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Abstract

This paper presents a novel methodology for earthquake-induced damage identification of historical constructions

through sparse mutivariate regression. The proposed methodology comprises a first data cleansing stage using

the minimum covariance determinant (MCD) method to mitigate the adverse effects related to the existence of

outliers in the training feature dataset. Afterwards, a sparse multiple linear regression model (SMLR) is trained

using the least-angle regression (LAR) model to eliminate the influence of environmental effects upon the selected

features set. The proposed SMLR model allows to identify the optimal set of predictors in a fully automated

way, minimizing the need for expert judgement in the process. The effectiveness of the proposed approach is

demonstrated with an application case study of a monumental masonry palace, the Consoli Palace in Gubbio

(Italy). The palace has been monitored with an aggregated static/dynamic/environmental SHM system since July

14th 2020. A recent seismic sequence of small intensity hit the palace on May 15th 2021 with a main earthquake

of magnitude Mw 4.0. The epicenters of the main seismic event and the following aftershocks were located at a

distance of 2-3 km far from the palace, making this case study a prominent example of a monumental construction

subjected to near-field ground motion. The presented results demonstrate that a new damage condition arises in

the Consoli Palace after the seismic sequence, although its severity remains at an early stage not detectable by

visual inspections.

Keywords: Earthquake, Control charts, Damage detection, Historic buildings, Operational Modal Analysis,

Structural health monitoring, Statistical Pattern Recognition.

1. Introduction1

Cultural heritage buildings constitute especially sensitive assets in the built stock due to their strategic role in2

the tourism industry and their invaluable historical and social value. Indeed, the turnover generated in industries3

closely linked to cultural heritage represented 10.3% of the European Union GPD in 2018 [1] and, despite the4

Covid-19 recession, experts forecast the recovery to pre-pandemic levels by 2024 [2]. The maintenance of historic5

constructions is often troublesome due to their complex distribution of volumes and heterogenity, uncertainties in6
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their materials and inner structure, as well as the presence of historical series of damage with uncertain origin and7

extension. Masonry historical buildings are particularly vulnerable to seismic actions due to their often low tensile8

strength, massive weight, poor connection between vertical and horizontal structural elements, and irregularities9

in plan and height [3, 4]. An example of this is the 2016-2017 Central Italy seismic sequence which caused com-10

plete destruction or heavy damage of important historical centres in four regions along the Apennines (Abruzzo,11

Lazio, Marche and Umbria) and 300 fatalities [5]. Apart from their vulnerability to natural material degradation12

and seismic actions, heritage structures must also face new challenges including increasing usage demands and13

visit flows, growing presence of corrosive pollutants, and climate change-induced more frequent utmost weather14

events [6]. Examples of sudden collapses such as the civic tower of Pavia in 1989 [7] and the Albiano Magra15

bridge in 2020 have evidenced the large risks associated with ageing degradation and poor maintenance. In this16

light, large financial efforts have been dedicated to R&D actions in the field of SHM of historical constructions17

since the seventies, although their extensive application to engineering practice remains marginal [8, 9]. Such a18

slow technological transfer is in part due to the lack of performance validation of damage identification techniques19

on full-scale structures under real operating conditions and, consequently, uncertain return on investments [10].20

The management of long-term SHM systems falls within the pattern recognition paradigm formalized by Far-21

rar et al. [11]. The basic idea is to establish relationships between damage states or classes and certain features22

extracted from the monitoring data by seeking for patterns in the response of the monitored structure. Within23

this paradigm, the stages of data cleansing, normalization, and damage classification are pivotal elements to attain24

effective damage identification. Data cleansing regards the process of filtering out uninformative or corrupted25

data (outliers), while data normalization relates the ability of separating the variability in the selected features26

induced by damage from those caused by environmental/operational conditions (EOC). Finally, damage classifi-27

cation concerns the inference of mappings between the extracted features and diagnosis classes. In the realm of28

historic structures, there is broad consensus on the importance of implementing aggregated SHM systems exploit-29

ing features extracted from diverse sensing technologies to so achieve a comprehensive damage identification. As30

a global damage identification technique, ambient vibration-based monitoring has become particularly widespread31

owing to their non-destructive nature and minimum invasiveness upon the normal fruition of the structure under32

study [12]. These techniques exploit experimentally identified modal signatures (i.e. natural frequencies, mode33

shapes, and damping ratios) as damage sensitive features (DSFs) [13, 14]. Nonetheless, their ability to detect local34

defects is rather limited (e.g. freezing/thawing cycles, chemical attack, corrosion) [15], whereby it is convenient to35

complement them with static monitoring such as the assessment of crack amplitudes, displacements or tilts [16].36

The management of such aggregated long-term systems requires to handle large heterogeneous databases, framing37

the SHM problem into a Big Data and Machine Learning context [17–19]. While the statistical pattern recogni-38

tion paradigm of SHM is formulated in broad general terms, the diverse steps involved in the process are generally39

highly case dependent.40

The effectiveness of the damage identification is critically determined by the quality of the removal of EOC41
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in the data normalisation stage. There are numerous works in the literature reporting the striking influence of42

manifold environmental/operational factors (e.g. temperature, humidity, traffic, wind) upon the dynamic/static43

response of civil engineering structures. Such factors provoke variations in the boundary conditions and the44

stiffness/mass properties of structures [20], resulting in fluctuations in their behaviour with different space- and45

time-scales. Among the extensive literature works reporting on these effects, it is worth noting the one by Zonno et46

al. [21], who investigated during one year the correlations between environmental factors and the modal properties47

of an adobe historic building, the San Pedro Apostol church in Peru. Their results reported daily and seasonal48

variations in the resonant frequencies of up to 1.5% and 8%, respectively, and identified the variations in the49

environmental humidity as the main driving mechanism. A recent work by Ceravolo et al. [22] reported the50

analysis of the environmental effects on the static and dynamic behaviour of the 17th century Sactuary of Vicoforte51

in Italy. Their study covered the analysis of monitoring data from a dense sensor network including wire gauges,52

pressure and load cells, crack meters, temperature sensors, and accelerometers, as well as climatic data from a53

meteorological station close to the monitoring site. The reported results evidenced positive correlations between54

environmental temperature and resonant frequencies, with average annual fluctuations around 5%. Such positive55

correlations are often observed in masonry structures, which is usually ascribed to thermal-induced crack closure56

phenomena (see e.g. [23–27]). Nevertheless, completely different correlations can appear in practice depending57

on the specific material, structural typology and mass distribution, solar radiation, thermal capacitance, etc. A58

noticeable example was provided by Gentile et al. [25] who reported the SHM of the Milan Cathedral in Italy.59

Their results showed negative correlations between resonant frequencies and temperature, which was ascribed to60

the constraints exerted by metallic tie-rods located in the cathedral. These harmless and reversible variations are61

often markedly larger than permanent changes induced by structural defects, resulting in a masking effect in the62

damage identification. To achieve an early-stage damage identification, it is thus indispensable to identify the63

main driving EOC and to remove their influence through proper statistical models.64

Statistical models for pattern recognition in SHM can be generally classified as output-only or input-output65

models. Output-only models directly operate on the selected features to be normalised, without requiring moni-66

toring data from EOC. Common approaches are Principal Component Analysis (PCA) [28], Factor Analysis [29],67

Autoassociative Neural Networks [30], time-series models [31] or Cointegration [32], to mention a few. These68

models exploit correlations between the selected features, in such a way that structural defects affecting such cor-69

relations will rise an anomaly. Nevertheless, since these models do not rely on predictor variables independent70

from structural damage, the physical interpretation of anomalies may be cumbersome and some structural defects71

may go unnoticed. Input-output models instead exploit correlations between damage-sensitive features and EOC.72

Examples of this approach are multiple linear regression (MLR) models [23], AutoRegressive with eXogeneous73

input models (ARX) [33], artificial neural networks [34], or support vector regression [35]. Although this ap-74

proach requires monitoring data from EOC with the subsequent larger archive storage, the physical interpretation75

of anomalies is straightforward since model predictions are built on variables that are intrinsically independent76
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from any structural damage. Nonetheless, a major difficulty in the definition of these models regards the selection77

of suitable sets of predictors which, again, is eminently case dependent and usually requires the intervention of78

expert judgement.79

Alongside the multiple challenges reviewed above, one of the major obstacles for the extensive implementation80

of long-term SHM is the scarce number of research works in the literature reporting the successful damage iden-81

tification of in-service full-scale structures. The Z24-Bridge in Switzerland firstly studied in 2001 by Maeck and82

co-authors [36] represents the most iconic case study in the field. Before its demolition in 1998, this bridge was83

instrumented with a dynamic SHM system, and subjected to a series of controlled damage scenarios for research84

purposes. Peeters and De Roeck [37] reported the identification of the damage scenarios through statistical pattern85

recognition of the time series of the bridge’s resonant frequencies using ARX. The monitoring records were later86

made available to the scientific community, becoming a benchmark case study to test new damage identification87

techniques (see e.g. [38–40]). In the realm of historic constructions, since it is infeasible to induce controlled88

damage to any structure, most reported case studies in the literature focus on the application of SHM to assess89

and control restoration interventions [41, 42]. In this light, a noteworthy contribution was made by Masciotta et90

al. [43], who implemented a static/dynamic monitoring system to assess the interventions carried out in 2014-201591

to the Saint Torcato church (Portugal) with the aim of correcting structural damage induced by differential soil set-92

tlements. The reported post-rehabilitation results evidenced persistent shifts in the natural frequencies after one of93

the interventions. Mesquita et al. [44] reported the 1-year static/environmental monitoring of the 16th century Foz94

Côa Church (Portugal), an historical building affected by a series of old crack patterns originated by earthquakes95

occurred in 1755 and 1969. Correlation analyses between static and environmental data allowed to conclude that96

the behaviour of the church was stable and that no interventions were required, the variability in the response97

being only attributable to EOC with no risk to the structural integrity. The number of case studies reporting about98

the damage identification of historic constructions under in-service conditions is considerably lower. Amongst the99

few contributions in the literature, it is worth noting the work by Saisi et al. [45], who reported the damage iden-100

tification of the 13th Century Gabbia Tower in Italy. After removing the environmental effects from the resonant101

frequencies of the tower by MLR, those authors identified permanent frequency decays after a far-field earthquake102

occurred in June 2013. Another noticeable contribution was reported by Ubertini and co-authors [46] on the dam-103

age identification of the San Pietro bell-tower in Perugia (Italy) after the 2016 Central Italy seismic sequence.104

Through a combination of MLR and PCA to filter out environmental effects, their results reported persistent de-105

cays in the resonant frequencies of the tower right after the main shocks of the seismic sequence. Interestingly,106

although the developed damage was not detectable by regular visual inspections, an independent non-linear time-107

history analysis of a numerical model of the tower reported similar frequency decays to the experimental ones108

with damage concentration in the base of the belfry.109

With the aim of addressing the development of unsupervised damage identification of aggregated SHM sys-110

tems with minimal support of expert judgement, this paper presents a novel methodology combining data cleansing111
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and sparse MLR. The proposed approach comprises a first data cleansing stage using the MCD method to mini-112

mize the prejudicial effects related to the presence of outliers in the training dataset. Subsequently, a SMLR model113

is trained in an unsupervised fashion using the LAR method to eliminate the influence of environmental effects114

upon the dataset of damage-sensitive features. The proposed SMLR model automatically identifies the optimal set115

of EOC predictors, including both static and dynamic (time-delayed) predictors to accommodate environmental116

capacitance effects. The effectiveness of the proposed approach is demonstrated with an application case study of117

a monumental masonry palace, the Consoli Palace in Gubbio (Italy). The Consoli Palace has been instrumented118

since July 14th 2020 with an aggregated static/dynamic/environmental SHM system. A seismic sequence of small119

intensity recently hit the palace between May 15th and May 27th 2021. The sequence included a main earthquake120

of magnitude Mw 4.0 and peak ground acceleration (PGA) of 102.4 cm/s2, followed by five 2.9 <Mw< 3.6 after-121

shocks in the following days. The most remarkable aspect of this case study regards the extremely closeness of the122

epicenters of the events, only 2-3 km far from the palace, making the investigated case study a unique example of123

a massive masonry building subjected to near-field strong motions. The presented results demonstrate the effec-124

tiveness of the proposed statistical pattern recognition approach to identify the earthquake-induced effects upon125

the resonant frequencies and the amplitudes of two major cracks of the Consoli Palace. Specifically, the conducted126

analyses report decays of up to 2% of the average resonant frequencies of the main bending and torsional modes127

of the palace. Concerning the analysis of the static data, the reported results evidence the appearance of persistent128

earthquake-induced closure of a major crack possibly related to an initial activation of an overturning mechanism129

of one of the façades of the building. Interestingly, no significant effects are observed upon the time series of the130

mode shapes of the palace nor new structural pathologies are found by preliminary in-situ inspections, indicating131

that the developed damaged condition remains at an early state level not observable by visual inspections. Given132

the singularity of the case study and the gap observed in the literature on the availability of field SHM data of her-133

itage structures for damage identification, the time series of modal signatures, static and environmental monitoring134

data are made available for free use of the scientific community as part of the supplementary material.135

The remainder of the paper is organized as follows. Section 2 introduces the proposed damage identification136

approach. Within this section, Subsection 2.1 overviews the general framework of anomaly detection through137

statistical pattern recognition, and Subsections 2.2 and 2.3 present the proposed data cleansing and data normal-138

isation approaches, respectively. Section 3 presents the numerical results and discussion of the case study and,139

finally, Section 4 concludes the paper.140

2. Removal of Environmental effects using LAR141

2.1. Anomaly detection through statistical pattern recognition142

Let us consider a SHM system tracking n different DSFs collected in an observation matrix Y =
[
y1, . . . , yn

] ∈143

RN× n containing N observations. As anticipated above, data normalization constitutes the process of subtracting144

the reversible variability in the selected features in Y induced by variations in EOC. This is typically achieved145
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by training a certain statistical model using a set of tp feature samples from Y defining a baseline in-control146

population, Ytp ∈ Rtp× n, often referred to as the training period (see Fig. 1 (a)). This baseline dataset must147

statistically represent the healthy state of the structure under all possible EOC, being a one-year period often148

adopted. Once trained, the predictions of the model Ŷ can be used to phase out the variance due to EOC from Y149

forming the so-called residual error matrix E ∈ RN×n, that is:150

E = Y − Ŷ. (1)

When the system remains healthy, matrix Ŷ reproduces the part of the variance of the features driven by151

EOC, while E only contains the residual variance stemming from modelling errors. Conversely, if a certain152

damage develops, this only affects the data contained in Y while matrix Ŷ remains unaltered. Therefore, matrix E153

concentrates the damage-induced variance and is apt for being used for damage identification.154
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Figure 1: Flowchart of the proposed LAR-based data normalization approach for damage identification.

Damage classification can be performed by analysing the residuals in E through three different approaches:155

unsupervised learning, supervised learning, and semi-supervised learning as an intermediate solution. Supervised156

learning is often impractical in the context of historic constructions due to the serious difficulties to generate157

tagged damage data. Unsupervised learning instead simplifies the classification by tagging newly acquired data158

as damaged or non-damaged by analysing their discrepancies with respect to training population dataset (tagged159

as non-damaged or healthy). Unsupervised classification thus limits to damage detection or level 1 diagnostic160

(i.e. verify whether certain damage developed) and, to some qualitative extent, to damage quantification or level161

2 diagnostic (i.e. a measure of the damage extension). This framework is unable to perform prognosis of the162

damage and to offer an estimate of the remaining life of the structure (level 3 diagnostic), being imperative to163

develop numerical models to such purposes. Nevertheless, level 1 diagnostic often suffices for the maintenance of164

heritage assets, whose criticality justifies the execution of in-situ inspections every time any fault is detected.165

Novelty analysis and statistical process control charts are common tools to identify the presence of damage-166

induced anomalies in the time series of residuals in E in an unsupervised fashion. As sketched in Fig. 1 (e),167

control charts furnish in time a certain statistical distance accounting for nonconformities in the distribution of168
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the residuals with respect to the training period. This allows to identify out-of-control processes as data points169

violating certain thresholds or in-control regions. A wide variety of control charts are available in the literature,170

although the The Hotelling’s T 2 control chart [47] is possibly the most commonly used one in the realm of SHM.171

The plotted statistic T 2 (squared Mahalanobis distance) is defined as:172

T 2
i = r

(
E − E

)T
Σ−1

0

(
E − E

)
, i = 1, 2, . . . ,N/r, (2)

and the upper control limit (UCL) related to a 1−α confidence level when residuals are ideally normally distributed173

reads:174

UCL =
krn − kr − rn + n

kr − k − n + 1
Fα;n,kr−k−n+1, (3)

with parameter r in Eqs. (2) and (3) being an integer referred to as subgroup size, E the mean of the residuals in175

the subgroup of the last r observations, and E and Σ0 the mean values and the covariance matrix of the residuals176

empirically estimated in the training period. Term Fα;n,kr−k−n+1 denotes value of the cumulative F distribution with177

n and kr − k − n + 1 degrees of freedom for a 1 − α confidence level.178

The sensitivity of the control chart to detect small damage is highly influenced by the quality of the data nor-179

malization model. As previously discussed, the use of input-output statistical models facilitates the interpretation180

of nonconformities, although these models heavily rely on the suitable selection of the predictors set. To optimize181

this process and minimize the need for expert judgement, an automated procedure based on the LAR method is182

implemented in this work. Furthermore, the quality of classification may be also considerably affected by the183

presence of outliers in the monitoring data. Outliers are always present to a certain degree in every feature set in184

SHM, stemming from manifold sources like noise, identification errors, faulty sensors, imperfect mounting, etc.185

Their presence in the training period has a twofold effect: (i) outliers bias the computation of the parameters of the186

data normalization model; and (ii) hinder the proper definition of the UCL. Note in Eq. (3) that the definition of187

UCL depends upon the statistical moments of the residuals in the training population. Therefore, the presence of188

outliers will bias such moments, reducing the damage sensitivity of the classification. To minimize such effects,189

an outlier elimination approach based on the MCD method is proposed in this work. These procedures are assem-190

bled in a new methodology for aggregated long-term SHM sketched in Fig. 1, which comprises the following five191

sequential steps:192

(a) Definition of the baseline population (training period) of damage-sensitive features and potential predictors193

describing the EOC variability.194

(b) Data cleansing using MCD.195

(c) Construction of the statistical model for data normalization using MLR and LAR (SMLR).196
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(d) Computation of the residual matrix E by subtracting the predictions by the statistical model Ŷ from the197

observation matrix Y.198

(e) Damage detection through novelty analysis of the Hotelling’s control chart.199

In the remainder of this section, the theoretical fundamentals of MCD and SMLR using LAR are presented in200

Sections 2.2 and 2.3, respectively.201

2.2. Data cleansing using MCD202

The MCD method introduced by Rousseau [48] is a robust estimator of multivariate location and scatter com-203

monly used for outlier detection. Assuming Gaussian-distributed data, the MCD method seeks a subset of given204

size with lowest sample covariance. In the context of this work, the presence of outliers ought to be minimized205

in the training population Ytp. Let H1 ⊂
{
1, . . . , tp

}
be an h-subset with |H1| = h, and µ1 = (1/h)

∑
i∈H1

yi and206

Σ1 = [1/ (h − 1)]
∑

i∈H1

(
yi − µ1

) (
yi − µ1

)T being the empirical mean and covariance matrix of the data in H1,207

respectively. The Mahalanobis distances of all the data samples in the training population read:208

d1
(
yi
)

=

√(
yi − µ1

)T
Σ−1

1
(
yi − µ1

)
for i = 1, . . . , tp. (4)

Now take H2 another h-subset such that {d1 (i) ; i ∈ H2} :=
{
(d1)1:tp , . . . , (d1)h:tp

}
where (d1)1:tp

≤ (d1)2:tp
≤209

. . . ≤ (d1)tp:tp
are the ordered distances, and compute µ2 and Σ2 based on H2. Then det (Σ2) ≤ det (Σ1) holds with210

equality if and only if µ2 = µ1 and Σ2 = Σ1. This process, also known as the concentration step (C-step), can be211

iteratively repeated as follows:212

1. Select h observations from the training dataset Ytp conforming Hs.213

2. Compute the empirical covariance µs and Σs.214

3. Compute the Mahalanobis distances ds
(
yi
)
, i = 1, . . . , tp.215

4. Sort the Mahalanobis distances, and select the h observations having the smallest distances to form Hs+1.216

5. Stop if det (Σs+1) = 0 or det (Σs+1) = det (Σs), otherwise go to step 2.217

The sequence det (Σ1) ≥ det (Σ2) ≥ det (Σ3) ≥ det (Σ4) ≥ . . . is non-negative, so the algorithm always218

converges in finite steps as there is a finite number of h-subsets [49]. Nevertheless, the final calculation of the219

covariance matrix may not converge to the global minimum since it highly depends upon the definition of the220

initial subset H1. The evaluation of all
(

tp
h

)
subsets of size h may lead to prohibitive computational costs as221

the number of data samples in the training period is usually large. As an alternative solution, Rousseau and222

Driessen [50] proposed a Fast-MCD algorithm based upon the application of the raw MCD to a large number of223

initial candidates for H1. Specifically, the algorithm comprises three sequential stages when the number of samples224

is considerably large (tp > 600 [50]): Firstly, several disjoint subsets are drawn from the dataset (a recommended225
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number of n+1 subsets [49]) and several C-steps are applied to each subset keeping the solutions with lowest226

determinants. Secondly, the subsets are pooled together forming a merged set, and the previously obtained best h-227

subsets are used as the initial subset H1. For every initial subset, several C-steps are applied and the solutions with228

lowest determinants are kept. Finally, the raw MCD method is applied to the full dataset keeping the solution with229

lowest determinant obtained by considering the previously obtained solutions as initial subsets H1. The algorithm230

is given in detail in references [49–52].231

For illustration purposes, Fig. 2 shows a toy example of outlier detection using the MCD method. The Fast-232

MCD algorithm is applied to a dataset of tp = 1250 observations and n = 2 variables, in which 1000 and 250233

(outliers) observations were drawn from two bivariate normal distributions N1 and N2:234

N1


00

 ,
 1 1.5

1.5 3


 , N2


 2

−2

 ,
 1 −0.5

−0.5 1


 . (5)

The dimension h of the subsets has been selected according to the recommendation by Rousseau and Driessen [50]235

as h ≈ (n + p + 1) /2 = 626. The Fast-MCD algorithm has been applied to the synthetic dataset starting from five236

subsets with 300 samples, and the obtained analysis results are shown in Fig. 2. The scatter plot in Fig. 2 (a) shows237

the optimal h-set and the remaining tp − h samples with blue and red solid points, respectively. In this figure, the238

99% tolerance ellipses are also shown. Figure 2 (b) depicts the distance-distance plot, which represents the robust239

Mahalanobis distances (based upon the mean and covariance estimates after applying the MCD method) versus the240

distances computed from the complete dataset. On both axes, threshold limits corresponding to a 99% confidence241

level and defined as
√
χ2

2,0.99 = 3.0349 are also indicated. It is clear in this figure that the MCD concentrates the242

data samples drawn from N1 in the h-subset, while isolating most of the samples from N2 as outliers. From the243

analysis of Fig. 2 (b), it is found that the classification using the MCD method identifies 231 outliers, while the244

direct analysis of the dataset only leads to 26 outliers.245
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Figure 2: Toy example of two overlapping bivariate Gaussian distributions: scatter plot with 99% tolerance ellipses before and
after the application of the MCD method (a), and distance-distance plot (b).

9



2.3. Optimal sparse MLR model using LAR (SMLR)246

MLR models exploit linear correlations between the n selected features (estimators or dependent variables)247

and a set of p independent exploratory variables (predictors or independent variables), which are typically taken248

from monitoring data of EOC. The predictions by MLR of the observation matrix Y are obtained as:249

Ŷ = [1N×1,X]

β0

β

 , (6)

where 1N×1 is a column vector of ones and X =
[
x1, . . . , xp

]
∈ RN×p is an observation matrix with columns250

containing the time series of the p selected predictors. Term β0 ∈ R1×n is a row vector of intercept terms and251

β =
[
β1, . . . ,βp

]
∈ Rp×n is a matrix of linear regression coefficients. As anticipated above, the quality of the MLR252

model for feature normalization is highly dependent upon the quality of the predictor selection. This motivates253

the interest of sparse linear regression methods to select the optimal set of predictors among a large database254

of potential variables. To this aim, the LAR algorithm is proposed in this work. LAR is an efficient algorithm255

for model selection of sparse linear models [53]. Let us first consider centred and normalized versions of the256

predictors x j in X arranged in a normalized predictor matrix Xn, as well a centred version of an arbitrary i-th257

estimator yi in Y:258

xn
j =

x j − x j

σx j

, j = 1, . . . , p, yn
i = yi − yi, i = 1, . . . , n, (7)

with259

σx j =

√
1

N − 1

(
x j − x j

) (
x j − x j

)T
. (8)

A regression method estimates the coefficients vector β∗i relating the normalized predictor matrix Xn and the260

i-th normalized output yn
i as:261

yn
i = Xnβ

∗
i . (9)

Once determined, the coefficients in β∗i can be readily converted to the original scaled model as βi = σx jβ
∗
i ,262

and the i-th intercept term can be computed as β0,i = ȳi − X̄β∗i .263

For simplicity of the notation, indexes i, j, n and ∗ in Eq. (9) are dropped in the subsequent derivations. In264

general, let us consider a univariate linear model defined as y = Xβ + ε, with ε being a zero mean error term.265

In the context of SHM, the predictors in X ∈ RN×p may contain a large number of variables (e.g. environmental266

temperatures, humidity, wind intensity, etc., as well as delayed variations to account for capacitance effects), some267

of which may not have significant effects upon the variance of y. In order extract a subset of the most representative268

predictors in X, the linear model in Eq. (9) can be assumed to be sparse. In this light, a sparse regression method269
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will estimate the coefficients in β ∈ Rp corresponding to the most representative predictors, while allocating270

zeroes to the least influential ones. Let use denote the active set A as the indices in β corresponding to non-zero271

elements, and the inactive set I as the complementary set of A. Also, let us note XA consisting of a subset of272

predictors obtained by extracting from X the columns corresponding to the indices in A. Among the variety of273

sparse regression methods available in the literature (see e.g. [54]), the LAR model is adopted in this work. The274

LAR algorithm is a forward stepwise regression approach set out by Efron et al. [53]. The active set is initialized275

to be empty, A = ∅, and the indexes of all the predictors are included in the inactive set, i.e. I = {1, . . . , p}. The276

algorithm starts by assuming the coefficient vector β(0) = 0 and, thus, the residual ε0 = y− ŷ(0), with ŷ(0) = 0 being277

the initial prediction of the linear model. The first predictor to be included in the active set is the one which has278

the largest correlation with the current residual, that is:279

c = maxi∈I
∣∣∣xT

i ε0
∣∣∣ . (10)

Let us assume the index j is the one corresponding to c, and thus the index to be added to the active set A.280

Then, the regression coefficients are moved towards their least-square value, until some other predictor has as281

much correlation with the current residual. This corresponds to an updating of the form:282

β(1) = β(0) + γ
(
β(1)

OLS − β(0)
)
, (11)

with β(1)
OLS being the ordinary least-squares (OLS) solution:283

β(1)
OLS =

(
XT
AXA

)−1
XT
A y, (12)

and γ the step length 0 < γ ≤ 1. Accordingly, the prediction by the linear model and the residual are updated as284

ŷ(1) = ŷ(0) + γ
(
ŷ(1)

OLS − ŷ(0)
)

and ε1 = y − ŷ(1), respectively, with ŷ(1)
OLS being the least squares solution, i.e. ŷ(1)

OLS =285

XA β(1)
OLS . In order to determine the value of γ, one seeks the smallest positive value where correlations with the286

current residual become equal, i.e. xT
i∈I ε1 = xT

j ε1, leading to:287

xT
i∈I

[
y − ŷ(0) − γ

(
ŷ(1)

OLS − ŷ(0)
)]

= x j

[
y − ŷ(0) − γ

(
ŷ(1)

OLS − ŷ(0)
)]
. (13)

Solving the expression in Eq. (13) for γ, one gets:288

γ =

(
xi − x j

)T (
y − ŷ(0)

)
(
xi − x j

)T (
ŷ(1)

OLS − ŷ(0)
) =

(
xi − x j

)T
ε0(

xi − x j

)T
d
, (14)

where d = ŷ(1)
OLS −ŷ(0) is the direction of the walk. Note that d is orthogonal to ε0, therefore we have xiε0 = xid ≡ c.289

Since the predictors in X are assumed to be normalized, i.e. |xi| = 1, the condition in Eq. (13) may be interpreted290

in terms of dot products as xT
i ε1 = cos θi = xT

j ε1 = cos θ j, i.e. θi = θ j. This bisection condition is equivalent to291
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imposing the movement of the predictor coefficients along the equiangular direction between the predictors xi and292

x j and the current residual ε1, i.e. the least angle direction. Furthermore, since the sign of the correlation between293

variables is irrelevant, Eq. (14) can be in general written as:294

γ = mini∈I

xT
i ε0 − c

xT
i d − c

,
xT

i ε0 + c

xT
i d + c

 , 0 < γ ≤ 1. (15)

This process can be performed iteratively p − 1 times according to the following steps:295

1. Initialize the coefficient vector β(0) = 0, the fitted vector ŷ(0) = 0, the active set A = ∅ and the inactive set296

I = {1, . . . , p}.297

2. for k=0 to p-2 do298

3. Update the residual εk = y − ŷ(k).299

4. Find the maximum correlation c = maxi∈I
∣∣∣xT

i εk

∣∣∣.300

5. Move variable corresponding to c from I toA.301

6. Compute the least squares solutions β(k+1)
OLS =

(
XT
AXA

)−1
XT
A y and y(k+1)

OLS = XA β(k+1)
OLS .302

7. Compute the direction of the walk d = ŷ(k+1)
OLS − ŷ(k).303

8. Compute the step length γ =

{
xT

i εk−c
xT

i d−c ,
xT

i εk+c
xT

i d+c

}
, 0 < γ ≤ 1.304

9. Update the regression coefficients: β(k+1) = β(k) + γ
(
β(k+1)

OLS − β(k)
)
.305

10. Update the fitted vector: ŷ(k+1) = ŷ(k) + γ
(
ŷ(k+1)

OLS − ŷ(k)
)
.306

11. end for307

The algorithm at step p is completed with the full OLS solution, i.e. β(p) =
(
XTX

)−1
XTy. The main output308

is the series of coefficients B =
{
β(0), . . . ,β(p)

}
, which represent different linear models with decreasing level309

of sparsity. Finally, the best regression model in B can be selected according to certain quality criteria such310

as the maximum number of selected predictors or the minimum residual sum-of-squares (RSS), or information311

based statistical criteria like the Bayesian Information Criterion (BIC) [55] or the Akaike Information Criterion312

(AIC) [56]. To better illustrate the working mechanism of the LAR algorithm, Fig. 3 presents the geometrical313

interpretation of the determination of the coefficient parameters in the case of 3 covariates x1, x2, and x3. In the314

initial step k = 0 in Fig. 3 (a), x1 is selected as the first predictor since it has the largest correlation with the initial315

residue ε0 = y. Therefore, β(1) = γβ(1)
OLS , and we need to determine the step length γ. To do so, we need to apply316

the equiangular condition in Eq. (14). In this initial case (k = 0), this equation reduces to:317

x1

(
y − γβ(1)

OLS

)︸        ︷︷        ︸
ε12

= x2

(
y − γβ(1)

OLS

)︸        ︷︷        ︸
ε12

, (16)
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and318

x1

(
y − γβ(1)

OLS

)︸        ︷︷        ︸
ε13

= x3

(
y − γβ(1)

OLS

)︸        ︷︷        ︸
ε13

. (17)

The bisection condition in Eq. (16) leads to a solution where the residue vector ε12 has the same angle α12319

with the inactive predictor x2 and the active predictor x1. Similarly, Eq. (17) leads to a different solution where320

the residue vector ε13 has the same angle α13 with x3 and x1. In this example, x3 has the least angle (ε13 < ε12)321

and, therefore, Eq. (17) determines the step length γ. In the second step (k = 1), the direction of the walk is322

given by the OLS projection of y onto the active set defined by x1 and x3, i.e. ŷ(2)
OLS . This procedure is repeated323

until reaching the full OLS as shown in Fig. 3 (b), where covariates x1, x3, and x2 are added sequentially to the324

regression. Variables ŷ(1)
OLS and ŷ(2)

OLS represent the partial OLS solutions on x1 and {x1, x3}, respectively, while325

ŷ(3)
OLS = ŷ(3) represents the full OLS solution.326
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k=0
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2

Figure 3: Geometric representation of the LAR algorithm in the case of 3 covariates. (a) Initial step k = 0, and (b) determination
of the complete solution path.

3. Application case study: the Consoli Palace327

3.1. Description of the structure and monitoring layout328

The Consoli Palace is the most emblematic building in the medieval town of Gubbio in central Italy. The329

palace forms part of a monumental ensemble built in the 14th century together with the Podestà Palace and a330

vaulted hanging square, named “Piazza Grande” (see Fig. 4 (a)). Although originally dedicated to host the legisla-331

tive/executive and judicial courts, the Consoli and the Podestà palaces respectively house the Civic Museum and332

the municipality headquarters of Gubbio since the early nineties. The Consoli Palace presents a 40×20 m rectan-333

gular plan and it is structurally constituted by calcareous stone masonry thick bearing walls and vaulted ceilings.334

The foundations of the building are placed on two levels with a drop of approximately 10 m to accommodate the335

steep slope of the terrain (see Fig. 4 (b)), giving the building an irregular distribution in height. The south façade336

includes a panoramic loggia and stands 60 m from the ground level until a 13 m high bell-tower rising from the337
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roof level, while the north façade has a height of about 30 m between the square’s level and the roof. As an ex-338

traordinary example of a monumental masonry structure, the Consoli Palace has been the case study of a number339

of research projects. Interested readers are referred to references [57–60] for further details on the architecture340

and some of the investigations carried out in the palace.341

Gubbio is located on the Umbria-Marche Apennine Mountains, an area of almost continuous seismicity and342

catalogued as a natural laboratory for seismic studies (TABOO - Alto Tiberina Near Fault Observatory). The343

seismic activity in this area is dominated by the Gubbio fault on which the city rises. The Gubbio fault is a 22-km-344

long normal fault pertaining to a set of active SW-dipping sub-parallel normal faults known as the seismogenic345

Umbria Fault System (UFS) [61]. The UFS faults are antithetic splays located in the hanging wall of the regional346

Alto Tiberina Fault (ATF), a major east-dipping low-angle (20◦) normal fault. Geophysical data and seismological347

studies characterized the geometry of the Gubbio fault, revealing a listric trend and the intersection with the ATF at348

a depth of 6 km [62]. The strongest registered earthquake to date was on April 29th 1984 (Mw 5.6) with epicenter349

located ≈10 km south of the town of Gubbio [63] and causing important damage to the Consoli Palace. Later on,350

an intense seismic activity started on August 26th 2013 with a Mw 3.8 event and followed by several aftershocks351

with 3<Mw<4.9 through the entire 2014. Since then, the seismic activity has been quite constant, with one single352

major event occurred on October 2016 with a magnitude Mw 3.0 [63].353
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+18.89 m
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Figure 4: Aerial view of the monumental ensemble of the Consoli Palace, the Podestà Palace and the Piazza grande (a); Plan
and elevation views of the Consoli Palace (b).

Within the framework of a national research project on the surveillance and identification of ageing deterio-354

ration of historical constructions, an aggregated static/dynamic/environmental SHM system was installed in the355

Consoli Palace in July 2017 and remained active until July 2020. The monitoring system comprised three uni-356

axial accelerometers, two Linear Variable Displacement Transducers (LVDTs), and two temperature sensors. The357

analysis of the monitoring data acquired during this first phase of the SHM system was reported by Kita and co-358

authors [59]. Nonetheless, an important upgrade of the system was carried out in July 2020 with a considerable359
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increase in the number of sensors, which remains active up to date and is subject of study in this work. The360

layout of the system is sketched in Fig. 5 (b) and comprises: twelve accelerometers, four LVDTs, six temper-361

ature sensors, and a data acquisition system (DAQ). The accelerometers, labelled with A1 to A12 in Fig. 5 (b)362

and shown in Fig. 5 (a), are high-sensitivity uni-axial piezoelectric accelerometers model PCB393B12 (10 V/g,363

broadband resolution 800 µg, and ±0.5 g measurement range). They are deployed in the two main floors of the364

building and on the roof level, namely at heights of +4.64 m (Arengo Hall), +18.89 m (Nobili Hall), and +29.77365

m. Three accelerometers are located in each floor, with a biaxial station in the south façade and a mono-axial366

station in the north façade monitoring ambient accelerations along the y-direction. Such a configuration is aimed367

at characterizing rigid diaphragm motions of the floors and global torsional rotations of the building. A similar368

scheme has been also considered on the roof level but with the consideration of two accelerometers (A11 and A12)369

located at the centre of the east and west façades, respectively, with the aim of monitoring out-of-plane bending370

movements. Four S-series LVDTs (50 mm measurement range and < 0.3 µm resolution), labelled with D1 to371

D4 in Fig. 5 (b), are also installed monitoring the opening/cracking of two major cracks previously identified in372

reference [59]. Specifically, LVDTs D1 and D3 monitor two cracks in the second level of the palace, whose origin373

is possibly related to the overturning mechanism of the loggia in the south façade. Instead, LVDTs D2 and D4374

monitor the movements at two levels (second and third floors) of a second major crack located in the north façade375

of the palace and propagating downwards until reaching the west façade. The origin of the latter may be indicative376

of the initiation of a failure mechanism of overturning of the northern part of the west façade. Finally, six K-type377

thermocouples, labelled with T1 to T6, are also deployed in the palace. Thermocouples T1 to T4 are located aside378

LVDTs D1 to D4 measuring the surface temperature of the masonry, while thermocouples T5 and T6 monitor379

the ambient temperature at the roof level and the third level, respectively. The accelerometers, thermocouples380

T1 and T2, and LVDTs D1 and D2 are connected to a DAQ system located in the third level and powered from381

an uninterruptible power supply. (Fig. 5 (a.4)). The DAQ, model NI Compact DQ-9132 (1.33 GHz Dual-Core382

Atom, 4 slots, Windows Embedded Standard 7, 16 GB SD storage), is equipped with three NI 9234 acceleration383

acquisition modules (4 channels, 24-bit resolution, 102-dB dynamic range and anti-aliasing filters) and a NI 9219384

acquisition module for LVDTs and thermo-couples (4 channels, 24-bit resolution, ±60 V range, 100 S/s). Con-385

versely, the monitoring records of crack-meters D3 to D4 and thermo-couples T3 to T6 are transferred through386

wireless communication to a wifi router (Fig. 5 (a.3)).387
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Figure 5: Views of the monitoring and acquisition equipment (a; a.1 - LVDT, a.2 - Accelerometer, a.3 - wireless data transmis-
sion, a.4 - DAQ), and layout of the continuous monitoring system (b).

Ambient vibrations are sampled at 40 Hz, and crack amplitudes and temperatures from channels D1-D2 and388

T1-T2 are sampled at 0.1 Hz. The monitoring records are stored in separate binary data files containing 30-min-389

long recordings. A Labview script is implemented and used for data acquisition and quality control from remote,390

including amplitude and spectral plots. Single acquisitions from sensors D3-D4 and T3-T6 are taken every 30391

minutes and collected in common text files on a daily basis. The recorded data are sent through the internet to392

a cloud archive, where they are accessed by a remote server computer in the Laboratory of Structural Dynamics393

of the University of Perugia. The monitoring data are collected and processed in an in-house software code394

named MOSS, the Italian acronym of SHM. The software code, whose first release was reported in reference [60],395

implements all the steps involved in SHM as a statistical pattern recognition, including signal pre-processing,396

automated dynamic identification, feature extraction, data cleansing, normalisation, and novelty analysis.397

3.2. Dynamic Identification and continuous monitoring398

A dense ambient vibration test (AVT) was conducted at 13:00 pm CEST on May 7th 2021 in order to charac-399

terize the modal signatures of the Consoli Palace. The test comprised 19 uni-axial piezoelectric accelerometers400

(same technical specifications as those used for the continuous monitoring) with positions sketched in Fig. 6.401

Specifically, the accelerometers layout used in the continuous monitoring system (Fig. 6 (a)) was complemented402

with nine accelerometers covering the two orthogonal directions of the palace at the roof level, and three stations403

at the top level of the bell-tower to monitor rigid-diaphragm motions. Such a configuration was designed with a404

twofold purpose: firstly to identify the interaction of the bell-tower with the main body of the palace and so to405

distinguish between local, global and mixed modes; secondly, to assess the degree of rigidity of the roof level of406

the palace and the possible appearance of out-of-plane bending modes in the main façades of the palace. Record-407
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ings from channels A7, A8 and A9 are omitted in the dynamic identification, both in the AVT and the continuous408

monitoring, and reserved for monitoring ground motions. The reason is that the excitation level in the first floor of409

the palace under normal conditions is extremely low, so these accelerometers simply record noise when no seismic410

actions are present. Two asynchronous 30 minutes long acquisitions were carried out and ambient vibrations were411

recorded at a sampling rate of 10652.89 Hz (the maximum rate allowed by the DAQ). The test was conducted412

under normal operating conditions, with micro-tremors induced by traffic in the neighbouring roads and wind413

forces as the main sources of excitation. The mean environmental temperature during the test was 17.2◦ and the414

average wind speed was equal to 6.4 km/h as measured from the meteorological observatory of Gubbio centre,415

only 500 m from the palace. Such moderately strong wind speeds favoured the dynamic identification of the416

palace, reaching maximum accelerations of about 0.8 cm/s2, while average ambient vibrations during the contin-417

uous monitoring are typically around 0.2 cm/s2. The ambient vibration recordings were processed in the in-house418

software code MOVA [60], a companion software of MOSS dedicated to AVT. The acceleration time series were419

pre-processed including: (i) removal of non-stationary excitations produced by swinging bells (with a frequency420

of 15-minutes all day and night long) and anomalous spikes through Hanning window filtering, (ii) elimination421

of spurious trends through moving average baseline correction; (iii) fourth order band-pass Butterworth filtering422

with cut-off frequencies of 0.5 Hz and 100 Hz; and (iv) decimation of the data to 200 Hz.423
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Figure 6: Comparison of the accelerometers layout during the continuous monitoring of the Consoli Palace (a) and the dense
AVT performed on May 7th 2021 (b).

Figure 7 (a) furnishes one of the stabilization diagrams obtained using Covariance-based Stochastic Subspace424

Identification (COV-SSI) of the ambient accelerations recorded during the AVT considering a time lag of 6 s.425

The modal identification was performed using the automated procedure proposed in reference [64] for Data-based426

SSI and extended for COV-SSI in reference [60]. In general terms, the procedure started by defining a set of427

increasing time lags tlag, or alternatively the number of block rows/columns jb in the Toeplitz matrix of the output428

correlation matrix (i.e. tlag = (2 jb − 1) ∆t with ∆t being the time step of the acceleration series). In particular,429

we defined block rows/columns numbers jb ranging from 301 (tlag = 6s) to 401 (tlag = 8s) with steps ∆ jb = 5.430
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Then, for every value of jb, the modal identification was performed considering model orders ranging from 40 to431

80 with steps of 2. Afterwards, all the poles were collected and a first cleansing procedure is applied consisting432

of eliminating complex conjugate poles and poles with damping ratios above 10%. Finally, structural poles were433

distinguished from spurious ones by applying the hierarchical clustering approach reported in [64]. Threshold434

parameters to identify clusters of poles included relative variations of resonant frequencies ∆ f < 1%, damping435

ratios ∆ζ < 3%, and Modal Assurance Criterion (MAC) values MAC > 0.99. This approach allows the automated436

interpretation of the stabilization diagrams in the subsequent continuous OMA. Specifically, nine modes have437

been identified in the frequency range up to 10 Hz and highlighted with thick dashed lines in Fig. 7 (a), and the438

corresponding MAC matrix plot is furnished in Fig. 7 (b). The identified modal signatures (resonant frequencies,439

damping ratios, and Mode Phase Collinearities (MPC)) are collected in Table 1 and the first seven mode shapes440

are shown in Fig. 8. The modes have been classified as global (G), local (L), or high order models (HO) according441

to the interpretation of the mode shapes shown in Fig. 8. Specifically, four global modes have been identified and442

labelled with G-By1, G-T1, G-Bx1, and G-By2 in Fig. 8 and Table 1. Modes G-By1 and G-Bx1 correspond to443

first order bending modes along the y- and the x-directions of the building (refer to Fig. 5 (b)), respectively, mode444

G-By2 refers to a second-order bending mode along the y-direction, and mode G-T1 corresponds to the global445

torsional mode of the palace. Modes L-Bx1 and L-By1 refer to the first order bending modes of the bell-tower446

along the x- and the y- directions, while mode L-T1 corresponds to the first torsional mode of the bell-tower. Note447

that mode L-By1 involves certain torsion in the main body of the palace (see Fig. 8). Finally, modes HO1 and HO2448

show complex interactions between the main body of the palace, including some out-of-plane deformation of the449

roof level. Specifically, modes HO1 and HO2 respectively show symmetric and anti-symmetric movements of the450

point locations of channels A11 and A12. Further analyses to correctly interpret these modes are left for future451

work, possibly with the aid of a numerical model, and, therefore, they have been omitted in Fig. 8. Nevertheless,452

for completeness, the mode shapes of these modes have been included as inserts in Fig. 9 reporting the results of453

the tracking of the resonant frequencies of the Palace through continuous monitoring. These modes identified by454

the automated OMA procedure clearly correspond to columns of stable poles in the stabilization diagram in Fig. 7455

(a) as well as the peaks of the singular values of the spectral matrix, except for the column of poles at about 3.26456

Hz. This mode has been omitted from the identification because its mode shape is almost identical to that of the457

mode at 3.54 Hz with a MAC value of 0.96. Therefore, we decided to omit this mode because of its slightly larger458

complexity and its poorer correlation with the identified poles during the continuous monitoring. As previously459

observed in the work by Kita et al. [59], this column of stable poles may indicate a possible splitting of mode460

L-T1, although more specific analyses should be addressed in this regard to confirm it. The MAC matrix plot in461

Fig. 7 (b) shows that most of the identified modes are highly independent, with MAC values close to zero in most462

of the off-diagonal terms. Only some correlation is observed between modes L-T1 and G-T1 with a MAC value463

of 0.78 but attributable to the common torsion of the main body of the palace, and modes G-By2 and HO2 with464

a MAC value of 0.62 also due to the common bending motion of the palace. Finally, let us remark that all the465
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identified modes during the AVT are eminently real, with MPC values above 96%.466
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campaign, only the modal displacements at the roof level were considered in the computation of the MAC value since, given
the local nature of this mode, only marginal values were obtained at the first and second floors in the AVT.
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Table 1: Comparison of the experimentally identified modal signatures of the Consoli Palace in the dense AVT and continuous
monitoring using the COV-SSI method.

AVT - 13:00 pm CEST May 7th 2021 Continuous monitoring - July 2020/May 2021

Mode No. Label Frequency [Hz] Damping ratio [%] MPC∗1 [%] SR∗2 [%] Mean Frequency [Hz] Variation range [Hz]

1 G-By1 2.32 0.98 98.3 85.5 2.32 2.18 (-5.80%) - 2.44 (+5.10%)
2 L-Bx1 2.99 0.92 100.0 36.25 3.02 2.75 (-8.65%) - 3.45 (+14.29%)
3 L-By1 3.54 0.78 99.9 49.57 3.53 3.32 (-8.54%) - 4.02 (+14.10%)
4 G-Bx1 3.75 2.76 99.0 56.08 3.75 3.51 (-6.36 %) - 3.97 (+5.77%)
5 G-T1 4.22 0.95 99.9 70.94 4.2 3.86 (-8.28%) - 4.51 (+7.34 %)
6 G-By2 5.65 0.72 99.8 57.3 5.53 5.10 (-7.78%) - 5.97 (+8.02 %)
7 L-T1 5.91 0.69 99.8 76.2 6.46 5.96 (-7.75 %) - 7.00 (+8.27%)
8 HO1 7.05 1.65 97.2 43.61 7.05 6.77 (-4.07%) - 7.41 (+5.00%)
9 HO2 8.20 1.67 96.3 76.61 7.97 7.23 (-9.29%) - 9.23 (15.89%)

∗1 Mode Phase Collinearity
∗2 Success ratio in the identification

The previous results were used to define the baseline modal features of the palace to be tracked during the467

continuous monitoring. To do so, a standard frequency tracking approach was implemented to trace the time468

series of the modal features of the palace. This approach consists of grouping the modal poles identified during469

the continuous monitoring by exploiting their similarities with the reference baseline features. Specifically, the470

implemented approach is semi-dynamic. This implies that the reference mode shapes (those identified in the AVT)471

are kept constant throughout all the monitoring period, while the reference resonant frequencies and damping472

ratios vary in time. The comparison between poles is performed in terms of relative variations in the resonant473

frequencies ∆ f and MAC values. In every step in the tracking procedure, all the poles complying with pre-defined474

thresholds are sorted according to a metric distance involving both ∆ f and MAC values MAC as d:475

d = (1 − η) ∆ f + η (1 − MAC) , (18)

with η being a weighing factor between the contributions of ∆ f and MAC. Once sorted, the pole with the lowest476

distance d is collected in the corresponding time series of the mode. On this basis, the same nine modes previously477

identified in the AVT have been tracked throughout all the monitoring period as shown in Fig. 9. To do so, the478

thresholds of maximum relative variations in the resonant frequencies have been selected after some manual tuning479

as 8% for modes 1 to 3, 10% for mode 4, 15% for mode 5, and 5% for modes 6 to 9. Minimum MAC values of480

0.75 have been defined for modes 1 and 4, 0.8 for modes 3, 6 and 8, and 0.9 for modes 7 and 9. The weighing481

factor η has been selected as 0.5. Additionally, all the poles with MPC values below 80% are disregarded as482

complex or insufficiently excited modes. It is evident in Fig. 9 that all the resonant frequencies exhibit both daily483

and seasonal fluctuations, more exacerbated as the modes have a more local character with higher frequencies.484

The statistical properties of the tracked modes are collected in Table 1. In this table, the success ratios (SR) have485

been also included, that is, the percentage of times the modes have been identified during the monitoring period. In486

general, it is noted that local modes are poorly tracked with SRs of 36.25% and 49.57% for modes L-Bx1 and L-487

T1, respectively, which is expectable because no sensors are located in the bell-tower during the SHM campaign.488
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Surprisingly, this is not the case of mode L-T1 which is consistently tracked with a SR of 76.2%. Note in Fig. 8489

that this mode combines certain bending movements concentrated at the roof floor of the palace, which explains490

the success in its identification given the considerable concentration of accelerometers in that level. Global modes491

are tracked with SRs between 56 and 85.5%, which agrees with our previous experience of dynamic SHM of stiff492

masonry structures. Interruptions in the frequency tracking intensify during night-time hours, when the palace493

remains closed to the public and the surrounding vehicle traffic reaches minimum levels. It is also noticeable494

in Table 1 the large environmental effects exhibited by most modes, reaching in most of them variations around495

10% their average values. Such strong effects justify the need for implementing an effective statistical pattern496

recognition for performing damage detection. To this aim, the training period has been defined from July 14th
497

2020 until May 3rd 2021 (≈9 months), followed by the damage assessment period until July 12th 2021.498
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Figure 9: Tracking of the resonant frequencies of the Consoli Palace from July 2020 until July 2021.

The time series of the crack displacements recorded by LVDTs D1, D2, and the temperature readings by499

thermo-couples T1, T2, and T3 are shown in Figs. 10 (a) and (b), respectively, and some statistics are presented500

in Table 2. The monitoring data recorded by temperature sensors T4 and T5, and LVDTs D3 and D4 are omit-501

ted in this work due to difficulties in the data transmission, which made impossible to obtain consistent readings502

throughout the monitoring period. The recordings by LVDTs D1 and D2 exhibit similar behaviours, with ampli-503

tudes ranging between a closing of 0.112 mm to an opening of 0.25 mm with respect to the initial state of the504

monitored cracks. The analysis also evidences the strong effect of environmental temperature in Fig. 10 (b) upon505

the crack displacements in Fig. 10 (a), exhibiting both seasonal and daily fluctuations. The monitored cracks tend506

to open during the winter, while closing during the summer. Also the breathing behaviours of the cracks can be ob-507

served in the zoom inserts in Fig. 10 (a), with closing during the day-time and opening during the night-time. The508
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monitored temperatures range from 0 to 35 ◦C. Note in Table 2 that sensor T3, which is almost located outdoor,509

shows significantly larger daily fluctuations compared to indoor sensors T1 and T2.510
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Figure 10: Time series of crack amplitudes of channels D1 and D2 (a), and time series of environmental temperatures of
channels T1, T2, and T3 (b) from July 2020 to July 2021.

Table 2: Statistics of measured crack displacements (D1 and D2) and temperature data (T1, T2 and T3) from July 2020 to July
2021.

Var. Mean Val. [mm] Min Val. [mm] Max Val. [mm] σ [mm]

D1 1.20E-01 -0.035 0.24 7.53E-02
D2 1.70E-01 -0.112 0.25 7.19E-02

Var. Mean Val. [◦C] Min Val. [◦C] Max Val. [◦C] σ [◦C]

T1 17.3 5.78 31.3 7.32
T2 17.4 2.69 35.5 8.07
T3 16 -0.06 34.6 8

3.3. Statistical Pattern Recognition results511

With the aim of addressing the elimination of EOCs from the resonant frequencies and the crack amplitudes,512

some preliminary correlation analyses have been conducted as reported in Figs. 11 and 12. In the subsequent513

results, only the resonant frequencies of modes with SRs above 50% are considered, namely G-By1 (Mode 1), L-514

T1 (Mode 3), G-Bx1 (Mode 5), G-T1 (Mode 5), L-T1 (Mode 7), and HO2 (Mode 9). In addition, because of space515

constraints, only the correlations with the temperature sensors yielding maximum coefficients of determination R2
516

are presented herein.517

Regarding the analysis of the resonant frequencies in Fig. 11, it is observed that negative frequency/temperature518

correlations are found in all the modes. This indicates that the global stiffness of the palace decreases as temper-519

ature rises. As previously discussed in the introduction, such a trend is quite uncommon in masonry structures520

such as slender towers or churches (see e.g. [25–27]). Most authors agree to hypothesize positive correlations521

to be driven by thermal-induced closure of micro-cracks in the mortar joints. In the case of the Consoli Palace,522

negative frequency/temperature correlations were previously found by Kita et al. [59]. Those authors attributed523

this trend to temperature-induced slackening of some metallic tie rods installed in the Arengo hall to restrain the524
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lateral thrusts exerted by the barrel-vault ceiling, as well as the possible contribution of the existing macro cracks.525

Overall, considerably linear frequency-temperature correlations are observed in the natural frequencies of modes526

3 and 4, whereas noticeably non-linear correlations are identified instead for modes 1, 5, 7 and 9, which may527

be ascribed to the existence of complex temperature-driven mechanisms or a strong dependence on unmonitored528

EOC. The large scatter in the correlation plots of modes G-By1, G-x1, and L-T1 may indicate the presence of529

thermal capacitance effects, that is some delays in heat transfer from the position of the thermocouples through530

the cross-sections of the masonry walls. The most significant correlations with temperature are found for modes531

L-By1 and G-T1 with coefficients of determination R2 of 0.85 and 0.72, respectively. This strong correlation for532

global torsional mode G-T1 is expectable since it is dominated by the shear stiffness of the external walls of the533

palace with direct exposure to the outdoor environment. Considering the global bending modes of vibration G-534

By1 and G-Bx1, the higher degree of temperature correlation is observed for mode G-By1. This can be ascribed535

to the large exposed surface of the two longitudinal walls along the north-south façades of the palace, which con-536

tribute to the largest extent to mode G-By1. Conversely, two out of the four transversal walls along the East-West537

direction of the palace and activated by mode G-Bx1 are located indoor and, thus, are less affected by the external538

environment. Regarding the temperature correlations observed for local modes L-By1 and L-T1, it is noted that539

the local bending mode is highly affected by thermal variations (R2=0.85), while the local torsional mode only540

exhibits a moderate correlation (R2=0.32). The thermal sensitivity of the former is attributable to the circumstance541

that the bell-tower is directly exposed to the outdoor environment. In this case, the flexural restraint imposed by542

the roof floor is expected not to be sensibly affected by the environmental temperature. Conversely, the restraint543

of the roof floor to torsional rotations at the base of the bell-tower might be considerably affected by tower/floor544

differential thermal expansions. Indeed, this may explain the large scatter observed for this mode, which may be545

indicative of important thermal capacitance effects. With regard to the correlations between crack amplitudes D1546

and D2 and temperature data, it is noted in Fig. 12 that crack amplitudes also exhibit negative correlations with547

the environmental temperature. Such a trend indicates that cracks tend close as the environmental temperature548

rises with the subsequent expansion of the masonry volumes, and vice versa. Almost perfect correlation is found549

for LVDT D1 (located in the South façade of the palace) with a coefficient of determination very close to 1. Con-550

versely, a more complicated correlation is found for LVDT D2 with substantial scatter around the regression lines.551

This fact again evidences the potential existence of thermal capacitance effects.552
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Figure 11: Correlations between the natural frequencies of the Consoli Palace and the environmental temperature in the training
period from July 14th 2020 until May 3rd 2021 (12878 data samples).
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Figure 12: Correlation between the crack displacements monitored by LVDTs D1 and D2 and the environmental temperature
in the training period from July 14th 2020 until May 3rd 2021 (12878 data samples).

In the subsequent analyses, an autoregressive (AR) time series model has been implemented to complete the553

time series of resonant frequencies. In general, an AR model conceives an arbitrary observation sequence x[n] at554

instant n as a linear combination of p (model order) past observations:555

x[n] = a0 +

p∑
k=1

ak x[n − k] + ε[n], (19)

where ak are prediction coefficients, a0 is a constant value, and ε[n] is a white noise process. The implemented556

algorithm (fillgaps.m Matlab function) determines local forward and reverse AR models using signal segments557

of certain length l around the missing data, and estimates the local prediction coefficients ak using the Burg’s558

method (for further details, readers may refer to reference [65]). To the purpose of this work, segments of 144 data559

points (corresponding to 3 days of monitoring data) and a model’s order of p = 3 have been found suitable and560

24



selected henceforth. Based upon the reconstructed time series, the MCD-based outliers detection algorithm previ-561

ously introduced in Section 2.2 has been applied to the time series of resonant frequencies in the training period as562

shown in Fig. 13. In particular, the dimension of the subsets has been selected according to the recommendation563

by Rousseau and Driessen [50] as h = (n + p + 1) /2 = (12878 + 6 + 1) /2 ≈ 6443. Once the optimal h-subset is564

found, all the data samples are sorted according to their Mahalanobis distances from the optimal set. Afterwards,565

20% of the data points with largest distances are considered as outliers and disregarded in the subsequent data566

normalisation. The MCD approach was not applied to the time series of monitoring data from the LVDTs because567

no significant outliers were observed, and only a few abnormal data points were manually eliminated. Note that568

no outliers elimination was conducted beyond the training period leaving the time series intact. This is crucial to569

prevent the erroneous elimination of nonconformities that may stem from any structural pathology.570
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Figure 13: Correlation analysis between the resonant frequencies of the Consoli Palace (Modes G-By1/Mode 1, L-T1/Mode
3, G-Bx1/Mode 4, G-T1/Mode 5, L-T1/Mode 7, and HO2/Mode 9) and outliers detection results. Twenty percent of the data
points with largest Mahalanobis distances to optimal h-subset selected by MCD are considered as outliers.

The intricate correlations between the dynamic/static features and the environmental conditions reported in571

Figs. 11 and 12 justify the implementation of the SMLR model previously presented in Section 2.3. Specifically, a572

total of 48 potential predictors are considered. These comprise linear and quadratic (denoted with the subscript 2)573

versions of the time series of environmental temperatures by thermo-couples T1, T2 and T3. Additionally, with the574

aim of accommodating potential thermal capacitance effects in the palace, time delayed versions of the previous575

time series are also accounted for. These include delays of 30 min (2 samples), 1 hour (4 samples), 2 hours (8576

samples), 5 hours (20 samples), 12 hours (48 samples), 24 hours (96 samples), and 48 hours (192 samples). On577
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this basis, Figs. 14 (a,b) and (c,d) show the coefficients of the LAR regressions obtained through the analysis of578

the cleansed training population of the resonant frequencies of the resonant frequency of Mode 1 (G-By1) and the579

crack amplitudes of LVDT D1, respectively. It is noted in Fig. 14 how the number of predictors with non-zero580

regression coefficients βi increases as the LAR algorithm progresses. It is interesting to note in Fig. 14 how the581

proposed method is capable of automatically finding correlations with delayed predictors, making the statistical582

model dynamic in nature. In order to select the optimal model and, therefore, the optimal set of predictors, several583

metrics have been implemented, namely RSS, BIC, and AIC. In general, the BIC and AIC criteria yielded similar584

solutions in all the considered estimators, while the RSS led to less sparse solutions. This is the case of the LAR585

analysis of Mode G-By1 and LVDT D1 as shown in Figs. 14 (b) and (d). For the sake of minimizing overfitting586

limitations, the solutions obtained by minimizing the BIC criterion have been retained. The same procedure is587

applied to all the considered estimators, and the obtained results are summarized in Table 3, including the model588

sparsities, fitting mean squared errors (MSEs), and coefficients of determination R2. In this table, the degree of589

sparsity s is indicated as the percentage ratio of regression coefficients shrunk to zero and the total number of590

potential predictors (i.e. 48).591
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Figure 14: LAR analysis of the experimentally identified resonant frequencies of Mode G-By1 (a,b) and crack amplitudes D1
(c,d). Evolution of the regression coefficients βi versus the L1 norm (|β|L1 =

∑p
i=1 |βi|) (a,c), and selection of optimal set of

predictors based upon the residual sum-of-squares (RSS), and Bayesian Information Criterion (BIC) and Akaike Information
Criterion (AIC).

Table 3: Degree of sparsity and fitting results of the SMLR analysis of the resonant frequencies and crack amplitudes of the
Consoli Palace.

Estimator Sparsity (s) MSE R2 K-S p-value∗

Mode 1 (G-By1) 32.65 1.05E-4 0.48 0.127
Mode 3 (L-T1) 38.78 4.17E-4 0.9 0.571
Mode 4 (G-Bx1) 22.45 2.13E-5 0.18 0.004
Mode 5 (G-T1) 36.73 4.95E-4 0.82 0.013
Mode 7 (L-T1) 28.57 3.89E-3 0.61 0.316
Mode 9 (HO2) 14.29 1.63E-2 0.67 0.060
Crack-meter D1 10.00 7.70E-5 0.99 0.014
Crack-meter D2 20.00 6.13E-4 0.87 0.125
∗Kolmogorov–Smirnov (K-S) normality test

The quality of the pattern recognition has been assessed by the inspection of the statistical distribution of the592

residuals. Ideally, the residuals in the training period should only contain normally distributed errors stemming593

from limitations in the identification of the healthy database of the monitored structure and marginal EOC effects.594
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For comparison purposes, the results obtained by SMLR are benchmarked against those obtained by using stan-595

dard PCA (refer to e.g. [28] for further details on its implementation). In the latter, three principal components596

(PCs) have been kept explaining more than 90% of the variance in the selected resonant frequencies. Figure 15597

shows an example of the analysed residuals corresponding to the fundamental frequency of the palace. In this598

figure, it is noted that very similar results are obtained using PCA and SMLR in statistical terms. Interestingly,599

the results obtained by PCA seem to slightly outperform those achieved by SMLR. In particular, both the mean600

(µ) and the standard deviation (σ) of the residuals obtained by PCA are lower to those obtained by SMLR. Ad-601

ditionally, the statistical moments of the residuals by PCA indicate more consistency with Gaussianity. Note that602

the kurtorsis (κ) is 3.05 and 3.02 for the SMLR and PCA models, respectively, with κ = 3 being the theoretical603

value for a perfect Gaussian distribution. Similarly, the skewness (γ) takes values of 3.5E-1 and -2.0E-2 for the604

SMLR and PCA models, respectively, being γ = 0 the theoretical value for an ideal Gaussian distribution. The605

Kolmogorov–Smirnov (K-S) normality test results of the residuals of the considered DSFs obtained by the SMLR606

model are reported in Table 3. It is noted that not all the residuals can be considered perfectly normally distributed.607

In particular, considering a standard significance level of 0.05, the residuals of the resonant frequencies of Modes608

4 and 5 and crack amplitudes D1 would fail to pass the normality test. This circumstance, which is common in609

practice, inevitably represents a certain bias in the determination of the T 2 values (Eq. (2)) and the UCL (Eq. (3)).610

In this regard, no substantial differences were found when implementing PCA, achieving the same number of611

residuals strictly passing the K-S normality test.612
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Figure 15: Analysis of residuals in the predictions of the fundamental frequency of the Consoli Palace using SMLR (a,b) and
PCA (3 PCs) (c,d) obtained through the training period from July 14th 2020 until May 3rd 2021 (12878 data samples).

The previous closer fittings by PCA are expectable given its fundamental definition. Consider that PCA is a613

dimensionality reduction approach based upon the eigenvalue decomposition of the covariance of the observation614

matrix. In this light, EOC-induced variability is assumed to be contained within the eigenvectors associated with615

the largest eigenvalues (PCs), i.e. the PCs contributing the most to the variance. Indeed, perfect reconstruction is616
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achieved when considering a number of PCs equal to the number of estimators. Nevertheless, since PCA does617

not rely on any EOC independent from the structural damage, certain defects may go unnoticed in the damage618

assessment period. This would be the case, for instance, of a consistent damage-induced shift in the resonant619

frequencies with minimal effect upon their correlations. This limitation is evidenced in Figs. 16 (a) and (b) where620

the experimentally identified resonant frequencies of the Consoli Palace throughout all the monitoring period621

along with the reconstructions obtained by SMLR and PCA are presented, respectively. After the seismic sequence622

initiated on May 15th 2021 and analysed in more details in the next section, some drops in most of the resonant623

frequencies are evident in the zoom views in Fig. 16. As further analysed below, the earthquake-induced damage624

did not significantly affect the correlations between the resonant frequencies of the palace. This fact makes the625

predictions by PCA replicate the drops found in the experimental resonant frequencies, limiting its effectiveness626

for damage detection. Conversely, the SMLR model do not predict any drop in the resonant frequencies, which627

will facilitate the identification of damage-induced anomalies in the residuals. This is particularly evident in mode628

L-By1, where the experimental data follow a shifted parallel tendency to the statistical predictions.629
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Figure 16: Prediction of the resonant frequencies of the Consoli Palace using SMLR (a) and PCA (3 PCs) (b) using a training
period from July 14th 2020 until May 3rd 2021 (12878 data samples) followed by a damage assessment period until July 18th

2021 (3631 data samples).

3.4. May 15th 2021 seismic sequence - Damage identification results630

As anticipated above, a relatively important seismic sequence initiated on May 15th 2021 with epicentre in631

Gubbio. The seismic sequence comprised six earthquakes of moderate intensity, with the strongest shock of632

magnitude Mw 4.0 at 07:56 UTC. Ground motion records for these earthquakes have been obtained from the data633

provided by the Italian Strong Motion Network (RAN) of the Department of Civil Protection (DPC) and the Italian634

Seismic Network (RSN) of the National Institute of Geophysics and Vulcanology (INGV). Specifically, seismic635

records have been taken from the Gubbio Parcheggio Santa Lucia station, which is located only 600 m far from636

the Consoli Palace. Figure 17 (a) shows the geographical location of the epicenter of the main shock and the637

29



location of the palace, and the waveforms recorded at the Gubbio Parcheggio Santa Lucia station are presented in638

Fig. 17 (b). Table 4 reports the registered seismic events, including their PGA, depth and distance from the seismic639

station. Note that the Consoli Palace is located at a distance of less than 3 km from the epicenters, thereby this640

case study represents a unique example of a monumental building subjected to impulsive near-field earthquakes.641

The location of the epicenter is almost identical to the seismic sequences started on December 18th 2013 with a642

major shock of similar intensity Mw 3.9, followed by seven aftershocks with intensities between Mw 2.9 and 3.6.643

Therefore, it is conceivable that this new sequence may have been originated by the same activation mechanism644

of the Gubbio fault.645

To illustrate the transient response of the palace, Figs. 18 (a) and (b) show the acceleration time-histories and646

time-frequency analysis of the accelerations recorded by sensor A5 under the seismic events on May 15th 2021647

at 08:07 UTC and 10:19 UTC, respectively. The time-frequency analysis is performed using the Wigner-Ville648

distribution evaluated in the frequency broadband from 0 to 10 Hz. In Fig. 18 (a), it can be observed that the649

fundamental frequency experiences a decrease down to 2.16 Hz, however during the coda it recovers to ≈2.20 Hz650

after 13 s. The recovery is not complete and a mild shift of frequency exists compared to the pre-event frequency651

of 2.26 Hz (indicated by a dashed line in Fig. 18 (a)). The largest decays in the resonant frequencies are though652

expected to have appeared during the main Mw 4.0 shock. Unfortunately, acceleration records during this event are653

not available because of an electrical interruption which affected the SHM system until 08:00 UTC. Nonetheless,654

herein we focus on the analysis of the pre- and post-earthquake behaviour of the palace, and the analysis of its655

transient response under base strong motions falls out the scope of this work.656

Table 4: Seismic events registered in May 2021 at the Gubbio Parcheggio Santa Lucia station (Latitude: 43.3558, Longitude:
12.5717, Elevation: 515 m). Source: Italian Strong Motion Network (RAN).

Event Date Mw PGA [cm/s2] Depth [km] Dist. epic. [km]

E1 15/05/21 07:56:01 UTC 4.0 102.4 9.9 1.4
E2 15/05/21 08:07:20 UTC 3.1 35.3 9.6 1.0
E3 15/05/21 10:19:17 UTC 3.0 18.07 10.5 2.4
E4 15/05/21 21:27:25 UTC 2.8 18.07 9.4 2.2
E5 23/05/21 20:51:22 UTC 3.0 17.38 8.1 1.8
E6 27/06/21 13:27:16 UTC 3.0 7.65 6.8 2.2
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Figure 17: Geographical map highlighting the epicenter of the earthquake from May 15th 2021 at 07:56:01 UTC (a), and E-W,
N-S and vertical components of the near-field accelerations recorded by the Gubbio Parcheggio Santa Lucia station (200 Hz
sampling frequency) (b).
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With the aim of assessing the potential appearance of damage in the Consoli Palace after the seismic sequence,657

novelty analyses have been conducted on the basis of the theoretical framework previously overviewed in Sec-658

tion 3.3. The Hotelling’s T2 control charts in terms of resonant frequencies and crack amplitudes are furnished659

Figs. 19 and 21, respectively. Let us firstly focus on the novelty analysis of the resonant frequencies of the palace660

in Fig. 19. For comparison purposes, the control chart obtained using SMLR is benchmarked again against the one661

resulting from using PCA (3 PCs). In this figure, a marked anomaly is clearly observable after May 15th, either us-662

ing SMLR or PCA. In both cases, the T2 distances experience a shift right after the onset of the seismic sequence,663

although some slightly better results are visible when using SMLR. Specifically, in the case of SMLR, the number664

of out-of-control processes overpassing the 95% UCL amounts to 8.55% until May 15th 2021, and increases up to665

71.95% in the remaining damage assessment period. Instead, in the case of PCA, the number of outliers amount to666

7.85% and 68.8% before and after the seismic sequence for the same confidence level. The quality of the damage667

classifications by SMLR and PCA is also appraised in Fig. 19 (b) through the assessment of the confusion ma-668

trices, including receiver operating characteristic (ROC) and Precision/Recall (PR) curves. For their calculation,669

a dense range of UCL values is swept and the frequency of outliers is computed and stored independently before670

and after the seismic sequence. Then, outliers before May 15th are assumed as false positives, while those arising671

after May 15th are considered true positives. Note that, in this particular case study, precision-recall curves may be672

more informative than ROC curves since the size of the dataset after the seismic sequence (3631 data samples) is673

considerably smaller than in-control set (12878 data samples), being the damage/undamaged classes considerably674

imbalanced. The analyses are also performed considering PCA and SMLR without outliers elimination to demon-675
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strate the importance of cleansing the training dataset. Finally, with the aim of providing further insight into the676

effectiveness of the classifications, the areas under the ROC (AUC) and Precision-Recall (PAUC) have been also677

computed as comprehensive quality metrics. All things considered, it is evident in Fig. 19 (b) that the pattern678

recognition including data cleansing (denoted with solid lines) proves far better performance using both SMLR679

or PCA. Indeed, the classification conducted without outliers elimination achieves limited areas of AUC=0.8698680

and PAUC=0.5463 in the case of SMLR, and AUC=0.8811 and PAUC=0.5002 in the case of PCA. Instead,681

when the cleansing of the training population is included, the classifications using both SMLR (AUC=0.9749,682

PAUC=0.8766) or PCA (AUC=0.9739, PAUC=0.8834) approach the perfect classifier (AUC=PAUC=1.0). With683

regard to the comparison between SMLR and PCA, very limited differences are found in terms of ROC/PR curves684

when all the selected resonant frequencies are included in the classification. Nevertheless, larger differences arise685

when inspecting the classifications obtained accounting for an increasing number of features as shown in Fig. 20.686

It is noted in Fig. 20 (a) that almost equally effective classifications are obtained using SMLR for every subset687

of features, while the classification using PCA in Fig. 20 (b) cannot achieve a comparable effectiveness until688

including all the modes in the classification. Indeed, a comparable classification is only found when including689

high-order Mode 9 (HO2). This is also confirmed by examining the AUCs of the previous ROC curves in Fig. 20690

(c), which demonstrates that the damage classification using SMLR considerably outperforms the one obtained691

by PCA. Concerning crack amplitudes, almost perfect detection can be observed in Fig. 21. In the control chart692

shown in Fig. 21 (a), the number of outliers considering a 95% UCL increases from 4.99% to 84.79% before and693

after the seismic sequence. Furthermore, the ROC and PR curves reported in Fig. 21 (b) evidence almost perfect694

classification, with global metrics of AUC=0.9943 and PAUC=0.9760.695
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Figure 21: Hotelling’s T2 control charts of the residuals of the crack amplitudes D1 and D2 of the Consoli Palace considering
SMLR (a), and quality assessment through a ROC/PR curve (b).

The characterization of the earthquake-induced decays in the resonant frequencies of the Consoli Palace is696

reported in Fig. 22. The analysis is performed by the individualized study of the residuals of the resonant fre-697

quencies obtained using both SMLR and PCA and presented in Figs. 22 (a) and (b), respectively. To facilitate698

the identification of shifts and minimize the effects of residual EOC variability, moving averages of order 192 (4699

days) are included with solid black lines. Additionally, the convergence of the average of the residuals before and700

after the seismic sequence of May 15th are also included and denoted with dashed yellow lines. Although it was701

concluded from the previous analysis in Fig. 19 that PCA may show a comparable classification performance to702

SMLR when including all the considered resonant frequencies, it is evident in Fig. 22 (b) that this approach fails to703

provide a clear interpretation of the decays in the resonant frequencies. In fact, only a clear shift starting on May704

15th is noticeable in Mode 4, while just mild deviations are recognized for Modes 1 and 3. Moreover, since PCA705

only exploits correlations between the estimators, the sign of the shifts may be hardly interpreted and/or related706

to physical phenomena. On the contrary, clear decays starting right after the onset of the seismic sequence are707

observable when implementing SMLR in Fig. 19 (a). Note that the signs of the shifts observed in this figure are all708

negative, indicating the appearance of earthquake-induced stiffness losses in the palace. It is important to remark709

that, although the number of data samples in the evaluation period is still limited, the mean convergence curves in710

Fig. 19 (a) suggest certain stabilization which allows to state the appearance of persistent damage in the palace.711

These results are further investigated in Fig. 23 through the analysis of the squared Mahalanobis distances (D2)712
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of the residuals with respect to the training population. Data samples before and after the seismic sequence are713

denoted in this figure with Regions I and II, respectively. The probability distributions of the distances in Fig. 23714

(a) (plotted in logarithmic scale and normalized to have unit maximum probability) exhibit clear shifts in terms of715

mode and mean values after the seismic sequence, which further supports the claim of the appearance of persistent716

structural damage. The earthquake-induced variations in the correlations between the resonant frequencies and the717

environmental temperature are investigated in Fig. 22 (b). In these analyses, the variation range of environmental718

temperature (channel T1) has been divided into 50 equally spaced disjoint intervals, and the statistical distribution719

of resonant frequencies has been described interval-wise through a frequentistic analysis. In is noted in this figure720

that an almost constant decay is found in Mode 3 throughout all the temperature range. Conversely, decays in721

Modes 1 and 4 concentrate in the temperature range up to 20◦, while almost no variation is observed at higher722

temperatures. Nonetheless, future analyses should appraise a longer damage assessment period to fully character-723

ize the permanent damage-induced variations in the environmental effects, covering the temperature range below724

15◦ which remains unexplored in the present work.725

Following a similar approach, Figs. 24 (a) and (b) report the obtained residuals of crack amplitudes D1 and D2726

using SMLR and the analysis of their correlations with the environmental temperature (channel T1), respectively.727

In this case, it may be clearly concluded from Fig. 24 (a) that crack amplitudes D1 (in the south façade of the728

palace) experienced almost no variation after the seismic sequence, while a steep and stable shift is found in D2729

(in the north façade of the palace). This fact is also confirmed when analysing the correlations with environmental730

temperature in Fig. 24 (b), where consistent decreases (closing) are found in the whole temperature range.731
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Figure 22: Residuals of the first three considered resonant frequencies of the Consoli Palace using SMLR (a) and PCA (b).
Black solid lines represent the moving averages of order 192 (4 days) of the residuals, while yellow dashed lines represent the
convergence of the mean values of the residuals before and after the seismic sequence occurred on May 15th 2021.
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Figure 23: Identification of earthquake-induced decays in the resonant frequencies of Modes 1, 3 and 4 of the Consoli Palace.
Statistical analysis of the distribution of Mahalanobis distances of the residuals against the training population (a), and char-
acterization of the earthquake-induced damage in the frequency/temperature correlations (b). Error bars in (b) indicate the
standard deviation.
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Figure 24: Residuals of crack amplitudes D1 and D2 of the Consoli Palace using SMLR (a), and identification of earthquake-
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and after the seismic sequence occurred on May 15th 2021. Error bars in (b) indicate the standard deviation.
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To conclude the previous analysis, Table 5 summarizes the identified earthquake-induced damage in the Con-732

soli Palace. To compute the earthquake-induced shifts in the considered estimators, the statistical moments of733

the residuals presented in Figs. 22 and 24 are estimated by non-parametric bootstrap with 800 repetitions. As734

a measure of the uncertainty in the identification, the quantities in parentheses in Table 5 indicate the standard735

deviations of the empirical mean values computed in the bootstrap repetitions. In terms of resonant frequencies,736

decays concentrate in Modes 3 (L-T1), 5 (G-T1), 1 (G-By1) and 4 (G-Bx1) in decreasing order. Note that, given737

the relative orientation of the palace with respect to the epicenter of the main shock (see Fig. 17 (a)), damage is738

expected to concentrate along the y-direction of the building, primarily affecting the first bending mode along that739

direction (G-By1) as well as the torsional modes (L-T1 and G-T1). This claim is supported by the results reported740

in Table 5, where the decays in the first order bending modes along the y- and x-directions amount to 0.62 and741

0.54%, respectively. Besides, the largest decays are found for torsional Modes 3 (local) and 5 (global) with val-742

ues of 2.04 and 0.93%, respectively, indicating that the seismic events had largest influence upon the torsional743

stiffness of the palace. Interestingly, an increase of 0.62% is found for local Mode 9, which may indicate some744

earthquake-induced rearrangement of the tower/building interaction. However, given the limited performance of745

the data normalization of this mode shown in Fig. 16, as well as the largest uncertainty found in its estimation746

as reported in Table 5, the analysis of a longer monitoring period would be required to confirm whether this is a747

persistent variation or not. It is important to remark that no significant variations are found in the MAC values748

between the mode shapes after and before the seismic sequence, with values very close to 1 as reported in Table 5.749

No clear persistent variations were observed either in the time series of MAC values all throughout the monitoring750

period, thereby their analysis has been omitted herein. This circumstance may indicate the registered damage is751

very moderate and sustains no severe structural risk to the palace. In fact, preliminary in-situ inspections have752

not revealed any new pathology in the palace, which suggests that the developed damage remains at a degree not753

observable by visual examinations. With regard to the crack amplitudes, the results in Table 5 confirm that crack754

D1 was not affected by the seismic sequence, while a clear closure of crack D2 of about 8.9E-2 mm is found. Note755

that LVDT D2 is located bridging a major crack located in the north façade of the building, which was presumably756

originated as a result of an incipient overturning failure mechanism of the western façade. Instead, LVDT D1 is757

monitoring a crack relating the local overturning of the loggia in the south façade. Following the previous discus-758

sion on the incidence direction of the seismic shocks, it is reasonable to state that these will mainly affect the north759

façade of the palace. Finally, it is important to emphasize that, whilst the detected anomaly in D2 is significant in760

relatively terms, the closure of crack D2 is very limited and supports the previous statement on the mild severity761

of the earthquake-induced damage.762
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Table 5: Characterization of the shifts in the resonant frequencies and crack amplitudes of the Consoli Palace after the May
15th 2021 seismic sequence. Subscripts I and II relate the statistical moments calculated before and after the seismic sequence,
respectively.

July 17th 2020 to May 15th 2021 May 15th 2021 to July 18th 2021 Comparison
Estimator y Mean ȳI Std. dev. σy,I Mean ȳII Std. dev. σy,II 100 · (ȳII − ȳI )/ȳI MAC

Mode 1 (G-By1) [Hz] 2.319 (±1.33E-04) 0.020 2.304 (±3.37E-04) 0.016 -0.62 0.977
Mode 3 (L-By1) [Hz] 3.514 (±1.99E-04) 0.068 3.442 (±4.26E-04) 0.041 -2.04 0.943
Mode 4 (G-Bx1) [Hz] 3.750 (±1.20E-04) 0.014 3.730 (±4.69E-04) 0.027 -0.54 0.903
Mode 5 (G-T1) [Hz] 4.186 (±2.38E-04) 0.057 4.147 (±6.39E-04) 0.031 -0.93 0.974
Mode 7 (L-T1) [Hz] 6.477 (±8.03E-04) 0.136 6.479 (±1.79E-03) 0.110 0.04 0.962
Mode 9 (HO2) [Hz] 7.971 (±1.61E-03) 0.292 8.020 (±3.57E-03) 0.248 0.62 0.977
Crack D1 [mm] 0.115 (±7.20E-05) 0.074 0.122 (±1.93E-04) 0.037 - -
Crack D2 [mm] 0.120 (±2.21E-04) 0.072 0.031 (±4.26E-04) 0.036 - -

4. Conclusions763

This paper has presented the development of a novel methodology for statistical pattern recognition and iden-764

tification of earthquake-induced structural damage. The proposed methodology comprises a first data cleansing765

stage using the MCD method to mitigate the adverse effects related to the existence of outliers in the training popu-766

lation. Afterwards, a sparse multivariate linear regression model is trained using LAR to eliminate the influence of767

EOC upon the dataset of damage-sensitive features. The proposed SMLR model allows to automatically identify768

the optimal set of EOC predictors (both static and dynamic), with the subsequent enhancement in the data normal-769

ization and minimal need for expert judgement. The effectiveness of the proposed approach is demonstrated with770

an application case study of a monumental masonry palace, the Consoli Palace in Gubbio. The Consoli Palace771

has been instrumented since July 14th 2020 with an aggregated static/dynamic/environmental SHM system. A772

seismic sequence of moderate intensity hit the palace on May 15th to May 27th 2021, including a main earthquake773

of magnitude Mw 4.0 followed by five 2.9 <Mw< 3.6 aftershocks with epicenters located only 2-3 km far from774

the palace. The reported results have demonstrated the effectiveness of the proposed approach to detect and quan-775

tify the earthquake-induced effects upon the resonant frequencies and the amplitudes of two major cracks of the776

Consoli Palace. The key findings and contributions of this work can be summarized as follows:777

• A new damage identification methodology is proposed combining data cleansing and sparse multivariate778

regression. The reported results have demonstrated that the proposed approach can handle large sets of779

potential predictors in a fully automated way, including both static and dynamic (i.e. time delayed) EOC780

time series with minimal assistance by expert judgement.781

• The reported results have highlighted the critical influence of data normalisation for achieving effective782

damage identification. Additionally, it has been evidenced that output-only data normalisation models such783

as PCA may fail at quantifying structural damage, providing anomalies in the residuals hardly attributable784

to physical phenomena.785

• Maximum earthquake-induced decays of 2% are found for the fundamental bending and torsional modes of786

the Consoli Palace. Slightly stronger effects are found in the bending mode along the east-west direction787
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of the palace, which is conceivably explained by the relative orientation of the palace with respect to the788

incidence direction of the seismic shock. This observation is also justified by the analysis of the static data,789

where a persistent crack closure in the north façade of the palace has been clearly identified.790

• No significant earthquake-induced effects are observed upon the time series of mode shapes of the palace.791

This circumstance, along with the impossibility to find new damage patterns in the palace by preliminary792

in-situ inspections, may indicate that the newly acquired damage condition remains at an early stage of793

development not visually observable and with no critical risk to the structural integrity of the building.794
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