
Metamodel-based pattern recognition approach for real-time identification of
earthquake-induced damage in historic masonry structures

Enrique Garcı́a-Macı́asa,∗, Ilaria Venanzia, Filippo Ubertinia

aDepartment of Civil and Environmental Engineering, University of Perugia. Via G. Duranti, 93 - 06125 Perugia, Italy.

Abstract

Damage localization/quantification through vibration-based Structural Health Monitoring (SHM) is commonly
performed by inverse calibration of a numerical model. Nevertheless, the numerous simulations required in the
associated optimization problem pose a daunting obstacle when applied to real-time SHM. Particularly critical
are heritage buildings, whose complex geometries often require computationally intensive modellings. In this
light, this paper presents a novel earthquake-induced damage identification approach for historic masonry struc-
tures. This relies upon the use of a computationally efficient meta-model suited for real-time system identification.
The optimization problem is formulated accounting for discrepancies between numerical and experimental res-
onant frequencies and mode shapes. Damage localization/quantification is enabled by multivariate analyses of
continuously identified model parameters. A real medieval tower is presented as a case study, and several dam-
age scenarios are simulated and used for validation. The reported results pave the way for the development of
next-generation long-term vibration-based SHM systems with real-time damage identification capabilities.

Keywords: Damage localization, Historic buildings, Meta-model, Model updating, Operational Modal Analysis,
Structural health monitoring, Surrogate models.

1. Introduction1

There is a broad consensus today on the importance of adopting SHM strategies for preventing catastrophic2

failures and excessive infrastructure downtimes [1–3]. In particular, tragic collapses of civil structures such as the3

Genoa bridge in August 2018, or the loss of invaluable heritage structures such as the civic tower of Pavia in 19894

have evidenced the large risks associated with ageing degradation and inefficient maintenance [4, 5]. This has5

promoted a large volume of research on SHM since 1970s, although the reality is that these research efforts have6

yielded relatively few routine industrial applications [1]. Amongst the reasons explaining this slow technological7

transfer [3], it is worth stressing the lack of performance validation of damage identification techniques on full-8

scale structures under real operating conditions.9

Among the wide variety of SHM technologies present in the literature, dynamic testing has attracted most of10

the attention due to its global damage assessment capabilities and minimum intrusiveness. These techniques utilize11

modal parameters (i.e. resonant frequencies, mode shapes and damping ratios) as damage-sensitive features since12

these depend upon the mass, stiffness, and energy dissipation properties of structures [6–12]. Modal properties13

are highly affected by environmental conditions, thereby such techniques are mainly effective when implemented14

in a long-term monitoring program. This allows the definition of a healthy/baseline dataset, often referred to as15

the training period, alongside the creation of statistical models for the subtraction of environmental effects [13–16

18]. In this manner, the appearance of damage can be detected by multivariate statistical analysis of anomalies17

in the time series of modal properties. In this light, a variety of successful applications to diverse structural18

typologies can be found in the literature (see e.g. [19–21]), which has favoured vibration-based damage detection19

to become a quite consolidated and mature approach. Unfortunately, their application for damage localization and20

quantification has not been so successful [3]. This usually requires the use of numerical models linking damage21

mechanisms and the intrinsic mass/stiffness/damping properties of structures to their modal signatures [22, 23].22

Hence, the effectiveness of this approach largely depends upon the accuracy of the model and the way material23

constitutive properties and damage mechanisms are modelled. In this regard, Structural Identification (St-Id) or24

model updating aims to bridge the gap between models and real systems by tuning the model parameters in such a25
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way that the mismatch between experimental and theoretical observations/data is minimized. Nevertheless, despite26

the obvious motivation of St-Id, potential public and private end-users remain sceptical about its usefulness for the27

maintenance and management of civil infrastructure [3]. This is chiefly due to the lack of compelling evidences28

of its effectiveness in the literature, where too simple models and prescriptive codes are generally used [24].29

One of the main obstacles for the extensive implementation of St-Id in engineering practice stems from the30

difficulties involved in the use of computationally intensive numerical models into automated long-term SHM sys-31

tems. In this context, cultural heritage (CH) structures constitute a remarkable example since these usually feature32

complex geometries requiring fine discretizations. Typically, damage identification is achieved by the inverse cali-33

bration of a finite element model (FEM) through a non-linear optimization problem. Such an optimization usually34

requires an elevated number of model evaluations, resulting in large computational times that are incompatible35

with real-time SHM systems. Hence, most research works in the literature have limited to the use of simplified36

numerical models or discrete St-Id. Nonetheless, recent advances in the use of surrogate models have opened a37

new horizon for real-time St-Id-enabled damage identification [25–29]. A noteworthy contribution was made in38

this regard by Cabboi et al. [22] who reported the damage identification of a stone-masonry tower using continu-39

ous Operational Modal Analysis (OMA) and a surrogate Response Surface Model (RSM). The St-Id was achieved40

using an objective function accounting for differences between experimental resonant frequencies and the the-41

oretical predictions of the surrogate model. The effectiveness of the proposed approach was evaluated through42

simulated damage scenarios obtained by decreasing the elastic moduli of certain parts of the model. In this line,43

recent contributions by the authors [28, 29] presented an enhanced version of the methodology by Cabboi et al.,44

where the St-Id was performed with a functional comprising not only resonant frequencies but also mode shapes.45

The presented results demonstrated the ability of the proposed approach to identify the environmental effects upon46

the intrinsic elastic properties of a masonry tower. Despite the encouraging results, several issues still need to be47

addressed to broaden its application to damage identification and assert its reliability. These include: i) appraisal48

of the effectiveness of surrogate model-based St-Id when dealing with full-scale structures and realistic damage49

scenarios; ii) assessment of the importance of accounting for the time evolution of mode shapes; iii) adoption50

of pattern recognition techniques to remove environmental effects and so enable early-damage identification; iv)51

design and evaluation of proper regularization approaches to minimize ill-conditioning limitations in the St-Id; v)52

implementation of novelty detection approaches to automate the damage identification process.53

As a solution to the afore-mentioned shortcomings, the present work proposes an enhanced version of the54

surrogate model-based damage identification approach in [28, 29]. Unlike previous approaches, the newly pro-55

posed method incorporates statistical pattern recognition and anomaly detection techniques. Such an upgrade is56

crucial for early damage identification because, as previously reported by the authors [29], environmental factors57

considerably affect the model fitting parameters and may mask the appearance of damage. Specifically, the effec-58

tiveness of three different statistical models for filtering out these effects is explored, including Multiple Linear59

Regression (MLR), Principal Component Analysis (PCA), and Autoassociative Neural Networks (ANNs). After-60

wards, automated damage detection is enabled by novelty analysis of the residuals between the identified model61

parameters and the predictions of a statistical model constructed over a baseline/training period. The effectiveness62

of the proposed methodology is ascertained with a case study of a 41 m high civic historic tower located in the63

city of Perugia in Italy, named Torre degli Sciri. The tower has been continuously monitored during three weeks64

with an environmental/dynamic SHM system. The modal features of the tower have been extracted by automated65

OMA and used in the inverse calibration of a 3D FEM of the structure. The model updating accounts for the time66

evolution of both resonant frequencies and mode shapes, and a new regularization approach for tackling differ-67

ential parameter sensitivities and minimizing ill-conditioning limitations is developed. Computational times are68

made compatible with real-time SHM by using an inexpensive RSM, which replaces the original FEM. Finally, the69

present approach is validated for simulated earthquake-induced damage scenarios with increasing severity degrees.70

To do so, a pushover analysis of the 3D FEM of the Sciri Tower is conducted, and a non-linear modal analysis71

of the FEM allows to include the simulated scenarios in the time series of experimental resonant frequencies and72

mode shapes. The presented results and discussion highlight the importance of including the experimental mode73

shapes in the St-Id for alleviating ill-conditioning in the solution, as well as the need for controlling their modal74

complexity.75

The remainder of this paper is organized as follows. Section 2 outlines the proposed surrogate model-based76

ST-Id for automated damage identification. Section 3 describes the investigated case study of the Sciri Tower, the77

continuous dynamic/environmental SHM system, the development of a 3D FEM of the structure, and the initial78

calibration of the model using a GA. Section 4 reports the results of the non-linear incremental analysis carried out79

in order to generate synthetic earthquake-induced damage scenarios for validation purposes. Section 5 presents80

the results and discussion of the application of the proposed methodology to the investigated case study. Finally,81

Section 6 concludes the paper.82
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2. Damage identification enabled by automated surrogate model-based St-Id83

The present surrogate model-based damage identification methodology represents an enhanced version of the84

previously published approach by the authors in reference [29]. The newly proposed approach is sketched in Fig. 185

and comprises the following three consecutive steps:86

(A): Initial calibration of the FEM: The initial FEM is constructed based on available structural drawings,87

on-site inspections, and surveys of the material properties. Additionally, a series of assumptions must be88

usually made to complete the definition of the model. These may concern several aspects such as boundary89

conditions, material homogeneity or structural connectivity. Therefore, the initial FEM may involve consid-90

erable sources of uncertainty that should be minimised before constructing the subsequent surrogate model.91

To do so, certain parameters of the FEM (typically mass density and elastic moduli of certain structural92

members) are tuned with the aim of minimizing the differences between the numerical modal features and93

those identified experimentally from an initial ambient vibration test (AVT). In this work, this is conducted94

using a GA as reported hereafter.95

(B): Construction of the surrogate model: Based upon the previously tuned FEM, a surrogate model is con-96

structed in order to set up an analytical relationship between certain damage-sensitive model parameters97

and the modal features of the structure. This black-box representation of the FEM offers a computationally98

efficient solution to perform iterative model updating procedures.99

(C): Automated surrogate model-based St-Id and anomaly detection: This last step regards the automated100

OMA of the structure, fitting of the damage-sensitive model parameters, and identification of damage in101

the shape of statistical anomalies in the time series of the fitting parameters. By virtue of the limited102

computational demand of the surrogate model, this procedure can be readily implemented in the framework103

of a real-time SHM system and provide online damage identification capabilities.104

(C.1) Automated OMA: The modal features of the structure are experimentally identified by automated105

OMA of periodically recorded ambient vibrations. The outcome of this stage at every step j comprises106

a set of resonant frequencies f j and mode shapes ϕ j.107

(C.2) Surrogate-based model updating: The design variables at step j, x j, are fitted to minimize the mis-108

match between the last set of experimental modal features and the estimates of the surrogate model.109

(C.3) Model parameters tracking: The design variables fitted in the preceding step x j are stored in the j-th110

row of a matrix X. This matrix contains the time series of the fitted model parameters by columns.111

(C.4) Pattern recognition: From an initial baseline dataset where the structure is assumed to remain in112

healthy condition, a statistical model is constructed in order to phase out the fluctuations in the time113

series of fitted model parameters induced by environmental/operational effects in normal operating114

conditions.115

(C.5) Anomaly detection: The initiation of a damage mechanism can be identified through novelty analysis116

of the residuals between the fitting parameters and the estimates of the previously built statistical117

model. Upon setting a statistical threshold associated with a certain confidence level, it is possible to118

trigger an alarm system when anomalies are detected in the shape of residuals consistently overpassing119

the threshold. Since every design variable relates to the intrinsic stiffness of a specific element/region120

of the structure, anomalies in their time series directly indicate the location of damage.121
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Figure 1: Flowchart of the proposed surrogate model-based continuous St-Id of historic buildings.

2.1. Surrogate modelling: Response Surface Meta-model (RSM)122

The construction of a surrogate model generally comprises four consecutive steps as sketched in Fig. 2, includ-123

ing: (i) Selection of design variables; (ii) Sampling of the design space; (iii) Generation of the training population;124

and (iv) Construction of the surrogate model. The definition of the design space consists in selecting all those pa-125

rameters and their variation ranges required to parametrize the original FEM and reproduce the potential damage126

scenarios. Let us consider m design variables xi ∈ R, i = 1, ...,m (e.g. elastic properties of some structural parts)127

determining the response, y, of a FEM. Let us also assume that the design variables xi are allowed to vary only128

within a certain physically meaningful range [ai, bi]. Accordingly, the vector of design variables x=[x1, . . . , xm]T
129

spans the m-dimensional design space D = {x ∈ Rm : ai ≤ xi ≤ bi}. To construct the surrogate model, it is nec-130

essary to assemble a training population of N individuals mapping the output y and the design space D. This is131

accomplished by drawing input samples uniformly over the design space D and building a matrix of design sites132

X=[x1, . . . , xN] ∈ Rm×N . Then, the corresponding outputs are obtained by direct Monte Carlo simulations (MCS)133

using the main FEM. This allows to define an observation vector Y=[y1, . . . , yN]T, with yi ∈ R being the system’s134

response to the input xi.135

In this work, the elastic moduli of certain regions of the FEM (referred to as macroelements hereafter) are136

defined as damage-sensitive input design variables, xi, while the modal properties extracted from a linear modal137

analysis of the FEM are assumed as outputs. Therefore, different surrogate models must be constructed for each138

natural frequency and modal amplitude of all the vibration modes involved in the analysis. Specifically, if l modes139

of vibration are selected and ndo f degrees of freedom are used to characterize the mode shapes, a total of l (1+ndo f )140
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surrogate models must be constructed. These include l surrogate models to represent the resonant frequencies, and141

l · ndo f to reproduce the modal amplitudes.142

(i) Design space

(ii) Design space 
sampling

(iv) Surrogate  
model

x1

x2

x1

x2

x1

x2

(iii) Training     
population

 MCS FEM y(x)

Figure 2: Schematic representation of the construction of a surrogate model over a training population.

The training population defined by the matrix of design sites X and the observation vector Y is used to construct143

the surrogate model. A wide variety of models can be found in the literature (see e.g. [29]), but for simplicity144

reasons, a second-order quadratic version of the RSM is used in this work as [8]:145

y(x) = α0 +

m∑
j=1

α jx j +

m∑
j=1

α j jx2
j +

m∑
j=1

m∑
i≥ j

α jix jxi + ε, (1)

with coefficients α0, α j, α j j and α ji being the intercept, linear, quadratic, and interaction coefficients, respectively.146

The last term ε represents the error between the original FEM and the surrogate model, and it is assumed to be147

normally distributed with zero mean, independent, and identically distributed at each observation. The application148

of the model in Eq. (1) to the N individuals included in the training population can be written in matrix notation149

as:150

Y = X̂A + ε, (2)

where X̂ is an N× (m+1)(m+2)/2 matrix collecting components [1, x j, x2
j , x jxi] for each individual in the training151

population, A is the (m + 1)(m + 2)/2 vector of coefficients α0, α j, α j j and α ji, and ε is a (m + 1)(m + 2)/2 vector152

of random errors. The meta-model is defined once the coefficients vector A is determined, which can be achieved153

by its least squares estimator as:154

A =

(
X̂TX̂

)−1
X̂TY. (3)

2.2. Surrogate model-based St-Id155

In order to perform the surrogate model-based St-Id, an objective function J (x) including the relative dif-156

ferences between the l target modes of vibration determined experimentally and their theoretical counterparts is157

introduced as follows:158

J (x) =

l∑
i=1

[
αεi (x) + βδi (x)

]
+ Θ (x) , (4)

with159

εi (x) =

∣∣∣ f exp
i − f surr

i (x)
∣∣∣

f exp
i

, δi (x) = 1 − MACi (x) , (5)

and α and β being weighting coefficients that scale the contribution of the first two terms of the objective func-160

tion. Terms f exp
i and f surr

i (x) denote the i-th resonant frequencies obtained by OMA and the surrogate model,161

respectively, and MACi stands for the Modal Assurance Criterion (MAC) between the i-th experimental ϕexp
i and162
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numerical ϕsurr
i (x) mode shapes. On this basis, the St-Id procedure is given by the following constrained non-linear163

minimization problem:164

x = arg min
x∈D

J (x) . (6)

The last term in Eq. (4), Θ (x), represents a regularization term used to mitigate ill-conditioning limitations in165

the St-Id. In this work, a variation of the classical Tikhonov regularization is introduced as follows:166

Θ (x) =
1
m

m∑
i=1

ηi

(
xi − x0

i

)2

bi − ai
, (7)

where terms ηi denote trade-off parameters used to weigh the relevance of the regularization in Eq. (4) for every167

model parameter. The implemented regularization forces the solution to remain close to a reference vector of168

design variables x0 =
[
x0

1, ..., x
0
m

]T
or an undamaged condition. For small values of ηi, the design variable xi169

remains almost unrestricted, while too large values may over-constrain the variation of xi. It is important to170

remark that the aim of defining different trade-off parameters ηi for each model parameter is to tackle the particular171

sensitivities of the modal features to variations in the model parameters.172

The modal features of the structure are experimentally obtained by automated OMA at consecutive time steps173

j. Therefore, the optimization in Eq. (6) is iteratively performed, and the fitted design variables are arranged174

in matrix form as X =
[
x1, ..., x j

]
. Such a tracking of the selected design variables provides continuous St-Id175

capabilities, being possible to infer the appearance of damage through the timely detection of anomalies in matrix176

X.177

2.3. Statistical pattern recognition and novelty analysis178

Likewise resonant frequencies, the fitting parameters in X are affected by environmental and operational con-179

ditions. Hence, it is fundamental to phase out such effects through statistical pattern recognition and so unravel the180

activation of potential damage mechanisms in the time series of X. To do so, in the first place, an initial dataset of181

model parameters representing the healthy condition of the structure must be defined. This initial dataset, termed182

training period and composed of tp data points, allows to construct a statistical model accounting for the corre-183

lations between environmental/operational conditions and the fitting parameters under healthy conditions. Such184

a model can be used to obtain a matrix X̂ of predicted fitting parameters, and afterwards assess the residuals Q185

between the original and predicted values as:186

Q = X − X̂. (8)

Since the time series in X̂ solely contain the variance in the fitting parameters associated with normal operating187

conditions, the time series in Q only comprise the presence of fitting errors or new structure-environment corre-188

lations, which may indicate the appearance of damage. The residuals in Q throughout the training period can be189

assumed normally distributed with zero mean, and different in-control limits related to a certain confidence level190

can be set up for every fitting parameter. Hence, leveraging the direct representation of the condition of local parts191

of the structure by the selected fitting parameters, damage localization can be readily performed through two-class192

classification (damaged or undamaged) of the time series in Q by assessing abnormal increases in the number of193

outliers with respect to the afore-mentioned in-control limits.194

Below a concise overview of the different techniques used in this work for estimating matrix X̂ is presented.195

These include: (a) MLR (b), PCA, and (c) ANNs.196
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Figure 3: Statistical models used for pattern recognition of fitting model parameters: (a) MLR, (b) PCA, and (c) ANN.

(a) Multiple Linear Regression197

Multiple linear regression models exploit linear correlations between the m fitting parameters and a set of198

p independent (explanatory) variables, called predictors, that are typically environmental and operational199

parameters (see Fig. 3(a)). In particular, matrix X̂ is computed as:200

X̂ = βZT, (9)

where Z ∈ RN×(p+1) is a design matrix composed of an N × 1 vector of ones and an N × p matrix containing201

the time series of the q selected predictors, while β ∈ Rm×(p+1) is a matrix of regression weights composed of202

intercept terms in the first column and linear regression coefficients in the remaining p columns. Quantities203

in matrix β are estimated by the least square method over the training period.204

(b) Principal Component Analysis205

Principal Component Analysis is a dimensionality-reduction technique used to transform databases into206

lower dimensional subspaces without significant losses of data variance. It starts with the projection of the207

original data onto the vectorial space generated by the so-called principal components (PCs) (Fig. 3(b)).208

Principal components are the eigenvectors of the covariance matrix of the original data, thereby PCs con-209

stitute an orthogonal basis of uncorrelated components. Ranking the PCs according to their corresponding210

eigenvalues (i.e. explained variance), it is possible to extract a subset of those PCs retaining most of the211

variance in the original data. In this work, PCs providing the largest contributions to the variance are as-212

sumed to encapsulate the effects of environmental/operational factors on the fitting variables in X̂. In this213

light, matrix X̂ can be estimated by mapping back the reduced subset of PCs onto the original data space.214

From a mathematical standpoint, the subspaces in PCA are defined by the eigenvectors and eigenvalues of215

the covariance matrix as follows:216

CxU = US2, (10)

with Cx ∈ Rm×m being the covariance matrix of the original data in X̂ normalized throughout the training217

period, X
tp
n ∈ Rm×tp . The eigenvectors of Cx are the columns of U (loading matrix) and represent the PCs,218

and the eigenvalues are the diagonal terms of S2 (the off-diagonal terms are zero). The PCs are sorted219

in descending order according to the diagonal terms of S2. Geometrically, the transformed data matrix220

T ∈ Rm×N (scores matrix) is the projection of the original data (Xn, normalized) over the directions of the221

PCs in U:222

T = UTXn. (11)
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It should be noted that the diagonal terms in S2 represent the variance contributions of each PC. By retaining223

only the first l columns of matrix U into a reduced matrix Û ∈ Rm×l, matrix X̂n (normalized) can be obtained224

as:225

X̂n =

(
Û Û

T
)

Xn, (12)

which enables the backward transformation from the reduced l-dimensional space of PCs to the original226

one. The number l of components to be retained must be chosen according to the relative contributions of227

the PCs to the variance in the data. If this number is too small, part of the environmental/operational effects228

will not be properly reproduced, while a too large value will lead to a statistical model explaining particular229

traits of the training period with the subsequent loss of generality.230

(c) Autoassociative Neural Networks231

Autoassociative neural networks, often referred to as nonlinear PCA, represent a powerful pattern recog-232

nition tool for feature extraction, dimension reduction, and novelty analysis of multivariate data [30, 31].233

These consist of feedforward nets trained to produce an approximation of the identity mapping, that is, the234

inputs and outputs are identical and their form of learning is unsupervised. The architecture of ANNs is235

composed of five layers (see Fig. 3(c)): the input layer, mapping, bottleneck, demapping, and output layers.236

Likewise Eq. (11), ANNs seek to learn a mapping in the following form:237

Y = G (X) , (13)

where G is a non-linear vector function comprising n2 individual functions G =
{
G1,G2, . . . ,Gn2

}
. Follow-238

ing an analogous approach to that in Eq. (12), the de-mapping process inversely transforms the projected239

data back to the original space using a second non-linear vector function H as:240

X̂ = H (Y) . (14)

Vector functions G and H are computed by minimizing the Euclidean norm of the differences between the241

fitted design variables and the estimates by the ANN (i.e. with minimum loss of information). Arbitrary242

non-linear functions y = g(x) are sought by ANNs in the following general form:243

yk =

n2∑
j=1

w2
jk h

 n1∑
i=1

w1
i j xi + b j

 , (15)

where yk and xi are the k-th and i-th components of y and x, respectively, wk
i j denotes the weight factor244

between the i-th node in the k-th layer and the j-th node in the successive layer, and b j is a node bias. The245

term ni indicates the number of nodes in the i-th layer, and the transfer function h(x) is a continuous and246

monotonically increasing function with the output range from 0 to 1.247

The complexity of the ANNs chiefly depends upon the number of nodes in the mapping layers (n1, n3),248

while the bottleneck one is usually defined as a low-dimensional layer (n1, n3 > n2). Too few nodes in the249

mapping layers may compromise the accuracy of the neural network, while too many mapping nodes may250

lead to over-learning of the stochastic content of the data rather than the underlying driving sources. In this251

work, neural networks with n1 = 5, n2 = 1 and n3 = 1 neurons have been utilized as shown in Fig. 3(c). The252

ANNs have been trained using the fitting model parameters obtained throughout the training period and the253

Levenberg-Marquardt backpropagation algorithm, and sigmoidal transfer functions have been employed in254

all the hidden layers as well as the output layer.255

3. Application case study: The Sciri Tower in Perugia, Italy256

This section presents the case study of the Sciri Tower. Specifically, the details of the structure and its modal257

identification through continuous OMA are firstly presented in Sections 3.1 and 3.2, respectively. There follows258

the modelling of the structure in Sections 3.3 and 3.4. It is important to remark that the quality of the metamodel of259

the Sciri Tower, which is the main outcome of this study, depends upon both the quality of the large-scale FEM and260

the construction of the surrogate model itself. Thus, to guarantee the quality of the resulting metamodel, model261

calibration is performed first at the large-scale FEM level in Section 3.3 through first-order sensitivity analysis262

and a GA. Afterwards, details of the construction of the surrogate model and its quality assessment are reported263

in Section 3.4.264
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3.1. The Sciri tower265

In order to validate the proposed damage identification procedure, a historic masonry civic tower located in266

the historical centre of Perugia in Italy (Figure 4 (a)), named Torre degli Sciri, is selected as a case study. The267

tower is 41 m high, has a rectangular cross-section (7,15 x 7,35 m), and is made of white limestone masonry. Up268

to the first 17 m, the tower is inserted into a building ensemble with approximate cross-section dimensions of 20269

x 25 m. This medieval tower has been the subject of study in several investigations by the authors, so interested270

readers may refer to references [28, 29, 32, 33] for further information about its architecture.271
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Figure 4: Elevation and plan views (a), and sensors layout for continuous monitoring of the Sciri Tower (b).

3.2. Dynamic monitoring and modal identification272

A continuous environmental/dynamic monitoring campaign with a relatively large number of sensors was273

performed from February 13th until March 10th 2019. As shown in Fig. 4 (b), twelve high sensitivity (10 V/g)274

uniaxial accelerometers model PCB 393B12 were installed at six different heights of the tower, acquiring ambient275

vibrations at a sampling frequency of 1652 Hz and down-sampled to 40 Hz. Two K-type thermocouples were276

also installed at the level z = 40.5 m to measure indoor and outdoor temperatures at a sampling frequency of 0.4277

Hz. The modal identification of the tower was continuously performed using 30-min long acceleration records via278

two in-house codes recently developed by the authors and reported in reference [34]. This pair of software codes,279

named MOVA and MOSS, provide all the necessary tools for the management of long-term integrated SHM280

systems. These include specific toolboxes for signal preprocessing, automated OMA, frequency tracking, data281

fusion of heterogeneous monitoring data, and novelty analysis through the use of statistical process control charts.282

In particular, the Covariance-driven Stochastic Subspace Identification (COV-SSI) method was used to identify283

the modal properties of the Sciri Tower. This method is suitable for the identification of linear structures under284

white-noise excitations, which are the common conditions assumed in AVT of historic constructions. Readers285

interested in OMA under non-stationary excitations may refer to works on Independent component analysis (ICA)286

methods (see e.g. [35, 36]). The parameters used in the identification included maximum and minimum numbers287

of block rows/columns in the Toeplitz matrix of covariances of 140 and 200, respectively, with steps of 5, and288
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model’s orders running from 40 to 80 with steps of 2. Seven vibration modes have been identified in the frequency289

range between 0 and 10 Hz as shown in Fig. 5: two flexural modes in NW direction (Fx1 and Fx2), two flexural290

modes in SW direction (Fy1 and Fy2), one torsional mode, Tz1, and two higher order flexural modes, Fx3, Fy3.291

Table 1 collects the identified resonant frequencies, damping ratios, and modal phase collinearity (MPC) values292

exploiting the first 30-min acceleration records acquired in the tower. The MPC values of all the modes are above293

95% (classically damped), except for modes Fx2 and Fy2 where values of 84.9% and 80.2% are obtained, which294

indicates that the latter are non-classically damped or the level of excitation is insufficient to correctly identify295

these modes.296

Table 1: Experimentally identified natural frequencies f exp
i , damping ratios ζi and Modal Phase Collinearity (MPC) estimated

through COV-SSI on 13th February 2019 at 14:00 UTC.

Mode f exp
i [Hz] ζi [%] MPCi [%]

Fx1 1.692 0.918 99.8
Fy1 1.891 0.779 99.4
Fx2 5.539 3.066 84.9
Fy2 5.829 2.175 80.2
Tz1 8.205 1.783 99.8
Fx3 9.795 1.365 98.9
Fy3 10.820 3.166 95.2

x

y

z

Fx1 Fy1 Fx2 Fy2 Tz1 Fx3 Fy3

Figure 5: Experimentally identified mode shapes of the Sciri Tower using the vibration data acquired on 13th February 2019 at
14:00 UTC.

Figure 6 reports the tracking of the modes of vibration of the Sciri Tower. It is noted that the afore-mentioned297

modes of vibration are consistently found throughout the complete monitoring period. In this figure, it is ob-298

served that modes Fx1, Fy1, Tz1, and Fy3 exhibit quite stable behaviours with average (MAC,MPC) values of299

(1.00,99.35), (1.00,98.42), (1.00,99.32), (0.99,96.87), and (0.99,97.61), respectively. Such high MPC values indi-300

cate that these modes are well excited and their mode shapes are essentially real. Therefore, these modes can be301

consistently modelled using the classical Rayleigh damping model. Differently, modes Fx2 and Fy2 have mean302

(MAC,MPC) values of (0.92,81.94) and (0.93,79.88), respectively. According to the previous results from Table 1,303

these modes are eminently complex with constantly low MPC values and show no apparent correlation with the304

level of ambient excitation. This may indicate the existence of damping mechanisms for these modes that cannot305

be assimilated to a proportional damping model, possibly due to soil-structure interaction phenomena. Further306

analyses in this regard are left for future research, and the results in Fig. 6 justify the exclusion of the mode shapes307

of modes Fx2 and Fy2 in the subsequent surrogate model-based St-Id.308
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Figure 6: Tracking of the modes of vibration of the Sciri Tower since February 13th until March 10th 2019.

3.3. FEM of the Sciri Tower and initial calibration using a genetic algorithm309

As the basis for the ensuing surrogate model, a fully detailed 3D FEM of the building ensemble of the Sciri310

Tower has been built using the commercial software ABAQUS 6.10 (see Fig. 7). The geometry of the model311

has been created according to existing architectural drawings and in-situ geometry surveys. Fixed translational312

boundary conditions have been defined at the ground level, and the material model of the masonry has been313

considered as elastic isotropic with Young’s modulus E = 4.04 GPa, Poisson’s ratio ν = 0.25, and mass density314

w = 2.20 t/m3 according to the Italian technical standard for square stone masonry. The geometry has been meshed315

using ten-node tetrahedral elements C3D10 with mean element size of about 34 cm, leading to a total number of316

elements and nodes of 157069 and 685147, respectively. It is important to remark that a simplified building-tower317

connection through spring elements was initially attempted. Nevertheless, such an approach failed to reproduce318

some of the experimentally identified modes, in particular the torsional one Tz1. To overcome these limitations, a319

detailed modelling of the adjoining buildings as shown in Fig. 7 became imperative, which entailed a substantial320

increase in the computational burden of the resulting model. Therefore, the present case study constitutes an321

excellent example of the need for computationally efficient surrogate models to perform model-base damage322

identification.323
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Figure 7: FEM of the Sciri Tower and geometry partitioning for model updating using a GA.

Afterwards, in order to obtain theoretical modal estimates consistent with the experimental ones, a two-step324

calibration of the FEM has been carried out. Firstly, a preliminary calibration has been performed using first-order325

sensitivity analysis. To do so, the model has been partitioned into eighteen different regions with distinct material326

properties, differentiating the tower, ten masonry walls, four floors, and three parts of the roof of the building327

aggregate. Their elastic moduli and mass densities have been tuned using the modal features extracted from the328

first vibration data acquired on February 13th 2019. Secondly, the material properties of the building ensemble329

have been further calibrated using a GA. Nine different sections of the building (labelled from 1 to 9 in Fig. 7)330

with material properties exhibiting largest sensitivities have been selected for the calibration. Specifically, fifteen331

different material parameters of the afore-mentioned sections, including Young’s moduli and mass densities, have332

been included in the calibration through a GA as reported in Table 2. Genetic algorithms are a global search333

method for non-linear optimisation based upon the Darwin’s theory of evolution [37]. The GAs proceed by taking334

populations of individuals or solutions, whose fitness values are evaluated by the objective function to be maxi-335

mized/minimized. The best individuals of each generation are selected to produce the next one through crossover336

and mutation operators, and the process is repeated until an user-defined maximum number of iterations or fitness337

tolerance is reached. In this work, populations of 45 individuals have been sequentially drawn considering a range338

of variation of ±15% with respect to their initial values (first column in Table 2), and the cost function in Eq. (4)339

has been used as the fitness function (α = 1, β = 1, ηi = 0). The optimal set of model parameters determined after340

several iterations are presented in Table 2, and the comparison of the numerical and experimental modal properties341

is reported in Table 3. Note that the initial (uncalibrated) properties in Table 2 are those obtained in the previous342

calibration step through sensitivity analysis. Good agreements can be observed for modes Fx1, Fy1, Tz1, Fx3 and343

Fy3 with relative differences in terms of resonant frequencies below 5% and MAC values above 0.8. Conversely,344

considerably small MAC values are noted for modes Fx2 and Fy2, specially the latter one with a value of 0.084. In345

these cases, the reason for such a low similarity between the numerical and experimental mode shapes is ascribed346

to the high complexity of modes Fx2 and Fy2 reported previously in Table 1 and Fig. 6. The accuracy achieved347

in Table 3 is considered sufficient for the aim of the present work, and further analyses deepening into possible348

soil-structure interaction are left for future research.349
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Table 2: Mechanical parameters of the FEM of the Sciri Tower before and after the initial calibration by GA (subscripts relate
the corresponding quantity to the FEM partitions shown in Fig. 7).

Param. Uncalibrated Calibrated

E1 [GPa] 5.77 5.14
E2 [GPa] 5.77 5.80
E3 [GPa] 5.77 6.63
E4 [GPa] 5.77 6.22
E5 [GPa] 0.90 0.98
E6 [GPa] 160.00 137.53
E7 [GPa] 0.95 0.86
E8 [GPa] 1.90 1.76
E9 [GPa] 0.70 0.68

ρ1 = ρ2 [t/m3] 2.20 1.93
ρ3 = ρ4 [t/m3] 2.20 2.31
ρ6 [t/m3] 1.60 1.71
ρ7 [t/m3] 2.20 2.53
ρ8 [t/m3] 2.20 2.52
ρ9 [t/m3] 1.90 1.85

Table 3: Comparison between experimental and numerical modal parameters after the initial calibration by GA.

Resonant frequencies [Hz] MAC values

Mode Exp. Uncalibrated Rel. Diff. [%] Calibrated Rel. Diff. [%] Uncalibrated Calibrated

Fx1 1.692 1.754 -3.700 1.692 -0.017 0.972 0.976
Fy1 1.891 1.967 -4.009 1.886 0.259 0.960 0.965
Fx2 5.539 5.770 -4.167 5.591 -0.941 0.798 0.757
Fy2 5.830 6.196 -6.273 6.166 -5.760 0.107 0.084
Tz1 8.205 8.005 2.433 7.900 3.720 0.871 0.850
Fx3 9.795 9.894 -1.012 9.654 1.445 0.907 0.934
Fy3 10.819 10.858 -0.359 10.864 -0.415 0.781 0.846

3.4. Surrogate model construction350

In order to construct the surrogate model of the Sciri Tower, the previously calibrated FEM has been parametrized351

through a set of damage-sensitive design variables. In particular, the FEM has been subdivided into four partitions352

or macro-elements Mi, i = 1, ..., 4, as shown in Fig. 8. Similarly to sections 1 to 4 in Fig. 7, macro-elements M1,353

M2, M3 and M4 comprise the portions of the building located between heights of 0-18.9 m, 18.9-26.8 m, 26.8-33.8354

m, and 33.8-41.0 m, respectively. Note that, differently from section 1 in Fig. 7, macro-element M1 also includes355

the adjoining building. According to this partition, the Young’s modulus Ei of all the elements contained in a356

generic macro-element Mi has been defined as a random variable as:357

Ei = E0
i (1 + ki) , (16)

with E0
i being the initial value of the Young’s modulus of the elements contained in the i-th macro-element.358

Parameters ki denote linear proportionality coefficients of the elastic moduli of macro-elements Mi, and represent359

the design variables x = [k1, k2, k3, k4]T in the surrogate model-based damage identification approach previously360

introduced in Section 2.2. In virtue of this parametrization, permanent reductions in one of the components of x361

would indicate the presence of damage in the corresponding macro-element.362
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Figure 8: Partitioning of the FEM of the Sciri Tower into macro-elements Mi, i = 1, ..., 4.

The surrogate model previously introduced in Section 2.1 is constructed on the basis of a training population363

generated by Monte Carlo simulations of the 3D FEM. To this end, the design space formed by ki, i = 1, ..., 4, must364

be uniformly sampled in the first place. The stiffness coefficients ki have been defined as random variables with365

upper/lower bounds of ±15%, which are assumed to cover the range of expected variations in the elastic moduli366

of macro-elements Mi. Thereby, the design space D in Eq. (6) takes the form of:367

D =
{
x ∈ R4 : −0.15 ≤ ki ≤ 0.15

}
. (17)

With the purpose of ensuring the homogeneous representation of the design space, random samples have368

been drawn uniformly over D using an iterative Latin hypercube sampling method with 20 iterations to maximize369

the minimum distance between samples. An optimal population size of 512 individuals has been determined370

through a convergence analysis similar to the one carried out in our previous work [29]. Figure 9 shows the371

statistical analysis of the drawn up training population. Note in this figure that the histograms of the design372

variables ki, i = 1, ..., 4, are almost flat, which demonstrates the uniformity of the sampling of D. The analysis is373

further extended in Fig. 10 where the probability density functions (PDFs) of the resonant frequencies (a) and the374

histograms of the MAC values (b) of the target natural modes are depicted.375
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Figure 9: Statistical analysis of training population (512 individuals) of the design variables ki, i = 1, ..., 4.
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Figure 11 shows a scatter plot describing the relationship between the resonant frequencies of the Sciri Tower376

predicted by the original FEM and the surrogate model. The low scatter of the points around the diagonal line377

corroborates that the surrogate model is formed with accuracy.378
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Figure 11: Scatter plot of resonant frequencies predicted by the 3D FEM versus those predicted by the surrogate model of the
Sciri Tower.

4. Simulation of earthquake-induced damage scenarios through non-linear incremental analysis379

With the purpose of validating the proposed damage identification approach, different earthquake-induced380

damage scenarios have been simulated through a displacement-controlled pushover analysis. This consists in a381

static-nonlinear analysis where the building is subjected to gravity loading and an increasing lateral displacement382

along the NW direction applied at the topmost floor of the tower. The lateral load increases continuously through383

elastic and inelastic behaviour until an ultimate condition is reached. In order to reproduce the non-linear mechan-384

ical behaviour of the masonry, the classic Concrete Damage Plasticity (CDP) constitutive model [38] has been385

used. This approach, proposed by Lubliner et al. [39] and then modified by Lee and Fenves [40], is well-suited for386

the modelling of brittle masonry under cyclic loading considering cracking in tension and crushing in compres-387

sion. Given the lack of characterization tests of the masonry of the tower, the non-linear mechanical properties388

assigned to the FEM have been estimated from the literature as shown in Table 4. During the analysis, the shear389

base forces, top displacements, and tensile damage parameters dt have been monitored. The tensile damage pa-390

rameter dt denotes the material degradation, and spans from 0 (undamaged material) to 1 (total loss of strength).391

Figure 12 furnishes the monitored base shear force versus top displacements. Seven different damage scenarios,392

labelled from (a) to (g) in Fig. 12, are defined with increasing top displacements of 0.0 cm, 1.0 cm, 2 cm, 3.36393

cm, 4.5 cm, 7 cm and 13 cm, respectively. The damage patterns in terms of contour maps of damage parameters394

dt are represented in the right hand side of Fig. 12. The main failure mechanism consists of a major shear crack395

originating at approximately the mid height of the SE façade when the upper part of the tower reaches a maximum396

displacement of 3.36 cm (damage scenario (d)). This diagonal crack propagates downward until it reaches the NW397

façade, completely losing its bearing capacity and causing its subsequent collapse. This occurs when the maxi-398

mum top displacement reaches a value of 13 cm (g), when convergence issues impede the continuation of the FEM399

simulation. Some other secondary cracking patterns can be observed in the intermediate damage scenarios (c), (c)400
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and (e) as a result of stress concentrations at openings and the loss of connection with the adjoining building in401

the SE façade of the tower. These seven different scenarios allow to validate the proposed surrogate model-based402

damage identification approach and to appraise its sensitivity and reliability as reported in the upcoming sections.403

Table 4: Mechanical parameters utilized in the CDP model for masonry.

Elasto-plastic behaviour Tensile behaviour

Kc
a 0.667 Tensile stress σt [kN/m2] Cracking strain ε̃ck

t [-] Tensile damage parameter dt [-]

Eccentricity 0.10 160 0.00E-00 0.00

Viscosity parameterb 0.003 120 1.74E-04 0.55

Dilation angle [◦] 21 84 3.77E-04 0.80

16 7.59E-04 0.90
a Kc is the ratio of the second stress invariant on the tensile meridian.
b The viscosity parameter is used for the viscoplastic regularization of the constitutive equations.

* Compressive strength σc = 3500 kN/m2

dt
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Figure 12: Base shear force versus top displacement curve obtained by displacement-controlled pushover analysis of the Sciri
Tower and simulated crack patterns in the tower.

In order to include the simulated damage scenarios from Fig. 12 into the time series of modal features (resonant404

frequencies and mode shapes) extracted during the vibration testing campaign reported in Section 3.2, every405

damage stage in Fig. 12 (from (a) to (g)) has been characterized through a non-linear modal analysis. This consists406

in releasing the imposed lateral displacement in the model when the corresponding maximum displacement is407

achieved, and performing the eigenvalue/eigenvector analysis related to modal analysis considering the tangent408

stiffness matrix of the FEM. This leads to the results reported in Fig. 13 where the frequency decays and MAC409

values of the first seven modes of vibration are plotted against top displacement. It is interesting to note that410

sudden drops are found in terms of MAC values when the top displacement reaches a value of about 3.36 cm (c),411

that is when the major failure mechanism in the tower activates. This corresponds to a drift ratio of 1.52‰ in the412

free standing portion of the tower.413
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Figure 13: Frequency decays (a) and MAC values (b) of the first seven modes of vibration obtained by the displacement-
controlled pushover analysis of the FEM of the Sciri Tower. The continuous lines in (b) are obtained by fitting sigmoid
functions through non-linear least squares.

5. Continuous surrogate model-based St-Id for automated damage localization414

In this section, the effectiveness and reliability of the proposed surrogate model-based damage identification415

approach is appraised for the case study of the Sciri Tower. To do so, the weighting parameters α and β in the416

cost function in Eq. (4) have been defined as 1 and 0.5, respectively. The trade-off parameters ηi included in417

the regularization term Θ (x) in Eq. (7) have been tuned after the initial sensitivity analysis furnished in Fig. 14.418

This figure represents the sensitivity of the modal features of the 3D FEM in terms of resonant frequencies (S f
i j)419

and mode shapes (S ϕ
i j) to variations in the design parameters ki. These sensitivity coefficients S i j, i = 1, ..., 4,420

j = 1, ..., 7, have been computed through a perturbation analysis as:421

S f
i j =

∆ f j

∆ki
, S ϕ

i j =
1 − ∆MAC j j

∆ki
, (18)

with ∆ denoting the finite difference operator. While in classic model updating the least sensitive parameters are422

typically excluded from the optimization or clustered together with other design parameters, such an approach423

would imply here the impossibility to locate damage in certain regions of the structure. In this particular case424

study, the low sensitivity of the modal features of the Sciri Tower to variations in k4 considerably hinders the425

location of damage in M4. In order to accommodate the different sensitivities reported in Fig. 14, and as an426

attempt to keep the damage localization capabilities in M4, larger trade-off parameters ηi are assigned to design427

variables with larger sensitivities and vice versa. In particular, after some manual tuning iterations, good results428

have been obtained assuming η1 = 1, η2 = 0.5, η3 = 0.25, and η4 = 0.15.429
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Figure 14: Sensitivity coefficients of the modal properties predicted by the 3D FEM of the Sciri Tower in terms of resonant
frequencies (S f

i j) (a) and mode shapes (S ϕ
i j) (b) to variations in the design variables ki.
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The proposed surrogate model-based approach has been applied to perform the online St-Id of the Sciri Tower.430

Based upon the dynamic identification results reported in Fig. 6, the St-Id has been performed continuously for431

each set of identified modal data (30 min) over the testing period since February 13th until March 10th 2019.432

To this aim, the non-linear minimization problem in Eq. (6) has been iteratively solved using a Particle Swarm433

optimization algorithm. A reference vector of design variables x0 = [0, 0, 0, 0]T has been considered (i.e. x0
434

represents the situation when macro-elements Mi possess nominal values of Young’s modulus), along with a435

parameter variation range of −0.15 ≤ ki ≤ 0.15. The mode shapes of modes Fx2 and Fy2 have been excluded436

from the optimisation because of their high complexity level as previously reported in Table 1. To do so, the term437

δi (x) in Eq. (4) is forced to take the value of δi (x) = 1 for these modes. In order to assess the consequences of438

including or not the mode shapes in the St-Id, two sets of weighting coefficients α and β have been considered,439

namely [α, β]=[1,0.5] and [α, β]=[1,0] (i.e. disregarded mode shapes). The outcome of the continuous surrogate440

model-based St-Id is presented in Fig. 15. Let us recall that macro-element M1 is constituted by different materials,441

all of them affected by the design variable k1. Nonetheless, for clarity purposes, only the elastic moduli Ei442

corresponding to the sections of the tower according to the partition in Fig. 8 are reported herein. It is interesting443

to note in Fig. 15 that the proposed approach can capture daily fluctuations in the intrinsic stiffness of the tower.444

Specifically, increasing and decreasing trends of Ei can be observed during daytime and night-time, respectively.445

With regard to the consequences of exploiting mode shapes in the St-Id, it is evident from Fig. 15 that the time446

series obtained using β = 0 exhibit a considerably larger amount of outliers. This fact evidences limitations in447

the St-Id due to ill-conditioning in the optimization problem. Conversely, when β = 0.5, the solution is further448

constrained by the term δi (x) in J (x) (Eq. (6)), leading to quite clear time series of identified Young’s moduli. In449

this case, the time series of E2, E3, and E4 are sorted in decreasing order, indicating that the stiffness of the tower450

decreases in height, which is consistent with the architectural configuration of the tower. The smallest values are451

found for E1, although it is not straightforward to extract conclusions about the intrinsic stiffness of the tower here452

since the building aggregate and the bottom section of the tower are clustered together into macro-element M1.453

One essential aspect regards the computational times required to perform the St-Id. While the 3D FEM takes on454

average a CPU time of 10 min to complete one single linear modal analysis in a standard PC (64-bit, 64 GB RAM,455

Intel Xeon processor E3-1225 v5, 3.30 GHz CPU), the St-Id of the Sciri Tower using the RSM only requires 0.02456

s (i.e. a reduction of 99.998%). Such a low evaluation time allows to perform the St-Id in about 0.3 s, making the457

proposed approach fully compatible with real-time SHM applications.458
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Figure 15: Time series of fitted Young’s moduli of macro-elements Mi, i = 1, ..., 4, enabled by the online surrogate model-based
St-Id of the Sciri Tower.

The effect of the mean environmental temperature on the identified Young’s moduli is further analysed in459

Fig. 16. The correlations are investigated through linear least squares regression over the time series of Ei after460

a cleansing process. The latter consists in the detection of corrupting outliers in the time series with the purpose461

of extracting a cleansed database from which robust statistics can be extracted. The process starts with the appli-462

cation of the Minimum Covariance Determinant (MCD) method [41] to find a sample subset providing a robust463

estimation of the covariance matrix. The MCD method seeks a sample subset within a multivariate dataset (in this464

work the identified Young’s moduli Ei) that minimize the covariance matrix. Specifically, we have sought a subset465

of ≈ 0.9np samples, with np being the number of data points in the time series of Ei (1057 data samples). Then,466

the samples in the time series of Ei are ranked according to the Mahalanobis distance with respect to the previ-467

ously defined sample subset, and those with distances larger than twice the standard deviation of the Mahalanobis468

distances are identified as outliers. On this basis, the correlations indicated in Fig. 16 have been obtained disre-469

garding the identified outliers (data points denoted with empty circle markers). In view of these results, a positive470

correlation between Ei and environmental temperature can be observed in all the cases. That is to say, the structure471

behaves in a stiffer manner during the day, while the overall stiffness decreases during the night. Such a behaviour472

agrees with the daily fluctuations also observed in the time series of tracked resonant frequencies from Fig. 6. This473

is also consistent with previously reported results in the literature on vibration-based SHM of masonry structures474

(see e.g. [17, 42]). This behaviour is usually ascribed to the closure of superficial cracks, micro-cracks or minor475

discontinuities in the structure induced by thermal expansion. Interestingly, the proposed surrogate model-based476

St-Id approach further allows to explore the local sensitivities of intrinsic stiffness to thermal variations. It can477

be noted in Fig. 16 that temperature sensitivities decrease with height. This behaviour can be also understood as478

a result of the closure of micro-cracks induced by thermal expansion, which presumably causes a stronger effect479

on those regions of the structure where expansion is more constrained, that is, close to the base and where the480

material is more heterogeneous. Conversely, the macro-elements of the upper part of the tower are more free to481

expand and the contribution of thermally-induced crack closure to the effective stiffness is less influential.482
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Figure 16: Correlations between the identified Young’s moduli of macro-elements Mi, i = 1, ..., 4, of the Sciri Tower and the
mean environmental temperature. Empty circle markers denote identified outliers in the time series.

Figure 17 shows the time series of identified elastic moduli Ei along with the predicted ones adopting the483

statistical models previously introduced in Section 2.3, namely MLR, PCA, and ANN. In the case of PCA, one484

single PC sufficed to explain more than 90% of the variance in Ei. A training period of two weeks and a half (800485

data points) has been set up to construct the statistical models. Additionally, Fig. 17 also depicts the histograms of486

the residuals Qi between the identified moduli Ei and the predicted ones Êi, i.e. Qi = Ei − Êi. With the purpose of487

assessing the effectiveness of the different models, Table 5 reports the statistical analysis of the residuals in Fig. 17.488

In this figure, it can be observed that PCA and ANN yield closer estimates to the identified Ei compared to MLR,489

which can be further verified by the standard deviation values of the residuals in Table 5. Another important490

aspect to be appraised concerns the statistical distribution of residuals. Since a proper statistical model must491

reproduce most of the variance caused by environmental factors (e.g. temperature, humidity or wind), the residuals492

must approximately follow a Gaussian distribution with zero mean and standard deviation mainly determined493

by identification errors and noise sources. In order to check whether the statistical distributions of residuals in494

Fig. 17 can be produced by a Gaussian distribution, different statistics are presented in Table 5, including kurtosis,495

skewness, and the Kolmogorov-Smirnov (KS) statistic. The KS test is commonly used to decide whether a sample496

can be generated by a certain statistical distribution, in this case a Gaussian distribution. It can be noted in Table 5497

that the KS test only accepts the null hypothesis (the data are normally distributed) in the case of the time series of498

E1 and E2 predicted by MLR (with a confidence level of 95%, i.e. KS ≥ 0.05). The reason for this is ascribed to499

the limited duration of the training period, which unfortunately could not be extended because of logistic issues.500

Despite exhibiting superior capabilities for unveiling non-linear correlations, the PCA and ANN models achieve501

worse representations of the underlying variance sources in the time series of Ei compared to MLR, which is502

possibly due to the limited number of observations in the training period. Conversely, although larger residuals503

are obtained when using MLR, the fact that this model relies on the main source of variance as a predictor (the504

environmental temperature) makes it achieve more normally distributed residuals.505
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Figure 17: Identified elastic moduli Ei of the Sciri Tower and predicted time series using MLR, PCA and ANN, along with the
histograms of their residuals.

Table 5: Statistical analysis results of the residuals between identified elastic moduli Ei of the Sciri Tower and the values
predicted by the MLR, PCA and ANN models.

α = 1, β = 0.5 α = 1, β = 0.0

MLR PCA ANN MLR PCA ANN

Q1 Mean [GPa] 0.00 0.00 0.01 0.00 0.01 0.01
STD [GPa] 0.06 0.07 0.07 0.05 0.08 0.08
Kurtosis 3.09 4.19 3.60 3.25 3.96 3.83
Skewness 0.01 -0.83 -0.66 -0.07 -0.45 -0.51
KS∗ 0.77 0.00 0.00 0.30 0.00 0.00

Q2 Mean [GPa] 0.01 0.00 0.01 0.01 0.01 0.02
STD [GPa] 0.14 0.07 0.07 0.18 0.09 0.09
Kurtosis 4.03 10.58 11.76 4.41 8.95 9.15
Skewness 0.14 -2.20 -2.25 0.45 -2.11 -1.49
KS∗ 0.17 0.00 0.00 0.00 0.00 0.00

Q3 Mean [GPa] 0.01 0.00 0.00 0.01 0.00 0.00
STD [GPa] 0.15 0.04 0.05 0.26 0.04 0.05
Kurtosis 5.16 9.66 7.91 3.15 9.67 9.00
Skewness 1.09 2.08 1.64 0.67 2.23 1.58
KS∗ 0.00 0.00 0.00 0.00 0.00 0.00

Q4 Mean [GPa] 0.01 0.00 0.00 0.00 0.00 0.00
STD [GPa] 0.09 0.04 0.04 0.11 0.04 0.03
Kurtosis 4.97 7.87 6.59 3.29 5.94 7.06
Skewness 1.11 1.63 1.36 0.86 1.54 1.31
KS∗ 0.00 0.00 0.00 0.00 0.00 0.00

*Kolmogorov-Smirnov statistic

Finally, Fig. 18 presents the damage identification results using the proposed approach for the simulated dam-506

age scenarios previously reported in Section 4. The effects of the considered damage scenarios have been included507

in the time series of experimentally identified modal features after the training period from the 7th March 2019508

in terms of frequency decays and damaged mode shapes (reported in Fig. 13). In this light, Fig. 18 depicts the509
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squared values of the residuals of the elastic moduli of macro-elements Mi throughout the monitoring period.510

Moreover, upper control limits (UCL) are indicated with red dashed horizontal lines to ease the identification of511

permanent variations in the statistical distributions of the residuals. These UCLs have been defined as four times512

the standard deviation of the residuals within the training period (UCLi = 4σp
i ). From these results, it is quite513

evident that outliers concentrate in macro-element M2, which agrees well with the damage patterns previously514

discussed in Fig. 12. Additionally, some outliers can be also recognized in macro-element M1, while almost no515

outliers are noted in the last two macro-elements M3 and M4.516
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Figure 18: Results of surrogate model-based damage identification of the Sciri Tower when subjected to simulated damage
scenarios with increasing severity (training population = 900 individuals, UCLi = 4σp

i ).

In order to devise suitable metrics for determining whether the structure may experience damage, as well as to517

shed some light into the importance of including or not mode shapes in the optimization, Figs. 19 and 20 report518

the analysis of outliers in the time series from Fig. 18. Specifically, the number of outliers (data points exceeding519

the UCL) after the training period are plotted in Fig. 19 against the simulated damage scenarios when using520

MLR, PCA, and ANN. From these analyses, it can be concluded that the best results are achieved when using the521

MLR model and including the mode shapes in the optimization (β = 0.5). In this case, increases in the number522

of outliers are concentrated in macro-elements M1 and M2, which agrees with the simulated damage patterns.523

Moreover, almost no variations are observed in the number of outliers for macro-elements M3 and M4 where no524

damage is expected. Interestingly, when mode shapes are not included in the optimization, no significant increases525

in the number of outliers are detected until the damage scenario (d), that is when the major diagonal crack in the526

tower takes place. These results demonstrate the usefulness of including mode shapes into the surrogate model-527

based St-Id to minimize ill-conditioning limitations and enable early-stage damage localization. Considerably528

worse results are obtained with the two other statistical models, where a considerable amount of outliers is also529

found for macro-elements M3 and M4 which are known to remain healthy. The reason for this poor performance530

is ascribed to the limited number of data samples in the training period, hence larger databases would be required531
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to further appraise their effectiveness. These analyses are completed with the results furnished in Fig. 20, where532

deviations in the distributions of outliers are studied. For this purpose, a damage index is defined as the the ratio533

between the average values of the squared residuals outside and inside the training period. It is noted that the534

best damage identification results are again those obtained using the MLR model and including mode shapes in535

the St-Id (β = 0.5). In this case, the proposed damage index exhibits a monotonically increasing behaviour with536

the damage severity, outputting largest values for the macro-element M2, followed by the macro-element M1, and537

constant values close to zero in the case of macro-elements M3 and M4 where no damage is expected. These538

results demonstrate the ability of the proposed surrogate model-based approach for damage identification, being539

capable of localizing structural pathologies and quantifying their severity through novelty analysis of the time540

series of tracked model parameters.541
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Figure 19: Damage identification results in the Sciri Tower through outlier counting in the time series of residuals between
identified Young’s moduli and statistical predictions (training population = 900 individuals, UPCi = 4σp

i ).
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Figure 20: Damage identification results in the Sciri Tower through outlier analysis of residuals between identified Young’s
moduli and statistical predictions. The damage index is defined as the ratio between the average values of the squared residuals
outside and within the training period (training population = 900 individuals).
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6. Conclusions542

This paper has presented a metamodel-based pattern recognition approach for real-time identification of543

earthquake-induced damage in historic masonry structures. The proposed methodology consists in the continuous544

St-Id of the structure under study through a computationally inexpensive RSM. The surrogate model bypasses a545

fully detailed 3D FEM of the structure, and certain model parameters are identified in real time by minimizing546

the mismatch between theoretical estimates and experimentally identified modal features by automated OMA. A547

newly proposed regularization term is included in an objective function accounting for both resonant frequencies548

and mode shapes. The proposed regularization is a variation of the classical Tikhonov regularization where differ-549

ent penalty functions are assigned to every model parameter. Specifically, larger trade-off factors are imposed to550

those model parameters exhibiting larger sensitivities and vice versa. This attempts to minimize ill-conditioning551

limitations in the associated optimization problem, as well as to accommodate differential parameter sensitivities552

with the aim of preserving damage localization capabilities all throughout the structure. Damage localization553

is achieved through pattern recognition and novelty analysis of the time series of continuously identified model554

parameters. For this purpose, environmental effects are phased out by applying different statistical models con-555

structed over a training/baseline dataset characterizing the healthy state of the structure. The case study of the556

Sciri Tower located in the city of Perugia (Italy) has been presented to validate the effectiveness of the proposed557

approach. The modal features of the tower have been continuously assessed with an environmental/dynamic SHM558

system installed since February 13th until March 10th 2019. In order to appraise the effectiveness/reliability of the559

proposed approach, different earthquake-induced damage scenarios with increasing severities have been investi-560

gated by conducting nonlinear static/modal incremental analyses of the 3D FEM of the tower. The reported results561

have demonstrated the suitability of the proposed approach for damage identification (detection, localization, and562

quantification), and pave the way for the development of superior long-term vibration-based SHM systems with563

real-time damage identification capabilities. The key contributions of this work can be summarized as follows:564

• Mode shapes are minimally affected by environmental factors, and their inclusion into the optimization565

problem associated with the St-Id is crucial for minimizing ill-conditioning limitations and achieving ac-566

curate damage identification results. Furthermore, it has been shown that the proposed regularization is567

capable of limiting ill-conditioning while accommodating differential model parameter sensitivities, thus568

preserving damage identification capabilities throughout the structure.569

• The use of the RSM makes the proposed methodology completely compatible with real-time SHM systems,570

demanding CPU times of about 0.3 s in the case study of the Sciri Tower.571

• The presented results have demonstrated that the proposed methodology can unveil the effects of environ-572

mental factors upon the local stiffness of structures. It has been shown that the correlations between the573

intrinsic structural stiffness and the underlying driving environmental factors can be unravelled by applying574

standard pattern recognition techniques to the time series of continuously identified model parameters.575

• The damage identification capabilities of the proposed methodology have been appraised using simulated576

earthquake-induced damage scenarios with increasing severity. Seven different damage scenarios have been577

characterized through non-linear incremental analyses of a 3D FEM of the Sciri Tower, and included into578

the time series of experimental modal features in the shape of frequency decays and damaged mode shapes579

obtained by nonlinear modal analysis.580

• The reported results have demonstrated that damage can be identified through novelty analysis of the residu-581

als between the time series of fitted model parameters and the predictions of a regression model constructed582

from a baseline/training database. Accurate results have been obtained when using the MLR model with583

environmental temperatures (outdoor and indoor) as predictors and including mode shapes in the St-Id. Two584

different metrics based upon outliers analysis have been proposed to assess the localization and severity of585

damage, namely outliers counting and deviation analysis of the statistical distribution of residuals.586
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[5] P. Hüthwohl, R. Lu, I. Brilakis, Multi-classifier for reinforced concrete bridge defects, Automation in Con-602

struction 105 (2019) 102824. doi:10.1016/j.autcon.2019.04.019.603

[6] T. H. Yi, H. N. Li, M. Gu, A new method for optimal selection of sensor location on a high-rise building604

using simplified finite element model, Structural Engineering and Mechanics 37 (6) (2011) 671–684. doi:605

10.12989/sem.2011.37.6.671.606

[7] H. S. Park, B. K. Oh, Real-time structural health monitoring of a supertall building under construction based607

on visual modal identification strategy, Automation in Construction 85 (2018) 273–289. doi:10.1016/j.608

autcon.2017.10.025.609

[8] I. Venanzi, A. Kita, N. Cavalagli, L. Ierimonti, F. Ubertini, Continuous OMA for Damage Detection and610

Localization in the Sciri tower in Perugia, Italy, in: Proceedings of the 8th International Operational Modal611

Analysis Conference (IOMAC), Copenhagen, Denmark, 2019, 2019.612

[9] Y. An, E. Chatzi, S. H. Sim, S. Laflamme, B. Blachowski, J. Ou, Recent progress and future trends on damage613

identification methods for bridge structures, Structural Control and Health Monitoring 26 (10) (2019) e2416.614

doi:10.1002/stc.2416.615
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