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Abstract

The inherent vulnerability of masonry structures to seismic events makes Structural Health Monitoring of pivotal
importance for the conservation of architectural heritage. In this regard, methods based on Operational Modal
Analysis are becoming popular for damage identification. Nonetheless, these techniques may fail at detecting
local damages with limited effects on the modal properties of the system. Recent studies report seismic inter-
ferometry to be a promising alternative for seismic damage identification of structures. This technique assesses
the travelling times of propagating seismic waves between pairs of sensors, which are directly related to the local
stiffness of the structure. Therefore, damage-induced degradation can be tracked through wave time delays. While
some encouraging results have been reported on the application of acceleration-based seismic interferometry to
reinforced-concrete structures, the number of works on masonry structures is far scarce. In this light, this pa-
per is aimed at investigating the suitability of acceleration- and strain-based seismic interferometry for damage
identification in historic masonry towers. To do so, an analytical layered Timoshenko beam model is devised
for the wave propagation analysis of masonry towers under base motion. Parameter sensitivity analyses are first
reported, with a special focus on the effects of dispersion upon system identification results. Secondly, a vali-
dation case study of a 41.6 m high masonry tower is presented. A realistic three-dimensional non-linear finite
element model is built and subjected to seismic inputs causing increasing damage severities. The numerical re-
sults, used as pseudo-experimental data, demonstrate that it is possible to identify (detect, localize and quantify)
earthquake-induced damages by wave propagation analysis of strain/acceleration records and inverse calibration
of the proposed Timoshenko beam model. A particularly notable result is the possibility of detecting, localizing
and, to some extent, quantifying earthquake-induced damage in a fully data-driven way by simply measuring wave
travel times between pairs of sensors.

Keywords: Masonry towers, Wave propagation, Wave dispersion, Damage identification, Smart materials,
Structural Health Monitoring

1. Introduction1

There is a great awareness of the importance of conservation and safeguarding of heritage buildings as they2

constitute vital assets with multiple positive socio-economic effects. According to the World Heritage List drawn3

up by UNESCO, nearly half of the heritage sites are located in Europe, where Italy heads the list with 54 sites. It4

is in Italy where the conservation of heritage buildings is specially critical due to its high seismicity, as evidenced5

by recent severe events such as the Norcia Mw 6.5 earthquake occurred on October 30th 2016 [1]. In addition,6

masonry structures, which represent a sizeable portion of the heritage assets, are characterized by low tensile7

strength and intrinsic vulnerability to aging deterioration [2], whereby the assessment of their health condition is8

of the utmost importance. In this context, Structural Health Monitoring (SHM) has proved to offer an efficient9

solution, encompassing Non-Destructive Testing (NDT) and damage identification tools for the assessment of10

the integrity of structures and preventive condition-based maintenance [3, 4]. In particular, vibration-based SHM11

has received most attention in the realm of historic structures (just to name a few, see e.g. [5, 6, 7, 8, 9, 10]).12

Output-only or Operational Modal Analysis (OMA) techniques exploit acceleration records to extract the modal13

information of the system, namely natural frequencies, damping ratios, and mode shapes [11]. A large number of14

output-only algorithms can be found in the literature, including among others Eigensystem Realization Algorithm15

(ERA) [12], Natural Excitation Technique (NExT) [13], Stochastic Subspace Identification (SSI) [14], Frequency16

Domain Decomposition (FDD) [15], or Blind Source Separation (BSS) [16]. In this light, these techniques offer17
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solutions for condition monitoring that are physically based on detecting damage-induced changes in the identified18

modal features [17, 18, 19].19

While highly effective for the identification of damages affecting the overall stiffness of structures, OMA may20

fail at detecting localized damages with limited effect on the modal properties of the system. As an alternative,21

wave-propagation approaches conceive the seismic response of a structure as a superposition of waves propagating22

through the structure, reflecting from its boundaries and interfering [20, 21, 22]. These techniques, also termed23

seismic interferometry, exploit the seismic pulses or Impulse Response Functions (IRFs) generated by deconvo-24

lution of the recorded seismic response at different receivers in the structure [23, 24, 25]. The scattering and25

attenuation of these deconvolved waveforms illustrate the propagation of shear waves through the structure, which26

substantially depends upon the intrinsic characteristics of the structure, namely wave velocity, attenuation factor,27

resonant frequencies, mode shapes, etc. Interestingly, unlike modal methods, wave propagation approaches show28

no sensitivity to soil-structure interaction effects [23, 26, 27, 28]. Hence, the stiffness degradation produced by29

damage leads to local delays in the wave propagation through the damaged part of the structure [29, 24, 25, 30].30

It is thus possible to devise a sensing network with a limited number of sensors capable of tracking wave delays,31

or alternatively damage-induced effects on the local stiffness, for damage identification purposes. Another advan-32

tage of seismic interferometric approaches for damage identification compared to OMA-based techniques is that33

they work with earthquake records, so that issues related to signal-to-noise ratios and temperature effects are kept34

minimal.35

Despite not being an entirely new approach, only a few publications in the literature have reported on wave36

propagation methods for damage identification and mostly on Reinforced Concrete (RC) buildings. It is worth37

noting the work by Trifunac et al. [31] who investigated the damage-induced effects on wave travel times in a38

7-storey RC building in Van Nuys (California, US) during the 1994 Northridge Mw 6.4 earthquake. Their results39

demonstrated that earthquake-induced damages can be estimated through increases in wavenumbers (i.e. slower40

phase velocities) between pairs of sensors surrounding the damage. Another noteworthy contribution was done41

by Todorovska and Trifunac [24] who studied the changes in wave travel times in a 6-story RC building in El42

Centro (California, US). By deconvolving the recorded strong motion in three non-overlapping moving-windows43

(before, during and after the largest registered amplitude response), their results reported good correlation be-44

tween the variations in the wave travel times and the observed earthquake-induced damages. Ebrahimian and45

Todorovska [32, 33] developed a homogeneous and a layered Timoshenko beam model of high-rise buildings46

for system identification based on wave propagation analysis of earthquake records. Through a non-linear fitting47

of the developed analytical solution against the identified waveforms, their results demonstrated the importance48

of bending deformation and rotary inertia in the deformation of high-rise buildings during seismic events. Very49

good agreements with experimental data were reported for a 9-storey RC building in Pasadena and a 54-storey50

steel-frame building in Los Angeles (California, US), and their results highlighted the contribution of bending51

deformation to the dispersive response of buildings under seismic actions. Furthermore, some experiences can be52

found in the literature on the extension of deconvolution seismic interferometry to long duration ambient noise53

measurements. It is worth noting the work by Prieto et al. [34] who proposed a temporal averaging scheme54

of deconvolved ambient vibration records divided into overlapping windows. Their approach was successfully55

tested on a 17-story steel moment-frame building located at the University of California. Similarly, Nakata and56

Snieder [35, 36] applied deconvolution interferometry to ambient vibration data recorded in an 8-storey build-57

ing in Japan. In that work, the wave velocities and amplitude decays were computed from the first upgoing and58

downgoing waves, that is to say the first casual and acausal waveforms propagating for both positive and negative59

times. More recently, Sun et al. [37] proposed a Bayesian probabilistic updating of building models with response60

functions extracted from ambient noise measurements using seismic interferometry. Those authors demonstrated61

the effectiveness of the proposed algorithm with a case study of a 21-storey RC building. On the whole, while62

considerable effort has been devoted to the monitoring of RC buildings, the number of applications to masonry63

structures is sorely lacking.64

In the realm of historic masonry structures, the monitoring of static parameters, such as strains, tilts or dis-65

placements, offers an alternative to modal analysis for assessing the performance of structures and tracking load66

paths changes in order to infer the presence of damages [3]. Depending on the desired outcomes, diverse ap-67

proaches and techniques are available. Very often, Linear Variable Displacement Transducers (LVDTs) are used68

in masonry structures for the monitoring and tracking of crack amplitudes [38], while local vertical stresses and69

elastic moduli can be monitored by flat-jacks [39]. Moreover, different sensing technologies can be used which70

include, among others, laser scanning [40], Ground Penetrating Radar (GPR) [41], 3D Digital Image Correlation71

(DIC) [42], sonic tests [43], and Fiber Bragg Grating (FBG) sensors [44]. More recently, advances in the fields72

of Materials Science and Nanotechnology have enabled the development of innovative nano- or micro-modified73

composites with multifunctional capabilities, offering a vast potential for SHM applications [45]. Particularly74

promising in civil infrastructures are the self-sensing cement-based composites, often termed “smart concretes”.75
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These materials are typically enriched with carbon-based fillers such as carbon black, carbon nanofibers, carbon76

nanotubes or graphene [46]. These do not only fulfil an enhanced structural function, but more interestingly77

they also exhibit self-sensing piezoresistive properties apt for being exploited in a condition-based maintenance78

approach [47]. These novel composite materials outperform conventional sensing technologies in terms of archi-79

tectural invasiveness and long-term reliability, since it is the own structure which monitors its condition. Different80

application lines of smart concretes can be found in the literature, comprising integral smart structures [48], em-81

bedded sensors [49], as well as smart skins [50]. In the realm of masonry structures, the concept of self-sensing82

structural masonry, also termed “smart bricks”, was first introduced by Downey et al. [51]. Those authors manu-83

factured burned clay bricks doped with titanium dioxide and experimentally characterized their strain self-sensing84

capabilities. Their results demonstrated that it is possible to detect damage-induced variations in the load paths85

through electrical resistivity measurements in the smart bricks and, therefore, conduct condition-based mainte-86

nance applications. On the whole, strain-based monitoring systems play a predominant role in the monitoring of87

historic structures. Nevertheless, to the best of the authors’ knowledge, the analysis of wave propagation on the88

basis of strain-based monitoring systems remains unexplored.89

In view of the aforementioned literature review, this paper is aimed at investigating the application of acceleration-90

and strain-based wave propagation analysis for damage identification in masonry towers under seismic actions. To91

do so, an analytical model is devised considering a cantilever Timoshenko beam model of masonry towers excited92

by base motion. This model considers both uniform and non-uniform layered Timoshenko beams, and represents93

an extension of the models previously reported by Ebrahimian and Todorovska [32, 33]. Here, the pulse propaga-94

tion of shear waves is extracted from acceleration and normal strain transfer functions at different heights along95

the structure, and governing dimensionless parameters are analysed for a range of masonry towers. The wave96

dispersion is derived from the uncoupled equation of motion of the beam, whereas pulse propagation is analysed97

using impulse response functions. For damage identification purposes, a layered Timoshenko beam model is de-98

rived analytically using the propagator matrix approach. Detailed parametric analyses are first presented from99

the perspective of structural identification, with special focus on the effects of dispersion on the identification of100

travelling pulses. Secondly, a representative validation case study of a 41.6 m high isolated masonry tower under101

ground acceleration is also presented. To this aim, a realistic three-dimensional non-linear Finite Element Model102

(FEM) is built and subjected to different earthquake loadings with increasing peak ground accelerations to generate103

pseudo-experimental data. Wave propagation analyses are conducted by the post-processing of strain/acceleration104

records at different heights of the FEM, and damage identification is performed by model updating of the proposed105

Timoshenko beam model. Since only seismic excitations are considered, noise effects are disregarded in this work106

without loss of generality due to the large signal-to-noise ratios typically present in such cases.107

The remaining of this paper is organised as follows. Section 2 introduces the concept of seismic interferometry108

through acceleration/strain sensors for earthquake-induced damage identification in masonry towers. Section 3109

overviews the formulation of the wave propagation problem in a Timoshenko beam model excited by base motion.110

Section 4 presents the numerical results and discussion and, finally, Section 5 concludes this work.111

2. General concept of deconvolution seismic interferometry112

Seismic interferometry is a technique originally proposed in Geophysics [52] to extract the seismic wave113

propagation characteristics of a structure under seismic actions. In essence, this technique is aimed at constructing114

a Green’s function describing the wave propagation between a set of receivers (e.g. geophones, hydrophones, or115

accelerometers) distributed along the monitored structure [53, 54]. The data processing of the recorded signals can116

be based on cross-correlation, cross-coherence or deconvolution [55]. In particular, deconvolution interferometry117

has been reported to be well-suited for the monitoring of mono-dimensional structures such as buildings [29, 24,118

25, 30]. It is important to note that this technique differs from NDT of materials using ultrasonic waves. Since such119

waves require the use of generators and are quickly attenuated, their applicability is limited to the identification120

of defects in local members [56]. Conversely, seismic waves exhibit larger wavelengths of around 5-500 m and121

experience little attenuation, thereby seismic interferometry can be used to characterize a large-scale building122

without any actuator. Hence, given that the wave travel times solely depend on the intrinsic characteristics of the123

structure, the appearance of damages can be tracked as wave delays between pairs of sensors.124

In this paper, let us consider a masonry tower equipped with an array of sensors monitoring its response u(z, t)125

along the height 0 ≤ z ≤ H, where t is the time variable and H the total height of the tower. The deconvolution126

interferometry technique allows getting an insight into the propagation of waves between two arbitrary sensors,127

considering one sensor at level zre f as reference input signal u(zre f , t) and the other at level z as output signal128

u(z, t). Assuming the tower as a linear time-invariant system, the reference and output signals are related in the129

time domain t as [24]:130
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u(z, t) = u(zre f , t) ∗ h(z, zre f , t) =

∫ t

0
u(zre f , τ) h(z, zre f , t − τ)dτ, (1)

or, alternatively, in the frequency domain ω as:131

û(z, ω) = û(zre f , ω) ĥ(z, zre f , ω), (2)

where ∗ indicates convolution, and a hat indicates Fourier transform. Functions ĥ(z, zre f , ω) and h(z, zre f , t) denote132

the transfer function (TF) and the impulse response function (IRF) between the output signal u(z, t) and the input133

signal u(zre f , t), respectively. Note that, in general, the signals of the sensors, u(z, t) and u(zre f , t), may correspond134

to different physical measurements such as acceleration, displacement or strain. Th IRFs physically relate the135

responses of the system at different levels z to a virtual Dirac Delta impulse δ(t) at level zre f . In other words, these136

functions represent the Green’s functions of the system at different heights of the structure and characterize the137

propagation of an input pulse, applied at zre f , between the receivers deployed in the structure [55]. Furthermore,138

the IRFs can be computed from any recorded response (e.g. displacements, velocities, accelerations or strains),139

by taking the inverse Fourier transform of the corresponding TFs as follows:140

h(z, zre f , t) = F −1
{̂
h(z, zre f , ω)

}
= F −1

{
û(z, ω)

û(zre f , ω)

}
, (3)

where F −1 denotes the inverse Fourier transform. The travelling times of the shear waves propagating in the141

structure can be computed using the IRFs and, subsequently, damages can be inferred from wave delays. It is142

important to note that the response at any level can be used as the reference, thus defining a virtual source. In the143

case of structures under seismic actions, the IRFs are commonly obtained by considering a virtual source either at144

the base or the roof. In the latter case, the input source does not coincide with the physical source, i.e. the base145

acceleration. Moreover, although acceleration records are typically used to describe the propagation of seismic146

waves, other physical measurements can be also used. In this work, the possibility of using strain-based waves is147

also investigated.148
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Figure 1: Schematic of a possible SHM system for a masonry tower for damage detection and localization using strain sensors
and deconvolution seismic interferometry.

As an illustrative example, Fig. 1 sketches a possible SHM system for damage detection and localization in149

a masonry tower using strain sensors and deconvolution seismic interferometry. In this case, four strain sensors150

(e.g. LVDTs, dynamic strain gauges or smart bricks) are deployed along the height of the tower and, therefore,151

the structure can be conceived as an ideal 4-layered medium. Note that there is no need to install a strain sensor152
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at the roof level because of the strain-free condition at that location. In order to characterize the seismic input153

and conduct wave propagation analyses considering virtual sources both at the base and at the roof levels, at least154

two accelerometers must be installed at these reference levels. Therefore, the IRFs are computed by deconvolving155

the recorded strain signals with respect to the acceleration at the reference level. In this regard, Fig. 1 also shows156

a hypothetical representation of the strain IRFs considering a virtual source at the roof level. Each section of157

the tower delimited by pairs of consecutive sensors can be characterized by a value of shear wave velocity vi.158

Considering the approximate ray theory, that is to say, ray paths obeying the Snell’s law, it is possible to identify159

the ray paths along the tower as those marked in red in the example of Fig. 1. Hence, the shear wave velocity160

in the i-th layer of height li can be computed by the identified wave travel time τi as vi = li/τi. Moreover, given161

that the velocity of the pulse vi is directly related to the local stiffness of the tower, damage-induced stiffness162

reductions in the i-th layer can be detected by increases in the wave travel time τi. Note that the spatial resolution163

of the damage localization is limited by the number of sensors, being two (base and roof) the minimum number164

that is needed to detect damages in the structure. While the deconvolution interferometric approach can be fully165

data-driven, theoretical wave propagation models are valuable tools to correctly identify the ray paths and interpret166

the waveforms. For this purpose, a layered Timoshenko beam model for wave propagation analysis in masonry167

towers is proposed hereafter.168

3. Theoretical formulation169

In this section, the non-uniform viscoelastic Timoshenko beam model proposed by Ebrahimian and Todor-170

ovska [32, 33] is overviewed, and it is extended to account for the propagation of strain waves. Specifically,171

Section 3.1 first outlines the theoretical formulation of wave dispersion in uniform Timoshenko beams. Secondly,172

Section 3.2 extends this formulation with a propagator matrix approach for multi-layered Timoshenko beams and,173

finally, Section 3.3 details the calculation of acceleration and strain IRFs.174

3.1. Visco-elastic Timoshenko beam model175

Firstly, the masonry tower is modelled as a cantilever uniform visco-elastic Timoshenko Beam (TB) subjected176

to seismic base motion ug as sketched in Fig. 2. The beam has a cross-section A, second moment of inertia I, shear177

correction factor κ, width W, and height H. The material is defined as elastic isotropic with Young’s modulus E,178

shear modulus G, and mass density ρ. The longitudinal and shear wave velocities in the material are defined as179

cL =
√

E/ρ and cS =
√

G/ρ, respectively [32].180

x

z

ug ur

θγ ∂u
∂z dz

M+dM

M

V+dV

V

ρA      dz       ∂2u
∂t2 ρI       dz       ∂2θ

∂t2

v

H

W

Figure 2: Uniform cantilever Timoshenko beam model.

The Timoshenko beam theory takes into account both shear deformation and rotational bending effects. To181

this aim, this theory distinguishes θ(z, t) and γ(z, t) as the angles representing the rotations of an infinitesimal beam182

element located at height z due to bending and shear effects, respectively. Let us denote u(z, t) = ug(t) + ur(z, t) the183

absolute horizontal displacement of the centre of gravity of the element with respect to the origin, where ur(z, t)184

stands for relative displacement. In addition, let us define v(x, z, t) as the longitudinal displacement of the beam.185

Assuming small deformations, one can write the following kinematic conditions:186
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∂u
∂z

= θ + γ, v = −x θ, (4)

and the shear forces V and bending moments M can be expressed in terms of rotations as:187

V = κAGγ, M = −EI
∂θ

∂z
. (5)

Damping is included in this work by using the Kelvin-Voigt material damping model. According to this188

model, dissipative damping forces are taken into account by defining bending and shear stresses, σx and τxy, as189

linear functions of the strain velocity through two constants cσ and cτ, what leads to the following stress-strain190

relations:191

σx = σe
x + σd

x = Eεx + cσ
∂εx

∂t
, (6)

192

τxy = τe
xy + τd

xy = Gγxy + cτ
∂γxy

∂t
, (7)

where superscripts “e” and “d” denote elastic and damping stresses, respectively. If we further decompose the193

damping constants cσ and cτ as cσ = µσ E and cτ = µτ G, and we assume the same viscosity constant for both194

types of deformation, µb = µs = µ, the Kelvin-Voigt damping model can be readily introduced by replacing E and195

G by E
[
1 + µ (∂/∂t)

]
and G

[
1 + µ (∂/∂t)

]
, respectively.196

The equations of motion of the TB can be obtained by applying the Hamilton’s Principle to the Lagrangian L197

and the Rayleigh dissipation function R of the system:198

δ

∫
(L −R) dt = δ

∫
(T − U −R) dt = 0, (8)

with T being the total kinematic energy of the beam (including the rotary inertia effect), and U the potential energy199

due to bending and shear deformations. After some manipulations, Eq. (8) results in the following coupled system200

of equations:201

ρAü − κGA
(
1 − µ ∂

∂t

) (
u′′ − θ′) = 0, (9)

202

ρIθ̈ − EI
(
1 − µ ∂

∂t

)
θ′′ − κGA

(
1 − µ ∂

∂t

) (
u′ − θ) = 0, (10)

where dots and commas stand for time and spatial derivatives, respectively. If we denote D = [u, θ]T, Eqs. (9) and203

(10) can be rewritten in a decoupled system of fourth-order differential equations as:204

EID′′′′+ρAD̈ +
ρ2

κG
¨̈D−ρI

(
1 +

E
κG

)
D̈′′+µGIḊ′′′′− ρµI

κ

...
D′′+µ

(
−ρI

...
D′′ + EIḊ′′′′ + µGID̈′′′′ + ρA

...
D
)

= 0, (11)

or in a more compact way as:205

c2
Lc2

S κ

(
1 + µ

∂

∂t

)2
∂4D
∂z4 −

(
c2

L + κc2
S

) (
1 + µ

∂

∂t

)
∂4D
∂z2∂t2 +

κc2
S

rg2

(
1 + µ

∂

∂t

)
∂2D
∂t2 +

∂4D
∂t4 = 0, (12)

with rg being the radius of gyration rg =
√

I/A. The solutions of Eq. (12) satisfy the following boundary condi-206

tions:207

θ(0, t) = 0, u(0, t) = ug(t) at z = 0, (13)
208

V(H, t) = M(H, t) = 0 at z = H. (14)

Assuming harmonic excitations, the solutions for transverse displacements and rotations can be defined as209

one-dimensional waves as u(z, t) = ei(kz−ωt) = U(z)e−iωt and θ(z, t) = ei(lz−ωt) = Θ(z)e−iωt, respectively, where ω210

stands for angular frequency and i is the imaginary unit. Upon substitution of these solutions into Eq. (12), the211

equation for transverse displacements u can be rewritten as:212

c2
Lc2

S κ (1 − iωµ)2 k4 −
(
c2

L + κc2
S

)
(1 − iωµ) k2ω2 − ω2 κc

2
S

rg2 (1 − iωµ) + ω4 = 0. (15)
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Note that Eq. (15) establishes a relationship between the wavenumbers k and the frequency ω, also called a213

dispersion relation. Thence, the velocities of the waves are functions of the frequency. More specifically, the214

travelling waveform can be defined by the phase and group velocities as cp = ω/k and cg = ∂ω/∂k, respectively.215

Furthermore, note that the dispersion relation for rotations is identical to Eq. (15) and, therefore, so are their216

wavenumbers (l = k), phase and group velocities. In order to non-dimensionalize the equations for further analysis,217

a dimensionless frequency, Ω, a moduli ratio, R, and a dimensionless damping constant, M, are introduced as218

follows [32]:219

Ω =
ωrg

cS
, R =

G
E

=
c2

S

c2
L

, M =
µcS

rg
. (16)

In terms of these dimensionless parameters, the four roots of Eq. (15) yield the following dimensionless220

wavenumbers:221

K1,2 = ±k1rg = ±

√√√(
1
α

) (
1
κ

+ R
)

+

√(
1
α2

) (
1
κ
− R

)2

+
4R
αΩ2 , (17)

222

K3,4 = ±k2rg = ±

√√√(
1
α

) (
1
κ

+ R
)
−

√(
1
α2

) (
1
κ
− R

)2

+
4R
αΩ2 , (18)

with α = 1 − iωM. Hence, the solutions of the lateral displacements U(z) and rotations Θ(z) in the frequency223

domain read:224

U(z) = C1eik1z + C2e−ik1z + C3eik2z + C4e−ik2z, (19)
225

Θ(z) = B1eik1z + B2e−ik1z + B3eik2z + B4e−ik2z, (20)

where Ci, Bi, i = 1, . . . , 4 are constants determined by the boundary conditions in Eqs. (13) and (14). Substitution226

of Eqs. (19) and (20) into the coupled differential equations in Eqs. (9) and (10) leads to the following relations:227

B1
C1

= −B2
C2

= − i
rg

(
Ω2

K1κα
− K1

)
, (21)

228

B3
C3

= −B4
C4

= − i
rg

(
Ω2

K2κα
− K2

)
, (22)

and the boundary conditions in Eqs. (13) and (14) imply:229



C1
C2
C3
C4


= A−1



ug(t)
0
0
0


, (23)

with:230

A =



1 1 1 1
−

(
Ω2

ακK1
− K1

) (
Ω2

ακK1
− K1

)
−

(
Ω2

ακK2
− K2

) (
Ω2

ακK2
− K2

)
(

Ω2

ακ
− K2

1

)
eiK1(H/rg)

(
Ω2

ακ
− K2

1

)
e−iK1(H/rg)

(
Ω2

ακ
− K2

2

)
eiK2(H/rg)

(
Ω2

ακ
− K2

2

)
e−iK2(H/rg)

− (1/K1) eiK1(H/rg) (1/K1) e−iK1(H/rg) − (1/K2) eiK2(H/rg) (1/K2) e−iK2(H/rg)


. (24)

Finally, the bending-induced normal strain at a beam depth x can be directly obtained by the kinematic con-231

dition in Eq. (4) as ε(x, z, t) = ∂v/∂z = −x ∂θ(z, t)/∂z = Υ(z) eiωt. The strain in the frequency domain Υ(z) is232

extracted from Eq. (20) as:233

Υ(z) = −ik1B1eik1z + ik1B2e−ik1z − ik2B3eik2z + ik4B4e−ik2z, (25)

whereby it is concluded that the velocities of the waveforms arising from the strain field are identical to those234

obtained by monitoring lateral displacements in Eq. (19) or, alternatively, velocities or accelerations. Let us235

remark that, unlike acceleration-based wave propagation approaches, the position of strain transducers must be236

adequately tailored to maximize the bending-induced strains (typically x = W/2).237
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3.2. Visco-elastic layered Timoshenko beam model238

In order to include non-uniform stiffness distributions and damage-induced variations, the tower is herein239

modelled as a visco-elastic TB with piecewise continuous properties as shown in Fig. 3. In particular, n layers240

are numbered from bottom to top, and are characterized by their height li = zi − zi−1, longitudinal and shear241

wave velocities ci
L and ci

S , mass density ρi, and viscosity constants µi, i = 1, . . . ,n. It is important to note that242

such a modelling framework allows the representation of damage in the shape of local reductions in the layers’243

Young’s modulus and/or shear modulus or, alternatively, local increases in the wavenumbers of the propagating244

pulses in virtue of Eqs. (17) and (18). Similar assumptions are common in damage identification techniques via245

computational model updating, being suitable for early-stage damage where the structure can be hypothesized to246

remain elastic. The layering of the model allows the definition of multiple flaws located at different heights of the247

tower, being the number of sensors deployed in the structure the only limiting factor in the spatial resolution of248

the damage localization. Moreover, the inverse calibration of this model makes it possible to quantify damage in249

terms of local reductions in the layers’ elastic properties.250

x

z

 cS , cL , μ , ρ
1 1 1 1

 cS , cL , μ , ρ
2 2 2 2

 cS , cL , μ , ρ
3 3 3 3

 cS , cL , μ , ρ
n n n n

 cS , cL , μ , ρ
n-1 n-1 n-1 n-1

...

z1

z2

z3

zn-2

zn-1

zn

Figure 3: Cantilever layered Timoshenko beam model representing a masonry tower.

In a similar way to the uniform TB, harmonic excitations are assumed in such a way that u(z, t), θ(z, t), M(z, t)251

and V(z, t) can be written as:252

u(z, t) = U(z) eiωt, θ(z, t) = Θ(z) eiωt,

M(z, t) = M (z) eiωt, V(z, t) = V (z) eiωt.
(26)

Considering the equilibrium of a differential beam element (see Fig. 2), the state of every layer can be described253

by the following matrix equation:254

∂f(z)
∂z

= B f(z), (27)

where f(z) = [U(z),Θ(z),M (z),V (z)]T denotes the stress-displacement vector or state vector, and matrix B takes255

the form [33]:256

B =



0 1 0 1
κGA(1−iωµ)

0 0 − 1
EI(1−iωµ) 0

0 ρIω2 0 1
−ρAω2 0 0 0


. (28)

According to the propagator matrix theory [57], it can be proved that if matrix B is a continuous function of257

z, as it is the case within each layer of the TB, the state vector f(z) at a given point zo in a certain layer can be258

propagated throughout the layer as f(z) = P(z, zo) f(zo), where P(z, zo) is the so-called propagator matrix from zo.259

Solving the ordinary differential equation (27), P(z, zo) can be written as:260

P(z, zo) = eB(z−zo). (29)
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The propagator can be further decomposed using a Taylor series expansion to compute the exponential in261

Eq. (29). Nevertheless, it is more convenient to diagonalize the matrix B by a similarity transformation as B =262

SΛS−1, where Λ is the diagonal matrix of the eigenvalues of B, and S contains the corresponding eigenvectors by263

columns. It can be seen that the eigenvalues of B correspond to ±ik1 and ±ik2 [33], with the wave-numbers k1 and264

k2 given by Eqs. (17) and (18). In this way, Eq. (29) can be decomposed as [33]:265

P(z, zo) = SeΛ(z−zo)S−1, (30)

where the exponential of a diagonal matrix is directly given by the exponential of the diagonal elements, that is266

eΛ(z−zo) = diag
(
eik1(z−zo), e−ik1(z−zo), eik2(z−zo), e−ik2(z−zo)

)
. Given that f(z) must be continuous at the layer interfaces,267

the solution at an arbitrary interface zk can be obtained as:268

f(zk) =

k−1∏

i=0

P(zi+1, zi) f(zo). (31)

In view of the boundary conditions previously shown in Eqs. (13) and (14), the state vector is constrained at269

z = 0 and z = H as:270

f(0) =



Ug

0
Mg

Vg


, f(H) =



Ur

Θr

0
0


. (32)

Assuming that the base motion Ug is prescribed, the base bending moment Mg and shear Vg, as well as the271

top displacement Ur and rotation Θr, remain unknown. Their values are obtained by solving the determined linear272

system of four equations formed by the solution at the base and its propagation to the roof. Thereafter, the state273

vector of the system can be obtained at any height z by the propagator matrix approach in Eq. (31). Finally, once274

the bending moment M (z) is known, the bending-induced normal strain in the frequency domain Υ(z) can be275

obtained as:276

Υ(z) =
M (z)

EI (1 − iωµ)
. (33)

3.3. Transfer Functions and Impulse Response Functions277

Once the solution in the frequency domain is known, the system TFs can be readily computed as previously278

indicated in Section 2. If we assume the TB as a linear system with ground motion Ug (or ground acceleration,279

−ω2 Ug) as input, and transverse displacements U(z) and strains Υ(z) as outputs, the TFs can be obtained as280

U(z)/Ug and Υ(z)/Ug, respectively. More generally, the TFs can be defined between the motion of the structure281

at height z with respect to a reference level zre f , that is to say, considering a virtual source at zre f that does not282

necessarily coincide with the actual physical source. Let ĥu and ĥε denote the TFs in terms of displacements and283

strains, respectively, as follows:284

ĥu(z, zre f , ω) =
û(z, ω)

û(zre f , ω)
=

U(z, ω)
U(zre f , ω)

, (34)

285

ĥε(z, zre f , ω) =
ε̂(z, ω)

û(zre f , ω)
=

Υ(z, ω)
U(zre f , ω)

. (35)

In order to avoid numerical instability due to division by null numbers, TFs are often regularized as:286

ĥu(z, zre f , ω) ≈ U(z, ω) U(zre f , ω)
∣∣∣U(zre f , ω)

∣∣∣2 + η
, (36)

287

ĥε(z, zre f , ω) ≈ Υ(z, ω) U(zre f , ω)
∣∣∣U(zre f , ω)

∣∣∣2 + η
, (37)

where the bar indicates complex conjugate, and η denotes a regularization parameter to avoid numerical instability.288

In this work, we use η = 0.1P with P being the average power of the reference input. The corresponding IRFs,289

hu(z, zre f , t) and hε(z, zre f , t), are defined in the time domain and can be computed as the inverse Fourier transform290

of the TFs as hu(z, zre f , t) = F −1
{
ĥu(z, zre f , ω)

}
and hε(z, zre f , t) = F −1

{
ĥε(z, zre f , ω)

}
. Typically, IRFs can be291

only obtained for a finite frequency band |ω| < ωmax, that is:292
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hu(z, zre f , t) =
1

2π

∫ ωmax

−ωmax

ĥu(z, zre f , ω)e−iωtdω, (38)

293

hε(z, zre f , t) =
1

2π

∫ ωmax

−ωmax

ĥε(z, zre f , ω)e−iωtdω. (39)

4. Results and discussion294

This section presents numerical results and discussion on the application of acceleration- and strain-based295

wave propagation analysis for damage identification in masonry towers under seismic actions. Specifically, the296

analyses are divided into: (i) parametric analyses of travelling waves on the basis of the developed TB model in297

Section 4.1, and (ii) validation case study of a 41.6 m high masonry tower in Section 4.2. In the latter, a non-298

linear 3D FEM of the tower has been developed and subjected to synthetic base acceleration series. The IRFs are299

computed on the basis of recorded acceleration and strain signals at different heights of the tower, and the results300

are compared with the proposed layered TB model for damage identification.301

4.1. Parametric analyses302

In this set of analyses, numerical results are first presented to illustrate the structure of the dispersion relation303

in Eq. (15). Without loss of generality, masonry towers with square cross-section and shear correction factor304

κ=0.43 (ν = 0.25) [58] are investigated. As previously reported by Ebrahimian and Todorovska [32], two different305

branches of dispersion curves can be distinguished corresponding to wavenumbers k1 and k2 in Eqs. (17) and306

(18). These represent two different wave propagation modes, and each mode can be up-going (plus sign outside)307

and down-going (minus sign outside). A closer inspection of Eqs. (17) and (18) reveals that k1 is real-valued308

for all Ω, while k2 only becomes real when Ω > Ωcr =
√
κ [32], with Ωcr being the cut-off frequency for the309

second propagation mode. When Ω < Ωcr, k2 is complex-valued and, thus, the second propagation mode defines310

exponentially attenuated non-propagating waves, also referred to as near field or evanescent waves [59]. In order311

to elucidate the physical mechanisms underlying both propagation modes, Fig. 4 depicts the ratio of bending312

moment to shear force |M (z)/V (z)| of the undamped system µ = 0.0 for each mode at height z = H, and different313

moduli ratios, namely R = 0.01, 0.50 and 1.00. Firstly, it is observed that for larger moduli ratios, R = G/E,314

the contribution of bending moment to the propagation modes becomes more predominant. It is also observed315

that the first propagation mode is dominated by bending moment at low frequencies below the cut-off frequency316

Ω < Ωcr, whereas the contribution of shear increases at higher frequencies Ω > Ωcr. On the other hand, the second317

propagation mode is always dominated by bending, except around the cut-off frequency Ωcr where the bending318

moment approaches zero and shear dominates. This limit corresponds to a thickness-shear mode of the beam,319

which is characterized by pure distortion of the cross section with zero deflection.320
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Figure 4: Bending-shear ratio, |M (z)/V (z)|, versus non-dimensional frequency Ω = ωrg/cS for harmonic waves in a Timo-
shenko beam.
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The behaviour of the propagation modes in terms of strains is further investigated in Fig. 5. For clarity pur-321

poses, Υ(z) in Eq. (25) can be expanded as:322

Υ(s) = D1 cos k1s + D2 sin k1s + D3 cos k2s + D4 sin k2s, (40)

with s = H − z, and Di the coefficients of expansion given as:323

D1 = E1 cos k1H + E2 sin k1H, D2 = E1 sin k1H − E2 cos k1H,

D3 = E3 cos k2H + E4 sin k2H, D4 = E3 sin k2H − E4 cos k2H,
(41)

and the terms Ei as:324

E1 = −ik1B1 + ik1B2, E2 = k1B1 + k1B2,

E3 = −ik2B3 + ik2B4, E4 = k2B3 + k2B4.
(42)

Figures 5 (a, c, e) show the coefficients of expansion Di, i = 1, . . . , 4, normalized by C1 for a fixed value of325

R = 0.5 and different ratios H/rg = 4, 8, and 16. In addition, the module of the TFs in terms of acceleration326

|T Fa| is also depicted in Figs. 5 (b, d, f) to illustrate the number of natural modes of vibration contained in the327

waveforms. For clarity purposes, the expansion coefficients are computed for undamped conditions, while the TFs328

are calculated considering different dimensionless damping constants, namely M = 0.0, 0.001 and 0.002. Firstly,329

note that D1 equals D3 because of the boundary condition M(H) = 0.0. It is seen that, for larger H/rg ratios,330

i.e. slenderer towers, the natural modes of vibration have lower frequencies and are more affected by dispersion.331

In addition, a higher number of natural modes of vibration fall in the frequency interval Ω < Ωcr. The effect of332

dispersion can be inferred in the analysis of the coefficients of expansion Di in Figs. 5 (a, c, e). It is observed in333

these figures that, below the critical frequency Ωcr, the variation of the coefficients of expansion Di with frequency334

is smooth. At the critical frequency Ωcr, the wavenumber k2 of the second wave propagation mode in Eq. (18) tends335

to zero and, as a result, so does the coefficient D4. Beyond Ωcr, the coefficients of expansion Di change very fast336

with frequency, what suggests the presence of complex interference patterns of the two wave propagation modes.337

This effect is accentuated for slenderer towers, i.e. larger H/rg ratios, where faster variations of Di with frequency338

are observed for frequencies above Ωcr. Similar conclusions can be extracted in terms of lateral displacements as339

reported by Ebrahimian and Todorovska [32].340

11



0 0.25 0.5 0.75 1 1.25 1.5
1E-3
1E-2
1E-1

1E+0
1E+1
1E+2
1E+3

Ω

|T
F

a|

0 0.25 0.5 0.75 1 1.25 1.5
1E-3
1E-2
1E-1

1E+0
1E+1
1E+2
1E+3

Ω
|T

F
a|

0 0.25 0.5 0.75 1 1.25 1.5
1E-3
1E-2
1E-1

1E+0
1E+1
1E+2
1E+3

Ω

|T
F

a|

M = 0.00 M = 0.01 M = 0.02

0 0.25 0.5 0.75 1 1.25 1.5
0.0

0.5

1.0

1.5

2.0

Ω

|D
i/

C
1|

(e)

0 0.25 0.5 0.75 1 1.25 1.5
0.0

0.5

1.0

1.5

2.0

Ω

|D
i/

C
1|

(c)

0 0.25 0.5 0.75 1 1.25 1.5
0.0

0.5

1.0

1.5

2.0

Ω

|D
i/

C
1|

(a)

D1
D2
D3
D4

R=0.5, H/rg=4 R=0.5, H/rg=4

R=0.5, H/rg=8 R=0.5, H/rg=8

R=0.5, H/rg=16 R=0.5, H/rg=16

Ωcr

Ωcr

Ωcr

(b)

(d)

(f)

Ωcr

Ωcr

Ωcr

Figure 5: Magnitudes of the coefficients of expansion Di, i = 1, . . . , 4, normalized by the coefficient C1, versus dimensionless
frequency Ω = w rg/cS (a,c,e), and the acceleration TF amplitudes |T Fa| (roof with respect to ground) (b,d,f).

Figures 6 and 7 present a parametric study of the IRFs versus dimensionless time t = t cS /rg. Firstly, Fig. 6341

investigates different moduli ratios R = 0.01, 0.5, and 1.0, for a virtual source at the roof zre f = 0 (a, d, g) and at342

the base zre f = H (b, e, h), assuming a constant ratio H/rg = 8 and a dimensionless damping constant M = 0.05.343

Secondly, Fig. 7 analyzes varying ratios H/rg = 6, 11, and 16, considering a constant moduli ratio R = 0.5 and a344

dimensionless damping constant M = 0.05. In addition, the TFs in terms of accelerations |T Fa| and strains |T Fε|345

are also shown (c,f,i) versus dimensionless frequency Ω. To do so, the TFs in terms of accelerations are computed346

by the ratio of accelerations at the roof level to the ground acceleration, while the TFs in terms of strains are347

obtained by the ratio of strains at the ground level to the ground acceleration. In these figures, the acceleration348

and the strain waves are shown with dashed and solid lines, respectively. Also, some ray paths are marked in349

red to indicate travelling pulses. In order to avoid complex waveforms due to the interaction of the second wave350

propagation mode, the pulses have been low-pass filtered at Ω = 0.66 ≈ Ωcr. In can be noted in Figs. 6 (a, d,351

g) and Figs. 7 (a, d, g) that the waveforms considering a virtual source at the roof level show two propagating352

pulses, typically termed causal and acausal pulses. As reported by Snieder and Safak [23], the consideration of353

such virtual sources imposes a condition of zero roof motion at all times except during the application of the354

source and, therefore, reflections from the base are suppressed. Conversely, wave propagation for virtual sources355

at the base (b,e,h) only shows causal pulses with multiple reflections at the base and the roof level. In this case,356

a clear identification of travelling pulses is often an intricate task, whereby the use of virtual sources at the roof357

level is usually more convenient for system identification purposes. In the case of acceleration waves and virtual358

sources at the roof level, it is noted that dominant downward propagating causal and acausal pulses can be clearly359

identified in all the cases. At the roof level, the source pulse computed by Eq. (38) for z = zre f = H is always a sinc360

function sinωmaxt/πt. Hence, the effect of dispersion is evidenced by the deformation of the source pulse when361

propagating throughout the tower. In particular, it is observed that larger ratios R and H/rg lead to more dispersive362

systems. On the other hand, a noticeably different behaviour can be observed in the strain waves. The strain-free363

condition of the cantilever TB model, Υ(H) = 0, precludes the development of any pulse at the roof level. As364

a result, the appearance of causal and acausal pulses requires longer distances, specially for smaller ratios R and365
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H/rg. This fact hinders the applicability of strain-based wave propagation analysis for the identification of regions366

of the structure close to the roof level, as can be observed in the case of R = 0.01 where no pulse can be identified.367
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different ratios H/rg = 6, 11, 16, and constant parameters R=0.5, M = 0.05.

Finally, some results are presented regarding the influence of dispersion on the phase and group velocities.368

According to their definition, namely cp = ω/k and cg = ∂ω/∂k, along with the dispersion relation in Eq. (15),369

analytical expressions of the phase and group velocities can be obtained as follows [32]:370

cph
1,2 =

cS Ω

k1,2rg
, (43)

371

cgr
1,2 =

cS

rg∂k1,2/∂Ω
= 2cS rgk1,2


Ω



(
1
κ

+ R
)
±

(
1
κ
− R

)2
+ 2R

Ω2

√(
1
κ
− R

)2
+ 4R

Ω2





−1

. (44)

An inspection of Eqs. (43) and (44) reveals that when R ≤ 1/κ, as it is typically the case, lim
Ω→∞ cph

1 = lim
Ω→∞ cgr

1 =372

cS
√
κ and lim

Ω→∞ cph
2 = lim

Ω→∞ cgr
2 = cS /

√
R. Figure 8 shows the phase and group velocities of the first propagating373

waves versus dimensionless frequency Ω considering varying moduli ratios R. In this figure, two different shear374

correction factors are selected, namely κ = 0.43 (a) and κ = 0.85 (b), which correspond to TBs with thin-375

walled hollow square and full rectangular cross-sections, respectively, according to Cowper’s formulae (ν = 0.25)376

[58]. In these plots, the critical cut-off frequency Ωcr is also marked. Let us recall that, in order to avoid the377

cumbersome interference of the two wave propagating modes, the frequency band of interest limits to Ω < Ωcr378

where only evanescent waves are given by the second propagation mode. Given that ωcr =
√
κcS /rg, the frequency379

band of interest is wider when cS is larger (i.e. larger shear modulus G or smaller mass density ρ), rg is smaller380

(i.e. larger cross-section area A or smaller inertia I), and κ is larger. The shear correction factor κ amends the381
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effect of uniform shear stresses in the cross-section, and smaller factors lead to more flexible structures with lower382

natural frequencies. It is observed in Fig. 8 that larger ratios R lead to more dispersive structures and, as a result,383

the deviation of the phase/group velocities from their asymptotic dimensionless value
√
κ increases. Conversely,384

small values of R yield phase/group velocities that stabilize for low frequencies and, therefore, the resulting system385

is less dispersive. Finally, it is observed that increasing shear correction factors κ lead to larger cut-off frequencies386

Ωcr and, as a consequence, more dispersive structures.387
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Figure 8: Dimensionless phase velocity, cph
1 /cS , and group velocity, cgr

1 /cS , of mode 1 propagating waves versus dimensionless
frequency, Ω = w rg/cS , for varying moduli ratios R = 0.01, 0.1, 0.5 and 1, and shear correction factors κ = 0.43 (a) and
κ = 0.85 (b).

4.2. Validation case study388

In the remainder of this paper, a case study of a masonry tower is presented in order to validate and further389

investigate the potentials of the proposed methodology. This consists of the 41.6 m high civic tower located in the390

historical centre of Perugia in Italy, named Torre degli Sciri. The tower can be ideally divided into two structural391

portions with geometrical dimensions shown in Fig. 9 (a). The lower part is characterized by a hollow rectangular392

cross-section with wall thicknesses of 1.68 m and 2.1 m and rises up to 8.8 m. There are some small openings393

and a stone masonry vaulted slab that stands above the rooms of an old chapel. On the other hand, the upper394

part rises up to 41 m and has slender 1.68 m thick continuous walls, with four 1.5 m wide brick masonry vaulted395

slabs at different heights. Moreover, a brick masonry ceiling vault completes the tower on the top and a 0.5 m396

thick parapet extends up to a height of 41.6 m. The masonry is homogeneous and regular, and it is made of397

squared white limestone blocks. Although the tower is incorporated into a building aggregate, the isolated tower398

is considered as a case study in this paper for a clear comparison against the Timoshenko beam model.399
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Figure 9: Case study of the Sciri Tower: (a) geometrical dimensions, (b) FEM of the tower and (c) sensors arrangement (units
in meters).

In order to reproduce different earthquake-induced damage scenarios and validate the proposed damage iden-400

tification approach, a non-linear 3D numerical model of the Sciri Tower under ground accelerations has been built401

in the framework of the FEM by using ABAQUS 6.10 platform [60]. The model, shown in Fig. 9 (b), has been402

constructed on the basis of information gained from available structural drawings. The floors and walls of the403

tower have been included in the model and the whole structure has been assumed fixed to the ground, considering404

the soil-structure interaction as negligible. A free meshing of solid C3D4 tetrahedral elements with mean elements’405

dimension of about 40 cm has been adopted. The elastic properties of the FEM materials are assumed isotropic,406

with elastic parameters computed according to the Italian technical standard [61] for square stone masonry, in-407

cluding Young’s modulus E = 5.77 GPa, Poisson’s ratio ν = 0.25, and mass density ρ = 2.2 t/m3. The non-linear408

behaviour of masonry is modelled with the classic Concrete Damage Plasticity (CDP) constitutive model [60].409

This approach, proposed by Lubliner et al. [62] and then modified by Lee and Fenves [63], is well-suited for410

the modelling of brittle masonry under cyclic loading considering cracking in tension and crushing in compres-411

sion [64, 65]. Given the lack of characterization tests of the masonry of the tower, the non-linear mechanical412

properties assigned to the FEM have been estimated from the literature as shown in Table 1. Preliminary re-413

sults showed no compression damages in the structure, whereby, for simplicity, the material is assumed elastic in414

compression and brittle in tension. Regarding the seismic loading, Eurocode 8 spectrum-compatible synthetic ac-415

celerograms have been generated and applied in the x-direction of the tower (see Fig. 9 (b)). Three different Peak416

Ground Accelerations (PGAs) have been considered in order to analyse distinct damage severities, including 0.1g,417

0.15g and 0.2g. In particular, 70 s long time series have been obtained with a time sampling frequency Fs = 100418

Hz. In order to account for the non-stationarity of the seismic events, the steady state ground accelerations have419

been modulated by a compound intensity envelope [66] with rise time of 10 s and decay time of 40 s, resulting in a420

strong-motion duration of 30 s. The time history analysis of the dynamic response of the tower has been conducted421

by the Hilbert-Hughes-Taylor implicit direct time integration scheme, accounting for material non-linearities with422

the full Newton-Raphson method. Structural damping has been considered by the classical Rayleigh formulation,423

with 5% of damping ratios on the first two modes.424

Horizontal accelerations and vertical strains are monitored along the height of the tower FEM. In addition,425

two different Timoshenko beam models have been studied, namely a uniform TB and a three-layered TB, labelled426

with U-TB and 3L-TB, respectively. The three-layered Timoshenko beam (Fig. (9) (c)) considers three sections427

of the tower rising from 0-8.8 m (L1), 8.8-25.9 m (L2) and 25.9-41.6 m (L3).428
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Table 1: Non-linear compressive and tensile behaviour of the CDP model of masonry.

Elasto-plastic behaviour Tensile behaviour

E 5.77 GPa K [s]a 0.67 Stress [kN/m2] Damage parameter dt

ν 0.25 Viscosity parameterb 0.00 160 0.00

ρ 2.2 t/m3 120 0.55

Dilation angle 21◦ 84 0.80

Eccentricity 0.10 16 0.90
a K is the ratio of the second stress invariant on the tensile meridian.
b The viscosity parameter is used for the viscoplastic regularization of the constitutive equations.

Analyses and discussion have been divided into system identification, damage identification by inverse cal-429

ibration of the TB model, and data-driven damage identification approach in Sections 4.2.1, 4.2.2 and 4.2.3,430

respectively. Firstly, the presented results are intended to show the suitability of the developed TB model to repro-431

duce the dynamic response of the undamaged tower in the frequency domain, as well as the travelling waves and432

their relationship with bending and shear stiffness. Afterwards, the correlation between the earthquake-induced433

damages and the speed of the travelling waves is investigated. To do so, two different damage identification ap-434

proaches are presented, including a model-based and a data-driven approach. The first one relates the inverse435

calibration of the TB model, while the second one regards the peak-picking analysis of wave travel times directly436

obtained from seismic records.437

4.2.1. System identification438

The response time series are divided in three time windows - before, during, and after the strong-motion, that439

is 0 s < t < 12 s, 12 s < t < 40 s, and 40 s < t < 70 s. This first set of analyses focuses on the first time window,440

which serves as a reference baseline. The baseline is characterized by the absence of damages, that is to say, the441

structure fully remains in its elastic regime. In particular, a PGA of 0.1g is selected, and the time histories of the442

recorded accelerations and strains used in this study are shown in Fig. 10 (a). In order to identify the structural443

system, the three-layered TB is updated by minimizing the root-mean-squared error between the analytical IRFs444

at the layers’ interfaces and those obtained by the post-processing of the recorded time series. The resulting non-445

linear minimization problem is highly ill-conditioned, thereby a Particle Swarm optimization algorithm is used to446

fit the model parameters. To reduce the number of unknown parameters and have a more robust fit, only two of the447

layer parameters are fitted, namely the shear wave velocity cS and moduli ratio R, while the rest are estimated from448

the geometry or assumed. A shear correction factor of κ = 0.46 and a small value of the Kelvin-Voigt damping449

constant µ = 2.5 E-3 are assumed constant all along the tower so that the first few modes are visible in the TFs.450

The cross-section A, inertia I and mass density ρ are estimated from the geometry as furnished in Table 2, and the451

Poisson’s ratio ν = 0.25 is assumed constant. In the case of the uniform Timoshenko beam (U-TB), the radius of452

gyration is rg = 2.4 m, the critical frequency for the model fcr = 45.95 Hz, and the shear-wave velocity in the453

material cS = 1018.97 m/s.454

Table 2: Values of the parameters of the beam models that are estimated from the geometry or assumed. Labels U-TB and
3L-TB stand for uniform Timoshenko beam and three-layered Timoshenko beam, respectively.

UTB 3L-TB

Layer z [m] h [m] µ [-] ρ [kg/m3] A [m2] I [m4] ρ [kg/m3] A [m2] I [m4]

L1 0.0-8.8 8.84 2.50E-03 2222.9 38.40 220.07 2245.9 41.69 224.25
L2 8.8-25.9 17.09 2.50E-03 2222.9 38.40 220.07 2155.6 38.40 220.07
L3 25.9-41.6 15.67 2.50E-03 2222.9 38.40 220.07 2174.9 38.40 220.07

The transfer functions computed by the 3D FEM and the Timoshenko beam models in terms of accelerations455

(|T Fa|) and strains (|T Fε|) are compared in Figs. 10 (b) and (c), respectively. In the acceleration TFs, only three456

clear peaks corresponding to the first three natural modes can be observed. Similarly, the strain TFs exhibit two457

clear peaks at the first resonant frequencies, while the third peak is considerably attenuated and the TFs are notice-458

ably noisy at higher frequencies due to poor frequency sampling. In this case, the U-TB suffices to estimate the459

modes activated by the earthquake and, as a result, little improvement of the fitted 3L-TB is noted. Then, Figure 11460

shows the IRFs computed by the 3D FEM and the TB models. Specifically, comparisons of the IRFs in terms of461

accelerations and strains with a virtual impulse at the roof level are shown considering different frequency bands,462

namely 0.8-10 Hz and 0.8-20 Hz. In accordance with the TFs previously shown in Fig. 10 (b), these frequency463
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bands contain up to the second and the third vibration modes, respectively. It should be noted that the signals464

are band-filtered with a low cut-off frequency of 0.8 Hz to eliminate the low-frequency contributions stemming465

from damage-induced load path changes, specially for strain signals in the second and third time windows. The466

unknown layer parameters of the 3L-TB are estimated by fitting the IRFs in the band of frequencies 0.8-20 Hz,467

and the resulting fitted parameters are shown in Table 3. Let us remark that the moduli ratio R = G/E corresponds468

to the structural layer as a whole and not simply to the material. While qualitative good agreement can be observed469

in Fig. 11 between the IRFs computed by the FEM and the U-TB, closer fittings are observed for the 3L-TB and,470

thus, the latter model provides a better representation of the pulse propagation throughout the tower. More specif-471

ically, mean coefficients of determination R2 (averaged over the IRFs at the layers’ interfaces) of 0.84, 0.78, 0.64472

and 0.74 are obtained for the U-TB in Figs. 11 (a), (b), (c) and (d), respectively, while the respective values for473

the 3L-TB are 0.78, 0.80, 0.77 and 0.79. Note that the travelling waves in Figs. 11 (c,d) move much faster than474

those in Figs. 11 (a,b). This fact is indicative of a meaningful contribution of dispersion, which yields faster waves475

at higher frequencies. It is also observed that, while acceleration waves show the first causal and acausal pulses476

at z = 29.3 m and 32.8 m for frequency bands of 0.8-10 Hz and 0.8-20 Hz, respectively, identifiable travelling477

strain waves cannot be observed until z = 5.4 m and 19.0 m for frequency bands of 0.8-10 Hz and 0.8-20 Hz,478

respectively. This behaviour is due to the strain distribution in a building clamped at the base, which is zero at the479

roof level and, as a consequence, travelling waves require larger distances to develop. Therefore, it is concluded480

that monitoring approaches based on acceleration records are efficient for the identification of travelling waves at481

low and moderate heights, while those based on strain measurements are limited to low heights. Finally, let us482

point out the presence of considerable differences between the strain IRFs at z = 8.8 m. In this case, the sensor483

is located close to an opening (see Fig. 9 (c)) and the strain series is highly conditioned by local stiffness effects.484

Notwithstanding the circumstance that beam models fail to represent such local effects on strain and, as a result,485

local wave attenuation cannot be properly reproduced, it is observed in Figs. 11 (b,d) that the propagation of the486

strain waves is very similar.487
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Figure 11: Comparison of the IRFs in terms of accelerations (a,c) and strains (b,d) computed by the three-dimensional FEM,
uniform Timoshenko beam (U-TB) and fitted three-layered Timoshenko beam (3L-TB), considering frequency bands of 0.8-10
Hz (a,b) and 0.8-20 Hz (c,d), and a virtual impulse source at the roof level zre f = 41.6 m.

Table 3: Initial and fitted shear-wave velocities cS and moduli ratios R on the frequency band 0.8-20 Hz.

Initial Fitted

Layer cS [m/s] R [-] cS [m/s] R [-]

L1 1.030E+03 0.40 1.046E+03 0.47
L2 1.035E+03 0.40 9.662E+02 0.45
L3 1.014E+03 0.40 7.946E+02 0.27

Finally, Fig. 12 shows the distributions of bending stiffness EI and shear stiffness GA for the initial and488

fitted 3L-TB models along the height of the tower. Overall, it is observed that the fitted 3L-TB yields a stiffness489

distribution that decreases with height. It is interesting to note that the bending stiffness of the second layer490

L2 is slightly lower than that of the third layer L3. The reason for this is ascribed to the presence of a higher491

concentration of openings in the second layer L2 as can be observed in Fig. 9 (c). All things considered, it is492

concluded that the developed Timoshenko beam model is suitable for the structural identification of masonry493

towers.494
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Figure 12: Bending stiffness EI (a) and shear stiffness GA (b) for the uniform Timoshenko beam (U-TB) and fitted 3-layered
Timoshenko beam (3L-TB) on the frequency band 0.8-20 Hz.
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4.2.2. Damage identification: Inverse TB calibration495

In this second set of results, wave propagation analyses are conducted for increasing damage severities, includ-496

ing PGA values of 0.1g, 0.15g and 0.2g. The computed damage patterns after the considered seismic events are497

depicted in Fig. 13 in terms of the tensile damage factor dt. This factor characterizes the degradation of the elastic498

tensile stiffness of the masonry and takes values between 0 (undamaged) and 1 (fully damaged) [60]. It is observed499

that damages concentrate in the bottom part of the tower. In the case of low PGA of 0.1g, damages mainly localize500

around z = 8.8 m where the wall thickness diminishes and there is a concentration of openings, as well as in the501

right façade at x = 7.27 m. As the PGA increases, damages first propagate in the left/right façades at x = 0.0, 7.27502

m and, afterwards, in the front/back façades at y = 0.0, 7.52 m. These damage patterns are primarily determined503

by the first bending mode, including a set of horizontal cracks located in the left/right façades at x = 0.0, 7.27 m,504

as well as shear X-cracks starting at the corners of the openings located in the front/back façades at y = 0.0, 7.52505

m.506
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Figure 13: Computed crack patterns in the 3D FEM of the masonry tower under seismic ground accelerations in the x-direction
considering increasing PGAs, namely (a) 0.1g, (b) 0.15g and (c) 0.2g. The parameter dt stands for the tensile damage and
represents local earthquake-induced tensile stiffness degradation.

Figure 14 shows the seismic ground accelerations (a1, b1, c1), the IRFs in terms of accelerations (a2, b2, c2)507

and strains (a3, b3, c3) at the layers’ interfaces of the 3L-TB (z=0.0 m, 8.8 m, 25.9 m, and 41.6 m) considering a508

virtual impulse at the roof level, and the TFs (a4, b4, c4) for PGAs of 0.1g (a), 0.15g (b) and 0.2g (c). The plots in509

Fig. 14 show that the propagation velocities of the pulses for the three time windows are different, indicating longer510

travel times (i.e. reduced stiffness) within the second and third time windows as compared to the first one (see511

inserts in Figs. 14 (c2) and (c3)). It is also observed that the resonant peaks in the TFs experience slight shifts,512

what also indicates earthquake-induced stiffness losses. For instance, the fundamental frequency (first bending513

mode shown in Fig. 10 (b)) shifts from 1.20 Hz to 1.18 Hz, 1.16 Hz and 1.15 Hz for PGAs of 0.1g, 0.15g and 0.2g,514

respectively. In order to identify the earthquake-induced damages, the three-layered TB model is updated with the515

results obtained by the FEM in a similar way to Section 4.2.1. As a result, Table 4 furnishes the fitted shear wave516

velocities cS , moduli ratios R, and Normalized Root-Mean-Squared Error (NRMSE). The error is normalized by517

the amplitude of the numerical IRFs, and the global NRMSE corresponds to the mean value of the errors at the518

layers’ interfaces. It is noted in Table 4 that the NRMSE increases with the PGA, although it remains below 5%519

except for the case of strain waves with PGA=0.2g. The reason for such an increase is ascribed to the increasing520

damage levels, which propagate non-symmetrically and the hypotheses of the TB model become less realistic. In521

addition, it is observed that the NRMSE is larger for strain IRFs, what is due to local effects not included in the522

TB model.523

On the basis of the previous results, Figs. 15 (a) and (b) show the variations of the bending and shear stiffness524

distributions along the height of the masonry tower, respectively. For clarity purposes, Fig. 15 (c) presents the525

damage patterns computed by the 3D FEM in terms of damage factors dt obtained on the front (y = 0.0 m) and526

right façades (x = 7.27 m) for every PGA value. Overall, it is observed that higher PGA values yield larger527

stiffness losses and, therefore, these results demonstrate the capability of this approach to quantify damages. It528

is also noted that the largest stiffness reductions are found in the bottom part of the tower. Specifically, bending529

stiffness reductions in the first layer L1 are equal to 5.97%, 19.56% and 38.66% for PGAs of 0.1g, 0.15g and 0.2g,530

respectively, while approximately constant reductions of 8.90% are found in the second layer L2. Finally, only531
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small spurious reductions below 1% are obtained in the third layer L3 due to some ill conditioning of the model532

updating approach. In view of Fig. 15 (c), these variations are in good agreement with the computed earthquake-533

induced damages and, therefore, it is concluded that the proposed methodology is suitable for damage detection,534

localization and quantification.535
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Figure 14: Ground accelerations, IRFs in terms of accelerations (IRFa) and strains (IRFε) (0.8-20 Hz), and TFs computed by
the 3D FEM of the masonry tower considering different values of PGA, including 0.1g (a), 0.15g (b) and 0.2g (c).
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Table 4: Fitted shear-wave velocities cS and moduli ratios R on the frequency band 0.8-20 Hz, and Normalized Root-Mean-
Squared Error (NRMSE). The term BL stands for the baseline or the undamaged condition of the structure.

cS [m/s] R [-] NRMSE [%]

PGA L1 L2 L3 L1 L2 L3 Accel. Str.

BL 1.094E+03 9.604E+02 8.355E+02 0.468 0.363 0.338 2.44 3.82
0.1g 1.090E+03 9.596E+02 8.347E+02 0.473 0.364 0.339 2.74 3.82

0.15g 1.082E+03 9.594E+02 8.333E+02 0.475 0.364 0.339 2.97 4.48
0.2g 1.047E+03 9.473E+02 8.333E+02 0.475 0.366 0.339 3.10 6.18
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Figure 15: Variation of bending stiffness (EI) (a) and shear stiffness (GA) (b) with respect to their undamaged distributions
(EIo and GAo) for the fitted three-layered Timoshenko beams (3L-TB) on the frequency band 0.8-20 Hz. (c) Front and lateral
views of the computed crack patterns in the 3D FEM of the masonry tower.

Finally, Fig. 16 shows the phase and group velocities (Eqs. (43) and (44)) of the fitted 3L-TB model for536

PGA=0.2g. Compared to the shear and bending stiffness distributions, dispersion curves offer a more complete537

representation of the system since information is given in the whole studied frequency band. It is noted that the538

phase and group velocities change substantially with frequency, what evidences a determinant role of dispersion539

as previously observed in Fig. 11. This behaviour also persists for frequencies above the critical frequency (recall540

that fcr = 45.95 Hz for the uniform TB). Therefore, the theoretical asymptotes of the phase and group velocities,541

that are cS
√
κ and cS /

√
R, respectively, are not reached in the considered frequency band. Dispersion hinders the542

identification of pulses since there is not a predominant wave, but the interference of waves with different phase543

velocities that form a complex wavefront. In this light, and considering that the studied tower has geometrical544

dimensions and material properties that are representative of most isolated masonry towers, the proposed Timo-545

shenko beam model offers a valuable tool for damage identification through the fitting of IRFS, accounting for the546

scattering and attenuation of complete waveforms in a certain frequency band.547
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Figure 16: Phase cph and group cgr velocities of propagating waves in the fitted 3L-TB model for PGA=0.2g and a frequency
range of 0.8-20 Hz versus frequency (0 s < t < 12 s).

4.2.3. Damage identification: Data-driven approach based on the analysis of wave delays548

One of the most remarkable features of seismic wave interferometry relates the possibility of conducting the549

damage identification in a completely data-driven way. To do so, wave travel times τi and velocities vi = li/τi can550

be directly obtained by peak-picking the arrival times of the identified pulses ti at the transducers’ positions as551

previously reported in Section 2. If this process is repeated for each time window, damages can be inferred from552

changes relative to the first time window or baseline (BL). In this light, Table 5 reports the computed values of553

τi and vi by the peak-picking analysis of the IRFs obtained by the FEM and the 3L-TB model on the frequency554

band of 0.8-20 Hz and the time window 40 s < t < 70 s. In addition, for clarity purposes, Fig. 17 summarizes555

the obtained results in a graphical way. In this figure, the variations in wave velocities are presented in relative556

terms as 100(1 − vi/vo
i ), with vo

i being the wave velocity obtained from the BL. It is noted that the maximum557

decreases in the wave velocities are localized in the bottom part of the tower. In particular, the velocities of the558

acceleration waves computed by the FEM experience decreases of 1.56% and 6.56% for PGAs of 0.15g and 0.2g,559

respectively (see Fig. 17 (a)). In the first case of PGA=0.1g, this methodology fails to localize the damage, even560

reporting a very small increase of 0.06% in the wave velocity. This can be ascribed to dispersion effects, as well561

as to the selected sampling frequency of Fs = 100 Hz, which may be insufficient to detect very small variations562

caused by mild damage levels. In the second layer L2, reductions of 0.45%, 0.44% and 0.55% are found for PGAs563

of 0.1g, 0.15g and 0.2g, respectively, while only small variations below 0.2% are found in the third layer L3.564

Moreover, it is possible to compute the global velocity of the waves, that is the velocity of the waves crossing the565

whole tower (see Fig. 17 (c)). In this case, wave velocities of 462.74 m/s, 461.78 m/s, 460.61 m/s and 456.60 m/s566

are obtained for the undamaged state (BL), and damaged states under seismic events with PGAs of 0.1g, 0.15g,567

and 0.2g, respectively. Therefore, it is noted that, although some limitations may arise to precisely localize the568

damage for low damage severities (e.g. PGA=0.1g), this approach always remains suitable for damage detection569

and quantification.570

In the case of strain waves, due to the free-strain condition at the roof level, identifiable travelling pulses571

are not observed in the third layer L3 as previously shown in Fig. 14. Therefore, the computed wave velocity572

in the second layer L2 in Table 5 corresponds to the velocity of the waves crossing the layers L2 and L3. In573

this case, considerably high wave velocities are computed which, along with the limitations derived from the574

free-strain condition, may be due to poor time sampling. Nonetheless, damages in the first layer L1 are well575

detected with similar variations in the wave velocities to those reported for acceleration waves (see Fig. 17 (b)).576

Furthermore, the analysis of the global wave velocities yields values of 585.38 m/s, 585.25 m/s, 581.18 m/s and577

577.12 m/s for the undamaged state (BL), and damaged states with PGAs of 0.1g, 0.15g, and 0.2g, respectively.578

It is thus concluded that, although more limited for damage localization, strain wave propagation approaches579

remain suitable for damage detection and quantification in masonry towers. Additionally, in order to evaluate the580

soundness of the proposed three-layered TB model, Table 5 also shows the Relative Error (RE) in the determination581

of the wave velocities. It is observed that the RE remains below 9% in all the cases and, therefore, it is concluded582

that the proposed approach is apt for characterizing the wave propagation in masonry towers.583
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Table 5: Measurements of wave travel times τi and average wave velocities vi between layers’ interfaces for the 3D FEM and
the fitted three-layered TB (3L-TB) on the frequency band 0.8-20 Hz (40 s < t < 70 s, Fs = 100 Hz). The term RE stands
for the relative error between the computed wave velocities by the FEM and the 3L-TB. The term BL stands for the baseline
condition or the undamaged condition of the structure (0 s < t < 12 s).

Acceleration waves Strain waves

FEM 3L-TB FEM 3L-TB

PGA z [m] li [m] τi [ms] vi [m/s]a τi [ms] vi [m/s]a RE (%)b τi [ms] vi [m/s]a τi [ms] vi [m/s]a RE (%)b

BL 25.9 - 41.6 15.7 39.152 400.305 41.031 381.969 -4.58 - - - - -

8.8 - 25.9 17.1 37.097 460.708 35.429 482.392 4.71 42.050 779.166 39.509 829.262 6.43

0.0 - 8.8 8.8 13.650 647.339 13.073 675.910 4.41 29.016 304.536 27.455 321.847 5.68

0.1g 25.9 - 41.6 15.7 39.180 400.020 41.031 381.969 -4.51 - - - - -

8.8 - 25.9 17.1 37.264 458.638 36.437 469.057 2.27 42.059 779.000 41.031 798.501 2.50

0.0 - 8.8 8.8 13.642 647.745 12.593 701.710 8.33 29.022 304.471 27.458 321.819 5.70

0.15g 25.9 - 41.6 15.7 39.188 399.936 41.031 381.969 -4.49 - - - - -

8.8 - 25.9 17.1 37.261 458.678 36.946 462.591 0.85 41.557 788.395 40.530 808.374 2.53

0.0 - 8.8 8.8 13.866 637.251 13.562 651.570 2.25 30.021 294.337 28.474 310.326 5.43

0.2g 25.9 - 41.6 15.7 39.198 399.831 40.530 386.692 -3.29 - - - - -

8.8 - 25.9 17.1 37.301 458.190 37.447 456.401 -0.39 41.557 788.395 39.509 829.262 5.18

0.0 - 8.8 8.8 14.608 604.881 14.052 628.849 3.96 30.517 289.551 31.036 284.715 -1.67

a vi = li/τi
b RE =

(
vi,T B − vi,FEM

)
/vi,FEM
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Figure 17: Variation of acceleration wave velocities (a), strain wave velocities (b), and global wave velocities (c) computed by
the peak-picking analysis of the IRFs obtained by the FEM of the tower (vi) with respect to their undamaged or baseline values
(BL, vo

i ). (0.8-20 Hz, 0 s < t < 12 s, Fs = 100 Hz).

Finally, this section is concluded with the analysis in Fig. 18 on the relationship between the fitted earthquake-584

induced stiffness reductions EI in Section 4.2.3 and the previously reported wave velocities vi. In particular, the585

relative variation of vi in the bottom layer (L1) computed by the peak-picking analysis of the IRFs obtained by the586

FEM is plotted against the corresponding EI values of the fitted three-layered TB model (3L-TB). In this figure,587

the velocities obtained for both strain and acceleration waves are presented. Firstly, it is noted that decreases in the588

bending stiffness yield monotonic decreases in both the strain and acceleration wave velocities. It is also observed589

that the results obtained for acceleration waves are eminently non-linear with increasing velocity variation rates.590

Conversely, the results for strain waves exhibit a different trend, with decreasing variation rates after PGA=0.15g.591

These results demonstrate that acceleration-based wave propagation approaches are superior, while the strain-free592
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condition at the roof level of cantilever towers limits the accuracy of strain-based approaches.593
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Figure 18: Relative variation of wave velocities (vi) in the first layer L1 computed by the peak-picking analysis of the IRFs
obtained by the FEM of the tower versus relative variation of bending stiffness (EI) computed by the three-layered TB model
(3L-TB) with respect to their undamaged or baseline values (vo

i and EIo). (0.8-20 Hz, 0 s < t < 12 s, Fs = 100 Hz).

5. Conclusions594

This paper has proposed the use of deconvolution seismic interferometry for earthquake-induced damage iden-595

tification in historic masonry towers. An analytical multi-layered Timoshenko beam model has been also intro-596

duced for wave propagation analysis and for defining an inverse problem suitable for damage identification. On597

this basis, detailed parametric analyses have been presented to illustrate the structure of the TB model. In particu-598

lar, both acceleration and strain wave propagation analyses have been performed, and the discussion has focused599

on the effects of dispersion upon the identification of travelling pulses. A validation case study of a 41.6 m high600

masonry tower under synthetic earthquake ground motion has been presented. To do so, a non-linear 3D FEM601

has been built and used to generate pseudo-experimental structural response data under seismic excitation caus-602

ing increasing damage severities. Afterwards, IRFs based on strain and acceleration records have been computed603

at different heights of the FEM, and the system and damage identification through inverse calibration of the TB604

model and simple peak-picking analysis have been discussed. On one hand, it has been demonstrated that damage605

identification can be performed in a fully data-driven way by peak-picking the arrival times of identified pulses606

in the IRFs of seismic response records. On the other hand, the inverse calibration of the TB model has been607

also reported to be appropriate for such a purpose, with the added advantage of relating the identified wave delays608

to earthquake-induced effects on the intrinsic stiffness of the structure. In addition, the TB model has proved to609

be a suitable tool for identifying not only dominant pulses but the complete waveforms, what circumvents the610

difficulties associated with the identification of travelling pulses in highly dispersive systems.611

The main key findings of this work can be summarized as follows:612

• The shear-wave propagation problem in a Timoshenko beam is characterized by two different propagation613

modes. Below a critical frequency ωcr =
√
κcS /rg, the second propagation mode only contributes with614

evanescent waves. Conversely, for frequencies above this threshold, both modes manifest as propagating615

waves and the resulting waveform is characterized by complex interference patterns. Thereby, in application616

to masonry towers, it is necessary to low-pass filter the seismic records with cut-off frequency ωcr to filter617

out the propagating waves associated with the second propagation mode. Practically speaking, this cut-off618

frequency is in the order of 46 Hz for towers of slenderness ratio H/rg = 17.4, and moduli ratio R = 0.4.619

• The strain-free condition at the roof level of masonry towers precludes the development of strain waves620

at that level. Hence, the appearance of identifiable strain pulses on the top of the tower requires larger621

distances compared to the bottom part of the structure, what hinders the applicability of strain-based wave622

propagation analysis to identify regions of the structure close to the roof level. This limitation does not affect623

acceleration waves and, therefore, acceleration-based systems are more suited for damage identification in624

masonry towers.625

• Since strain waves are highly conditioned by local stiffness effects, the TB model may fail at representing626

local wave attenuations. Nevertheless, the presented results have demonstrated that the TB model remains627
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apt for representing the scattering of strain waves. Conversely, acceleration waves are not so influenced by628

local effects, but rather by the global stiffness between pairs of sensors and, therefore, the TB model yields629

accurate results for both the attenuation and scattering of acceleration waves.630

• The results have shown that the stiffness distribution derived from the inverse calibration of the TB model is631

well correlated with the earthquake-induced damage and, thence, it offers a valuable tool for damage iden-632

tification, that is, damage detection, localization, and quantification. This approach identifies the complete633

wavefront within a certain frequency band and, therefore, there is no need to identify dominant pulses, what634

may be difficult in highly dispersive systems.635

• The results have also reported the possibility of performing seismic interferometry of masonry towers in636

a fully data-driven way by simple peak-picking. In particular, it has been shown that the measured wave637

delays are well correlated with the earthquake-induced damages, so that damages can be detected, located638

and, to some extent, quantified only using seismic response records.639
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