
Journal Pre-proof

Polynomial chaos expansion for uncertainty propagation analysis in
numerical homogenisation of 2D/3D periodic composite microstructures

J.C. García-Merino, C. Calvo-Jurado, E. García-Macías

PII: S0263-8223(22)00861-3
DOI: https://doi.org/10.1016/j.compstruct.2022.116130
Reference: COST 116130

To appear in: Composite Structures

Received date : 24 May 2022
Revised date : 1 August 2022
Accepted date : 13 August 2022

Please cite this article as: J.C. García-Merino, C. Calvo-Jurado and E. García-Macías, Polynomial
chaos expansion for uncertainty propagation analysis in numerical homogenisation of 2D/3D
periodic composite microstructures. Composite Structures (2022), doi:
https://doi.org/10.1016/j.compstruct.2022.116130.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.compstruct.2022.116130
https://doi.org/10.1016/j.compstruct.2022.116130


Journal Pre-proof

Polynomial chaos expansion for uncertainty propagation analysis in numerical
homogenisation of 2D/3D periodic composite microstructures
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act

aper proposes the use of adaptive polynomial chaos expansion (PCE) for uncertainty propagation analysis o

merical homogenisation of polymer composites doped with random dispersions of spherical inclusions. The

oped PCE acts as a surrogate model bypassing the computationally intense numerical homogenisation of the

c properties of 2D/3D representative volume elements (RVEs) loaded with moderate to high filler contents

rical results and discussion are presented to assess the accuracy and computational efficiency of 2D and

mogenization meta-models. The ability of the developed approaches to perform uncertainty propagation

ses with minimum computational effort represents the main contribution of this work, which holds vas

tial for the stochastic design of macroscopic composite structural elements.

ords: Composites, Homogenisation, Linear elasticity, Polynomial chaos expansion, Surrogate modelling,

rtainty propagation

MSC: 35Q74, 35Q82, 74Q15, 74B99.

troduction

he development of composite materials constitutes an issue of great interest since the 1960s due to their nu

s applications in Science and Engineering [1]. Predicting the effective mechanical properties of composite

ials is often a challenging problem, involving complex microstructures with multi-scale and highly hetero

us properties. To address this issue, a large variety of different homogenisation methods have been proposed

literature [2]. These range from analytical mean-field homogenisation approaches [3, 4] to numerical tech

s using finite element modelling (FEM) [5], boundary elements methods (BEM) [6, 7, 8], atomistic-based

uum mechanics [9], molecular dynamics simulations (MDS) [10], Virtual FEM (VEM) [11, 12, 13] and

ourier Transform techniques [14], just to mention a few. Numerical methods are particularly popular owing

ir ability to represent the exact geometry of complex microstructures [15], keeping minimal the numbe

umptions and simplifications of the underlying microstructure [5]. Nonetheless, these approaches suffe

large computational demands due to the elevated mesh densities usually required to discretize RVEs. Thi

ents a major limitation in various applications where numerous model evaluations are required, namely

ization, inverse calibration, uncertainty propagation or reliability analyses.

he simplest numerical homogenization approach consists in the use of periodic unit cells [16] containing a

ical arrangement of particles which are assumed to replicate periodically throughout the composite mate

owever, most composite materials present a certain degree of randomness in the dispersion of the doping
t submitted to Comp. Struct. July 31, 2022
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fillers. The problem of the determination of the effective behavior of random composite materials has been exten-

sively treated in the literature. Theoretical approaches span from classical bounds for two-phase composites [17]
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lytical [18, 19] or numerical [20, 21] homogenisation techniques. Moreover, considerable research effort

been exerted toward the definition of accurate RVEs for heterogeneous materials through the analysis o

rgence rates in computational homogenization approaches (see e.g. [22, 23]). In general, algorithms for the

ation of random microstructures can be firstly classified according to the dimensions of the RVE, namely 2D

. Two-dimensional models represent a cost-efficient approach particularly well-suited for composite materi

ith uni-axial symmetry such as fully aligned fiber-reinforced composites [24]. Nonetheless, many composite

ials present complex microstructures that can hardly be represented by 2D models, being imperative to im

nt more computationally intense 3D RVEs [25]. In this regard, several works in the literature have reported

the applicability and limitations of two- and three-dimensional RVEs. It is worth noting the work by Ni

o-authors [26] who presented a comparison between 3D and 2D homogenised RVEs of meso-scale con

Their results showed that the effective diffusivity of the 3D model is about 1.4 times that of the 2D model

ffects of aggregate/void areas on the homogenised elastic and tensile fracture behaviours of concrete using

d 3D RVEs was also investigated by Hua et al. [27]. In that work, a 3D model was constructed from 2D

s by a bottom-up stacking algorithm, therefore the resultant 3D model is strongly correlated to the 2D. In

nce [28], the stresses of 2D and 3D RVEs of porous polymer material were investigated and compared

authors concluded that if 2D model reliably represents the 3D geometry, then the deformation behaviou

e analysed using the 2D RVE as the difference between stresses red obtained by the 2D and 3D RVEs do

ceed 10%. On the other hand, algorithms are also often classified according to the procedure used to define

ler distribution, namely dynamic (i), constructive (ii), non-sequential (iii), and discrete element simulation

Dynamic algorithms are often considerably time consuming, since they need to update the position and in

ions of the particles. Popular dynamic approaches are the movement and mechanical contraction or growth

thms [29, 30]. While easily implementable, the convergence rate of these algorithms for moderate to large

contents is very limited, being hard to achieve filler contents above 30%. On the other hand, constructive

thms have lower computational burden since the position of the particles are sequentially defined. Among

lass of algorithms, one of the most intuitive is the Random Sequential Algorithm [31] (RSA), in which the

on of any particle is randomly defined and accepted if it does not overlap with any of the previously lo

ones. Nonetheless, one of the major drawbacks of RSA regards the limited filler volume fractions that can

hieved, which usually limits to about 30% in 3D geometries [32]. Alternatively, constructive algorithm

dropping and rolling rules allows to evaluate the elastic properties of highly loaded composite materials

algorithms simulate the process of spheres dropping into a dimension-specified cell when subjected to a

ational field [33], allowing one to achieve high filler concentrations with limited computational costs. Non

ntial algorithms simulate a very dense distribution of large overlapping spheres that can move to reduce the

e of overlapping [34]. Finally, discrete element methods simulate filler packing as a dynamic process where

particle forces are explicitly accounted for [35].

hile numerical homogenization methods provide a faithful representation of microstructural composites

nherent computational demands limit their applicability in resource-intensive applications such as optimiza

r probabilistic design. In this light, recent developments in the realm of surrogate modelling have opened
2
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vast new possibilities to overcome such limitations. Roughly speaking, meta-models or surrogate models rep-

resent computationally lighter representations of parent models [36, 37]. Once constructed, a surrogate model
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e considered as a black-box representation of the original model, in many applications with computationa

several orders of magnitude lower. Despite their obvious potential, only a few research works in the lit

e report about the use of surrogate models for fast homogenisation of composite structures. A noteworthy

bution was done by Dey and co-authors [38], who proposed a fuzzy membership function to identify pa

er uncertainties in the characteristics analysis of noise in laminated composites. Peng et al. [39] proposed

certainty analysis method for composite laminated plates using PCE under insufficient input data related to

tain design parameters. To that aim, the parameters space was divided according to the observation signifi

level of the variables. PCE methods are particularly well-suited for uncertainty propagation analysis since

pansion functions are intrinsically defined in stochastic terms [40, 41, 42]. In addition, PCE offers a direc

work for Global Sensitivity Analysis [43], allowing to compute Sobol’s indices with the relative importance

input random variables with no additional function evaluations [43]. Furthermore, PCE methods represen

-intrusive technique, which results particularly useful when the parent model is defined through commer

oftware where access to the core scripts is not granted. In this line, Tha et al. [36] developed a stochastic

-scale model for the uncertainty quantification of carbon fiber reinforced composites. In that work, red a PCE

l was trained using data sets constructed by Monte Carlo simulations of a numerical homogenisation mode

ing the design space of the parameters and the so called quantities of interest (QoIs), i.e. the corresponding

l evaluations on the experimental design (ED).

light of the discussion above, this work proposes a computationally efficient surrogate model based on

ive PCE for fast evaluation and uncertainty propagation analysis of the elastic properties of composite ma

obtained by 2D/3D numerical homogenization. To minimize the computational cost and maximize the

tness of the meta-model, adaptive sparse expansions are implemented based on the Least Angle Regression

) algorithm [44]. This technique automatically identifies the optimal order of the polynomials in the PCE by

el selection technique for sparse linear models. This work focuses on the elastic properties of epoxy doped

lass fiber spherical inclusions, although the presented approach is general for any composite material. The

ng datasets are generated using 2D and 3D RVEs discretized by FEM with periodic boundary conditions

ocation of the particles are defined using dropping and rolling rules, which allows to obtain filler volume

ons up to 50%. Once constructed, the surrogate models are used to assess the effects of uncertainties in the

rties of the micro-constituents on the overall elastic properties of the composite. Finally, numerical result

iscussion are presented to appraise the uncertainty propagation effects in 2D and 3D RVEs.

he remainder of this work is organized as follows. Section 2 presents the mathematical formulation of the

c homogenisation of composite materials, including the theoretical fundamentals of the random packing o

les. Section 3 outlines the theoretical formulation of PCE, and Section 4 presents the proposed surrogate

l-based uncertainty propagation analysis of composite materials. Section 5 presents the numerical result

iscussion and, finally, Section 6 concludes the paper.
3
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2. Statement of the problem
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orking in Cartesian coordinates and denoting x = (x, y, z), we restrict our attention in this work to a two

composite occupying a domain Ω ⊂ IR3. Within this domain, Ω1 is identified as the inclusion phase o

(glass particles) embedded into the host phase or matrix (epoxy) Ω0, with respective boundaries Γ1, Γ0, and

ying Ω = Ω1 ∪ Ω0, Ω1 ∩ Ω0 = ∅. The volume fractions ξ1 and ξ0 of the inclusions and matrix phases

ctively, are defined as:

ξs =
|Ωs|
|Ω| =

1
|Ω|

∫

Ω

χs(x)dx, s = 0, 1 subject to ξ1 + ξ0 = 1, (1

| · | relates the volume of the constituent phases, and χs(x) is the characteristic function taking a value o

hen x ∈ Ωs and zero otherwise. The governing equations of the elastic response of the body to a certain

ary force field t, a imposed displacement field at the boundary ū, and a volume force field g is given by an

c steady-state problem:



−div [C(x)ε(x)] = g in Ω

u(x) = ū on Γ0

C(x)ε(x) · n = t on Γ1

(2

u(x) is the displacement field, Γ0 ∪ Γ1 = Γ with Γ0 ∩ Γ1 = ∅, and n the outer unit normal to the domain

ary Γ. The strain tensor ε(x) is a fourth-order tensor, whose components in Mandel-Voigt notation can be

d from the displacement field u(x) as:

εi j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
, (3

is related to the stress tensor by the generalized Hooke’s law σ(x) = C(x)ε(x). The stiffness tensor C(x) o

erial point x is given by:

C(x) =


C0 if x ∈ Ω0

C1 if x ∈ Ω1

(4

C1 and C0 the elastic tensors of the filler and the matrix, respectively. Extracting the exact solution of the

cement field from Eq. (2) is a challenging task, and closed-form solutions can only be found for simplified o

composite microstructures. Nevertheless, in practical applications, it is usual to characterize the macroscopic

ive properties of the composite, represented by a fourth order elastic tensor C∗ satisfying the homogenised

em of Eq. (2) given by:



−div
[
C∗ε(x)

]
= g in Ω

u(x) = ū on Γ0

C∗ε · n = t on Γ1

(5

variety of techniques have been proposed in the literature to solve the homogenization problem in Eq. (5)

numerical homogenization techniques particularly popular owing to their ability to faithfully represent the

structure of the composite. These approaches are based on the definition of a RVE containing a sufficien
4
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number of inclusions to statistically represent the composite as a whole. Then, the RVE is subjected to a se-

ries of virtual tests by imposing certain boundary conditions on its external faces. The most commonly adopted

appro -
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aches are Dirichlet (imposed displacements), Neumann (imposed forces), and periodic boundary condi

In this work, periodic boundary conditions are adopted due to their recognized higher accuracy for low

dium-scale RVEs [45], thereby geometrical periodicity will be imposed on the RVE. Let us focus in thi

on spherical inclusions of radius r, and cubic (square) RVEs of edge length L. In order to reach high fille

e fractions, the dropping and rolling rules are considered in this work. This algorithm describes an iterative

ss where inclusions are sequentially introduced in a RVE under a gravitational field, and rigid contacts and

g with pre-existing particles define the stacking process [33]. The filler volume fraction is controlled via

ter-particle parameter e describing the minimal distance between particles. In a 2D context, the algorithm i

ized into four main steps as sketched in Fig. 1:

Considering gravity along the y-axis, generate the coordinate centre (x, y) of a particle, where x is randomly

chosen and y is located above the top face of the RVE. Then, the particle is moved sequentially with linea

trajectory of decreasing y (Fig. 1 (a)).

If the particle contacts the floor of the box, it is assumed that it reaches its final position, and we return to

Step 1 (Figs. 1 (a), (d)).

Otherwise, rolling rules minimizing the sphere gravity potential are applied. This means that the generated

sphere rolls down over its contacting particle/particles until it reaches a stable position (with the minimum

gravity potential) or the floor (Figs. 1 (b), (c)).

Then, return to Step 1 and repeat the process until the RVE is filled with particles.

x

y

(a) Vertical fall

x

y

(b) Rolling step

x

y

(c) Stable position

x

y

(d) Symmetry

e

Figure 1: Outline of the dropping and rolling algorithm for 2D RVEs.

the 3D framework the process is similar, but in the rolling step different possibilities must be taken into

nt, depending on whether the falling particle comes into contact with one, two or three spheres [46]. In the

ase, the sphere rolls in the same way as in the two-dimensional case. In the second case, the particle roll
5
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in the direction defined by the plane normal to the vector joining the centres of the contact spheres. In the last

one, the incoming sphere moves on the two spheres on which it rolls down most steeply until it reaches a stable

positi f
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on. Additionally, to impose periodic boundary conditions as explained hereafter, the geometric periodicity o

VE is imposed. To do so, two different approaches are commonly adopted in the literature either inclusion

lowed or not to cut the boundaries of the RVE. The second approach is adopted in this work since, while

plementation becomes more involved, the resulting RVEs are more realistic. To this aim, any particle tha

ects any of the vertical walls or corners of the RVE is replicated at the opposite wall or corner (see Figs. 1(d

). Such a process can be described in the more complex case of 3D RVEs by the following procedure:

Consider a particle in stable position with centre’s coordinates (x, y, z). This centre is allowed to partially

fall outside of the RVE.

Check if the particle intersects any of the surfaces of the cell. If so, symmetric particles -one, three or seven

depending if the original one cuts one, two or three cell faces, respectively- are generated in order to impose

periodicity (see Fig. 1 (d)).

Check if any of the generated particles in the previous step overlap the previous existing ones. If this is no

the case, the proposal particle is accepted, otherwise return to Step 1.

Repeat until the desired filler volume fraction is achieved.

ξ1=50%
(a) (b) Epoxy

Glass 
particles

(c)

200 μm 200 μm

1,x
3,z

2,y

1,x
3,z

2,y

2: (a) Example of a periodic 200 µm edge 2D RVE matrix doped with ξ1 ≈ 50% of glass particles with radius 10 µm. (b) RVE doped

≈ 50% volume fraction of glass microspheres with radius 20 µm. (c) Example of a 3D RVE generated particle distribution by mean

olling and dropping procedure with ξ1 ≈ 50%.

r the 2D specimen Ω ⊂ IR2, a completely analogous procedure can be implemented. In either case, the

ller volume fraction ξ1 is directly determined by the inter-particle distance parameter e and the diameter o

rticles. In order to provide a simple expression for the relationship between the ratio e/r and the resulting

e fraction ξ1, a Monte Carlo analysis with 300 different geometries has been conducted in a RVE with

00 µm with four different particles’ radii r, namely r = 7.5, 10, 15, and 25 µm for 2D case and r = 10, 15, 25

0 µm for 3D. Figure 3 shows the obtained volume fractions versus the ratio e/r. It is noted in this figure

common trend is found for all the cases thanks to the non-dimensionalization of the results. Only some

ilities are observed for large particle sizes. In this light, new expressions for the filler volume fraction are

ed by curve fitting of the results in Fig. 3 as ξ1 = 3.2 (e/r)−2 and ξ1 = 4.5 (e/r)−3 for 2D and 3D RVEs

ctively. Note that the implemented algorithm achieves filler volume fractions up to 50%.
6
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1
3: Relationship between the filler volume fraction ξ1 and the ratio between the inter-particle distance parameter e and the radius of th

s r for 2D and 3D RVEs.

nce the RVE is defined, its effective elastic properties are obtained in this work by applying periodic boundary

tions as anticipated above. The enforcement of geometrical periodicity implies that the composite materia

e conceived as the periodic replication of the RVE (Fig. 4 (a)). The general periodic boundary conditions on

ll faces of a RVE are given by [47]:

ui = ε̂i jx j + vi, (6

ε̂i j denote the volume average strains, and vi represents the local periodic part of the displacement compo

ui on the boundary surfaces. The latter displacement components are generally unknown and depend upon

plied loading. Indices i and j denote the global Cartesian directions. In the case of square RVEs like the

used in this work and sketched in Fig. 4 (a), Eq. (6) takes a more explicit expression. Consider the notation

cell surfaces A−/A+, B−/B+, and C−/C+ shown in Fig. 4 (a).

4: (a) Representation of a periodic composite and definition of the RVE. (b) Periodic boundary conditions for a pair of nodes located

opposite surfaces A− and A+.

hen, the displacements on a pair of opposite boundary cells (with their normal along the x j axis) read:
7
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uK+
i = ε̂i jxK+

j + vK+
i , uK−

i = ε̂i jxK−
j + vK−

i , (7)
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indexes K+ and K− indicate the displacements along the positive and negative x j directions, respectively

fluctuations vK−
i and vK+

i must be identical on every two opposing faces to comply with the periodicity o

VE. Therefore, the local displacement components can be dropped from the formulation by the difference

en the expressions in Eq. (7), leading to:

uK+
i − uK−

i = ε̂i j

(
xK+

j − xK−
j

)
. (8

herefore, the RVE can be subjected to a desired strain state by imposing proper displacements on its boundary

es. Then, the volume average stresses σ̂i j and strains ε̂i j in the RVE can be computed as:

ε̂i j =
1
V

∫

V
εi jdV, σ̂i j =

1
V

∫

V
σi jdV, (9

being the volume of the RVE. Then, the i j-th component of the elastic tensor can be directly estimated a

σ̂i j/ε̂i j.

aptive PCE surrogate modelling

enote by M∗, with ∗ = 2D, 3D, the numerical homogenisation models of representative 2D/3D RVEs

ing the microstructural properties of interest as independent random variables arranged in a vector X =

2, . . . XM),M∗ maps a M-dimensional input parameter space to a 1-dimensional output spaceM∗ : RM →
e to the presence of uncertainties in the input vector, X is considered a random variable with known prob

distribution. Then, a surrogate model M̂∗ aims to emulate the original homogenisation model M∗, bu

wer computational cost. The general procedure to construct a surrogate model can be summarized in the

ing steps:

Sample two independent input data sets: the training set (TS) T and the validation set (VS) V covering the

parameter design space:

T =
{
X(1), . . . ,X(N)

}
⊂ IRM×N , V =

{
X(1), . . . ,X(K)

}
⊂ IRM×K . (10

Evaluate modelM∗ on set T .

Solve an optimization problem to identify the parameters of the surrogate model.

Assess the metamodel’s accuracy by evaluatingM∗ and M̂∗ on set V .

this study, PCE is adopted for its convenience to represent stochastic magnitudes of interest. In particu

CE is used to represent the effective elastic properties y obtained by numerical homogenisation through an

sion onto an orthogonal multivariable polynomial basis [16] as:

y =M∗ (X) =
∑

α∈NM

aαΨα(X), α = (α1, . . . , αM), αi ∈ N, (11

:

8
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• Ψα(X) =
M∏
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ψ(i)
αi are orthogonal polynomials depending on the stochastic nature of the input variables X. In this work

Legendre and Hermite polynomials will be used to represent uniform and gaussian distributions.

lthough expression (11) can be proved exact for an infinite number of polynomials, in practice only a finite

er of terms in
∑
α∈NM aαΨα(X) can be computed. As a consequence, different strategies can be taken into

nt to truncate the polynomial series. The simplest one consists in selecting all the polynomials whose tota

e |α| = ∑M
i=1 αi belongs to the set:

AM,p =
{
α ∈ NM : 0 ≤ |α| ≤ p

}
, (12

the cardinality ofAM,p is equal to:


M + p

p

 =
(M + p)!

M!p!
. (13

onetheless, when M and p are large enough, this procedure of polynomial selection may lead to computing a

number of coefficients and the subsequent computational burden. As an alternative, an hyperbolic truncation

e can be employed. This approach consists in selecting all multi-indices with q-norm [48]

∥α∥q =


M∑

i=1

α
q
i



1
q

,

r equal to p, i.e.:

AM,p,q =
{
α ∈ NM : ∥α∥q ≤ p

}
. (14

his strategy has been proved efficient due to the fact that high interaction terms often have coefficients close

o. Nonetheless, although substantial cost reductions can be achieved using the hyperbolic truncation scheme

mber of coefficients in the expansion may still be considerable. A better cost-efficient solution can be ob

by using the adaptive LAR algorithm [49]. LAR constructs a set of expansions incorporating an increasing

er of basis polynomials Ψα, from 1 to P = card
(AM,p,q). Then, the resulting sequence of index sets is used

struct different expansions and the best meta-model is selected by a cross validation procedure. Finally

pansion coefficients a = {aα, α ∈ AM,p ⊂ NM} are obtained by minimizing the expectation of the leas

es errors:

â = arg min
a ∈ IRP

1
N

M∑

i=1

[
M∗(X(i)) −

∑

α∈A
aαΨα(X(i))

]2
, (15

X(i) ∈ T, i = 1, . . . ,N. Once Eq. (15) has been solved, the resulting PCE surrogate model can be written a

s:

y =M∗ (X) ≈ M̂∗(X) =
∑

α∈A
âαΨα(X). (16
9
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4. Surrogate model-based uncertainty propagation analysis of composite materials
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he main contribution of this section regards the application of the previously introduced surrogate modelling

ach to the analysis of the propagation of uncertainties in the material parameters through the homogenization

th 2D/3D composites with high filler volume fraction. The general methodology is sketched in Fig. 5 and

es five main steps, namely (i) geometry construction using the dropping and rolling method, (ii) design o

r RVEs, (iii) construction of the metamodels, (iv) validation and (v) uncertainty propagation analysis.
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igure 5: Flowchart of the proposed meta-model approach to perform uncertainty propagation analysis in 2D/3D homogenisation.
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6: (a) Matrix and (b) meshed matrix of an example of a periodic 200 µm edge 2D RVE of epoxy doped with ξ1 ≈ 20% volume fraction

rical particles. (c) RVE with a length side of 200 µm doped with ξ1 ≈ 15% volume fraction of glass microspheres (d) and corresponding

esh (90443 nodes).
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In a first step, general 2D/3D quadratic and cubic models allowing particle intersection with the cell bound-

aries (Fig. 2) are implemented. For the construction and homogenisation of the microstructure, a combination
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ipts generated in MATLAB environment [50] and the commercial FEM tool ANSYS is used [51]. Specif

, the adopted methodology for defining the geometry of cubic RVEs involves the steps previously given in

n 2. Once the geometry is constructed, it is discretized in ANSYS using plane-strain 8-nodes quadratic

nts (PLANE 183) for 2D RVEs, while 4-nodes linear tetrahedral solid elements (SOLID 285) are used fo

Es. Two samples of the generated RVEs are shown in Figs. 6 (a), (c) along with their corresponding meshe

s. 6 (b), (d). Once constructed, the numerical homogenisation model is used to draw the samples of the

ng and validation sets for the construction of the surrogate model.

assess the precision of the developed surrogate models, both local and global error metrics are considered

include the coefficient of determination R2 and the Normalized Average Absolute Error (NAAE) for the

l accuracy and the Normalized Maximum Absolute Error (NMAE) for the local case, are reported in Table 1

ȳ denotes the arithmetic mean of the validation output set. These global metrics are evaluated over two

ets
{
y(1) =M(X(1)), . . . , y(K) =M(X(K))

}
and

{
ŷ(1) = M̂∗(X(1)), . . . , ŷ(K) = M̂∗(X(K))

}
obtained, respectively

evaluation of the numerical homogenisation models and their corresponding meta-models over the VS with

lisations.

Table 1: Error metrics for the accuracy assessment of surrogate models over a validation set of size K.

cient of Determination (R2) Normalized average absolute error (NAAE) Normalized maximum absolute error (NMAE)

2 = 1 −
∑K

i=1

(
ŷ(i) − y(i)

)2

∑K
i=1

(
ȳ − y(i))2 NAAE =

∑K
i=1 |ŷ(i) − y(i)|

K
√

1
k−1

∑K
i=1

(
ȳ − y(i))2

NMAE =
maxK

i=1 |ŷ(i) − y(i)|
K

√
1

k−1
∑K

i=1
(
ȳ − y(i))2

nce constructed, PCE sensitivity analysis (SA) is used to investigate the contribution (relative importance

h random input parameter of the mathematical model M to its stochastic response. The non-linearity o

oposed model implies that not only the variables individually affect the response, but also the interaction

en them. Therefore, the joint-effect of parameter variation must be also quantified. Sobol’ indices [43

ent a global SA method as they provide the sensitivity of the predictions of the surrogate model to variation

selected input variables. The Sobol’ index S u associated to the subset u = {i1, . . . , iM} ⊂ {1, . . . ,M} is defined

ratio between the contribution to the model variance given by the interaction among the components of u

e total variance. Thanks to the orthogonality of the PCE, it can be written as:

S u =


∑

α∈Au

a2
α


/

P∑

α∈A
a2
α

 , Au = {α ∈ A : αk , 0 when k ∈ u}. (17

merical results and discussion

his section presents the numerical results and discussion obtained by applying the previously introduced

dology for the uncertainty propagation analysis of epoxy composites doped with glass fiber spherical par

with a wide range of filler concentrations (from 0% up to 50 %). The presented results are organised a

s: Section 5.1 presents preliminary convergence analyses conducted to identity the minimum RVE’s size
11
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and mesh densities. Section 5.2 reports the construction of the surrogate models and their quality assessment. Fi-

nally, Section 5.3 reports the surrogate model-based uncertainty propagation analyses by introducing uncertainties

in the
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elastic properties of the micro-constituents. In the following analyses, the material properties of epoxy and

spheres are taken from reference [52] as listed in Table 2.

Table 2: Mechanical properties of the constituent phases of epoxy doped with glass fiber micro-spheres [52].

Epoxy polymer Glass fiber particles

Young’s Modulus [GPa] 3.0 76.0

Poisson’s ratio [-] 0.4 0.23

Radius [µm] - 8 − 20

onvergence analysis of the RVEs’ sizes and mesh density

guarantee that a RVE statistically represents the composite material, its dimension and the number o

dded particles must be carefully selected. In addition, since the microstructure is then discretized using

another important aspect to determine regards the mesh density. In general, the dimensions of the RVE

s mesh density must be chosen as a trade-off between representativity and computational cost. Firstly, the

tization of the RVEs is selected fine enough to ensure that the homogenised constitutive tensor C∗ is mesh

endent. On the other hand, the dimensions of the RVE are selected according to the degree of isotropy o

tained constitutive tensor. Given that both matrix phase and reinforcing particles are isotropic, spherical

andomly dispersed, the resulting effective constitutive tensor must also present isotropic symmetry. In thi

Fig. 7 reports the convergence analysis of two 2D meshes with edge lengths of 120 µm and 240 µm. In both

, a filler volume fraction of 20% has been selected. In this figure, the effective Young’s moduli Ex, Ey are

nted versus the total number of nodes in the mesh (xyz reference frame indicated in Fig. 6). Five differen

es with increasing densities have been considered, including 2116, 7592, 11555, 22304, 43776 nodes fo

0 × 120 µm RVE and 15086, 27515, 43388, 83531, 111512 for the 240 × 240 µm one. It is noted in thi

that convergence is approximately achieved between the third and the fourth discretization densities (22000

nodes, mean element edge size 1.32% the RVE size). Therefore, the forth mesh density is selected as a

rvative solution. These analyses were also conducted for 3D RVEs, achieving similar conclusions (mean

nt edge size 1.11% the RVE size).

nce the mesh density has been defined, the size of the RVEs is selected by convergence analysis of the

py degree of the effective constitutive tensor. To do so, five geometries with different RVE sizes have

studied, namely 80, 120, 160, 200 and 240 µm (80, 120, 160 and 200 µm in 3D) have been studied. The

rgence analysis of the effective Young’s moduli Ei obtained for 2D and 3D RVEs are shown in Figs. 8 and

pectively. Moreover, the evolution of the mean Poisson’s ratios
{
νxy

}
and

{
νxy, νxz, νyz

}
obtained by 2D and

VEs are also reported in Figs. 10 (a) and (b), respectively. In the ideal case of perfect isotropy, ratios Ei/E

d be exactly equal to 1. Therefore, following Figs. 8 (a) and 9 (a,b,c), it can be concluded that convergence

roximately achieved for RVEs with an edge length of 240 µm in 2D and 200 µm in 3D. In these cases, it i

that the ratios between the elastic moduli are very close to 1.
12



Journal Pre-proof

)

(a) 120× 120 µm RVE

)

(b) 240× 240 µm RVE

Figure

volume

Figure

deviati
Jo
ur

na
l P

re
-p

ro
of0 1.5 3 4.5

4.3

4.4

4.5

number of nodes (×104)

Y
ou

n
g’
s
m
o
d
u
lu
s
(G

P
a

1 4.5 8 11.5

4.3

4.4

4.5

number of nodes (×104)

Y
ou

n
g’
s
m
o
d
u
lu
s
(G

P
a

Longitudinal Young’s modulus Ex

Transversal Young’s modulus Ey

1
7: Convergence analysis of the mesh density for a 2D RVE of dimensions 120 × 120 µm (a) and 240 × 240 µm (b) doped with 20%

fraction of spherical particles with radius 8 µm.
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10: Convergence analysis of the mean effective Poisson’s ratios

{
νxy

}
and

{
νxy, νxz, νyz

}
obtained by 2D (a) and 3D RVEs (b) against th

ze for a filler volume fraction of ξ1 = 0.2. Error bars stand for standard deviations.

he previous analyses are further investigated in Fig. 11, which reports the mean values of the main compo

of the effective constitutive tensor C∗ obtained for five realizations of the RVEs with increasing sizes. In

ith the previous analyses, it is observed in this figure that the composites exhibit a higher degree of isotropy

RVE size increases. For instance, note in Figs. 11 (a) and (c) that the components Cii (diagonal terms o
14
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the constitutive tensor) tend to a common value as expected for isotropic materials. The residual anisotropy in the

effective constitutive tensor is eliminated hereafter through integration over all possible orientations in the Euler

space r

space .

Then,

)

O r

S = (

)

(b)

(c)
(d)

(d)

Figure

size fo

5.2. S

Fo s

modu l
Jo
ur

na
l P

re
-p

ro
of

, also referred to as the orientational average. To do so, tensor C∗ is rotated to any orientation in the Eule

as Ci jkl = aipa jqakralsC∗pqrs, where a is the transformation matrix consisting of θ, ϕ, and ψ rotation angles

the orientational average of C∗ can be obtained as [53]:

⟨C∗⟩ = 1
4π2

∫ 2π

0

∫ 2π

0

∫ π/2

0
C∗(θ, ϕ, ψ) sin θ dθ dϕ dψ. (18

n this basis, the effective elastic modulus E and Poisson’s ratio ν can be obtained from the compliance tenso

C∗)−1 in Mandel-Voigt notation as

E =
1

S 11
, ν = −ES 12. (19
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11: Convergence analysis of the mean effective constitutive tensor components

{
Ci j

}
by 2D (a,b) and 3D RVEs (c,d,e) against the RVE

r a filler volume fraction of ξ1 = 0.2. Error bars stand for standard deviations.

urrogate model construction. Accuracy, sensitivity analysis and computational efficiency

llowing the theoretical framework introduced in Section 3, to approximate the 2D/3D homogenised Young’

li, two PCE surrogate models M̂2D and M̂3D have been constructed taking p = 0.95 in Eq. (14) and mode
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orders between 1 and 4. To this purpose, 50 training points and 25 independent validation points have been consid-

ered by means of the Latin Hypercube Sampling (LHS) [54] procedure. Five input variables have been included
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th models, namely the Young’s moduli and Poisson’s ratios of the matrix and the inclusions, as well as the

volume fraction. Uncertainties in the elastic properties of the constituents are assumed normally distributed

mean values from Table 2 and standard deviations corresponding to 1/30 of mean values (corresponding

tions of up to ±10% of them). On the other hand, the filler volume fraction is assumed uniformly distributed

the range from 0 to 50%. The selected probability distributions are collected in Table 3.

Table 3: Statistical distributions of the material parameters.

Variable Notation Distribution

Young’s modulus of epoxy matrix [GPa] E0 Gaussian N(3, 0.1)

Poisson’s ratio of epoxy matrix [-] ν0 Gaussian N(0.4, 0.0133)

Young’s modulus of glass reinforcement [GPa] E1 Gaussian N(76, 2.5333)

Poisson’s ratio of glass reinforcement [-] ν1 Gaussian N(0.23, 0.0076)

Volume fraction of inclusions [-] ξ1 Uniform U(0, 0.5)

he performance assessment of the developed surrogate models through the error metrics from Table 1 as wel

computational time savings are reported in Table 4. It can noted in this table that the surrogate model

and M̂3D faithfully reflect the behaviour of the corresponding parent modelsM2D andM3D. This coincide

ig. 12 which shows a comparison between them and the forward FEM over the 25 samples of the validation

he low scatters of the points around the diagonal lines and the coefficients of determination (very close

corroborate that the surrogate models are formed with accuracy. With respect to the computational times

mportant to remark that, while the numerical homogenisation models M3D and M2D take around 6 hour

everal minutes, respectively, the evaluation of the respective meta-models (M̂3D, M̂2D) takes less than 1

econd (99.7% reduction). Based on the metrics in Table 4 and the fact that 2D and 3D models provide simila

s for moderate volume fractions, 2D approximations may be adopted in these cases for fast evaluations with

nably good accuracy. Finally, Table 5 reports the Sobol’ indices of the constructed expansions. As it i

ted, the homogenisation results are particularly sensitive to the filler’s volume fraction contribution followed

properties of the matrix.

Table 4: Surrogate model accuracy.

R2 NAAE (10−2) NMAE (10−2)

M̂2D 0.9939 5.34 0.84

M̂3D 0.9993 2.15 0.40

Table 5: Sobol’ indices.

S ξ1 S E0 S ν0 S E1 S ν1

M̂2D 0.9913 0.0075 0.0031 1.7021E − 5 0

M̂3D 0.9831 0.0086 0.0130 0 0
16
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1
12: Comparison of the numerical estimates by FEM and the predictions of the PCE surrogate models in terms of the elastic moduli in

and (b) 3D cases.

ncertainty propagation analyses. Comparison between the 2D and 3D surrogate approximations.

he accuracy and computational efficiency of the developed surrogate models are leveraged herein to analyse

ropagation of uncertainties in the microstructural properties of epoxy/glass composites upon the effective

c properties. Firstly, uncertainty propagation analyses are conducted by considering isolated uncertainties in

of the considered microstructural parameters. In each analysis, 25000 Monte Carlo individuals are drawn

mpling from the statistical distribution of the parameter under analysis as reported in Table 3, while the

ning parameters are fixed to their mean values. It is important to remark that the simulations took less than

nd, while conducting such analyses using the numerical homogenisation model would be simply infeasible

the Monte Carlo samples are obtained, the statistical distributions of the effective elastic properties are

ated in frequentist terms. Following this, Fig. 13 represents the probability distribution functions (PDFs) o

nsidered parameters in the expansions for the 2D/3D surrogate models. In both 2D and 3D scenarios, Fig. 13

s that for low filler volume fractions, uncertainties in E0 dominate the uncertainty of the effective Young’

lus. Nonetheless, almost no effect is observed for variations in the elastic modulus of the glass inclusion

e remaining parameters. It is also noted that for higher filler volume fractions, some influence is found due

ertainty in the Poisson’s ratio of the host matrix.
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1
13: PDFs of elastic properties of 2D and 3D composites made of epoxy doped with 15% and 45% of glass fiber inclusions considering

inties in the matrix Young’s modulus (a), in the matrix Poisson’s ratio (b), in the glass reinforcement Young’s modulus (c) and in th

inforcement Poisson’s modulus (d).

nally, Fig. 14 presents the statistical probability distribution functions (PDFs) of the effective elastic mod

2D/3D glass fiber/epoxy composites when considering simultaneous uncertainty in all the considered mi

uctural parameters. The analyses are conducted for two filler volume fractions, namely 15% and 45%. It i

n in this figure that, for the filler volume fraction of 15%, the mean values of the elastic moduli predicted by

and the 3D models are almost identical. However, as the volume fraction increases, increasing difference

For example, it is noted in Fig. 14 that for a filler volume fraction of 45%, the mean values of the Young’

li predicted by the 2D and the 3D model are around 7.807 GPa and 8.459 GPa, respectively.

order to provide further insight into the uncertainty propagation characteristics of the elastic moduli of glas

epoxy composites, Fig. 15 reports a scatter plot of the Monte Carlo samples of the effective elastic modulu

ller volume fractions up to 50%. In this figure, the 95% confidence levels are indicated with red dashed

In order to validate the numerical predictions, the experimental characterization data reported by Smith in

nce [55] for the same composite material investigated herein are included in the figure. It can be seen that the

odel fits the data slightly better, especially in the high volume fraction region. Interestingly, it is noted tha

certainty in the Young’s modulus increases for larger filler contents (higher that 25%) in the 2D case, while

certainty in the elastic modulus when considering 3D RVEs remains almost constant. This fact evidence
18
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the limitations related to the use of simplified 2D RVEs to reproduce the randomness in the three-dimensional

distribution of particle-reinforced composites doped at moderate to high filler volume fractions.
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14: PDFs of the Young’s modulus of epoxy doped with 15% and 45% glass particles considering 2D (blue lines) and 3D (red lines
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15: Comparison between the stochastic prediction of the Young’s moduli of epoxy/glass fiber versus the filler volume fraction ξ1 in th

and 3D (b) cases. The 95% confidence levels are indicated with red dashed lines. Experimental data retrieved from reference [55].

nclusions

his work has investigated the surrogate modelling of 2D/3D highly computationally demanding numerica

genisation problems of glass particles-reinforced epoxy composites. To this aim, PCE meta-modelling tech

has been employed to bypass such computational intensive approaches and so perform uncertainty propaga

nalyses. Specifically, PCE-based uncertainty quantification analyses of the Young’s modulus of epoxy/glas

osites have been conducted for filler volume fractions up to 50%, using both 2D and 3D models. The statis

istributions of the micromechanical parameters of interest have been predefined, namely the filler volume
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fraction, Young’s modulus and the Poisson’s ratio of the composite phases. Then, the design space has been

sampled by means of Latin Hypercube Sampling in order to construct the PCE surrogate model. Finally, direct
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e Carlo simulations over the parameter space have been performed. The numerical results and discussion

proved the appropriateness of the developed schemes to conduct efficient uncertainty propagation analyse

homogenisation parameters. The key conclusions of this research include:

Optimal PCE surrogate models have been developed to approximate both 2D/3D homogenisation of epoxy

composites doped with up to 50% volume fraction of glass filler particles using the dropping and rolling

rules. Relationships between the minimal inter-particle distance and the filler volume fraction has been

proposed for 2D and 3D RVEs, which represents a useful tool for the algorithm implementation.

PCE meta-models have been defined through preliminary parametric analyses accounting for prediction

accuracy and computational cost. To this aim, a set of local and global error metrics has been presented.

The computing advantages of the developed meta-models have proved crucial to perform computationally

intensive applications. Specifically, the presented results have showed their effectiveness to conduct fas

uncertainty propagation analysis of epoxy composites doped with glass particles.

The numerical results and discussion have evidenced the potential of the proposed approach for stochastic

design and material selection applications. These open great opportunities for applications in material mode

design.

For low and moderate filler volume fractions, it has been observed that both 2D and 3D models provide

similar results, being the dispersion slightly higher when the 2D model is employed. On the other hand, fo

higher filler volume fractions, the discrepancies between the two models increase.

In terms of sensitivity analysis, Sobol’ indices of both models show that for a fixed volume fraction, un

certainties in the matrix properties dominate the uncertainty of the whole composite. Thus, following the

above statement, for lower filler volume fractions, the material properties of the reinforcement can be se

to their mean values and the homogenisation could be done using the 2D surrogate model without majo

changes in the final result.

he presented numerical results and discussion suggest the ability of the proposed methodology to be adapted

rge variety of composite materials. In this light, future developments regard the extension of the presented

lation to other composites with more complex microstructures, multi-physics homogenisation problem

iezoelectric materials), as well as the explicit modelling of the variability in the effective properties due to

ndomness of the microstructure by developing a stochastic version of the presented surrogate model.
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