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Abstract

The design of high-speed railway bridges is strongly conditioned by vibrations and resonance amplifications in-
duced by rail traffic. Furthermore, most current dynamic analysis approaches are computationally expensive, what
poses an obstacle to the study of structural alternatives at early design stages. In order to address this limitation,
this paper presents a semi-analytic meta-model based on train speed sensitivity analysis. This technique exploits
the sensitivity of the dynamic response of bridges to train speed variations or, in other words, the slopes of the
maximum response envelopes. The only approximation of this technique stems from the spatial discretization by
finite element modelling and modal superposition, while the formulation is closed-form in the time domain. In
this way, it is possible to efficiently compute envelope values and sensitivities with moderate train speed sam-
pling frequencies and, afterwards, approximate the remaining speeds through a cubic spline interpolation. Four
case studies are presented in order to illustrate the potentials of the proposed technique, including from simply
supported beams to complex three-dimensional models. The numerical results report substantial reductions in
the computation time and storage requirements, proving the present approach to be a valuable tool for rapidly
assessing the performance of design alternatives.

Keywords: Bridge dynamics, Design envelopes, Dynamics of Railway bridges, Meta-model, Semi-analytic
solution, Sensitivity analysis, Train-induced vibrations

1. Introduction1

High-Speed Lines (HSLs) play a leading role in sustainable mobility policies, due to their lower carbon foot-2

print and higher energy efficiency compared to road and air transport [1]. Nonetheless, the associated infrastructure3

requires facing complex engineering problems, including the design of railway bridges which constitute especially4

sensitive assets of the rail network. In particular, the design of high-speed railway bridges is conditioned by train-5

induced vibrations and resonance amplifications [2]. Such dynamic loads must be considered at the concept design6

stage when the stiffness/mass distribution and the system damping are defined [3]. However, most current dynamic7

analysis approaches are computationally demanding, and it is desirable to count on cost-efficient approaches apt8

for fast evaluations of the performance of design alternatives during train crossings.9

The dynamic analysis of railway bridges is a complex endeavour since a broad number of variables and uncer-10

tainties are involved [4, 5], including stiffness, mass and damping distributions, bridge supports, train speed, train11

axle arrangements, existence of track and vehicle irregularities, etc. In general, the dynamic response of railway12

bridges is often described in terms of Dynamic Amplification Factors (DAFs). Dynamic Amplification Factors13

represent the dynamic response amplification compared to the static response for a single moving load [6, 7]. A14

noteworthy research effort was made by the European Research Institute (ERRI) on the dynamics of HSLs in15

the late 1990s [4]. This was aimed at devising approximate expressions of DAFs, later introduced in Eurocode16

1 [6]. Eurocode also proposes a detailed method for determining DAFs, which is applicable for real train loading17

(Eurocode annex C [6]). A thorough literature review on methodologies for the study of DAFs of highway bridges18

was provided by Deng and co-authors [8]. With regard to railway bridges, Frỳba [9] proposed simple equations19

for DAFs considering the resonance condition caused by the train movement on the bridge. The work by Savin20

[10] derived exact analytical solution for the DAFs of Euler-Bernoulli beams traversed by a succession of massless21

point loads. Another noteworthy contribution was made by Hamidi and Danshjoo [11] who presented a parametric22
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analysis to investigate the effects of train velocity, train axle distance, number of axles and span lengths on the23

DAFs of railway steel bridges. That work concluded that the DAFs proposed by current bridge design codes (viz.24

AREMA [12] and Eurocode [6]) are underestimated and insecure. Goicolea et al. [13] investigated the effect of25

consecutive train passage on resonance phenomenon of railway bridges. Their results demonstrated the Eurocode26

design manual overestimates the dynamic response of bridges in specific velocities and axle distances.27

Current design codes also prescribe limit states regarding maximum accelerations of bridge decks. The aware-28

ness on the importance of deck accelerations arose as a consequence of the ballast instability problems observed29

in the HSL from Paris to Lyon [14]. Subsequent investigations revealed that this phenomenon is associated with30

vertical accelerations of the deck (of the order of 0.7–0.8 g) produced by the crossing of trains at certain resonant31

speeds. Along these lines, the Committee D-214 of the ERRI [15, 16] delved into the analysis of the ballast desta-32

bilization problem on the basis of shake table testing. Thereby, safety limits for bridge deck accelerations were set33

and later included in Eurocode 1 [6]. Further research works have been reported in the literature on the dynamic34

behaviour of ballast within critical frequency ranges (0–30 Hz according to EN1991-2). It is worth noting the35

laboratory tests conducted by Norris et al [17] and Zacher and Baessler [14] to enhance the criteria provided by36

Eurocode 1. Moreover, field monitoring of the acceleration response of full-scale railway bridges was performed37

by Xia and Zhang [18] and Rebelo et al. [19].38

In the light of the limit states of maximum deck accelerations, the study of the moving-load-induced-vibration39

problem has focused the attention of researchers during decades. Typically, trains are modelled as tandem systems40

with massless loads moving with constant velocity. In this case, the equations of motion can be solved using modal41

superposition or the more time-intensive Newmark’s linear integration method (i.e. step-by-step integration). Such42

approaches are well-suited for bridges with masses considerably exceeding the weight of the train, including43

concrete bridges as well as steel bridges with ballast or slab tracks [5]. Since the initial closed-form solutions44

by Bleich [20] for simply supported beams, the formulations have evolved from beam models to general three-45

dimensional structures. In this respect, the classical references by Frỳba [21, 22] provide a thorough review46

of the field during the last century. More recent research works can be found in the literature regarding the47

dynamic response to moving loads of curved beams [23, 24], inclined beams [25], elastic plates [26, 27], composite48

plates [28, 29], half-space continuum media [30, 31], etc. A comprehensive literature survey was reported by49

Ouyang [32] concerning the analysis of the moving load problem and related problems. In this context, the semi-50

analytic solution proposed by Martı́nez-Castro et al. [33] in 2006 represents a noticeable breakthrough in the51

study of bridges under massless moving loads. While the spatial dimension of the problem is approximated by52

modal superposition, this approach models the time domain with an analytical closed-form solution. The latter is53

traced with sampling time steps considerably larger than those required by stable numerical integration schemes.54

Therefore, the semi-analytic solution primarily outperforms classical step-by-step integration approaches in terms55

of global computing time.56

Notwithstanding the remarkable reported advances, the dynamic analysis of full-scale railway bridges remains57

an intricate task with vast computational demands. Specifically, the dynamic analysis of railway bridges is aimed58

at detecting resonant amplifications caused by trains running at design speed ranges. To do so, design envelopes59

are typically derived by computing the maximum values of certain parameters of interest (e.g. accelerations or60

displacements) as functions of the train speed. The numerical evaluation of such envelopes is time consuming61

due to several factors [3]: (i) number of Degrees Of Freedom (DOFs) considered in the structure, (ii) number62

and complexity of the considered vibration modes (with resonant frequencies up to 30 Hz [6]), (iii) time-step63

size, (iv) train speed-step size, (v) number of considered trains, and (vi) number of post-processing points. This64

is particularly critical for low-damped bridges, as it is the case of composite or steel bridges, where time and65

train speed must be finely sampled to accurately evaluate the dynamics of the structure. To illustrate this, let us66

ascertain the number of direct calculations that are required to analyse the dynamic behaviour of a low-damped67

continuous three-span bridge. Generally, the considered train configurations comprise the ten High-Speed Load68

Models (HSLM-A) of Eurocode 1 [6], as well as other national train compositions (e.g. in the case of the Spanish69

code IAPF [34], AVE and TALGO trains). Considering a train speed interval ranging from 20 km/h to 42070

km/h and a train speed-step ∆v = 1 km/h, 14940 time series ought to be determined followed by the detection71

of the maximum values at each post-processing point. Given that three ballasted tracks hypotheses must be72

considered [6], the number of direct evaluations amounts to 44820. All in all, it is evident that the development of73

cost-efficient dynamic analysis techniques is of pivotal importance for bridge design at initial design stages.74

In light of the literature review, this paper is aimed at developing a computationally efficient technique for75

fast assessment of maximum response envelopes of railway bridges under moving train loads. Typically, dynamic76

design envelopes are obtained by direct sampling of the maximum response of bridges for a range of train speeds.77

Nonetheless, this approach is highly time-consuming because of the elevated number of time series required78

to detect resonant amplifications. Alternatively, this paper proposes a novel meta-model based on Train Speed79

Sensitivity (TSS) analysis. This methodology exploits the sensitivity of the dynamic response of bridges to train80
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speed variations, that is to say, the slopes of the maximum response envelopes. In this way, it is possible to81

define a moderate train speed sampling frequency and, afterwards, approximate the non-sampled speeds through82

a cubic spline interpolation. To do so, the direct problem is first solved by the semi-analytic solution introduced83

by Martı́nez-Castro et al. [33]. Such formulation is analytical in the time-domain and, therefore, the TSS can84

be derived in a closed form. In order to illustrate the potentials of the proposed technique, four case studies85

are presented. These include two different three-span beam models, as well as two three-dimensional bridge86

structures, namely a composite steel-concrete and a concrete box girder bridge. The numerical results report87

substantial reductions in the computation times, and the presented approach proves to be a valuable tool for88

rapidly assessing the performance of structural alternatives at early design stages.89

The remaining of this paper is organised as follows. Section 2 overviews the basic semi-analytic solution.90

Section 3 presents the theoretical formulation of the proposed TSS approach. Section 4 presents the case studies91

and discussion and, finally, Section 5 concludes this work.92

2. The Semi-Analytic solution93

This section concisely overviews the semi-analytic solution previously presented in references [33, 35, 36].94

Figure 1 sketches the basic configuration of the Finite-Element (FE) mesh of a general three-dimensional bridge.95

The load lane represents the railway centreline where axle loads are transferred to the structure. A local Cartesian96

coordinate system R ≡ {O; x, y, z} is defined such that the origin O is located at the initial point of the load97

lane, x-axis is the longitudinal direction, y-axis is a transverse axis, and z-axis represents the vertical direction98

perpendicular to the bridge deck. A single point moving load P traverses the bridge at a constant speed v. The99

resulting time-dependent load can be formally written as p(x, t) = Pδ(x − vt), with δ being the Dirac delta function100

and t time. Note that, assuming linearity, the solution for a train of loads can be simply obtained by adding the101

contributions of every single load. On this basis, let us focus the formulation to the one single load case.102
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Figure 1: General bridge structure under one single moving load, and cubic spline interpolation of displacements along the
load lane.

Let be the finite element e ≡
{
x : x ∈

[
xe

i , x
e
j

]}
lying along the load lane, with xe

i and xe
j denoting the spatial103

x-coordinates of its initial and final nodes, respectively. Also, let xe be the abscissa relative to the origin of the104

element, i.e. xe = x− xe
i . For clarity purposes, the solution is given for a unitary load (P = 1) although, assuming a105

linear behaviour of the system, the solution for a different load can be simply computed by multiplying the former106

one by the actual value of P. On this basis, the vertical displacement we(x, y, z, t) of an arbitrary point (x, y, z) on107

the element e can be obtained by modal expansion as:108

we(x, y, z, t) =
m∑

n=1

qn(t) ϕe
n(x, y, z), (1)

where the term qn(t) denotes the n-th time-dependent modal amplitude or generalized coordinate, and ϕe
n(x, y, z)109

is the n-th mode shape evaluated at (x, y, z). The number of considered modes, m, is usually prescribed by design110

codes. In particular, Eurocode 1 [6] sets this limit as the number of modes with resonant frequencies below 30 Hz.111
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It is considered that the FE mesh enables the consideration of equivalent 1D beam-type DOFs along the load112

lane. Strictly speaking, it is assumed that the displacement field of an arbitrary point in a segment of the lane113

is determined by the displacements, w, and slopes, θx = ∂w/∂x, at the discretized nodes. On this basis, the114

displacement pattern along the load lane can be characterised by a Hermite cubic spline. Therefore, a spatial115

discretization along the load lane can be defined by using the Hermite shape functions, hi(xe), in such a way that116

Eq. (1) is rewritten with no explicit dependence on variables y and z as:117

we (xe, t) =
m∑

n=1

qn(t)
4∑

i=1

Ge
ni hi (xe) , (2)

where the matrix coefficients Ge
ni are functions of the modal coordinates, and represent the evaluation of the mode118

shapes along the load lane. In addition, as demonstrated in reference [33], the functions qn(t) can be obtained in a119

closed form as the combination of an homogeneous and particular solutions, qn(t) = qh
n(t) + qp

n (t), given by:120

qh
n (τ) = e−ζnωnτ

[
An cos

(
ωd

nτ
)
+ Bn sin

(
ωd

nτ
)]
, (3)

121

qp
n (τ) = α(0)

n + α
(1)
n (vτ) + α(2)

n (vτ)2 + α(3)
n (vτ)3, (4)

with τ = t − xe
i /v being the local time at segment e, and An and Bn coefficients of the homogeneous solution. The122

term ωd
n = ωn

√
1 − ζ2

n in Eq. (3) stands for the damped natural angular frequency of the n-th mode, with ζn being123

its damping rate. The coefficients α(i)
n in Eq. (4) are defined as:124

α(0)
n = v3α(01)

n + v2α(02)
n + vα(03)

n + α(04)
n ,

α(1)
n = v2α(11)

n + vα(12)
n + α(13)

n ,

α(2)
n = vα(21)

n + α(22)
n ,

α(3)
n = α

(31)
n ,

(5)

where the ten coefficients α(i j)
n are given in reference [33]. It is important to indicate that these coefficients only125

depend on the modal properties (i.e. mode shapes, natural frequencies and damping ratios) and the length of126

the load lane segment. Moreover, the coefficients An and Bn in Eq. (3) are obtained from the initial conditions127

q0
n = qn(0) and q̇0

n = q̇n(0), with overdots denoting time derivatives, as follows:128

An = q0
n − α0

n, (6)
129

Bn =
q̇0

n + ζnwnAn − α(1)
n v

wd
n

. (7)

The complete closed-form solution is constructed in a piecewise form, with an analytical function for each130

element. At-rest conditions are commonly imposed for the initial time t = 0, that is to say, q0
n = 0 and q̇0

n = 0.131

For the following elements, the initial conditions for element e + 1 are given by the end values of element e,132

i.e. qn(τ)|e+1
τ=0 = qn(τ)|eτ=le/v and q̇n(τ)|e+1

τ=0 = q̇n(τ)|eτ=le/v.133

Finally, the approximate velocity and acceleration are obtained by differentiation of we(x, t) in Eq. (1) with134

respect to time as:135

ẇe(x, y, z, t) =
m∑

n=1

q̇n(t)ϕe
n(x, y, z), (8)

136

ẅe(x, y, z, t) =
m∑

n=1

q̈n(t)ϕe
n(x, y, z). (9)

3. Train Speed-Sensitivity (TSS) approach137

In this section, a novel TSS approach for maximum response envelopes is introduced on the basis of the138

semi-analytic solution overviewed above. Figure 2 illustrates the main concept of the proposed technique. With139

reference to any dynamic magnitude, such as the vertical acceleration at a fixed point, classical design envelopes140

are constructed by direct sampling at a discrete set of train speeds. This approach is highly time-consuming due141

to the elevated number of time series evaluations that are required.142
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Figure 2: Classical C0 approximation (a) and proposed TSS approach for maximum response envelopes (b).

As a meta-model, the present TSS approach proposes a C1 cubic spline interpolation of the design envelopes.143

To do so, it is necessary to compute the slope of the envelope curve (i.e. its train speed sensitivity) at every144

sampled train speed. In this way, the number of sampling points can be smaller than those required in the classical145

C0 approach and, as a result, substantial reductions in computational burden can be achieved. Furthermore, in146

virtue of the analytical definition of the semi-analytic approach in the time domain, the train speed sensitivities147

can be also derived in an analytical closed form.148

The remaining of this section introduces the mathematical formulation of the proposed approach. Firstly,149

Subsection 3.1 furnishes the details on the determination of the TSS of the dynamic response of bridges under150

one single moving load. Afterwards, Subsection 3.2 extends the previous solution to multiple load trains. Finally,151

Subsection 3.3 defines the TSS of the maximum response envelope curves, that is to say, the slope of the design152

envelope curves.153

3.1. Train speed sensitivity for one single moving load154

The semi-analytical solution introduced in Eqs. (1) to (5) shows an explicit dependence on the train speed, v.155

Hence, the sensitivity of the displacements field in Eq. (2) with respect to the train speed can be obtained by direct156

differentiation as:157

∂we(xe, v, t)
∂v

=

m∑
n=1

∂qn(v, t)
∂v

4∑
i=1

Ge
ni hi(xe). (10)

Note that the generalized coordinate function qn(v, t) depends upon the relative time τ = t − xe
i /v (see Eqs. (3)158

and (4)). Thus, its partial derivative can be written as (if v , 0):159

∂qn(v, t)
∂v

=
∂qn(v, τ)
∂v

+
∂τ

∂v
∂qn(v, τ)
∂τ

=
∂qn(v, τ)
∂v

+
xe

i

v2

∂qn(v, t)
∂t

. (11)

It is noted that the second term on the right-hand side of Eq. (11) is directly given by the semi-analytic solution160

(q̇n(t)). On the other hand, considering the decomposition of the solution qn(t) = qh
n(t)+ qp

n (t), the first term on the161

right-hand side can be expanded as follows:162

∂qn(v, τ)
∂v

=
∂qh

n(v, τ)
∂v

+
∂qp

n (v, τ)
∂v

. (12)

In virtue of the explicit dependence of Eqs. (3) and (4), the partial derivatives in Eq. (12) can be readily163

obtained. Firstly, the train speed sensitivity of the homogeneous solution can be expressed after some manipulation164

as:165

∂qh
n(v, τ)
∂v

= e−ζnwnτ
[
Dn cos

(
wd

nτ
)
+ En sin

(
wd

nτ
)]
. (13)

In a similar way, the train speed sensitivity of the particular solution can be written in a compact way as:166

∂qp
n (v, τ)
∂v

= β(0)
n + β

(1)
n (vτ) + β(2)

n (vτ)2 + β(3)
n (vτ)3, (14)
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β(0)
n = 3v2α(01)

n + 2vα(02)
n + α(03)

n ,

β(1)
n = 3vα(11)

n + 2α(12)
n + α(13)

n /v,

β(2)
n = 3α(21)

n + 2α(22)
n /v,

β(3)
n = 3α(31)

n /v.

(15)

Parameters Dn and En in Eq. (13) denote the train speed sensitivity of terms An and Bn, respectively. By167

differentiation of Eqs. (6) and (7) along with the definitions in Eq. (15), one can write:168

Dn =
∂An

∂v
=
∂q0

n

∂v
− β0

n −
xe

i

v2 q0
n, (16)

169

En =
∂Bn

∂v
=

∂q̇0
n
∂v + ζnwnDn − β(1)

n v − xe
i

v2 q̇0
n

wd
n

. (17)

It is interesting to note that Eqs. (13) and (14) have the same structure as Eqs. (3) and (4), respectively.170

Likewise, coefficients β(i)
n in Eq. (15) also exhibit a similar configuration to α(i)

n in Eq. (5). Therefore, the way171

the TSS of the homogeneous and particular terms is computed and stored is completely analogous to that of the172

forward solution. Also, the complete TSS is also constructed in a piecewise form with a closed-form analytical173

function for each element. In this case, at-rest conditions are defined as q0
n = 0, q̇0

n = 0, ∂q0
n/∂v=0 and ∂q̇0

n/∂v=0.174

For the following elements, new inter-element compatibility conditions must be included as follows:175

∂qn/∂v(τ)|e+1
τ=0 = ∂qn/∂v(τ)|eτ=le/v,

∂q̇n/∂v(τ)|e+1
τ=0 = ∂q̇n/∂v(τ)|eτ=le/v.

Finally, the TSS of the velocity and acceleration are obtained by time differentiation of ∂we(xe, v, t)/∂v in176

Eq. (10) as:177

∂ẇe(xe, v, t)
∂v

=

m∑
n=1

∂q̇n(v, t)
∂v

4∑
i=1

Ge
ni hi(xe), (18)

178

∂ẅe(xe, v, t)
∂v

=

m∑
n=1

∂q̈n(v, t)
∂v

4∑
i=1

Ge
ni hi(xe). (19)

3.2. Train speed sensitivity for a set of moving loads179

The solution for a complete train comprising nl moving axle loads can be obtained by superposition. To do180

so, the number of loads that have already crossed the lane, no, those upon the bridge, ni, and those that have not181

yet entered the structure, ns, must be monitored at each time step (nl = ns + ni + no). Each moving load k is182

characterized by a load value, Pk, and a distance from the origin of the structure, dk. Hence, Eq. (11) must be183

accordingly expanded into two terms as follows:184

∂qn

∂v
(t) =

∂qn

∂v

∣∣∣∣∣
in

(t) +
∂qn

∂v

∣∣∣∣∣
out

(t), (20)

where subscripts “in” and “out” relate the corresponding quantity to the axle loads upon the bridge and those185

that have already left the structure, respectively. Let superscript “e” denote the element of the lane discretization186

(e ∈ [1,N]) in which a k-th axle load is located at a distance xie from its origin at time t. Therefore, the relative187

time for the k-th load can be defined as τk = t −
(
dk + xe

i

)
/v. If the k-th load has abandoned the structure, the188

relative time takes the expression τN+1
k = t−

(
dk + xN

j

)
/v. In this light, the contributions of the axle loads upon the189

structure and those that have already abandoned it can be written as:190

∂qn

∂v

∣∣∣∣∣
in

(t) =
no+ni∑

k=no+1

{
e−ζnwnτk

[
Dn cos

(
wd

n τk

)
+ En sin

(
wd

n τk

)]
+ β(0)

n + β
(1)
n (vτk)+

+ β(2)
n (vτk)2 + β(3)

n (vτk)3 +
dk + xe

i

v2 q̇k(t)
}

Pk,

(21)
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∂qn

∂v

∣∣∣∣∣
out

(t) =
no∑

k=1

e−ζnwnτ
N+1
k

[
DN+1 cos

(
wd

nτ
N+1
k

)
+ EN+1 sin

(
wd

nτ
N+1
k

)]
+

dk + xN
j

v2 q̇k(t)

 Pk, (22)

where coefficients DN+1 and EN+1 are selected so that the compatibility of the solution is enforced in free vibration191

once the loads have crossed the bridge.192

All in all, the solution procedure can be summarised as follows:193

(i) Resolution of the generalized eigenvalues problem of the FE numerical model to determine the mode shapes,194

ϕe
n, and resonant frequencies, ωn. Thereby, the matrix coefficients Ge

ni in Eq. (2) are obtained as the evalua-195

tion of the mode shapes along the load lane.196

(ii) Coefficients α(i j)
n are computed and stored for the entire mesh and all the modes considered in the analysis.197

(iii) For a given train speed, the coefficients of the homogeneous solutions [An, Bn,Dn, En]N+1
e=1 , and of the partic-198

ular solutions
[
α0

n, α
1
n, α

2
n, α

3
n

]N+1

e=1
and
[
β0

n, β
1
n, β

2
n, β

3
n

]N+1

e=1
are calculated and stored for each mode and element.199

(iv) At every time step t, the number of axle loads no and ni are computed. Afterwards, the solutions given200

by Eqs. (20) to (22) are computed for each mode and, finally, the overall solution is obtained by modal201

superposition as indicated in Eq. (2).202

3.3. Train speed sensitivity of maximum response envelopes203

In practice, envelope design curves require sampling speed intervals fine enough to capture resonant amplifi-204

cation phenomena, what typically results in considerable computational costs. The present approach replaces the205

classical forward C0 interpolation by a cubic interpolation approximation as previously sketched in Fig. 2. This206

permits larger train speed steps, avoiding time series to be sampled at intermediate speeds and, as a result, yielding207

substantial computational cost reductions.208

f (v, t)

t*(v)

v+∆v

v

t

t

t
t*(v+∆v)

f *(v)

f *(v+∆v)

f * (v)

t0

t1

t0

t1

Figure 3: Local evolution of the global maximum of the dynamic response.

Once the time series of the train speed sensitivity of the dynamic magnitude of interest are computed, it is209

necessary to determine the slope of the maximum response design envelope. To do so, it is required to perform a210

local analysis as illustrated in Fig. 3. Let f (v, t) be a function of interest dependent on the train speed v ∈ [V0,V1]211

and time t ∈ [t0, t1]. Typically, the function f (v, t) represents oscillating displacement and acceleration time212

series. The primary goal of the dynamic analysis of railway bridges under train actions is the determination of the213

maximum response envelope, f ∗(v), which can be formally written as:214

f ∗(v) = sup
t∈[t0,t1]

f (v, t) = f (v, t∗(v)), (23)
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where t∗(v) denotes the time values where the local maximum of f (v, t) takes place at every train speed. The local215

evolution of f ∗(v) in a small neighbourhood of train speeds (v, v + ∆v) is represented in Fig. 3. The aim of this216

work is to determine the train speed sensitivity of the maximum response function, that is ∂ f ∗(v)/∂v. In virtue of217

the envelope theorem (see e.g. [37–39]), it can be proven that such partial derivative reads:218

∂ f ∗(v)
∂v

= lim
∆v→0

f (v + ∆v, t∗(v + ∆v)) − f (v, t∗(v))
∆v

= lim
∆v→0

f (v + ∆v, t∗(v)) − f (v, t∗(v))
∆v

, (24)

or, in other words, the local extreme value f ∗(v + ∆v) occurs at time t∗(v).219

In this light, the procedure of the proposed TSS approach for maximum response envelopes can be summarised220

as follows. At every sampled train speed, the maxima of the dynamic magnitudes (displacements or accelerations)221

are searched by sampling the time series on the basis of the semi-analytic solution presented in Section 2. Addi-222

tionally, time instants t∗(v) where local maxima take place are collected so that the pair ( f ∗(v), t∗(v)) is stored for223

every time series. On the basis of the result above, the slopes of the envelope design curves are computed by eval-224

uating the solution presented in Subsection 3.2 at instant times t∗(v). In this way, the pair ( f ∗, ∂ f ∗/∂v) is computed225

and stored at every sampled train speed. Finally, the envelope values of non-sampled intermediate train speeds are226

extracted by a cubic spline between every two consecutive sampled points. In this work, the proposed technique227

has been implemented in a FORTRAN computer code and all the numerical simulations presented hereafter have228

been obtained on a standard desktop PC equipped with an AMD Athlon XP 2000 processor and a DDR 266 MHz229

RAM memory.230

4. Case studies and discussion231

In this section, the effectiveness of the proposed Train-Speed Sensitivity (TSS) meta-model is assessed in four232

different case studies. Firstly, a three-span continuous stepped beam is used as a validation case in Section 4.1.233

In this case, the present approach is benchmarked against results from direct-time integration using the implicit234

Newmark-beta method. Subsequently, the one-dimensional three-span bridge reported in Eurocode 1 is used as235

a case study in Section 4.2. Finally, Sections 4.4 and 4.3 further investigate the application of the proposed236

approach to three-dimensional bridge structures, including a composite steel-concrete bridge and a concrete box237

girder bridge, respectively.238

4.1. Validation case: three-span continuous stepped beam.239

In this first set of analyses, a three-span continuous stepped beam retrieved from the literature [33, 40] is240

used as validation case. The structure is sketched in Fig. 4 and consists of a 20 m length three-span continuous241

stepped beam with a constant mass per unit length ρA of 1000 kg/m, and a constant modal damping ratio ζ of 2%.242

The flexural stiffness EI is 1.96 GNm2 in the lateral spans, while it is doubled in the central one. In addition, two243

different moving load cases are considered as shown in Fig. 5. The first load case is labelled LC-1 and consists of a244

single point load of 9.8 kN crossing the beam at a constant speed v. On the other hand, the load case LC-2 consists245

of two point moving loads of 9.8 kN, located 5 m and 15 m far from the origin of the beam at t=0, respectively. For246

validation purposes, the beam is also modelled with the commercial FE code SAP2000 and its dynamic response247

is computed by the implicit direct-time integration method of Newmark-beta with modal superposition. In the248

simulations, the first twelve modes of vibration are considered. In addition, the time step size ∆t is selected as249

T12/10, with T12 being the period of the twelfth mode of value 0.77 ms.250

20 m 20 m 20 m

EI, ρA 2EI, ρA EI, ρA

Figure 4: Geometry and stiffness properties of the three-span continuous stepped beam (ρA=1000 kg/m, EI=1.96 GNm2,
ζ=2%).
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9.8 kN 9.8 kN

5 m
15 m

LC-1

9.8 kN

LC-2

v

v v

Figure 5: Moving load cases considered in the validation case of a three-span continuous stepped beam.

Figs. 6 and 7 depict the load speed sensitivity of the vertical acceleration in the the mid-span point of the first251

span for load cases LC-1 and LC-2, respectively, and considering a load speed of v=130 km/h. In addition, the252

load speed sensitivity is also computed by the Newmark-beta method to serve as a validation basis. To this end,253

the load speed sensitivity (∂a/∂v) is computed through central finite differences of the Newmark-beta’s solutions254

at speed intervals of ∆v=0.1 km/h, labelled as NFD in the figures. Excellent agreements can be observed in both255

cases and, therefore, these results demonstrate the correctness of the present approach.256
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Figure 6: General (a) and detailed view (b) of the time series of train speed sensitivity of the vertical acceleration of the mid-
span point of the first span of the three-span continuous stepped beam under LC-1. NFD stands for the the finite differences of
the Newmark-beta’s solution used for validation purposes (v=130 km/h, ∆t=7.7E-4 s).
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Figure 7: General (a) and detailed view (b) of the time series of train speed sensitivity of the vertical acceleration of the mid-
span point of the first span of the three-span continuous stepped beam under LC-2. NFD stands for the the finite differences of
the Newmark-beta’s solution used for validation purposes (v=130 km/h, ∆t=7.7E-4 s).

Finally, the correctness of the proposed TSS approach in combination with the cubic interpolation of the257

maximum/minimum response envelopes is investigated in Figs. 8 and 9. To do so, the results of the present258

approach in terms of maximum/minimum accelerations are benchmarked against the forward sampling of the259

semi-analytical solution (FS). The present approach is evaluated for varying load speed steps, namely ∆v=5 km/h,260

10 km/h, 15 km/h and 20 km/h. On the other hand, the semi-analytic solution is computed considering small261

load speed increments of ∆v=1 km/h in order to finely trace the envelopes. On this basis, Figs. 8 and 9 furnish262

the envelope curves of maximum/minimum accelerations in the mid-span point of the first span of the three-263

span continuous stepped beam under the load cases LC-1 and LC-2, respectively. In general, it is noted that264

the present approach yields estimates that are decreasing in accuracy for higher load speed steps. The origin of265

such discrepancies primarily depends upon the smoothness of the envelope curves or, alternatively, the degree of266

approximation of the cubic spline interpolation to the actual envelope. Fig. 8 (a) is an illustrative example of this.267

It is observed that the curves computed by the TSS meta-model are tangent to the envelope curve at the sampled268

velocities, a fact that evidences that the present approach accurately captures the load speed sensitivity of the269

envelope. Nonetheless, noticeable discrepancies arise in some local maxima such as the one located around 170270

km/h. Here, the TSS curves for ∆v=5 km/h and 10 km/h yield maximum accelerations very close to the semi-271

analytic solution unlike those for ∆v=15 km/h and 20 km/h. In the latter cases, considerably larger differences272

can be observed as a result of insufficient sampling rates. All in all, it is concluded that the TSS meta-model273

with moderate sampling rates (∆v=5 km/h and 10 km/h in this case) effectively provides a fast evaluation of the274

maximum/minimum response envelopes of bridge structures under moving train loads.275

10



60 80 100 120 140 160 180 200
0.00

0.05

0.10

0.15

0.20

0.25

Load Speed [km/h]

M
ax

.A
cc

el
er

at
io

n
[m

/s
2 ]

(a)

FS (∆v=1 km/h)
TSS (∆v=5 km/h)
TSS (∆v=10 km/h)
TSS (∆v=15 km/h)
TSS (∆v=20 km/h)

60 80 100 120 140 160 180 200
−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

Load Speed [km/h]

M
in

.A
cc

el
er

at
io

n
[m

/s
2 ]

(b)

Figure 8: Envelopes of maximum (a) and minimum (b) accelerations in the mid-span point of the first span of the three-span
continuous stepped beam under LC-1 (∆t=7.7E-4 s).
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Figure 9: Envelopes of maximum (a) and minimum (b) accelerations in the mid-span point of the first span of the three-span
continuous stepped beam under LC-2 (∆t=7.7E-4 s).

4.2. Case study I: continuous three-span bridge from Eurocode 1.276

This first case study is aimed at illustrating the effectiveness of the proposed TSS meta-model to provide277

fast evaluations of maximum response envelopes of bridges under complex moving train loads. In particular,278

a continuous three-span high-speed bridge analysed in Eurocode 1 [6] is selected as a case study. The bridge is279

sketched in Fig. 10 and consists of two 25 m long lateral spans and a 30 m long central one. The bridge is modelled280

in SAP2000 with ten Euler-Bernoulli beam elements per span with constant mass per unit length ρA=14435.25281

kg/m, and flexural stiffness EI=110649.6 MNm2. A modal analysis of the bridge is conducted and the first five282

modes with resonant frequencies below 30 Hz are retained for the subsequent simulations. The bridge is also283

assumed to be low-damped with a modal damping ratio of ζ=1%.284

25 m 38 m 25 m

Figure 10: Continuous three-span bridge proposed in Eurocode 1 [6].
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Figure 11 shows the minimum/maximum acceleration envelopes of the mid-span of the central span under285

the passage of the ten trains of the HSML-A model of Eurocode 1 at speeds ranging from 144 to 422 km/h.286

The estimates of the TSS meta-model are computed considering train speed steps of 10 km/h and time steps of287

T5/10=6.3E-3 s, with T5 being the period of the fifth mode of vibration. Let us recall that the proposed TSS288

meta-model is analytical in the time domain, whereby the criteria for determining the time sampling merely attend289

to resolution needs, while errors stemming from time integration are nonexistent. For comparison purposes, the290

results provided by the semi-analytic approach are also shown with train speed steps of 1 km/h. In both cases, the291

minimum/maximum accelerations are extracted from the response time series, including the train passage time and292

a free vibration time of six times the highest period of the structure. In Fig. 11, excellent agreements are found be-293

tween the two used methods. Although slight discrepancies can be observed around local minima/maxima such as294

those around 310 km/h, the proposed TSS meta-model is shown to accurately capture the global minima/maxima295

around 277 km/h. The latter corresponds to the resonant train speed dominated by the fundamental bending mode296

with natural frequency of 4.28 Hz. In general, given that only a limited number of vibration modes usually de-297

termine the dynamic response of bridges at resonant speeds, the speed sensitivity is specially well captured in the298

vicinity of resonances. Hence, it can be concluded that the proposed TSS approach is well-suited for detecting299

resonant peaks.300
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Figure 11: Maximum/minimum acceleration envelopes at mid-span of the central span of the continuous three-span bridge
from Eurocode 1 under the passage of the ten trains of the HSML-A model of Eurocode 1.

In virtue of the analytic closed-form definition of train speed sensitivity in the present approach, the observed301

discrepancies with the semi-analytic estimates are simply ascribed to insufficient sampling of the response en-302

velopes. In order to illustrate this, Fig. 12 depicts the absolute envelope values of acceleration computed by the303

TSS meta-model with varying train speed steps, namely ∆v=10 km/h and 20 km/h. It is observed in this figure that304

the train speed sensitivity is accurately captured in all the cases, that is to say, the estimated envelopes are tangent305

to the actual envelope at every sampling point. Hence, the observed discrepancies for increasing train speed steps306

are simply due to insufficient sampling issues. It is also important to note that the sampling errors are considerable307

lower at global maxima.308
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Figure 12: Maximum absolute acceleration envelopes at mid-span of the central span of the continuous three-span bridge from
Eurocode 1 under the passage of the ten trains of the HSML-A model of Eurocode 1.

Finally, the robustness of the proposed meta-model for increasing train speed steps ∆v is investigated in Fig. 13.309

In order to further extend the analysis, in addition to the previously defined damping ratio ζ = 1.0%, two more310

damping ratios are also considered, namely ζ = 0.5% and ζ = 2.0% representing the commonly used values in311

the design of steel-concrete composite and concrete bridges, respectively. As reference solutions, the maximum312

acceleration envelopes at mid-span of the central span under the passage of the ten trains of the HSML-A model313

are obtained through forward sampling with ∆v = 1 km/h as shown in Fig. 13 (a). Note that the maximum314

acceleration at the resonant speed (≈ 275 km/h) increases considerably for decreasing damping ratios (2.2 to 4.6315

m/s2 for damping ratios ζ = 0.5% and ζ = 2.0%, respectively). Furthermore, given that the contribution of high-316

frequency vibration modes is larger for low-damped bridges, the design envelopes are less smooth in these cases.317

The relative errors (RE) of the estimates of the maximum acceleration by FS and the proposed TSS meta-model318

are depicted in Fig. 13 (b) for the afore-mentioned damping ratios. In all cases, it is observed that the proposed319

meta-model is more stable that the forward sampling of the acceleration envelopes. A closer inspection reveals320

that the proposed meta-model yields slight overestimates of the actual values for low speed steps due to the cubic321

interpolation, while the FS approach always leads to underestimates derived from sampling errors. In order to322

quantitatively assess the robustness of both approaches, a comparison magnitude is defined as the minimum speed323

step that is necessary to obtain estimates above 95% of the actual value. In the case of the FS approach, minimum324

speed steps of 8 km/h are obtained for all the considered damping ratios. Conversely, in the case of the proposed325

TSS approach, minimum speed steps of 10 km/h, 14 km/h and 18 km/h are found for damping ratios ζ = 0.5%,326

ζ = 1.0%, and ζ = 2.0%, respectively. It is thus concluded that the minimum speed-step size that is required327

to obtain accurate design envelopes by the proposed TSS approach increases with damping ratio, while errors328

derived from poor sampling in FS approaches are less sensitive to damping.329
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Figure 13: Maximum absolute acceleration envelopes at mid-span of the central span of the continuous three-span bridge from
Eurocode 1 under the passage of the ten trains of the HSML-A model of Eurocode 1 considering different damping ratios (a),
and relative error (RE) between maximum accelerations determined by the FS and TSS approaches.

4.3. Case study II: composite steel-concrete bridge, the Sesia viaduct330

In this case study, the proposed meta-model is used for the dynamic analysis of a low-damped three-dimensional331

composite steel-concrete high-speed railway bridge, the Sesia viaduct. The Sesia viaduct is located on the Turin-332

Milan Italian high-speed railway line over the Novara river, and has been the subject of study of a number of333

research studies in the realm of Structural Health Monitoring (see e.g. [41–44]).334

The bridge structure consists of seven double-track simply supported 46 m long spans, reaching a total length335

of 322 m. The cross-section of the bridge consists of a S355 steel double box defined by lower flanges and three336

webs (Fig. 14 (a)), defining a trapezoidal profile of widths ranging from 6.95 m to 9 m and depth of 3.35 m.337

The steel box is formed by three different segments per span, each about 15 m long and joined together by full338

penetration butt welds. In addition, the steel girder is reinforced by 13 intermediate and 2 end cross diaphragms339

per span at a spacing of 3.11 m, which provide lateral stiffness to limit the distortion of the cross-sections. The340

steel girder supports a concrete slab with geometrical dimensions of 13.6 m width and 0.4 m thickness through341

stud connections in the top flanges of the girder. Finally, the superstructure of the track consists of UIC-60 rails342

supported by prestressed concrete sleepers periodically spaced every 0.6 m. The bearings scheme is sketched in343

Fig. 14 (b) and consists of two fix bearings, one mono-directional and three bi-directional supports. A thorough344

description of the bridge structure can be found in reference [43].345

13.60

6.95
9.00

3.35

(a) (b)

Fixed 

Bearing
Bi-directional

roller

Mono-directional

roller

46.00

2.50

Figure 14: Cross-section of the box girder (a) and bearings layout (b) of the Sesia viaduct (units in m).

The dynamic analysis of the bridge under moving train loads requires an elevated number of simulations346

to accurately trace the maximum response envelopes. Given the high complexity of the bridge structure, such347

analyses entail considerable computational costs and memory requirements. This case study is, thus, a particularly348

well-suited example to illustrate the usefulness of techniques for fast evaluation of maximum response envelopes349

such as the meta-model proposed in this work.350
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4.3.1. Finite element modelling351

In a similar way to the previous case studies, a FE model of the bridge structure is developed in the commercial352

code SAP2000 in order to extract the modal features. Due to the large size of the viaduct, the modelling of the353

seven simply-supported spans requires exorbitant computational demands. For this reason, a simplified FE model354

of one single span is used in this work with the boundary conditions shown in Fig. 14 (b). In order to simulate355

the continuity of the track superstructure, as well as to avoid the appearance of fictitious impacts at the entrance356

of trains, the longitudinal displacements and rotations are also constrained at the extremes of the rails. The steel357

box girder is divided into two 15 m long lateral segments and a 15.2 m long central one. In the lateral segments,358

the webs and bottom flanges are modelled by shell elements with thicknesses of 20 mm and 25 mm, respectively.359

The webs and bottom flanges of the central segment are also modelled by shell elements with thicknesses of 18360

mm and 30 mm, respectively. The top flanges of the steel girder are modelled with 25 mm thick shell elements361

along the whole span. Furthermore, beam elements are used for the modelling of the diagonal and horizontal362

braces, as well as the longitudinal stiffeners. The concrete deck is modelled with 0.4 m thick orthotropic shell363

elements, considering an increase of 20% in the bending stiffness in the transverse direction. In this way, it is364

intended to account for the effect of the higher steel reinforcement density in the transverse direction of the deck.365

The connection of the concrete deck with the steel girder is simulated with massless infinitely rigid studs. The366

resulting FE model of the bridge is shown in Fig. 15 and contains 3280 beam elements, 12304 shell elements and367

13152 nodes. Finally, the material properties used in the FE model are summarized in Table 1. Note that the mass368

density of steel is increased up to 8000 kg/m3 in order to take into account the masses of welds, bolts, and all the369

ancillary elements that have not been explicitly defined in the model.370

Figure 15: Perspective view of the finite element model of the Sesia viaduct.

Table 1: Material properties used in the FE modelling of the Sesia viaduct.

Item Unit Value
Per-unit-length mass of rails kg/m 60.00

Mass of sleepers kg 290.00
Young’s modulus of concrete slab MPa 31000.00

Poisson’s ratio of concrete slab - 0.17
Density of concrete slab kg/m3 2500.00

Young’s modulus of steel girder GPa 205.00
Poisson’s ratio of steel girder - 0.3

Density of steel girder kg/m3 8000.00

The modal properties of the bridge structure are extracted from a modal analysis of the developed FE model.371

In order to validate the numerical model, Table 2 furnishes the comparison of the first three computed modal372

frequencies against previously reported results in the literature. In particular, the experimental results reported373

by Zhou et al. [42], along with the numerical results reported by Guo et al. [41] and Liu et al. [45] are used374

for comparison. The first three natural modes are shown in Fig. 16 and correspond to a first bending mode, a375

first torsional mode and a second bending mode, respectively. It is observed in Table 2 that the differences of376

the present numerical frequencies with the experimental ones reported by Zhou et al. [42] are below 10% and,377

therefore, the developed FE model is considered suitable for the purpose of the present work. Subsequently, the378

natural modes with resonant frequencies below 30 Hz are retained for the dynamic analysis which, in this case,379

amount to the first 82 modes.380
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Table 2: Comparison of numerical natural frequencies of the viaduct of Sesia against previously reported results in the litera-
ture.

Vibration mode Natural frequencies [Hz]

Ref. [42] Ref. [41] Ref. [45] Present study

First bending mode 4.14 4.20 4.15 4.19
First torsional mode 9.00 9.30 9.01 9.68

Second bending mode 10.44 11.69 10.27 10.83

(a) (b) (c)

Figure 16: First bending mode (4.19 Hz) (a), first torsional mode (9.68 Hz) (b), and second bending mode (10.83 Hz) (c) of
the Sesia viaduct.

4.3.2. Dynamic analysis results381

On the basis of the previously computed modal features, this section reports the application of the proposed382

TSS meta-model to analyse the dynamic response of the Sesia viaduct under train moving loads. Firstly, the383

maximum absolute accelerations of the centre of the deck at mid-span are computed under the passage of the A1384

train of the HSML-A model. The train loads are applied in the centreline of one of the railway tracks 2.5 m far385

from the centre of the deck. As commonly assumed in the design of steel-concrete composite bridges, a constant386

modal damping ratio of ζ=0.5% is selected in this case study. Firstly, Fig. 17 (a) depicts the maximum absolute387

accelerations considering two train speed increments for the TSS meta-model, namely ∆v=10 km/h and 20 km/h,388

and a time sampling frequency of ∆t=Tmin/10=3.34 ms, with Tmin being the minimum period of the considered389

vibration modes. A clear resonant train speed can be noted around v=273 km/h with a peak acceleration of390

0.75 m/s2. With regard to the results of the TSS meta-model, it is noted that the estimates are less accurate for391

increasing train speed increments. In the case of ∆v=10 km/h, the TSS meta-model can accurately capture the392

peak acceleration (1.5% error), while larger differences are found at non-resonant train speeds. The estimates of393

the TSS meta-model with ∆v=20 km/h show a similar trend. Nevertheless, the computed peak acceleration is394

considerably lower in this case (0.57 m/s2, 32% error) due to an insufficient sampling of the train speed range.395

On the other hand, Fig. 17 (b) shows the maximum absolute accelerations considering ∆v=10 km/h and two time396

sampling frequencies, namely is ∆t=Tmin/10 and Tmin/100. It is clearly observed that the determination of the397

train speed sensitivity is notably enhanced in the case of ∆t=Tmin/100 at non-resonant speeds, while only limited398

enhancements are found at the resonant train speed. In line with the discussion of the previous case studies, these399

results illustrate the structure of the analytical solution of the sensitivity of bridge accelerations to the train speed.400

On the basis of the modal decomposition of the dynamic response, the sensitivity of accelerations to the train401

speed depends upon the square of the modal frequencies and, therefore, so are the errors in the determination of402

the sensitivity at maximum accelerations. At resonant speeds, only a few modes are determinant in the response403

and, therefore, such sampling errors are minimized.404

The effectiveness of the proposed TSS meta-model can be assessed in terms of computation time. With regard405

to the analyses reported in Fig. 17, the computational times of the considered cases yield:406

• Semi-analytic solution (∆v = 1 km/h, ∆t = Tmin/10) = 1388.29 s407

• TSS (∆v = 10 km/h, ∆t = Tmin/10) = 163.63 s (reduction of 88%)408

• TSS (∆v = 20 km/h, ∆t = Tmin/10) = 89.67 s (reduction of 94%)409

which, in light of the accuracy levels reported in Fig. 17, highlight the usefulness of the proposed meta-model to410

obtain fast evaluations of the maximum responses of high-speed railway bridges.411
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Figure 17: Maximum absolute envelopes of accelerations of the Sesia viaduct as functions of the train speed under the passage
of the A1 train of the HSML-A model of Eurocode 1, considering different train speed increments (a) and time sampling
frequencies (b). The accelerations are computed in the centreline of the ballast at mid-span (ζ=0.5%).

Finally, in order to further the analysis on the influence of damping on the dynamic response and the accuracy412

of the TSS meta-model, Fig. 18 investigates the response of the bridge in terms of maximum accelerations con-413

sidering the classical Rayleigh damping. To this aim, the damping ratios reported in the experimental study of Liu414

et al. [45] are used for the first two natural frequencies. Particularly, damping ratios of ζ1=2.17% and ζ2=1.84%415

are selected for the first two modes of vibration (see Fig. 16). It is observed that the differences of the estimates of416

the TSS meta-model and the actual envelope are minimal in this case, yielding errors in the determination of the417

peak acceleration of 0.88% and 3.50% for ∆v=10 km/h and 20 km/h, respectively. Due to the consideration of the418

classical Rayleigh damping, only a few modes of vibration remain low-damped while higher damping ratios are419

assumed for the rest of the modes. Hence, at resonant train speeds, lesser modes of vibration are determinant in420

comparison to those in the case of constant modal damping and, as a result, the errors stemming from insufficient421

sampling of the train sensitivity are minimized.422
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Figure 18: Maximum absolute envelopes of accelerations of the Sesia viaduct as functions of the train speed under the passage
of the A1 train of the HSML-A model of Eurocode 1, considering different train speed increments and Rayleigh’s damping.
The accelerations are computed in the centreline of the ballast at mid-span (∆t = Tmin/10).

4.4. Case study III: concrete box girder bridge, the Rodenillo viaduct.423

This last test copes with the dynamic analysis of a three-dimensional double-track U-shaped girder high-speed424

railway bridge, the Rodenillo viaduct. This test is aimed at demonstrating the effectiveness of the proposed TSS425

meta-model to provide fast evaluations of the maximum response envelopes of a complex three-dimensional bridge426

structure, including a strong influence of torsional modes.427
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Figure 19: Lateral view (a), cross-section (b), and FE model of the viaduct of Rodenillo (c) (Units in m).

The Rodenillo viaduct is a cast-in-place concrete post-tensioned box-girder bridge located on the high-speed428

railway line Madrid-Valencia in Spain. The bridge consists of five continuous spans with a total length of 207429

m, including two 36 m long lateral spans and three 45 m long central spans (see Fig. 19 (a)). The superstructure430

consists of a single-cell box cross-section with a depth of 3.1 m with 3.9 m long cantilevers on both sides, defining431

a 14 m long concrete deck. The thicknesses of the bottom and top flanges are 0.3 m and 0.35 m, respectively,432

and the webs are 0.5 m thick (see Fig. 19 (b)). In addition, the girder is reinforced by two 0.5 m thick concrete433

diaphragms at the supports. Finally, the superstructure of the track consists of UIC-60 rails, prestressed concrete434

sleepers spaced every 0.6 m, and a 0.50 m thick ballast layer.435

4.4.1. Finite element model436

In order to extract the modal features of the structure, the viaduct is modelled in in the commercial FE code437

SAP2000 (see Fig. 19 (c)). To do so, shell elements are used to model the concrete girder, including six different438

sections, namely 0.5 m thick webs, 0.3 m thick top flanges, 0.35 m thick bottom flanges, 0.5 m thick diaphragms439

and 0.35 m thick concrete cantilevers. In order to account for the effect of the higher steel reinforcement density440

in the transverse direction of the viaduct deck, the bending stiffness of the deck shells is increased by 20% as441

a common approximation in practice. Furthermore, the ballast barriers are modelled with frame elements with442

rectangular cross-section of 0.2×0.5 m2. The material properties used in the model are collected in Table 3.443

Overall, the FE model has 38 frames and 7422 shells. The spans are defined as simply supported and, therefore,444

the boundary conditions consider translational fixed bearings at the first abutment, while vertical displacements are445

constrained in the rest of supports. Additionally, the longitudinal displacements and rotations are also constrained446

at the extremes of the rails to simulate the connection with the adjacent lanes. In this way, smooth load lanes are447

achieved and the appearance of fictitious impacts at the entrance of trains into the structure is avoided.448

Table 3: Material properties used in the FE modelling of the viaduct of Rodenillo.

Item Unit Value
Per-unit-length mass of rails kg/m 60.0

Mass of sleepers kg 290.0
Mass density of ballast kg/m3 1800.0

Young’s modulus of concrete GPa 35.0
Poisson’s ratio of concrete - 0.2
Mass density of concrete kg/m3 2403.0

Finally, the FE model is used to extract the modal features of the bridge through a modal analysis in SAP2000.449

Fig. 20 furnishes the first three modes of vibration, including a first and second bending modes and a first torsional450

mode with resonant frequencies of 2.58 Hz, 2.93 Hz and 6.24 Hz, respectively. In the following, a total of 123451

modes of vibration with resonant frequencies below 30 Hz are retained in the dynamic analyses. With regard to452

the damping of the structure, a constant modal damping ratio of ζ=2% is selected according to the Spanish code453

IAPF-07 [34].454
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(a) (b) (c)

Figure 20: Numerical modes of vibration of the viaduct of Rodenillo: (a) first bending mode (2.58 Hz), (b) second bending
mode (2.93 Hz), and (c) first torsional mode (6.24 Hz).

4.4.2. Dynamic analysis results455

On the basis of the modal features extracted from the FE model, the proposed TSS meta-model is used to456

compute the dynamic response of the viaduct of Rodenillo. For comparison purposes, the results provided by the457

semi-analytic solution are also presented considering small train speed increments of 1 km/h. Figs. 21 (a) and (b)458

show the maximum absolute displacement and acceleration envelopes, respectively, as functions of the train speed459

under the passage of the A1 train of the HSML-A model of Eurocode 1. The train loads are applied in the centreline460

of one of the railway tracks 2.265 m far from the centre of the deck. Due to space constraints, the results in terms461

of maximum displacements are only shown for the critical point located at the centre of the deck at a quarter-span462

of the first 45 m long span. Also, the acceleration results are only shown for the point located at the edge of the463

ballast layer at a quarter-span of the same span. A time sampling rate of ∆t=Tmin/10=3.9 ms is selected, as well464

as a free vibration time of six times the highest period of the structure. In order to evaluate the effectiveness of465

the proposed TSS meta-model, two different train speed increments have been considered, namely 10 km/h and466

20 km/h. It is first noted in Fig. 21 (a) that, given that the envelope of displacements is considerably smoother, the467

present TSS meta-model yields very close estimates to the actual envelope. In particular, the estimates computed468

with a train speed increment of 10 km/h accurately capture all the local and global maxima. Conversely, the469

global maximum (≈320 km/h) goes unnoticed for the envelope computed with a train speed increment of 20 km/h470

due to insufficient sampling. On the other hand, although larger differences in maximum accelerations can be471

observed throughout the range of considered speeds in Fig. 21 (b), these get considerably reduced at local/global472

maxima points. Let us recall that the train speed sensitivity in terms of accelerations is directly proportional to the473

square of the modal frequencies and, therefore, so are the sampling errors in the determination of the sensitivity at474

maximum acceleration points. Hence, at resonant trains speeds, only a few modes are determinant in the response475

and the sampling errors in the determination of the maximum train speed sensitivity get substantially reduced,476

what explains the higher accuracy of the TSS meta-model at local/global maxima points.477
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Figure 21: Maximum absolute envelopes of displacements (a) and accelerations (b) of the viaduct of Rodenillo as functions
of the train speed considering different train-speed steps. Displacements and accelerations are computed in the centre of the
deck and the edge of the ballast layer at the quarter-span of the first span, respectively. (Train A1 of the HSML-A model of
Eurocode 1, ∆t=Tmin/10).

Figure 22 deepens the previous analyses on the effects of the time sampling rate on the estimates of the TSS478

meta-model. To do so, two different time steps are considered, namely∆t = Tmin/10 = 3.9 ms and Tmin/100 = 0.39479

ms, assuming a constant train speed increment of ∆v=10 km/h. Firstly, it is noted in Fig. 22 (a) that the time480

sampling rate has little effect on the determination of the maximum displacements. Conversely, it is observed in481

Fig. 22 (b) that considerably closer fittings with the semi-analytic solution are obtained for decreasing sampling482

frequencies. Interestingly, these differences are shown notably reduced at resonant train speeds (see e.g. 190 km/h483

or 320 km/h). The presented results illustrate the structure of the proposed approach and, as a result, it is concluded484

that the TSS meta-model provides fast evaluations of maximum response envelopes of bridge structures through485

the sub-sampling of the train speed range, yielding minimal differences at resonant speeds related to local/global486

maxima.487
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Figure 22: Maximum absolute envelopes of displacements (a) and accelerations (b) of the viaduct of Rodenillo as functions of
the train speed considering different time steps. Displacements and accelerations are computed in the centre of the deck and
the edge of the ballast layer at the quarter-span of the first span, respectively. (Train A1 of the HSML-A model of Eurocode 1).

Finally, Figs. and 24 show the global maximum absolute displacements and accelerations envelopes of the488

viaduct of Rodenillo, respectively. In this case, the ten trains of the HSML-A model, the AVE and TALGO trains489

are considered. The accelerations are computed at the edge of the ballast layer at the quarter-span of the first 45490
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m long span. The estimates provided by the TSS meta-model are computed assuming train speed increments of491

∆v=10 km/h and 20 km/h, and a time sampling frequency of ∆t=Tmin/10. It is noted that similar conclusions492

to the previous analyses can be also extracted in the case of maximum response envelopes considering multiple493

multi-point train loads. The maximum absolute accelerations provided by the semi-analytic solution and the TSS494

meta-model for ∆v=10 km/h and 20 km/h are 0.825 m/s2, 0.828 m/s2 (0.35% error) and 0.890 m/s2 (7.90% error),495

respectively. Hence, it is concluded the proposed TSS meta-model can efficiently provide fast evaluations of the496

maximum response envelopes of three-dimensional low-damped bridges under the passage of complex moving497

multi-point train loads, of high interest for preliminary design stages.498
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Figure 23: Maximum absolute envelopes of displacements of the viaduct of Rodenillo as functions of the train speed under the
passage of the ten trains of the HSML-A model, the AVE and TALGO trains. The displacements are computed in the centre of
the deck at the quarter-span of the first 45 m long span (ζ=2%, ∆t=Tmin/10).
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Figure 24: Maximum absolute envelope of accelerations of the viaduct of Rodenillo as a function of the train speed under the
passage of the ten trains of the HSML-A model, along with the AVE and TALGO trains. The accelerations are computed at
the edge of the ballast layer at the quarter-span of the first 45 m long span (ζ=2%, ∆t=Tmin/10).

Finally, in a similar way to the previous case study, the effectiveness of the proposed TSS meta-model can499

be assessed in terms of computation time. In this case, the computational times required to obtain the results500

previously shown in Figs. 23 and 24 are the following ones:501

• Semi-analytic solution (∆v = 1 km/h, ∆t = Tmin/10) = 10518.56 s502

• TSS (∆v = 10 km/h, ∆t = Tmin/10) = 1120.78 s (reduction of 89%)503

• TSS (∆v = 20 km/h, ∆t = Tmin/10) = 608.53 s (reduction of 94%)504

These results demonstrate the usefulness of the proposed meta-model which, while providing reasonably good505

estimates of the maximum dynamic responses of the bridge, yield considerable reductions in the computation506
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times. Such reductions can be particularly beneficial during pre-design stages, where the TSS meta-model can507

provide fast evaluations of the dynamic response of diverse design alternatives.508

5. Conclusions509

In this paper, a novel approach for fast assessment of maximum response envelopes of railway bridges under510

moving train loads has been presented. The proposed TSS meta-model is based on the train speed sensitivity of511

the dynamic response envelope curves. Specifically, this technique tracks the maximum values of the dynamic512

response of the structure (displacements or accelerations) along with their sensitivity to train speed variations. On513

the basis of the semi-analytic solution of the time-dependent modal equations, the present approach also computes514

the train speed sensitivity in closed-form. Considering the computed slopes, it is possible to define a moderate515

sampling frequency of the design range of train speeds and, afterwards, approximate the non-sampled speeds516

through a cubic spline interpolation. The proposed technique, implemented in a FORTRAN computer code, has517

proven computationally efficient on a standard desktop PC. Four numerical case studies have been presented to518

illustrate the potentials of the proposed methodology. Overall, the numerical results have demonstrated substantial519

reductions in the computation times. Additionally, the proposed cubic interpolation has been shown capable of520

sufficiently approximating the maximum response envelopes. In particular, accurate approximations have been521

reported at resonant train speeds where only a limited number of modes are activated. This feature allows structural522

engineers to rapidly assess and compare the performance of different structural alternatives at early design stages.523

On the whole, the key features of the present methodology can be listed as follows:524

• On the basis of the semi-analytic solution of the dynamic equations of motion, the time-dependent train525

speed sensitivity of the solution has been also derived in closed-form. Alike the semi-analytic solution, the526

proposed methodology is highly accurate and robust because no time integration errors are involved.527

• The only approximation introduced in the procedure stems from the spatial discretization of the structure528

through the FE modelling.529

• In virtue of the envelope theorem, the slopes of the design envelopes are evaluated at instant times where530

local maxima are found. Hence, at every train speed, the TSS must be only computed and stored at instant531

times of local maxima.532

• A time step is required in order to plot the time-history of the response. Although the solution is analytical533

in the time domain, sampling errors may arise in the determination of local maxima and, as a result, in534

the slope of the maximum response envelopes. Nevertheless, the numerical results have demonstrated that535

sampling errors are minimized at resonant speeds where only a few modes are activated.536

Future developments of the proposed meta-model include the evaluation of different regression models to537

interpolate the non-sampled train speeds. Leveraging the closed-form analytical definition of the problem in538

the time domain, higher order sensitivities can be also obtained in closed form and, as a result, new enriched539

interpolation approaches may be explored for the fast assessment of maximum response design envelopes for540

high-speed railway bridges.541
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[9] L. Frỳba, A rough assessment of railway bridges for high speed trains, Engineering structures 23 (2001)566

548–556.567

[10] E. Savin, Dynamic amplification factor and response spectrum for the evaluation of vibrations of beams568

under successive moving loads, Journal of Sound and Vibration 248 (2001) 267–288.569

[11] S. A. Hamidi, F. Danshjoo, Determination of impact factor for steel railway bridges considering simultaneous570

effects of vehicle speed and axle distance to span length ratio, Engineering Structures 32 (2010) 1369–1376.571

[12] Manual, AREMA, American railway engineering and maintenance-of-way association (2006).572

[13] J. M. Goicolea, J. Dominguez, J. A. Navarro, F. Gabaldon, New dynamic analysis methods for railway573

bridges in codes IAPF and Eurocode 1, Railway Bridges Design, Construction and Maintenance, Madrid574

(2002) 1–43.575

[14] M. Zacher, M. Baeßler, Dynamic behaviour of ballast on railway bridges, in: Dynamics of High–Speed576

Railway Bridges. Selected and revised papers from the Advanced Course on ’Dynamics of High–Speed577

Railway Bridges’, Porto, Portugal, 20–23 September 2005, CRC Press, 2008.578

[15] Commitee ERRI D-214. Design of Railway Bridges for Speed up to 350 km/h; Dynamic loading effects579

including resonance: Final report. Draft C., 1998.580

[16] Commitee ERRI D-214.2. Utilisation de convois universels pour le dimensionement dynamique de ponts-581
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[22] L. Frỳba, Vibration of solids and structures under moving loads. 3rd ed., Thomas Telford, 1999.591

[23] J. S. Wu, L. K. Chiang, Dynamic analysis of an arch due to a moving load, Journal of Sound and Vibration592

269 (2004) 511–534.593

[24] S. H. Li, J. Y. Ren, Analytical study on dynamic responses of a curved beam subjected to three-directional594

moving loads, Applied Mathematical Modelling 58 (2018) 365–387.595

[25] J. J. Wu, Dynamic analysis of an inclined beam due to moving loads, Journal of Sound and Vibration 288596

(2005) 107–131.597

23



[26] F. R. Rofooei, A. Enshaeian, A. Nikkhoo, Dynamic response of geometrically nonlinear, elastic rectangular598

plates under a moving mass loading by inclusion of all inertial components, Journal of Sound and Vibration599

394 (2017) 497–514.600

[27] B. Dyniewicz, D. Pisarski, C. I. Bajer, Vibrations of a Mindlin plate subjected to a pair of inertial loads601

moving in opposite directions, Journal of Sound and Vibration 386 (2017) 265–282.602

[28] P. Malekzadeh, A. R. Fiouz, H. Razi, Three-dimensional dynamic analysis of laminated composite plates603

subjected to moving load, Composite Structures 90 (2009) 105–114.604

[29] Q. Song, Z. Liu, J. Shi, Y. Wan, Parametric study of dynamic response of sandwich plate under moving605

loads, Thin-Walled Structures 123 (2018) 82–99.606

[30] C. G. Koh, G. H. Chiew, C. C. Lim, A numerical method for moving load on continuum, Journal of Sound607

and Vibration 300 (2007) 126–138.608

[31] Z. Y. Ai, C. J. Xu, G. P. Ren, Vibration of a pre-stressed plate on a transversely isotropic multilayered609

half-plane due to a moving load, Applied Mathematical Modelling 59 (2018) 728–738.610

[32] H. Ouyang, Moving-load dynamic problems: A tutorial (with a brief overview), Mechanical Systems and611

Signal Processing 25 (2011) 2039 – 2060.612

[33] A. Martı́nez-Castro, P. Museros, A.Castillo-Linares, Semi-analytic solution in the time domain for non-613

uniform multi-span Bernoulli-Euler beams traversed by moving loads, Journal of Sound and Vibration 294614

(2006) 278–297.615

[34] Instrucción de acciones a considerar en en el proyecto de puentes de ferrocarril (IAPF), 2007.616

[35] P. Museros, A. Martı́nez-Castro, A.Castillo-Linares, Semi-analytic solution for Kirchhoff plates traversed617

by moving loads, in: Proceedings of the 6th International Conference on Structural Dynamics. EURODIN618

2005, Paris, France, pp. 1619–1624.619

[36] A. Martı́nez-Castro, E. Garcı́a-Macı́as, Two techniques for fast evaluation of design envelopes in high-620

speed train railway bridges: Train speed sensitivity and the Hilbert Transform., in: Proceedings of the 9th621

International Conference on Structural Dynamics. EURODYN 2014, Porto, Portugal, pp. 1309–1314.622

[37] C. P. Simon, L. Blume, Mathematics for economists, volume 7, Norton New York, 1994.623

[38] T. M. Apostol, Mathematical analysis, Addison Wesley Publishing Company, 1974.624

[39] P. Milgrom, I. Segal, Envelope theorems for arbitrary choice sets, Econometrica 70 (2002) 583–601.625

[40] K. Henchi, M. Fafard, G. Dhatt, M. Talbot, Dynamic behaviour of multi-span beams under moving loads,626

Journal of Sound and Vibration 199 (1997) 33–50.627

[41] W. W. Guo, H. Xia, G. De Roeck, K. Liu, Integral model for train-track-bridge interaction on the Sesia628

viaduct: Dynamic simulation and critical assessment, Computers & Structures 112 (2012) 205–216.629

[42] H. Zhou, K. Liu, G. Shi, Y. Q. Wang, Y. J. Shi, G. De Roeck, Fatigue assessment of a composite railway630

bridge for high speed trains. Part I: Modeling and fatigue critical details, Journal of Constructional Steel631

Research 82 (2013) 234–245.632

[43] H. Zhou, G. Shi, Y. Wang, H. Chen, G. De Roeck, Fatigue evaluation of a composite railway bridge based633

on fracture mechanics through global-local dynamic analysis, Journal of Constructional Steel Research 122634

(2016) 1–13.635

[44] K. Matsuoka, A. Collina, M. Sogabe, Dynamic simulation and critical assessment of a composite bridge in636

high-speed railway, Procedia Engineering 199 (2017) 3027–3032.637

[45] K. Liu, E. Reynders, G. D. Roeck, G. Lombaert, Experimental and numerical analysis of a composite bridge638

for high-speed trains, Journal of Sound and Vibration 320 (2008) 201–220.639

24


