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Abstract

Recent ground-breaking advances in sensing technologies, data processing, and structural identification have made
Structural Health Monitoring (SHM) occupy a central place in Structural Engineering. Although the technological
transfer to the industry is still in the early development stages, there is clear evidence that SHM-enabled condition-
based maintenance of structures will soon supersede traditional periodic maintenance strategies. Among the exist-
ing solutions, ambient vibration-based SHM has become particularly popular owing to its minimum intrusiveness
and global damage assessment capabilities. Nevertheless, it is well documented that local pathologies with lim-
ited impact over the stiffness of structures can be hardly detected by such techniques. As a solution, recent studies
advocate the use of integrated monitoring systems, where data from heterogeneous sensor networks are simulta-
neously processed to achieve a comprehensive structural assessment. Despite the great advances of these systems
reported by researchers, practitioners still find many difficulties to bring them to practice. In this light, this paper
reports the development of two novel software solutions for long-term SHM of structures, MOVA and MOSS, that
are intended to bridge this gap while also introducing new methodological and scientific advances. The developed
software enables the online system identification and damage detection of structures, including vibration-based
SHM and data fusion of heterogeneous sensing systems with an innovative automated anomaly detection algo-
rithm. A case study of a permanent static/dynamic/environmental monitoring system installed in a monumental
masonry palace, the Consoli Palace in Gubbio (Italy), is presented to illustrate the capabilities of MOVA/MOSS.

Keywords: Data fusion, Novelty Analysis, Operational Modal Analysis, Damage detection, Structural Health
Monitoring, Unsupervised Learning

1. Introduction1

In the last two decades, SHM has gained a leading role in the field of Structural Engineering. Recent tragic2

events, such as the Genoa bridge collapse in 2018, have highlighted the need to prioritize the maintenance of3

civil infrastructure in the political agenda. Civil engineering infrastructures are inevitably subjected to ageing4

degradation, as well as to a number of adverse external actions (e.g. extreme weather, earthquakes, or accidental5

loads). In particular, the last Infrastructure Report Card of the American Society of Civil Engineers (ASCE)6

released in 2017 [1] estimated that 39% of the 614387 American bridges are over 50 years old, and classified7

9.1% of the bridges as structurally deficient or in poor conditions. Moreover, the ASCE’s report estimated the8

corresponding rehabilitation costs at $123 billion. A similar picture emerges across Europe, where many of9

the bridges were built during the economic growth of the 1950s and, for instance, about 30% of the railway10

bridges exceed 100 years of age [2]. Nevertheless, despite large financial efforts have been dedicated to R&D11

actions in this field, the technology transfer has not been fully or successfully completed and SHM is still sparsely12

implemented in practice. Indeed, the last report of the European Joint Research Centre (JRC) [3] warned about13

the weak link between research and the wide-scale adoption of SHM technologies. To address these deficiencies,14

it is of pivotal importance to develop reliable and easy-to-use SHM solutions that facilitate practitioners’ use of15

research breakthroughs.16

Structural Health Monitoring aims to perform a diagnosis of the integrity of materials, structural components17

and assemblies constituting a structure [4]. This encompasses the application of Non-Destructive Testing (NDT)18

and damage identification tools and allows infrastructure managers to perform preventive condition-based main-19

tenance, promote safety and maximize life expectancy. In essence, SHM involves long-term monitoring in order20

to track deviations in the structural response with respect to engineering-design specifications and past structural21
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performance. In this framework, ambient vibration-based SHM has received most attention owing to its minimal22

intrusiveness and fully non-destructive character [5]. These techniques exploit ambient acceleration records under23

normal operating conditions to extract the modal features of a system through output-only (Operational) Modal24

Analysis (OMA), namely natural frequencies, mode shapes, and damping ratios [6, 7]. The basic premise is that,25

since modal features are functions of the mass, stiffness, and energy dissipation mechanisms, damage in a structure26

can be inferred by tracking permanent variations in its modal parameters [8, 9]. Numerous recent works report27

the successful application of this technology to diverse structural typologies, including bridges [10], dams [11],28

buildings [12], stadiums [13], naval vessels [14], or aircraft structures [15]. Vibration-based SHM is also be-29

coming increasingly popular for preventive conservation of Cultural Heritage (CH) structures. The monitoring30

of such structures must have a minimum impact on their architectural and cultural value, for which OMA-based31

SHM represents an ideal solution. In this context, plenty of successful applications can be found in the literature,32

including CH bridges [16, 17], towers [18, 19], churches [20], and buildings [21, 22].33

Considerable research has been devoted to the development of automated OMA procedures [23–25]. These34

enable early detection of damage by tracking anomalies in time series of continuously identified modal features.35

Nonetheless, numerous papers have reported about the striking dependence of modal features on environmental36

(e.g. temperature, humidity, wind) and operational conditions (e.g. traffic level). For instance, Peeters and De37

Roeck [26] found variations up to 18% in the first four resonant frequencies of the well-known case study of the38

Z24-Bridge. This translates into daily and seasonal modal fluctuations that mask early stage damages. It fol-39

lows that environmental effects must be filtered out through statistical pattern recognition and machine learning40

techniques [27]. In this context, the Z24 Bridge constitutes an important benchmark on which intensive research41

efforts have been exerted. The bridge was monitored during a nine-month period and, afterwards, artificial damage42

was introduced. Peeters and De Roeck [26] successfully detected the artificial damage by analysing the residu-43

als between experimental resonant frequencies and statistical predictions obtained by an autoregressive model.44

Kullaa [28] and Yan and co-authors [29, 30] also worked on the Z24 Bridge and showed that damage can be45

also detected through control charts and Principal Component Analysis (PCA). Ubertini et al. [9] reported the46

damage detection of the bell-tower of the Basilica of San Pietro in Perugia during the 2016 Central Italy seismic47

sequence through long-term vibration-based SHM. To do so, the environmental effects were filtered out using48

Multiple Linear Regression (MLR) analysis and PCA, and the damage-induced anomalies in the residuals were49

analysed through control charts. Hu et al. [31] reported the vibration-based SHM of a prestressed-concrete box50

girder bridge in Berlin over 14 years. Through MLR filtering of the environmental effects, those authors found51

a progressive increase in the number of outliers in the control charts from 1.35% in 2000/2001 to 21.58% after52

2008. Such reductions were consistent with measured decreases in the strain of the main pre-stressed tendon, what53

demonstrates the usefulness of vibration-based SHM for assessing progressive structural deterioration.54

While highly effective in global structural assessment, vibration-based SHM may fail at detecting local de-55

fects with a limited impact on the stiffness. Hence, the use of integrated monitoring systems comprising diverse56

sensing solutions (e.g. dynamic, static, chemical) becomes imperative for effective local/global damage detection.57

Moreover, the assessment of environmental conditions is often critical for efficient data fusion and extraction of58

damage-sensitive features. The effects of environmental factors may dramatically vary depending on the type59

of construction material and the structural typology, so sensor layouts must be tailored for every specific case60

study. For instance, in masonry structures, positive correlations between environmental temperature and resonant61

frequencies are often observed [9, 32]. This is conceivably explained as the effect of the closing of superficial62

cracks or micro-cracks induced by thermal expansion of masonry. However, some other works such as the one63

by Gentile et al. [33] report the opposite behaviour. Those authors reported the SHM of the Milan Cathedral in64

Italy using both static (tilt meters and vibrating wire extensometers), environmental (hygrometers and temperature65

sensors) and dynamic sensors (seismometers). Their results showed a negative correlation between resonant fre-66

quencies and temperature, which was ascribed to the actions exerted by metallic tie-rods in the building. Negative67

frequency-temperature correlations are also common in reinforced-concrete and steel structures (see e.g. [34, 35]),68

which is usually ascribed to decreases in the material Young’s modulus with increasing temperature. Neverthe-69

less, likewise masonry structures, varying effects can be found depending on the specific structural typology, solar70

radiation, and temperature distribution (see e.g. [36, 37]).71

Despite the advanced state of research, the number of software solutions that allow implementing SHM sys-72

tems in practice is considerably limited. The most popular software programs for vibration-based SHM of struc-73

tures are MACEC, LMS Test.Lab, and ARTeMIS. MACEC [38] is a MATLAB toolbox for OMA of structures74

developed by the Structural Mechanics Section of KU Leuven. This offers an extensive gallery of system identifi-75

cation methods for Ambient Vibration Testing (AVT) of structures, including, among others, Frequency Domain76

Decomposition (FDD), data-based and covariance-based Stochastic Subspace Identification (SSI), and Polyref-77

erence Least Squares Complex Frequency Domain method (p-LSCF). Nonetheless, this software does not allow78

performing continuous OMA and, therefore, cannot be directly applied to long-term vibration-based SHM. The79
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LMS Test.Lab Modal Analysis software [39] implements a very robust version of the p-LSCF method under80

the commercial name of PolyMAX although, alike MACEC, this software does not permit the implementation81

of long-term SHM systems. ARTeMIS [40] was developed by the company Structural Vibration Solutions A/S,82

funded in 1999 as a spin-off from Aalborg University in Denmark. This software is particularly well-suited for83

AVT of structures and, unlike the previous software programs, the most recent versions include a Damage Detec-84

tion Plug-in with automated SSI and Hotelling’s control charts. Nevertheless, ARTeMIS lacks the possibility of85

using statistical pattern recognition methods to filter out environmental effects and, therefore, it may be difficult to86

detect early-stage damage using this tool.87

In view of the reported gap between research and professional practice, this paper introduces two new software88

programs for integrated SHM of structures, called MOVA and MOSS, Italian acronyms of “MOnitoraggio delle89

Vibrazioni Ambientali” (AVT) and “MOnitoraggio dello Stato di Salute” (SHM), respectively. MOVA focuses on90

AVT, while MOSS is dedicated to the online management of permanent integrated SHM systems. The latter in-91

cludes automated OMA, frequency tracking, filtering of environmental effects, and fusion of heterogeneous sensor92

data. The data fusion capability of MOSS specifically lies in the possibility of performing pattern recognition us-93

ing arbitrary combinations of predictors and estimators, including vibration and non-vibration data. Furthermore,94

an original algorithm for automated anomaly detection is introduced. In this way, once set up, the user has online95

access to a number of control charts assessing the performance of all those desired damage-sensitive features, and96

the system triggers an alarm (visual, sound, and/or by e-mail) when an anomaly is detected in any of them. Central97

to the development of MOVA/MOSS is the attention to ease of use and interpretability. Originally developed using98

MATLAB environment, MOVA and MOSS have been implemented in C++ providing a compact graphical user99

interface (GUI). In order to highlight the capabilities of MOVA/MOSS, this paper presents an application case100

study of the static/dynamic SHM of a monumental masonry palace, the Consoli Palace in Gubbio (Italy).101

The remaining of the paper is organised as follows: Section 2 concisely describes the case study of the Consoli102

Palace. Section 3 outlines the theoretical background of vibration-based SHM. Section 4 describes the software103

architecture of MOVA/MOSS through an application case study of the Consoli Palace and, finally, Section 5104

concludes the paper.105

2. Application case study: The Consoli Palace in Gubbio, Italy106

The Consoli Palace is the most emblematic monument of the city of Gubbio in Italy (Fig. 1 (a)). Erected107

between 1332 and 1349 to house the official courts, the Consoli Palace has hosted the Civic Museum of Gubbio108

since 1901. Including a bell-tower and a panoramic loggia, the building is 60 m high and has a rectangular plan of109

about 40×20 m. The palace features a Gothic style design with calcareous stone masonry, including an articulated110

internal distribution of volumes with thick masonry bearing walls and vaults as horizontal elements. Erected on111

the slope of the Ingino Mountain, the palace foundations are placed on two different levels with a drop of about112

10 m. From the architectural point of view, the main façade is characterized by a distinctive fan-shaped staircase113

entrance and an arched portal.114

As an exceptional example of a stiff historic building, the Consoli Palace has become the benchmark case115

study of several recent research projects. These include the Horizon 2020 European HERACLES project (2016-116

2018) devoted to enhancing resilience of historic buildings against harmful events, with emphasis on climate-117

change related effects. Within this project, a wide research programme was developed including diverse SHM118

methodologies and protocols for application to historic masonry palaces (see e.g. [22, 41, 42]). More recently, the119

Consoli Palace has also become the benchmark case study of a national Italian research project entitled “DETECT-120

AGING” and devoted to the monitoring of degradation effects on the structural safety of CH constructions. From121

these experiences, a considerable amount of monitoring data from different types of sensors has been collected,122

making the Consoli Palace an ideal example to illustrate the capabilities of MOVA/MOSS.123

In this work, we focus on the static/dynamic/environmental monitoring of the Consoli Palace. Firstly, in124

order to characterize the modal features of the palace, an AVT with a moderately dense accelerometer network125

sketched in Fig. 1 (c) was conducted on May 4th 2017. This consisted of 9 uni-axial high sensitivity piezoelectric126

accelerometers (model PCB 393B12, ±0.50 g, and 10 V/g sensitivity) deployed on the three main floors of the127

palace at heights of 4.64, 18.89, and 29.77 m (labelled from TS1 to TS9). Afterwards, a permanent integrated SHM128

system has been installed in the Consoli Palace since July 2017, including 3 accelerometers, 2 crack meters, and129

2 temperature sensors. Specifically, three PCB 393B12 accelerometers, labelled from PS1 to PS3, were deployed130

on the roof level of the palace. Two linear variable transducers (LVDTs) denoted as LVDT1 and LVDT2 (S-131

Series, measurement range 0-50 mm, resolution <0.3 µm) were installed across two major vertical cracks located132

on the second floor of the building. Finally, two K-type thermocouples were also installed close to each LVDTs.133

The sensors are connected to a NI CompactDAQ-9132 data acquisition system (processor 1.33 GHz Dual-Core134

Atom, 2 GB RAM, 16 GB SD storage, 4-Slot, Windows Embedded Standard 7 operating system) with a NI135
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9234 acceleration acquisition module (24-bit resolution, 102-dB dynamic range, and anti-aliasing filters) and a136

NI 9219 crack amplitude and temperature acquisition module (24-bit resolution, +-60V range, 100 S/s). The137

monitoring data were locally acquired and preliminarily processed through an in-house LabVIEW code, and138

stored in consecutive separate files containing 30 min-long recordings. Ambient accelerations were sampled at139

100 Hz, while crack amplitudes and temperature values were sampled at 0.1 Hz. The data files were sent online140

through the Internet to a remove server located in the Laboratory of Structural Health Monitoring and Earthquake141

Engineering, where MOSS was used for automated SHM of the palace.142
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Figure 1: View of the Consoli Palace (a), elevation (b), and sketch of the structural monitoring system (c).

3. Theoretical background143

MOVA and MOSS combine the experience on SHM of civil engineering structures accumulated by the re-144

search group during the last ten years. Some of the included routines have been previously tested in different145

structural typologies, specially bridges [24, 43] and CH structures [9, 22, 44].146

3.1. Fundamentals of time-domain OMA methods147

The differential equation of equilibrium of a dynamic system discretized into a finite element model (FEM)148

with n2 degrees of freedom (DOFs) can be written in continuous state-space form as follows:149

ẋ(t) = ACx(t) + BCu(t),
ẏ(t) = CCx(t) + DCu(t),

(1)

where AC ∈ R
2n2×2n2 , BC ∈ R

2n2×ni , CC ∈ R
l×2n2 , and DC ∈ R

l×ni are designated the state matrix, input matrix,150

output matrix, and direct transmission matrix, respectively. Vectors x(t) ∈ R2n2 and y(t) ∈ Rl denote the state and151

observation vectors, respectively. The state vector x(t) contains the displacements and velocities of the DOFs of152

the system, while the observation vector y(t) contains a subset of l measured outputs. The first line in Eq. (1),153

called the state equation, relates ni inputs (loads) applied to the system and contained in vector u(t) ∈ Rni to the154

state vector x(t). On the other hand, the second line in Eq. (1) is called the observation equation and establishes155

a relation between the observation vector y(t) and the state vector x(t). The modal features of the system can156
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be extracted from the eigenvalue decomposition of the state matrix AC as AC = ΨΛCΨ−1. Matrices ΛC and Ψ157

containing the eigenvalues and eigenvectors of AC , respectively, present the following structure [45]:158

ΛC =

[
Λ 0
0 Λ∗

]
, Ψ =

[
Θ Θ∗

ΘΛ Θ∗Λ∗

]
,

Λ =


. . .

λk
. . .

 , Θ =
[
. . . φk . . .

]
, k = 1, .., n2

(2)

where •∗ denotes complex conjugate. Parameters λk are related to the resonant frequencies (ωk - natural frequen-159

cies in rad/s) and the modal damping ratios (ζk) of the system as:160

λk = −ζkωk + i
√

1 − ζ2
kωk, (3)

with i denoting the imaginary unit. The mode shapes are represented in Eq. (2) by φk ∈ R
n2 . However, since only161

a subset of l DOFs is measured, the observable modal matrix Φ ∈ Rl×n2 is given by:162

Φ = CCΨ. (4)

In practice, recorded analogue signals are digitalized by an analogue-to-digital converter (A/D), so the avail-163

able information is discrete in time. Such a process is conducted by sampling the signals at a certain sampling164

frequency fs = 1/∆t, with ∆t being the adopted sampling interval. Therefore, the time functions x(t) and y(t) in165

Eq. (1) must be replaced by their values at discrete time instants k∆t with k being an integer, i.e. yk = y(k∆t),166

xk = x(k∆t). In addition, in the context of OMA, the system inputs in u(t) are unknown (unmeasured) and must167

be represented through stochastic processes. On this basis, the discrete stochastic state-space model reads:168

xk+1 = Axk + wk,

yk = Cxk + vk,
(5)

here, vectors wk ∈ R
2n2 and vk ∈ R

l represent white noise processes accounting for the effect of unknown outputs169

as well as the effects of process noise (modelling inaccuracies) and measurement noise, respectively. Both noise170

vectors are assumed to be zero-mean realizations of stochastic processes with the following correlation matrices:171

E
([

wp

vp

] [
wT

q vT
q

])
=

[
Q S
ST R

]
δpq, (6)

where sub-indexes p and q denote generic time instants, δpq is the Kronecker delta, and E is the expected value172

operator.173

It can be demonstrated that the eigenvectors of matrix A coincide with those of the continuous counterpart AC174

and, since C equals CC , the modal matrix is given by Eq. (4) [46]. In addition, the eigenvalues of the discrete175

model µk are related to those of the continuous model λk as [46]:176

µk = eλk∆t ⇔ λk =
ln (µk)

∆t
, (7)

Therefore, the natural frequencies and model damping ratios can be readily obtained from the eigenvalues of177

matrix A using Eqs. (3) and (7).178

An important property of stochastic state-space models regards the relation between the correlation matrix of179

the measurement records and the state-space matrices [45]:180

R j = CA j−1G, (8)

with R j being the output correlation matrix for a time lag τ = j∆t, and G being the next state-output covariance181

matrix given by:182

G = E
[
xk+1yT

k

]
. (9)

3.2. System identification183

The software MOVA/MOSS offers four different system identification techniques, including two frequency-184

domain (EFDD and p-LSCF) and two time-domain identification techniques (COV-SSI and DATA-SSI).185
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3.2.1. Enhanced Frequency Domain Decomposition (EFDD)186

The Frequency Domain Decomposition (FDD) method is based on the input/output relationship of linear time-187

invariant systems as [47]:188

Gyy(ω) = H(ω)Guu(ω)H(ω)H, (10)

where •H denotes complex conjugate (Hermitian) transpose. Matrices Guu(ω) ∈ Crc×rc and Gyy(ω) ∈ Cl×l represent189

the Power Spectral Density (PSD) matrices of the inputs and outputs, respectively, with rc being the number of190

inputs (references), and H(ω) ∈ Crc×l is the Frequency Response Function (FRF) matrix. In practice, the PSDs191

are commonly computed using the Welch’s method. Then, the singular value decomposition (SVD) of Gyy is192

performed as:193

Gyy(ω j) = U jS jUH
j , (11)

where U j is an orthonormal matrix (U jUH
j = I) containing the singular vectors of Gyy(ω j), and S j is a diagonal194

matrix holding the corresponding singular values (SVs). On this basis the resonant frequencies can be estimated195

by picking the peaks of the first SV, while the mode shapes are obtained as the first singular vector evaluated at196

the formerly picked frequency values.197

The EFDD method represents an improved version of the FDD that allows to identify damping ratios and198

more accurate estimates of resonant frequencies. To do so, the singular value data around the resonance peaks199

are selected, typically according to a limit modal assurance criterion (MAC) value. Once selected, these spectrum200

segments are converted to the time domain in order to get auto-correlation functions for each mode. Finally, the201

corresponding resonant frequencies and damping ratios can be obtained by fitting the expression for the impulse202

response of a single-degree-of-freedom system. Alternatively, MOVA and MOSS implement the Single-Input-203

Multiple-Output (SIMO) version of the Ibrahim Time Domain (ITD) technique to extract the natural frequencies204

and damping ratios from the computed auto-correlation functions [48].205
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Figure 2: Dynamic identification of the Consoli Palace using EFDD in MOVA (SV plots and selected peaks).

Figure 2 presents the first four SVs of the spectral matrix calculated from the acceleration time-series recorded206

during the AVT of the Consoli Palace. These were calculated with the Welch’s method using time segments with207

2048 points, and Hanning windows with an overlapping of 50%. The application of the SVD decomposition to the208

spectral matrix evaluated at all the discrete frequencies between 0 and 12 Hz produces 9 SVs for each frequency.209

The spectrum of the first singular values exhibits six peaks that are associated with main modes of the Consoli210

Palace within the frequency band under analysis as further investigated in Section 4. The points of the singular211

value spectra are selected for the application of the ITD method using a limit for the MAC of 0.8.212

3.2.2. Polyreference Least Squares Complex Frequency Domain method (p-LSCF)213

The Polyreference Least Squares Complex Frequency Domain method (p-LSCF) is a parametric frequency-214

domain method developed by Peeters and Van der Auweraer [49]. The p-LSCF models the positive half-spectrum215
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matrix using a right-matrix fraction model as:216

G+
yy(ω j) = B(ω j)

[
A(ω j)

]−1
=

 p∑
r=0

BrΩr(ω j)

  p∑
r=0

ArΩr(ω j)

−1

, (12)

where matrices Br, Ar ∈ R
l×l are model parameter matrices to be determined, Ωr(ω j) are polynomial basis217

functions, and p is the polynomial order. The p-LSCF model is expressed in the discrete z-domain (i.e. a218

frequency-domain model derived from a discrete-time model), so the polynomial basis functions take the form219

Ωr(ω j) = eiω j∆tr. The method seeks matrices Br and Ar that minimize in a non-linear least-squares sense the error220

matrix ENLS (ω j) = G+
yy(ω j) − Ĝ+

yy(ω j), which involves the difference between G+
yy and the half-spectrum matrix221

Ĝ+

yy estimated from the measurement records. Nevertheless, the right multiplication of ENLS (ω j) by matrix A(ω j)222

leads to more convenient linear least-squares equation errors as:223

ELS (ω j) =

 p∑
r=0

BrΩr(ω)

 − Ĝ+

yy(ω j)

 p∑
r=0

ArΩr(ω)

 , (13)

where ELS (ω j) ∈ Cl×l contains the errors (Ei j) to be minimized. The minimization problem can be written in224

a more compact form after some transformations. In particular, an arbitrary line o of the error matrix at all the225

discrete frequency values from ω1 to ωN f can be stacked in a matrix ELS
o ∈ C

N f×l:226

ELS
o (βo,α) =


Eo1(ω1) . . . Eol(ω1)
Eo1(ω2) . . . Eol(ω2)
. . . . . . . . .

Eo1(ωN f ) . . . Eol(ωN f )

 =
[
Xo Yo

] [βo

α

]
, (14)

with227

Ω(ω j) =
[
Ω0(ω j) Ω2(ω j) . . . Ωp(ω j)

]
∈ Cp+1,

Yo =


Ω0(ω1)Ŝ+

yyo Ω1(ω1)Ŝ+

yyo . . . Ωp(ω1)Ŝ+

yyo
... . . .

Ω0(ωN f )Ŝ
+

yyo Ω1(ωN f )Ŝ
+

yyo . . . Ωp(ωN f )Ŝ
+

yyo

 ∈ CN f×l(p+1),

Xo =


Ω(ω1)
...

Ω(ωn f )

 ∈ CN f×(p+1), βo =


B0o

B1o

. . .
Bpo

 ∈ R(p+1)×l, α =


A0
A1
. . .
Ap

 ∈ Rl(p+1)×l,

(15)

where Ŝ+

yyo and Bro represent the o lines of matrices Ŝ+

yy and Br, respectively. Finally, a scalar cost function can be228

constructed as the sum of the squared elements of the error matrix as:229

ε(βo,α) =

l∑
o=1

tr
{
Eo(βo,α)HEo(βo,α)

}
=

l∑
o=1

tr
{[
βT

o αT
] [Ro So

ST
o To

] [
βo

α

]}
, (16)

with Ro = Re(XH
o Xo) ∈ R(p+1)×(p+1), So = Re(XH

o Yo) ∈ R(p+1)×l(p+1), To = Re(YH
o Yo) ∈ Rl(p+1)×l(p+1), and230

tr denoting the trace operator. The unknown model parameters in Br and Ar can be obtained by forcing the231

derivatives of the cost function with respect to α and βo to be zero. This leads to the following reduced system of232

equations:233

2(Roβo + Soα) = 0⇔ βo = −R−1
o Soα,

2
∑l

o=1

(
To − ST

o R−1
o So

)
α = 0⇔Mα = 0,

(17)

where matrix M ∈ Cl(p+1)×l(p+1) can be computed from the output half-spectrum matrix estimated from the mea-234

surement records. In order to avoid the trivial solution of the previous equation (α = 0), a constraint has to be235

imposed. This is typically conducted by forcing either Ao or Ap to be the identity matrix. In particular, clearer236
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stabilization diagrams have been reported to be found when Ao = I [6]. Then, the resolution of the system of237

equations reads:238

Mα = 0⇔


Maa Mab

Mba Mbb




I

αb

 =


0
0
...
0

⇔ αb = −M−1
bb Mba ⇔ α =

[
I

−M−1
bb Mba

]
, (18)

where Mba contains the first l columns and the last pl lines of M, Mbb contains the last pl columns and rows of239

M, and αb contains the last pl rows of α. Once matrix α is determined, matrix βo is directly obtained using the240

relation between α and βo in Eq. (17). With this step, the model parameter matrices Ar and Br are determined and241

the identification problem is solved. Then, the modal features can be obtained through the transposition equations242

from right matrix-fraction models to state-space models, leading to the following state-space matrices [50]:243

AC =


−A−1

p − Ap−1 −A−1
p − Ap−2 . . . −A−1

p − A1 −A−1
p − A0

I 0 . . . 0 0
...

. . . . . .
...

...
0 0 . . . I 0

 ,
BC =

[
A−1

p
0

]
,

CC =
[

Bp−1 − BpA−1
p Ap−1 . . . B0 − BpA−1

p A0

]
,

DC = BpA−1
p .

(19)

Finally, the modal features can be readily determined through the eigenvalue decomposition of matrix A. At244

this point, separation of physical and spurious modes becomes crucial. This is commonly performed through245

stabilization diagrams representing the modal parameters estimated considering p-LSCF models with increasing246

polynomial orders p. Figure 3 shows the stabilization diagram obtained using the p-LSCF method in MOVA for247

the ambient vibration dataset recorded during the AVT of the Consoli Palace. To do so, the cross half-spectra248

of the nine time series of ambient vibrations were obtained using the Welch’s method considering time segments249

with 2048 points and 50% overlap. Afterwards, the model conversion in Eq. (19) was constructed by adopting250

polynomial orders between 20 and 120. It is noted in Fig. 3 that six clear columns of stable poles are found at251

frequency values corresponding to the main natural frequencies of the Consoli Palace in the considered frequency252

range. These results exemplify one of the main advantages of the p-LSCF method, which regards the generation of253

very clear stabilization diagrams. Indeed, it has been previously reported in the literature that most of the spurious254

poles appear with negative damping ratios when using the p-LSCF method, thereby they are directly eliminated255

before constructing the stabilization diagram [45].256
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Figure 3: Dynamic identification of the Consoli Palace using p-LSCF in MOVA (stabilization diagram).
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3.2.3. Stochastic Subspace Identification257

The developed software includes two time-domain SSI methods, namely the Covariance driven SSI method258

(SSI-COV) and the data-driven SSI method (SSI-DATA).259

SSI-COV260

The SSI-COV method identifies a stochastic state-space model from the output covariance matrix (or corre-261

lation, as the mean of the signals is assumed to be zero). It starts by computing the output correlation matrix for262

positive time lags varying from ∆t to (2 jb − 1)∆t represented by R1 to R2 jb−1. Afterwards, the covariance matrix263

is organized in a l jb-by-l jb block Toeplitz matrix (sketched in Fig. 4) as:264

T1| jb =


R jb R jb−1 . . . R1

R jb+1 R jb . . . R2
. . . . . . . . . . . .

R2 jb−1 R2 jb−2 . . . R jb

 . (20)
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Figure 4: Schematic representation of the construction of the Toeplitz matrix and block Hankel matrix for SSI-COV and
SSI-DATA, respectively.

Applying the factorization property of the correlation matrix in Eq. (8) to all the R j matrices stored in the265

Toeplitz matrix, T1| jb can be decomposed in the product of the following matrices:266

T1| jb =


C

CA
. . .

CA jb−1


[
A jb−1G . . . AG G

]
= OΓ. (21)

The second equality in Eq. (21) defines the following matrices: O- extended observability matrix; and Γ-267

reversed extended stochastic controllability matrix. The first one is a column of jb blocks with dimensions l-by-n268

(n is the dimension of the state-space model). The second one is formed by jb n-by-l matrices organized in a row.269

According to the previous equation, the Toeplitz matrix results from the product of a matrix with n columns by270

a matrix with n rows. Therefore, if n < l jb, the rank of T1| jb is equal to n. Then, the SVD of the block Toeplitz271

matrix is calculated:272

T1| jb = USVT =
[
U1 U2

] [S1 0
0 0

] [
VT

1
VT

2

]
= U1S1VT

1 . (22)

The number of non-zero SVs gives the rank of the decomposed matrix, which, in this case, coincides with273

n (assuming n < l jb), the dimension of the state-space matrix A. The comparison of Eqs. (21) and (22) shows274

that the observability and the controllability matrices can be calculated from the outputs of the SVD using the275

following partition of the singular values matrix:276

O = U1S1/2
1 ,

Γ = S1/2
1 VT

1 .
(23)
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Once the observability and controllability matrices are obtained, the identification of the state-space model277

matrices A and C is straightforward. On one hand, matrix C can be extracted from the first l lines of the ob-278

servability matrix. On the other hand, the state matrix A can be computed according to different approaches.279

The developed software utilizes the Balanced Realization (BR) method which exploits the shift structure of the280

observability matrix, that is [45]:281 
C

CA
. . .

CA jb−2

 A =


CA
CA2

. . .

CA jb−1

⇔ A =


C

CA
. . .

CA jb−2


† 

C
CA2

. . .

CA jb−1

 = Oto†Obo, (24)

where Oto contains the first l( jb − 1) lines of O, and Obo contains the last l( jb − 1) lines of O jb . The symbol †282

represents the Moore-Penrose pseudo-inverse.283
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Figure 5: Dynamic identification of the Consoli Palace using SSI-COV in MOVA (stabilization diagram).

Figure 5 shows the stabilization diagram obtained using the SSI-COV method in MOVA for the ambient284

vibration dataset recorded during the AVT of the Consoli Palace. To do so, jb has been assumed as 70, resulting285

in a 70 · 9 × 70 · 9 Toeplitz matrix. Then, matrices O, Γ, A and C and then the modal parameters are estimated286

considering an odd number of singular values and vectors varying from 20 to 120. Similarly to the previous287

analyses, it is noted in Fig. 5 that six clear columns of stable poles are found at frequency values corresponding to288

the main natural frequencies of the Consoli Palace in the considered frequency range.289

SSI-DATA290

Data-driven stochastic subspace identification (SSI-DATA) is similar to SSI-COV, but identifies the state se-291

quence before the estimation of the state-space matrices. Data-driven SSI consists of the following steps: (a)292

construction of the block Hankel matrix of the measurements, Hi; (b) computation of the projection matrix, Pi;293

(c) estimation of the observability matrix, Γi; and (d) extraction of the modal parameters estimates from matrix Γi.294

The block Hankel matrix (sketched in Fig. 4) is defined as:295

Hi =
1
√

j



y(0) y(1) . . . y( j − 1)
y(1) y(2) . . . y( j)
...

...
. . .

...
y(i − 1) y(i) . . . y(i + j − 2)

y(i) y(i + 1) . . . y(i + j − 1)
y(i + 1) y(i + 2) . . . y(i + j)

...
...

. . .
...

y(2i − 1) y(2i) . . . y(2i + j − 2)


=

[
Y0|i−1

Yi|2i−1

]
=

[
Yp

Y f

]
, (25)

where 2i and j, with j ≤ s − 2i + 1, are user-defined quantities representing the number of output block rows and296

the number of columns of matrix Hi, respectively. The block Hankel matrix in Eq. (25) is subdivided into two297

10



sub-matrices, named as Yp and Y f , which are usually referred to as past and future output block matrices. The298

identification of the Kalman filter state sequences and, as a consequence, of the state-space matrices is based on299

the orthogonal projection of the row space of the future outputs on the row space of the past outputs:300

Pi = Y f /Yp = Y f YT
p

(
YpYT

p

)†
Yp, (26)

which can be efficiently computed by the LQ factorization of the block Hankel matrix of the outputs. The main301

theorem of DATA-SSI states that the projection matrix Pi can be factorized into the product of the observability302

matrix Oi and the Kalman filter state sequence Ŝi:303

Pi = OiŜi, (27)

where Ŝi is a matrix containing Kalman filter estimates of the state vector at different time steps. Similarly, the304

projection matrix Pi−1 can be obtained as:305  Y0|i−1
Yi|i

Yi+1|2i−1

 =

[
Y0|i

Yi+1|2i−1

]
=

[
Y+

p
Y−f

]
⇔ Pi−1 = Y−f /Y

+
p , (28)

where Y+
p is the past output with one extra block row, while Y−f is the future output matrix without the first block306

row Yi|i. The observability matrix Oi can be estimated from the SVD of matrix W1PiW2:307

W1PiW2 =
[

U1 U2

] [ Σ1 0
0 0

] [
VT

1
VT

2

]
= U1Σ1UT

1 (29)

According to the Canonical Variate Analysis (CVA) method, the weighting matrices W1 and W2 take the form308

W1 =
(
(1/ j)Y f YT

f

)−1/2
and W2 = I . Then, the observability matrix Oi and the Kalman filter state sequence Ŝi309

can be computed as:310

Oi = U1Σ
1/2
1 ,

Ŝi = O†i Pi.
(30)

A similar factorization can be applied to Pi−1:311

Pi−1 = O↑i Ŝi1 ⇔ Ŝi+1 =
(
O↑i

)†
Pi−1, (31)

where O↑i can be directly obtained from Oi by deleting the last l rows. Finally, the state-space matrices A and C312

are obtained in a least squares sense as [51]:313 [
A
C

]
=

[
Ŝi+1
Yi|i

]
Ŝ†i . (32)

3.3. Automated system identification314

The current version of MOSS allows performing automated system identification using SSI. To do so, the code315

includes the automation procedure introduced in reference [24] and concisely overviewed herein. This comprises316

the following steps: (a) modal identification for different values i and j of the number of rows and columns of the317

Toeplitz/Hankel matrices, respectively; (b) noise modes elimination; and (c) clustering analysis.318

(a) Iterative modal identification319

A total number of N SSI analyses are performed considering values of j and i varying within certain user-320

defined intervals
[
jmin, jmax

]
and [imin, imax] and steps ∆ j and ∆i, respectively. Specific rules for setting adequate321

values of imin imax, jmin, jmax, ∆i and ∆ j can be found in reference [24], and are included as default parameters322

in MOSS. This procedure results in a set of M poles, whose modal information can be organized in matrix323

form as:324

f =
[
f1 f2 . . . fM

]T ,

ζ =
[
ζ1 ζ2 . . . ζM

]T ,

Θ = [Θ1 Θ2 . . . ΘM] ,

(33)

where fm, ζm, and Θm denote the frequency, damping, and mode shape vector of an arbitrary m-th mode,325

m = 1, 2, . . . ,M.326
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(b) Noise modes elimination327

Noise modes elimination is performed by a similar approach to the interpretation of stabilization diagrams,328

but accounting for variations of both j and i. To discern between noise modes and physical ones, a vector329

c = [c1 c2 . . . cM]T is computed with components cm, m = 1, 2, . . . ,M, given by:330

cm =

−1 +
∑M

l=1 δlm, if ζm ∈
[
0 ζmax

]
0, if ζm <

[
0 ζmax

] (34)

with331

δlm =

1, if ∆ flm ≤ ε f , ∆ζlm ≤ εζ , 1 − MAClm ≤ εMAC

0, otherwise

∆ flm =
| fl − fm|

fm
, ∆ζlm =

|ζl − ζm|

ζm
, MAClm = MAC(Θl,Θm),

(35)

where ζmax is the maximum reasonable value for the damping ratio of the physical modes (≈5-10% depending332

on the structural typology), MAC(Θl,Θm) is the MAC value between modes Θl and Θm, and ε f , εζ , and εMAC333

are user-defined tolerances. An arbitrary component cm represents the number of modes, among all the M334

identified ones, which have similar modal features to those of the m-th mode. Therefore, the m-th mode is said335

to be stable when it is similar in terms of frequency, damping, and mode shape to a minimum number Nmin336

of other modes, i.e. cm ≥ Nmin. A value of Nmin = N/10 is selected as a compromise for eliminating most of337

the noise modes without cancelling the physical ones [24]. Then, the number of stable poles can be readily338

obtained computing a vector S:339

S = [S 1 S 2 . . . S M]T ,

S m =

1, if cm ≥ Nmin

0, otherwise

(36)

whose components assign 0 and 1 to unstable and stable modes, respectively. Hence, the total number of stable340

modes, P, simply reads P =
∑M

l=1 S l. The vectors of stable frequencies fs and damping ratios ζ s, and the matrix341

of stable mode shapes Θs can be extracted as:342

fs = HE f =
[
f1 f2 . . . fP

]T ,

ζ s = HE ζ =
[
ζ1 ζ2 . . . ζP

]T ,

Θs =
(
HE ΘT

)T
= [Θ1 Θ2 . . . ΘP] ,

(37)

where HE is a P × M matrix whose non-zero components are HEp,πp = 1, p = 1, 2, . . . , P, with π1, π2, . . . , πp343

being the positions of the non-zero terms of vector S.344

(c) Clustering analysis345

An agglomerate hierarchical clustering algorithm is implemented to automate the interpretation of the SSI346

outputs from the previous steps. Such an analysis is aimed at grouping the P stable modes into a set of homo-347

geneous data clusters pertaining to the same structural mode. The algorithm starts by generating a permutation348

vector v = [v1, v2, . . . , vP]T, containing the elements of vector p = [1, 2, . . . , P]T in a random order. There349

follows an iterative procedure composed of P steps sketched in Fig. 6. At the first step, the v1-th mode is350

considered as the first cluster seed C1
1 = {v1}, where C1

1 represents cluster C1 evaluated at step number 1 (su-351

perscript 1). The next P− 1 steps work in a similar way. Let us focus on a generic q-th step, at which a certain352

number r of clusters will already exist. In order to compare the vq-th mode and a cluster C j, j ∈ [1, ..., r], a353

similarity rule is defined as:354
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Figure 6: Graphical sketch of the hierarchical clustering approach.

dvq−C j =

∣∣∣∣ f s
vq
− f C j

∣∣∣∣
f C j

+ 1 + MAC(Θs
vq
,ΘC j ), (38)

where f C j
and ΘC j denote the mean values of the frequencies and mode shapes of the poles composing cluster355

C j, respectively, while f s
vq

and Θs
vq

are the frequency and the mode shape of the vq-th mode, respectively. Then,356

the similarities between the vq-th mode and the r clusters are arranged in a similarity vector dq as:357

dq =
[
dvq−C1 , dvq−C2 , . . . , dvq−Cr

]T
, (39)

and the following rule is applied:358

if dq,h = min(dq) ≤ dmax ⇒ Cq
h = Cq−1

h ∪
{
vq

}
,

if dq,h = min(dq) > dmax ⇒ Cq
h = Cq−1

h , C1
r+1 =

{
vq

}
,

(40)

meaning that the vq-th mode is assigned to cluster Ch (which is the closest one in terms of frequency and mode359

shape) if the similarity value dq,h is smaller than an user-defined threshold dmax; otherwise a new cluster Cr+1360

is created containing the vq-th mode. At the end of the procedure, a certain number nc of clusters defined by361

their centroids (average value of frequencies, damping ratios, and mode shapes) and cluster sizes (number of362

poles contained within the clusters) are obtained, and a minimum cluster size can be defined to disregard all363

those that are not populated enough to be considered as representative samples.364

3.4. Damage detection365

By applying the automated system identification procedure previously outlined in Section 3.3 to every mea-366

surement data, it is possible to obtain the time series of modal features of the structure. Such a process, often367

called “Frequency tracking”, is performed by tracking a reference set of resonant frequencies (typically obtained368

from an initial AVT) over the dataset of identified modal features. To do so, the poles of every dataset whose fre-369

quency values come closest to the reference ones (complying with a user-defined maximum relative tolerance and370

a minimum MAC value between the corresponding mode shapes) are collected in an observation matrix Y ∈ Rn×N ,371

where n is the number of identified frequencies and N is the number of observations. Then, any change in the372

dynamic behaviour of the structure, possibly related to developing damage, can be detected by the application of373

statistical process control tools to Y. Nevertheless, as stated earlier in Section 1, environmental/operational factors374

usually mask the effects of early-stage damage and need to be removed. Therefore, damage detection typically375

comprises the following two steps: (a) removal of environmental effects, and (b) novelty analysis. Additionally, (c)376

automated anomaly detection algorithms can be implemented for online damage detection. The implementation377

of these steps within MOSS is briefly outlined hereafter.378

3.4.1. Removal of environmental effects: regression models379

Given the masking effects of environmental/operational factors on modal frequencies, the quantities contained380

in Y cannot be directly used as damage-sensitive features. Instead, a proper residual error matrix, E ∈ Rn×N , is381

used for this purpose and computed as:382

E = Y − Ŷ, (41)
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where Ŷ contains predictions of the time series of resonant frequencies computed from a baseline in-control383

population. This in-control population, usually referred to as the training period, contains a set of identified384

modal features that statistically represent the healthy condition of the structure. This must be long enough to385

cover the full range of environmental conditions (both daily and seasonal fluctuations), and typically a one-year386

period is assumed adequate. MOSS includes six different regression models to construct Ŷ, three input-output387

models and three input-only models, namely:388

• Input-Output regression models: Multiple Linear Regression (MLR), AutoRegressive with eXogenous input389

model (ARX), and coupled MLR and Principal Component Analysis (MLR/PCA).390

• Input-only regression models: Principal Component Analysis (PCA), Factor Analysis (FA), and Autoasso-391

ciative Neural Networks (ANN).392

In addition, MOSS also includes a Gaussian Mixture Model (GMM) for clustering analysis and detection of393

freezing conditions. Because of space constraints, the theoretical description of each of these models is omitted in394

this paper, and interested readers may refer to references [52, 53].395

Under the assumption that Ŷ reproduces the part of the variance of the resonant frequencies corresponding to396

changes in environmental/operational conditions, E only contains the residual variance stemming from identifica-397

tion errors and un-modelled environmental/operational effects. If certain damage develops, this only affects the398

data contained in Y, while Ŷ remains unaltered. Therefore, E concentrates the damage-induced variance apt for399

being used for damage detection purposes.400

3.4.2. Novelty analysis401

Once the residual error matrix E is computed, the presence of damage is investigated using control charts as402

sketched in Fig. 7. These furnish in time a certain statistical distance accounting for disturbances in the distribution403

of the residuals contained in E. By defining an in-control region, the appearance of out-of-control processes, pos-404

sibly associated to damage, is detected in the shape of data points violating the in-control region. MOSS includes405

three different control charts that are overviewed hereafter, namely the Hotelling, Multivariate Cumulative Sum406

(MCUSUM), and Multivariate Exponentially Weighted Moving Average (MEWMA) control charts. The statisti-407

cal distances assessed by these control charts are positive by definition, so the in-control region is defined by an408

interval [0,UCL]. The upper control limit (UCL) is computed as the value of the statistical distance corresponding409

to a certain confidence level α for the distribution of data within the training population.410
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Figure 7: Control chart of a permanent SHM system.

• Hotelling’s T 2: The Hotelling’s T 2 control chart [54] is defined as:411

T 2
i = r

(
E − E

)T
Σ−1

0

(
E − E

)
, i = 1, 2, . . . ,N/r, (42)

where r is an integer parameter referred to as subgroup size, E is the mean of the residuals in the subgroup412

of the last r observations, while E and Σ0 are the mean values and the covariance matrix of the residuals413

statistically estimated in the training period.414
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• Multivariate Cumulative Sum (MCUSUM): This control chart appears as an improvement of the sensitivity415

of the T 2 control chart to detect small shifts in the mean of the statistical process, and it is based upon416

the principle of accumulating information of past observations. Among the different versions of this control417

chart that can be found in the literature, MOSS includes one of the most commonly used MCUSUM methods418

proposed by Crosier [55] as:419

CUS UMi =
(
r ST

i Σ−1
0 Si

)1/2
, i = 1, 2, . . . ,N/r, (43)

with420

Ci =

[
r
(
Si−1 + E − E

)T
Σ−1

0

(
Si−1 + E − E

)]1/2

,

S0 = 0,

Si =

 0, if Ci ≤ k,(
Si−1 + E − E

)
(1 − k/Ci) , if Ci > k,

(44)

where k is a constant parameter. Specific expressions for setting k can be found in reference [55]. MOSS421

imposes a default value of k = 0.5.422

• Multivariate Exponentially Weighted Moving Average (MEWMA): Originally proposed by Lowry et al. [56],423

the MEWMA control chart represents an intermediate solution between the T 2 and the MCUSUM control424

charts. Alike the MCUSUM control chart, the MEWMA method also accounts for the information from425

past observations, although it gives weights decreasing in a geometric progression from the most recent426

observation to the first one. The statistical distance used in the MEWMA control chart reads:427

MEWMAi =
(
r zT

i Σ−1
zi

zi

)1/2
, i = 1, 2, . . . ,N/r, (45)

with428

zi = λ
(
E − E

)
+ (1 − λ)zi−1,

Σzi = λ
1 − (1 − λ)2i

2 − λ
Σ0,

(46)

where λ is a smoothing constant with 0 ≤ λ ≤ 1. Practically, the most often used value of λ is 0.1.429

3.4.3. Automated damage detection430

An alarm system based upon the detection of outliers in the control chart would result in an excessive number431

of false alarms. Note that the control limit UCL is defined for a certain confidence level α, so such a system would432

signal a proportion of 1 − α alerts even when the structure remains in healthy condition (see Fig. 7). Therefore,433

it is necessary to implement a detection algorithm based upon variations in the statistical distribution of statistical434

distances. To do so, MOSS implements a simple but efficient approach based upon the pruned exact linear time435

(PELT) method proposed by Killick and co-authors [57]. This algorithm searches for a change-point or time436

instant at which some statistical property of a signal changes abruptly. In particular, we focus on the detection of437

mean shifts in the time series of residuals in E. Considering a certain row of the error residual matrix E as a signal438

x1, x2, ..., xN , the algorithm finds a position cp in a time series that minimizes the following cost function:439

J =

cp−1∑
i=1

xi −
1

cp − 1

cp−1∑
r=1

xr


2

+

N∑
i=cp

xi −
1

N − cp + 1

N∑
r=cp

xr,


2

(47)

To do so, the PELT algorithm iteratively segments the time series until finding the optimal solution. Through440

the use of dynamic programming and pruning, it can be proved that the computational cost of the PELT method is441

linear in the number of data points. For more specific information about the implementation of the PELT method,442

readers may refer to reference [57].443
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In this light, an automatic damage detection algorithm is implemented in MOSS based upon the PELT method.444

This is automatically launched every time the code finds a new data file and computes a new column of E. The445

position of the change-points detected by the PELT method is arranged in a matrix P ∈ Rn×N , and the number of446

repetitions (i.e. number of consecutive times that the PELT algorithm finds the same change-point) are collected447

in a vector N ∈ Rn. When a change-point is detected within the training period tp, a zero value is assigned to the448

corresponding position in P. The algorithm stops and signals an alarm when any of the elements of N reaches449

an user-defined maximum number of repetitions cpmax. For clarity, the algorithm is illustrated in the following450

pseudo-code:451

Algorithm 1 Pseudo-code for online damage detection using the PELT method.

1: for i← 1, n do
2: PELT method← cpi

3: if cpi ≤ tp then
4: PN+1,i = 0
5: else
6: PN+1,i = cpi

7: if PN+1,i = PN,i then
8: Ni = Ni + 1
9: else

10: Ni = 0
11: if max(N) = cpmax then
12: Signal alarm

4. MOVA/MOSS description and application case study452

The overarching purpose of MOSS is the fully autonomous management of permanent integrated SHM sys-453

tems. Typically, the work-flow of an SHM system using MOSS is sketched in Fig. 8. The monitoring system454

consists of an integrated sensor network deployed on the structure of interest, and of an in-place DAQ system that455

permanently collects the monitoring data. Subsequently, computer files containing monitoring records of certain456

time duration are sent through the internet or another data transmission system to a server or to the cloud where the457

data are stored. Here MOSS automatically processes all the monitoring records and updates user-defined control458

charts. To do so, it distinguishes between dynamic measurements and measurement data of different nature (e.g.459

temperature sensors, strain gauges, or inclinometers). On one hand, MOSS performs automated OMA using the460

ambient vibration records according to the methodology previously introduced in Section 3.3. This process com-461

prises five sequential steps, namely (i) pre-processing of measurement records according to certain user-defined462

filtering process; (ii) automated OMA; (iii) frequency tracking; (iv) elimination of environmental effects through463

pattern recognition techniques; and (v) control charts and online anomaly detection. In parallel, MOSS processes464

the rest of measurement data and performs data fusion. Specifically, the user can freely decide to use these extra465

monitoring data as predictors and/or estimators. That is to say, non-dynamic monitoring data can be used to filter466

out the environmental effects over the resonant frequencies or, alternatively, they can be used as damage-sensitive467

features. In the latter case, anomalies in their time series are investigated likewise vibration data through con-468

trol charts. Therefore, MOSS permits the definition of multiple control charts and performs simultaneous online469

damage detection of diverse damage-sensitive features.470
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Figure 8: Schematic of a permanent SHM system using MOSS.

The main GUI of MOSS is shown in Fig. 9. The interface is organized in four consecutive steps:471

I System Identification: This step encompasses the main capabilities of MOVA for AVT, and has the purpose472

of defining the geometry of the structure and the signal processing procedure used for all the measurement473

records. This includes the following sub-sections: GEOMETRY, SIGNAL PRE-PROCESSING, SYSTEM474

IDENTIFICATION, and Extra monitoring variables. The latter allows the user to introduce as many non-475

dynamic sensors as desired by providing a reference label, the measurement unit, and the computer folder476

that contains the record files.477

II Process of initial data set: This step includes the sub-section named Process initial data set and generates478

an initial data population of modal features to be used in the subsequent steps. The initial dataset of mea-479

surements (preferably those corresponding to the training period) along with the results folders (including480

the processed signals and the identification results) are introduced through the file manager located in the481

left part of the interface.482

III Frequency tracking and elimination of environmental effects: This comprises the sub-sections named483

FREQUENCY TRACKING and MULTIVARIATE STAT. ANAL. (MSA), and it is devoted to defining the484

parameters for automated frequency tracking and the statistical models used for pattern recognition. Ad-485

ditionally, an extra module (SURROGATE MODEL) for damage identification (i.e. detection, localization,486

and quantification) by means of surrogate-based model updating is anticipated for future releases.487

IV Damage detection: This last step constitutes the core of MOSS, and performs the online damage detection488

of the previously defined damage-sensitive features. It includes the sub-sections indicated as Continuous489

SHM and Damage simulation. The latter allows the user to explore the effects of artificial damage upon the490

constructed control models.491
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Geometry module: This interface allows the definition of a geometrical model and the accelerometer layout492

for the representation of the mode shapes. Three-dimensional models can be constructed using nodes, lines, and493

planes, as well as kinematic conditions between active and slave nodes. Every active node is defined at least494

by a measurement channel and the corresponding direction/orientation (±x, ±y, or ±z). Kinematic conditions495

include rigid-plane diaphragms and link conditions between slave and active nodes. Additionally, the interface496

incorporates a formula editor allowing for inserting general symbolic constraints between sets of nodes. The497

whole process can be carried out graphically using the mouse, manually by typing the information directly in498

the edit tables, or by loading a geometry file in ASCII format. Figure 10 (a) shows the geometrical model built499

for the AVT of the Consoli Palace previously described in Fig. 1. The model includes 9 acceleration channels500

and rigid-plane diaphragms at each floor of the building. For illustrative purposes, Fig. 10 (b) shows two sample501

geometries defined for a bridge structure and a tower.502
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Figure 10: Screenshot of the geometry module: (a) Consoli Palace, (b) reinforced-concrete bridge and masonry tower.

Signal pre-processing module: This module, shown in Fig. 11 (a), permits the definition of signal process-503

ing sequences to minimize the effects of noise and the presence of abnormal events. Specifically, the software504

interface includes: signal downsampling, moving average filtering, linear detrend, band-pass filtering, Hanning505

window filtering of signal spikes, Hanning window filtering of non-stationary excitations produced by swing-506

ing bells (common in CH structures), and a robust Multichannel Singular Spectrum Analysis (MSSA) denoising507

approach [58]. The software accounts for the application order of the selected filtering techniques, and the graph-508

ical representation of the filtered signals against the raw ones enables users to check the effectiveness of the509

implemented signal processing sequence. The comparison can be performed in the time domain, through PSDs,510

time-frequency analysis, and SVs of the PSDs (see Fig. 11 (b)). Specifically, Fig. 11 presents the pre-processing of511

the accelerations recorded during the AVT of the Consoli Palace conducted on May 4th 2017. In this case, ambient512

vibration data were collected during 30 min at a sampling frequency of 1652 Hz. The raw signals evidence the513

strong effect of the swinging bells located in the bell-tower of the palace, which ring regularly every 15 minutes.514

In order to minimize these effects and improve the system identification, the selected signal processing sequence515

includes: downsampling to 40 Hz, linear de-trend, moving average filtering with time window length of 200 s, and516

Hanning window filtering to eliminate the effect of swinging bells and signal spikes. Note that the swinging of517

bells induces a significant violation of the white noise assumption and must be filtered out before conducting the518

system identification. The implemented time-domain Hanning window filter suppress those parts of the signals519

affected by swinging bells, in such a way that the resulting signals do comply with the white noise assumptions.520
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Figure 11: Screenshot of the signal pre-processing module (a), and analyses of the filtered signals (b).

System identification module: This interface manages the vibration-based identification of the structure. Here521

the user can select any of the identification techniques previously introduced in Section 3. The identification522

results are presented in the shape of tabulated data, stabilization diagrams (SSI and p-LSCF), or SVs of the PSDs523

(EFDD), exportable reports, and the histogram representation of the MAC matrix. Moreover, this interface counts524

on a specific section for mode shape representation, including the animation of complex modes, complexity plots,525

and display of quality factors such as the Mode Complexity Factor (MCF), Mode Phase Collinearity (MPC), and526

Mean Phase Deviation (MPD). As an example, Fig. 12 (a) shows a screenshot of this module with the identification527

results obtained with the AVT of the Consoli Palace using COV-SSI, and Fig. 12 (b) shows a screenshot of the528

mode shape representation interface with the analysis of the first vibration mode.529
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Figure 12: Screenshots of the system identification module (a) and mode shape viewer (b).

This module has been utilised for the system identification of the Consoli Palace using the ambient acceleration530

data collected during the AVT and formerly processed in the signal pre-processing module. The identification531

results using all the available methods in MOSS are presented in Table 1. As reported earlier, six clear modes532
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are identified in the frequency range from 0 to 12 Hz. These correspond to two global first bending modes in the533

x− and y−directions, denoted as Fx1 and Fy1, respectively, one global torsional mode, T1, and three local modes534

related to the interaction between the palace and the bell-tower, denoted as L1, L2, and L3. The global mode535

shapes obtained using COV-SSI in MOSS are depicted in Fig. 13. It is noted that very similar resonant frequency536

estimates are obtained by all the different identification methods, while large differences are found in terms of537

damping ratios. The quality of damping estimates is highly dependent on the level of excitation of the structure,538

which is often quite low in CH structures in operational conditions. This is specially critical in this case study,539

where ambient accelerations in the palace did not exceed 1.5E-3 m/s2, so substantial uncertainties are expected to540

arise in the determination of damping properties.541

Table 1: Vibration-based system identification results of the Consoli Palace through the AVT conducted on May 4th 2017 using
the EFDD, p-LSCF, COV-SSI, and DATA-SSI methods in MOSS.

Natural frequencies [Hz] Damping ratios [%]

Mode EFDD p-LSCF COV-SSI DATA-SSI EFDD p-LSCF COV-SSI DATA-SSI

Fx1 2.270 2.296 2.285 2.287 1.471 0.561 1.243 1.383
Fy1 2.953 2.970 2.958 2.961 0.361 0.166 0.926 1.017
L1 3.479 3.463 3.488 3.492 0.247 0.118 1.325 1.387
L2 3.740 3.723 3.729 3.717 0.352 1.767 2.542 2.824
T1 4.153 4.124 4.148 4.150 0.303 0.423 1.087 1.226
L3 6.986 7.016 7.010 7.008 0.138 0.549 1.134 1.121

Mode Fx1

x

y

Mode Fy1 Mode T1

Figure 13: Global mode shapes, first bending modes Fx1 and Fy1 and torsional mode T1, obtained from the AVT of the Consoli
Palace using COV-SSI.

Frequency tracking module: Once the initial data population has been processed, this module allows to542

extract the time series of resonant frequencies, damping ratios, and mode shapes of the structure. To do so,543

the user must introduce a reference set of frequencies (typically retrieved from an AVT using a relatively large544

set of sensors) and a set of tolerances on allowable maximum relative frequency variations and minimum MAC545

values. Figure 14 shows a screenshot of this interface with the results obtained from the long-term monitoring546

of the Consoli Palace. The vibration-based identification of the palace was conducted using COV-SSI according547

to the automation procedure previously presented in Section 3.3. In this case, only five modes corresponding to548

Fx1, Fy1, L1, T1, and L3 were tracked, while Mode L2 was disregarded because of difficulties in its separation549

from modes L1 and T1. This is due to the reduced number of sensors used in the monitoring (only 3), what550

hinders the discrimination of very closely spaced modes by means of MAC comparison. Special attention must551

be also devoted to the potential occurrence of freezing conditions. Typically, freezing air temperatures induce552

the formation of ice crystals in the micro porosity of mortar joints in masonry structures leading to an overall553
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stiffening effect and, as a result, the natural frequencies experience substantial increases [18, 59]. Specifically,554

freezing conditions are clearly visible in the time series of the resonant frequencies of the Consoli Palace in Fig. 14555

during the time period from February 25th to March 1st 2017. In order to automatically detect such conditions, the556

frequency tracking interface counts on a specific section for that purpose. This section incorporates a gradient-557

based detection algorithm that allows to identify data regions of certain time length (336 h in the example of558

Fig. 14 and marked with black dashed lines) with sudden increases in the resonant frequencies. Once detected, the559

user can introduce new tolerance values for performing local frequency tracking over these regions. Afterwards,560

freezing conditions can be tackled in two different ways: using clustering analysis and setting different statistical561

regression techniques as illustrated later, or directly dismissing the identification results corresponding to the562

detected regions. The latter approach is acceptable when freezing conditions only occur during short periods of563

time.564
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Figure 14: Screenshot of the frequency tracking module with identification results of the permanent SHM system installed in
the Consoli Palace.

Multivariate statistical analysis module: This module, shown in Fig. 15, permits the definition of different565

statistical models accounting for distinct damage-sensitive features. Every model, identified by an user-defined566

label name, is assessed through statistical pattern recognition in the subsequent damage identification module.567

Specifically, this interface includes the following features:568

• Outliers elimination: Outliers represent anomalous data points arising as a result of identification and/or569

tracking errors. Their presence in the time series of damage-sensitive features may drastically reduce the570

effectiveness of regression models for the elimination of environmental effects, and it can grossly distort571

the computation of the mean and covariance matrices used later for statistical process control. With the572

aim of reducing the number of outliers in the training period (when the structure is assumed to be in the573

healthy state), this interface includes the PCA-based methodology for outliers elimination proposed by Wah574

et al. [60].575

• Filling of missing data: A very common situation in vibration-based SHM concerns the incomplete identi-576

fication of the dynamic features in the frequency range of interest. This may be due to tracking errors or to577

low or anomalous excitation conditions precluding the identification algorithm to find some of the modes of578

vibration. This results into missing data in the observation matrix. To solve this issue, this module includes579

three different filling methods: linear interpolation, autoregressive modelling, and a PCA-based algorithm580

for filling data gaps.581
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• Clustering analysis: The interface incorporates a GMM for detection of freezing conditions. In particular,582

the algorithm classifies the damage-sensitive features into two separate groups of dissimilar variance. Then,583

different regression methods can be built for each data cluster and so remove the environmental effects in a584

more effective manner.585

• Estimators/Predictors definition: Every statistical model is defined by a set of estimators (independent586

variables) and predictors (dependent variables). The user can freely select as estimators and/or predictors587

the resonant frequencies, damping ratios, max/min acceleration values, and acceleration root-mean-squares588

(RMS), as well as the mean, max/min, and standard deviation values of the non-dynamic measurements.589

Additionally, the interface incorporates a variable calculator that allows to define new estimators/predictors590

by typing general mathematical expressions involving different variables. This includes the possibility of591

adding time delays in certain parameters to build dynamic regression models, that is to say, models account-592

ing for past observations of certain predictors to account for thermal capacitance effects (e.g. the dynamics593

of heating up and cooling down processes).594

• Build of statistical models: The user can select among six different regression models, including output-595

only (PCA, FA, and AANN) and input-only models (MLR, ARX, and MLR/PCA).596

Freezing
conditions

Figure 15: Screenshot of the multivariate statistical analysis module with the clustering results of the resonant frequencies of
the Consoli Palace identified during the first year of monitoring.

The results in Fig. 15 show the application of GMM clustering for identification of freezing conditions in the597

case study of the Consoli Palace. It is noted that the sudden increase of natural frequencies induced by freezing598

conditions can be accurately detected by the model. Then, different statistical models can be applied to eliminate599

the environmental effects in each of the identified clusters. Nevertheless, for the sake of simplicity, and given600

that freezing conditions were only observed once during the whole monitoring period, the dataset corresponding601

to freezing conditions have been dismissed when using the frequency tracking module. On this basis, Fig. 16602

analyses the correlation between the mean temperature and crack amplitudes assessed by LVDT-1 (C1) against the603

resonant frequencies of global modes Fx1, Fy1, and T1 of the Consoli Palace during the one-year training period.604

In this figure, it is noted that the resonant frequencies exhibit a negative correlation with the mean temperature, and605

vice versa for the crack amplitudes. The negative frequency/temperature correlation can be conceivably ascribed606

to temperature-induced softening of metallic tie rods installed in the interior of the building. This agrees with607

previously reported results in the literature, such as the work by Gentile and co-authors [33] who identified the608
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role of metallic tie rods in the development of negative frequency/temperature correlations in the Milan Cathedral.609

On the other hand, the positive frequency/crack amplitude correlation is explained by the correlation between610

temperature and crack amplitudes. In particular, temperature increases induce the closure of cracks and vice-versa611

for temperature decreases. For a more exhaustive analysis of the environmental effects on the Consoli Palace,612

readers may refer to reference [22].613

y = -0.001x+2.333  (R2=0.183) y = -0.009x+3.130  (R2=0.610) y = -0.006x+4.269  (R2=0.544)

y = 0.115x+2.298  (R2=0.146) y = 0.878x+2.876  (R2=0.589) y = 0.537x+4.110  (R2=0.492)

Figure 16: Correlation between mean temperature and crack amplitudes assessed by LDVT-1 and the resonant frequencies of
global modes Fx1, Fy1, and T1 of the Consoli Palace during the one-year training period.

In light of the previous analyses, three different statistical models are defined in the Multivariate statistical614

analysis module, labelled as MLR-F, PCA-F and ARX-C. Models MLR-F and PCA-F define the resonant fre-615

quencies as estimators, while ARX-C considers for this purpose the crack amplitude C1. The aim of these models616

is to perform a local/global damage assessment of the Consoli Palace. On one hand, the first two models evaluate617

the presence of damage affecting the overall stiffness of the structure, while the second one accounts for local618

damage inducing behavioural variations in the amplitudes of crack C1. In the PCA-F model, only two principal619

components (PCs) sufficed to explain more than 90% of the variance of the estimators. The characteristics of these620

statistical models are as follows:621

• MLR-F: Estimators→ {Fx1, Fy1, L1, T1, L3}; Predictors→ {T1, T2, C1, C2}; Regression model→MLR.622

• PCA-F: Estimators→ {Fx1, Fy1, L1, T1, L3}; Regression model→ PCA (retained PCs: 2).623

• ARX-C: Estimators→ {C1}; Predictors→ {T1, T2}; Regression model→ ARX.624

Figure 17 depicts the statistical predictions obtained for all the defined models and the corresponding Hotelling’s625

T-square control charts. For clarity purposes, only the time series of the frequencies of mode Fx1 and crack am-626

plitudes C1 are plotted in the figure during the one-year training period. With regard to the statistical predictions627

obtained by models MLR-F and PCA-F, it is noted that better fittings of the natural frequency of Fx1 are obtained628

using PCA. Conversely, larger differences between experimental and statistical predictions are observed in the629

MLR-F model. In this case, it is noted that although the use of temperature and crack amplitude measurements630

allows the modelling of the daily and, to some extent, seasonal variations in the resonant frequencies, there are631

still some seasonal fluctuations that cannot be accurately reproduced. This may be ascribed to the specific sensor632

locations, which may fail at characterising the temperature distribution throughout the building. On the other633

hand, it is noted in the ARX-C model that the use of temperature measurements as exogenous variables can well634

reproduce both the seasonal and daily fluctuations in the time series of crack amplitudes C1. However, it is im-635

portant to remark that the statistical predictions using a MLR model instead of an autoregressive model led to636
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large residuals. Specifically, while seasonal fluctuations could be captured sufficiently well using only tempera-637

ture measurements as predictors, daily fluctuations could be not accurately reproduced. This fact may indicate the638

correlation of crack amplitudes with the temperature distribution in different locations of the building (recall that639

the temperature sensors are located right aside the LVDTs). The graphs in the right hand side of Fig. 17 reports640

the time series of T 2 distances along with the UCL corresponding to a confidence level of 99%. Here, it is noted641

that the number of outliers after the training period is slightly larger in the MLR-F model (6.03%) compared to642

the PCA-F (2.85%), which confirms the better fitting of the experimental data using PCA.643
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Figure 17: Plots of time histories of the natural frequency of mode Fx1 and crack amplitude C1 obtained by statistical models
MLR-F, PCA-F, and ARX-C, and corresponding Hotelling’s T-square control charts.

Damage detection and simulation modules: The damage detection module, shown in Fig. 18, allows to644

manage permanent SHM systems in real-time and in a completely autonomous way. The interface includes real-645

time graphs of the time series of the estimators, predictors, and measurement data, as well as the corresponding646

control charts. Every time a new data file is found, the interface graphs are updated and the software performs647

damage detection based on all the previously defined statistical models. If an anomaly is found in any of the648

models, the software triggers an alert and notifies the user with a sound-alert, an alert message in the console of the649

interface, and (if desired) an e-mail with an attached screenshot of the control chart with the detected anomaly. In650

this way, the user can check whether a system notification may be a false alarm or, conversely, an in-situ inspection651

ought to be planned. The work-flow of this interface comprises the following steps: (a) automatic detection of652

new data files, signal pre-processing, system identification, and frequency tracking; (b) construction of statistical653

models, elimination of environmental effects, and updating of control charts; and (c) automatic damage detection.654

The progress of each step is notified in the console of the interface. Moreover, if no files are found in a maximum655

period of time prescribed by the user, the software sends a warning notification of unintended system shutdown.656
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Figure 18: Screenshot of the damage identification module.

Note that a damage detection algorithm based upon the detection of outliers in the control charts would lead657

to a large number of false alarms. In particular, considering a subgroup size of 4 and a UPC of 99%, this would658

result in (365 · 24 · 2/4)/100 = 43.8 alarm notifications per year on average, even when the structure remains in659

healthy conditions. To minimize the rate of false alarms, MOSS includes the newly proposed damage detection660

method in Section 3.4.3. Moreover, in order to tune the convergence parameter cpmax and assess the effectiveness661

of a statistical model for damage detection, the software also counts on a Damage Simulator module available in662

the last section of the main GUI in Fig. 9. This allows the user to introduce artificial damage scenarios in terms of663

mean shifts in the estimators from a given date forward. As an example, Fig. 19 shows the control charts obtained664

for the previously defined statistical models (MLR-F, PCA-F, and ARX-C) when artificial damage is introduced665

from August 20st 2018. In particular, frequency decays of ∆ f1 = −3.44E-2 Hz (−1.5%Fx1) and ∆ f1 = −2.53E-2666

Hz (−1.0%Fx1) are introduced in the time series of the resonant frequency of mode Fx1 for MLR-F and PCA-F667

models, respectively. It is important to remark that, given the inferior fitting performance of the MLR-F model668

formerly reported in Fig. 17, a larger frequency decay value was necessary in this case to successfully detect the669

imposed damage. In the case of the ARX-C model, a mean shift of 1.10E-2 mm (10%C1) is included in the time670

series of crack amplitudes C1. A convergence parameter value of cpmax = 96 is assumed, that is to say, the same671

anomaly must be detected in 96 consecutive steps (48 hours since every file is 30-min long) to be considered as a672

potential fault.673

Note that in Fig. 19 the imposed damage scenarios were successfully detected by all the statistical models.674

Additionally, a total of 15, 17, and 14 false positives are detected for the MLR-F, PCA-F, and ARX-C models,675

respectively. These are indeed related to noticeable shifts in the corresponding residuals and arise even when676

no damage is introduced. This circumstance evidences limitations of the statistical models to reproduce certain677

in-control operational and/or environmental effects. It is thus concluded that the fitting efficiency of the selected678

statistical models within the training period determines the minimum detectable damage and the appearance rate679

of false alarms. In the particular case of the Consoli Palace, a denser monitoring of the temperature distribution680

in the building, as well as of other environmental factors such as the humidity in the masonry, may reduce the681

minimum detectable anomalies and the false alarm rate.682
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Figure 19: Automatic detection of simulated damage scenarios applied to the monitoring time series of the Consoli Palace
considering different statistical models: (a) MLR-F, (b) PCA-F, and (c) ARX-C.

5. Concluding remarks683

This paper has presented the development of two novel software solutions, MOVA and MOSS, for the au-684

tomatic management of permanent integrated SHM systems. The developed software includes intuitive GUIs to685

guide users all through the process until the setting of a completely autonomous SHM system. The code com-686

prises a unique collection of state-of-the-art algorithms and tools for vibration-based SHM, and allows the fusion687

of heterogeneous monitoring data for comprehensive structural assessment. In addition, a novel anomaly detection688

algorithm based upon the PELT method has been implemented for performing automatic damage detection. The689

capabilities of MOVA/MOSS have been demonstrated through a real case study of a CH structure, the Consoli690

Palace in Gubbio (Italy). A mixed static/dynamic monitoring system has been installed in the building during691

two years, and the monitoring data have been processed online using MOSS. Three different statistical models692

have been defined considering the resonant frequencies of the building and the amplitudes of a major crack as693

estimators. The reported results have shown the potential of MOSS for simultaneously constructing different con-694

trol charts involving heterogeneous monitoring data. Furthermore, artificial damage scenarios have been included695

to demonstrate the effectiveness of the proposed automated anomaly detection algorithm for local/global damage696

detection.697

Besides its scientific contribution, the ultimate goal of MOVA/MOSS is also to provide professional engineers698

with some of the latest state-of-the-art techniques and research breakthroughs in the field of SHM of structures.699

Moreover, this software is aimed at paving the way for integrated SHM systems with heterogeneous monitoring700

solutions for local/global damage assessment of civil infrastructure.701
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