. 8(a), consid-

ering different aspect ratio. The curves goes from uniformly dispersed CNTs (ζ = 0.1) to highly agglomerated

CNTs(ζ = 0.9) reducing dramatically the fracture energy due to the high number of inhomogeneities. Finally,

Fig. 8(b) presents the fracture energy as function of the aspect ratio, considering different filler volume fraction.

The same plot was shown in the Fig. 5(a) for uniformly dispersed CNTs, however the values as slightly lower due

to the incorporation of agglomerations parameter based on a choice of ζ = 0.4.
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Figure 7: Estimation of the fracture energy of MWCNT-reinforced composites as function of the filler aspect ratio, considering

different number of CNTs agglomerated in bundles Nµ in the proposed agglomeration model.
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Figure 8: Estimation of the fracture energy as function of the aspect ratio in a MWCNT-reinforced composites, considering

different values ζ (a). filler volume fractions (b).

4.2. Case studies of macroscopic crack propagation

In this section, three case studies sketched in Fig. 9 are reported, namely a single-edge notched plate subjected

to uni-axial loading, shear loading and a holed plate. These studies are carried out using the same parameters in

12



Table 2. Load-displacement curves are obtained considering both homogeneous and inhomogeneous dispersion

of CNTs, as well as different CNT volume fractions.
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Figure 9: Geometry and boundary condition of the (a) plate in traction, (b) plate under shear, and (c) the holed plate.

Figure 10: Mesh of the (a) plate in traction, (b) plate under shear, and (c) the holed plate.

4.2.1. Single-edge notched specimen subjected to uniaxial tension

The geometry, dimensions and boundary conditions of the first case study are presented in Fig. 9(a). It consists

of a 10 cm square plate notched on the left side and subjected to traction displacements in the upper edge while

pinned in the lower edge. The mesh of the plate is shown in Fig. 10(a). It includes 8532 four nodes plane strain

elements. A refinement was made in the expected crack propagation zone. The length scale ` in was chosen as

h < `/7 to ensure mesh independency [21].

Figure 12(a) presents the load-displacement curves obtained considering different CNT volume fractions for

well-dispersed CNTs, whereas Fig. 12(a) accounts for agglomeration effects. In both cases, the force-displacement

curves rise linearly until a critical load is reached in which the fracture has an unstable behaviour. In Both cases,

maximum displacements are found in a narrow interval between 0.115 mm and 0.12 mm. The maximum value

achieved by the composite plate doped with uniformly dispersed CNTs is 2.72 kN, which is 11.5% bigger than

the one found considering filler agglomeration.

The crack pattern of the plate for two different time instants in Fig. 11. The phase field variable φ varies from

0 (blue) to 1 (red), which correspond to intact and fully cracked conditions, respectively. In this case, the material

parameters are taken from Table 2, assuming uniformly disperse CNTs at a volume content of 1%.
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Figure 11: Phase field contours plots (φ) of a square notched plate subjected to an increasing uniaxial load at displacement

values of (a) uy = 0.1168 mm and (b) uy = 0.117 mm. It is assumed a volume fraction of 1% of uniformly dispersed CNTs.
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Figure 12: Load displacement curves considering different filler volume fraction for uniformly dispersed (a) and agglomerated

CNTs (b). For the inhomogeneous case the parameters shown in Table. 2.

4.2.2. Notched specimen under shear loading

The same plate shown in the previous section is herein subjected to shear loading applied at the top edge. The

geometric considerations and the boundary conditions are given in Fig. 9(b). Its corresponding mesh is shown in

Fig. 10(b), which has 19318 elements and has an element refinement in the area where the crack is expected to

grow. The parameter length scale employed for the phase field fracture method is chosen as h < `/5.

Phase field contours are shown in Fig. 13 for four stages of the crack of the previosly described plate, with

applied horizontal displacements of ux=0.165 mm. A displacement of ux = 0.169 mm provokes a small damaged

area near the crack tip, followed by the propagation of a diagonal crack through the material towards the left

bottom corner.

The load-displacement curves of the second study case are shown in Fig. 14(a) and Fig. 14(b) for uniformly

dispersed and non-uniformly dispersed CNTs,respectively. Those figures shows similar behaviour as the previ-

ously presented, higher volume fractions allow the material to support larger forces and energy. The shear force

applied to the plate reach a peak related to the crack growth, when the plate lose stiffness to unstable crack in

the narrow displacement interval of 0.265 mm and 0.28 mm for both curves. Note that CNTs agglomeration con-

tributes to a reduction of the maximum force sustained by the doped plate, e.g for a CNT filler volume fraction of

2% the reduction was about 14.3%. It is also noted that the unstable crack appears at slightly larger displacements

for higher CNT volume fractions.
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Figure 13: Phase field contour plots (φ) for horizontal top displacements of (a) ux = 0.165 mm, (b) ux = 0.195 mm, (c)

ux = 0.21 mm, and (d) ux = 0.283 mm. It is assumed a volume fraction of 1% of uniformly dispersed CNTs.
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Figure 14: Notched specimen subjected to shear load displacement curve trough volume fractions, for well-dispersed (a) and

agglomerated CNTs (b). For the inhomogeneous case the parameters shown in Table. 2.

4.2.3. Holed plate under traction loading

The third case study is a holed plate with geometry and boundary conditions shown in Fig. 9(c). In this case

study, the loading is applied through displacement controlled metal pins inserted into the two 10 mm diameter

holes. The FEM mesh of this case study is shown in Fig. 10(c), which contains 9301 elements. The length scale

is set to h < `/2.5. The crack contour is shown in Fig. 15, which exhibits four stages. In Fig. 15(a) a small phase

field value φ is concentrated at the notch tip. Then, the crack propagates, reaching the centre’s hole in Fig. 15(b).

Thus, more than double the displacement must be applied in the stage of Fig. 15(c) to increase the phase field

value φ in the holed plate’s right location to, finally, crack the whole plate in Fig. 15(d).

The effect of the holes is clearly observed in the load displacement curves presented in Fig. 16 for different

CNT volume fractions. Firstly, the curves rise similarly to the place in traction in Section 4.2.1 until reaching a

maximum traction force. Afterwards, the load bearing capacity rapidly decreases until achieving a second stable

region where small displacements occur due to the change of the direction of the crack from completely straight

to be bent towards the bottom edge. Is wort noting that considerable larger displacements must be applied to reach

a second critical displacement until the crack crosses completely the plate.

Similarly to the previous case studies, higher CNT contents lead to larger fracture energies and Young’s moduli

of the resulting composite, leading to higher load bearing capacities and larger slopes of the force-displacement

curves in the elastic region. For instance, a CNT volume fraction of 2% leads to a load bearing capacity of 6
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kN, almost the double capacity of the plate made of pristine epoxy. Also, the force that the thin plate can bear is

substantially decreased by the CNTs agglomeration.

Figure 15: Phase field contour plots (φ) in a holed plate under traction for different imposed displacements, namely (a) uy =

0.104 mm, (b) uy = 0.106 mm, (c) uy = 0.299 mm, (d) uy = 0.320 mm, for a volume fraction of 1% of uniformly dispersed

CNTs.
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Figure 16: Notched specimen with a hole displacement curve trough volume fractions, for well-dispersed (a) and agglomerated

CNTs (b). For the inhomogeneous case the parameters shown in Table. 2.

5. Conclusions

This paper has presented a micromechanical-based approach to estimate the mechanical properties of CNT-

based composites, introducing a novel agglomeration model for the fracture energy. The estimates of the elas-

tic and fracture energy are introduced into phase field FEM model to predict the crack growth and propagation

throughout macrostructural elements. In order to demonstrate the potentials of the proposed approach, four case

studies of full-scale MWCNT/epoxy structural system have been presented. The analyses have appraised the ef-

fects of the main microstructural aspect (filler aspect ratio, volume fraction, and filler agglomeration) upon the

macroscopic fracture behaviour. The key main findings of this work can be summarised as follows:

• An increase in CNT filler in the composite has improved the overall mechanical properties, considering

uniformly dispersed and agglomerated CNTs.

• The agglomeration model to include inhomogeneous dispersions of fillers severely penalises the elastic

moduli and the fracture energy.
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• The introduction of the CNTs orientation as a parameter in the model provides a conservative value of the

mechanical properties.

• As more CNTs filler are added to the composite, more force can resist the thin plate before cracking; how-

ever, the displacement increase is neglected because the CNTs also enhanced the elastic moduli, increasing

the fracture energy.
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