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Abstract

This work presents a surrogate model-based Bayesian model updating (BMU) approach for automated damage
identification of large-scale structures, which outperforms methods currently available in the literature by effec-
tively solving the real-time damage identification challenge. The computational difficulties involved in Bayesian
inference using intensive numerical models are circumvented by implementing a high-fidelity surrogate model and
an adaptive Markov Chain Monte Carlo (MCMC) algorithm. The developed surrogate model combines adaptive
sparse polynomial chaos expansion (PCE) and Kriging meta-modelling. The optimal order of the polynomials
in the PCE is automatically identified by a model selection technique for sparse linear models, the least-angle
regression (LAR) algorithm. Then, the optimal PCE is inserted into a Kriging predictor as the trend term, while
the stochastic term is fitted through a global optimization algorithm. Afterwards, the surrogate model bypassing
the original numerical model is used for BMU exploiting monitoring data extracted from continuous ambient vi-
bration measurements. The computational demands of the MCMC algorithm are kept minimal by implementing
an adaptive Metropolis sampling with delayed rejection (DRAM). The effectiveness of the proposed methodology
is demonstrated through three case studies: an analytical benchmark; a planar truss structure; and a real case study
of an instrumented historical tower, the Sciri Tower in Italy. The presented results demonstrate that the proposed
BMU approach is compatible with real-time Structural Health Monitoring (SHM), providing promising evidence
for the development of digital twins with superior probabilistic damage identification capabilities.

Keywords: Damage localization, Bayesian inference, Operational Modal Analysis, Structural health monitoring,
Surrogate models.

1. Introduction1

The concern for the management of ageing infrastructure has substantially increased over recent years after2

tragic collapses such as Genoa bridge (Italy, 2018) [1] or the Nanfang’ao Bridge (Taiwan, 2019). Nonetheless,3

the economic downturn derived from the COVID-19 pandemic has exacerbated the existing underinvestment in4

public infrastructure worldwide, which remains far below the levels prior to the 2007-2008 financial crisis [2]. Ev-5

idence of this is the last Infrastructure Report Card by the American Society of Civil Engineers [3] which, despite6

reporting improvements with respect to previous reports rating the US infrastructure as “D+” or in an overall poor7

condition, assigned a grade of “C-” or in fair to good condition with general signs of deterioration. Among the8

evaluated categories, the report indicated that 7.5% of the American bridges are in poor conditions and estimated9

the nation’s backlog of bridge repair at $123 billion. The daunting challenge of addressing ageing infrastructure10

and its profound impact on the social and economic fabric has been reflected in a number of infrastructure main-11

tenance plans (see e.g. [4]), and increases in funding efforts devoted to R&D in the realm of SHM. It is worth12

stressing the new guidelines for the classification, risk assessment, safety evaluation, and monitoring of bridges13

approved by the Italian Ministry of Infrastructures and Transport in May 2020 [5], which highlights the important14

role of SHM.15

In the broadest sense, SHM exploits long-term monitoring data to track anomalies in the structural performance16

caused by damage and, desirably, to predict the structural life expectancy [6]. Among the available technologies,17

ambient vibration-based SHM has become particularly widespread owing to its non-destructive nature and mini-18

mum intrusiveness, as it is enabled by relatively low-cost acceleration sensors, requires no artificial excitation, and19

causes no disruption to the normal fruition of the assets [7]. Typically, these techniques encompass Operational20
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Modal Analysis (OMA) methods fitting linear systems from response acceleration measurements of structures21

subjected to non-measured stationary ambient excitations (e.g. wind, traffic, micro-tremors) [8–10]. This allows22

one to extract the modal features of the structure under study (i.e. natural frequencies, mode shapes, and damping23

ratios), which are directly related to its mass/stiffness and energy dissipation features and, therefore, are sensitive24

to structural damage. Damage identification is commonly organized in a hierarchical structure of increasing com-25

plexity, including (i) Detection; (ii) Localization; (iii) Classification; (iv) Extension; and (v) Prognosis. Generally,26

damage identification approaches are classified in three categories [11]: unsupervised learning (UL), supervised27

learning (SL), and semi-supervised learning (SSL). Supervised techniques are those trained with data from both28

the undamaged and damaged structure, while only information on the undamaged structure is used to train UL29

models. Semi-supervised learning represents an intermediate solution when a certain amount of training data30

tagged as “damaged” is available, although not sufficient for full SL. In this light, UL techniques have been more31

extensively used due to the intrinsic difficulties stemming from obtaining data from damage states, and various32

successful applications can be found in the literature (see e.g. [12, 13]). Unfortunately, a major drawback is that33

UL usually limits to damage detection (i). This diagnostic level may result insufficient when planning the main-34

tenance of highly critical structures (e.g. hospitals, dams, or power industry facilities). In those cases, gaining35

insight into the damage location and extension is paramount for maintenance prioritization under tight budgetary36

constraints, as well as the mobilization of emergency services, evacuation, and interruption of structures affected37

by natural disasters. Nevertheless, collecting tagged data (damage/undamaged) in SL is always a challenging task,38

either through modelling or experiments. The use of numerical models is often the only viable solution, since39

making physical copies of large-scale structures to induce controlled damage is simply infeasible. In this regard,40

Structural Identification (St-Id) or model updating aims to bridge the gap between theoretical models and real41

systems by tuning the model parameters in such a way that the mismatch amidst experimental and theoretical42

observations is minimized. However, potential end-users remain sceptical about the usefulness of St-Id for the43

maintenance of civil infrastructure, being chiefly due to the extensive use of simplistic and prescriptive models for44

St-Id in the literature [14]. In particular, one of the major obstacles for the extensive implementation of St-Id in45

engineering practice stems from the difficulties involved in the use of computationally intensive numerical models46

into automated long-term SHM systems.47

Broadly speaking, St-Id techniques aim to identify unknown properties of the structure under study which ap-48

pear as parameters in a theoretical model by exploiting data acquired from field tests. These may include material49

parameters, geometric properties, boundary conditions and/or connectivity, for which conjectures and simplifying50

assumptions necessarily have to be made due to the inevitable existence of aleatory and epistemic uncertainties.51

These techniques can be also conceived as non-destructive damage assessment methods, when attributing de-52

fects to damage-induced differences between the identified model parameters and in-control or design values [15].53

One of the most challenging aspects involved in model updating regards its proneness to ill-posedness and ill-54

conditioning [16]. Such effects imply a loss of convexity, and therefore the existence, uniqueness and stability of55

a solution of the inverse problem cannot be guaranteed. Overall, methods for model updating can be categorized56

into deterministic and probabilistic or uncertainty quantification (UQ) approaches [17]. Deterministic methods are57

relatively mature and a large number of successful applications can be found in the literature (see e.g. [18, 19]).58

These methods determine a unique solution by solving an optimization problem, which typically minimizes a59

non-linear objective function accounting for the discrepancies between theoretical models and experimental data.60

To address ill-conditioning and ill-posedness, regularisation and parametrisation are often adopted [16]. Common61

regularisation approaches are variations of the classical Tikhonov regularisation, which introduces an additive62

constraint to the objective function in the form of a model norm scaled by a Lagrange multiplier (see e.g. [20]).63

A suitable parametrization of the model is also a key aspect to minimize ill-conditioning. In general terms, it64

is critical to choose those parameters for which the model output is particularly sensitive. Sensitivity analysis65

constitutes the simplest and most intuitive approach [21], although more sophisticated parametrization methods66

can be found in the literature such as variance-based global sensitivity analysis [22], sensitivity-based parameter67

clustering [23], and more.68

Despite deterministic St-Id methods are in general intuitive and require moderate computational efforts, a69

major limitation relates to their inability to handle uncertainties. This hinders their implementation into condition-70

based maintenance schemes, since no evidence on the reliability of the model nor the robustness of decisions made71

from its predictions can be obtained. Alternatively, UQ models not only allow assessing the effects of uncertainty72

on the updated model parameters, but also provide means to evaluate the uncertainties on derived quantities such73

as response predictions [24]. In this light, BMU methods are becoming especially popular owing to their ability74

to address uncertainties, robustness to the presence of noise in the measurements, and efficiency to handle ill-75

conditioning limitations. The latter is achieved by specifying prior probability distribution functions (PDFs) over76

the uncertain parameters, which imposes a regularization to the inverse problem. Such excellent features have fos-77

tered their implementation to multiple structural systems (refer to [25, 26] for an extensive state-of-the-art review).78
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The evaluation of the posterior PDFs requires solving a possibly high-dimensional integral which, except for some79

trivial cases, needs to be approximated numerically. Markov chain methods are usually implemented to extract80

series of samples to estimate the posterior PDFs, allowing to sample from a large class of high-dimensional distri-81

butions. Popular procedures for Markov Chain Monte Carlo (MCMC) sampling are the Metropolis-Hastings [27]82

and Gibbs algorithms [28], although a variety of more efficient sampling algorithms have been proposed in re-83

cent years [29], including Transitional MCMC (TMCMC) [30], BMU with Structural Reliability [31], Bayesian84

broad learning (BBL) [32], hybrid particle swarm MCMC [33], and Sparse Bayesian Learning [34], among others.85

Notwithstanding the rapid progress of BMU techniques, their elevated computational cost (commonly orders-of-86

magnitude higher than deterministic methods) remains a critical limitation, which explains that most of the existing87

researches focus on laboratory case studies. Amongst the works dealing with BMU of large-scale civil structures,88

it is worth stressing the work by Sun et al. [35] who adopted a hierarchical Bayesian framework with MCMC89

to calibrate a finite element model (FEM) of a 21-storey building located in Cambridge (USA). To do so, those90

authors defined a likelihood function exploiting differences between experimental and numerical impulse response91

functions obtained through ambient noise deconvolution interferometry. Behmanesh and Moaveni [36] proposed92

a hierarchical Bayesian BMU for the identification of the Downling Hall footbridge located in Somerville (USA)93

under changing environmental conditions. In particular, those authors defined a likelihood function accounting94

for resonant frequencies and mode shapes estimated by a continuous OMA system installed in the bridge for over95

27 months, and demonstrated the ability of the proposed technique to identify several damage scenarios simulated96

through added masses. Bartoli and co-authors [37] performed the BMU of a FEM of a historical tower, the Becci97

tower in Italy, by exploiting experimentally identified resonant frequencies. The calibrated model was then used98

to obtain stochastic fragility curves and assess the seismic vulnerability of the tower. Zhou et al. [38] applied a99

BMU method based on TMCMC for damage identification of a simply supported steel truss bridge. Interestingly,100

before its demolition in 2012, four controlled damage scenarios were induced in the bridge and several ambi-101

ent vibration tests (AVTs) were conducted to identify its modal signatures. The reported results and discussion102

demonstrated the ability of the proposed BMU method to identify the four induced damage scenarios when a103

suitable parametrization of the underlying numerical model is defined.104

In light of the previous discussion, the major constraint of BMU methods stems from their considerable com-105

putational demands due to the sheer number of iterations required for convergence. As a result, the computational106

cost of BMU of complex large-scale civil structures becomes unaffordable and definitely incompatible with real-107

time SHM systems. To tackle such a challenge, recent advances in the development of high-fidelity surrogate108

models have brought a new horizon for real-time St-Id. Indeed, a broad variety of surrogate modelling methods109

have been successfully applied in the context of St-Id, including Response surface models (RSMs) [39], PCE [40],110

Support Vector Regression [41], and Kriging [42], as well as techniques from Machine Learning (ML) such as111

Gaussian process approximation [43], or Artificial Neural Networks [44]. For instance, Pepi et al. [45] developed112

a PCE surrogate model of the modal properties of a cable-stayed footbridge in Terni (Italy), and implemented an113

MCMC BMU algorithm to identify the model parameters of the bridge. Schneider et al. [46] proposed a BMU114

procedure using rational PCE meta-models of the response of dynamic systems in the frequency domain, and115

demonstrated its effectiveness for the St-Id of a cross-laminated timber plate. Alternatively to the use of surrogate116

models to bypass computationally intense numerical models, Han and co-authors [47] proposed the use of PCE to117

approximate the likelihood function used in the BMU of a laboratory eight-floor steel frame. Nonetheless, most118

research works limit to St-Id applications using experimental measurements from isolated tests, while investiga-119

tions coping with continuous SHM data are much more scarce. In this regard, a noteworthy contribution was made120

by Cabboi et al. [48], who reported the deterministic RSM-based damage identification of a stone-masonry tower121

exploiting continuous time series of resonant frequencies extracted by automated OMA. In this line, recent contri-122

butions by the authors [49, 50] presented the development of an online surrogate model-based deterministic St-Id123

approach for damage identification of a historical tower, the Sciri Tower in Perugia (Italy). Through an objective124

function exploiting modal signatures obtained by automated OMA, the reported St-Id results proved compatible125

with real-time SHM. Finally, damage assessment was conducted through pattern recognition and novelty analysis126

adopting the model updating parameters as damage-sensitive features. Ierimonti and co-authors [51] proposed127

a conjugate BMU methodology for online damage identification of an instrumented monumental building, the128

Consoli Palace in Gubbio (Italy). Through the construction of Kriging meta-models bypassing a 3D FEM of the129

palace, BMU was applied to daily data-sets of resonant frequencies and mode shapes identified by automated130

OMA during about 5 months. The reported results demonstrated the ability of the proposed approach to localize131

and quantify synthetic damage scenarios in probabilistic terms.132

In spite of the encouraging results discussed above, the implementation of continuous MCMC BMU of for133

SHM applications remains virtually unexplored. Specifically, no evidences have been reported in the literature134

on successful applications of continuous Bayesian damage identification of large scale-civil engineering struc-135

tures under varying environmental conditions. This is primarily due to the formidable computational challenge136
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involved in the sampling of the posterior PDF. To address such a challenge, this work proposes a new methodology137

combining high-fidelity surrogate models and MCMC compatible with real-time SHM. The proposed surrogate138

model combines adaptive sparse PCE and Kriging meta-modelling. The choice of this surrogate modelling strat-139

egy is motivated by its generality and versatility. While PCE handles the global behaviour of the model, Kriging140

is particularly well-suited to model local variations, attaining both local and global modelling capabilities when141

combined [52]. The LAR algorithm proposed by Efron and co-authors [53] is adopted to automatically define the142

optimal order of the PCE and minimize the number of terms in the expansion, thus keeping minimal the compu-143

tational burden involved in the training and evaluation of the meta-model. The optimized PCE is then introduced144

into a Kriging predictor as the trend term, while the stochastic term is fitted through a genetic algorithm (GA)145

global optimization approach. On the other hand, the main difficulties involved in BMU comprise: (i) finding146

the regions of significant probability of the posterior PDF in high-dimensional parameter spaces, and (ii) sam-147

pling from multimodal PDFs. The proposed method circumvents these difficulties by implementing the DRAM148

MCMC approach, which combines adaptive Metropolis (AM) sampling and delayed rejection (DR). While AM149

provides global adaptation capabilities by tuning the proposal distribution from the past history of the chain, the150

RD algorithm offers local adaptation of the proposal distribution based on rejected samples within each step. The151

effectiveness of the proposed methodology is demonstrated through three case studies: (i) an analytical bench-152

mark; (ii) a numerical planar truss structure; and (iii) a real case study of a historical masonry tower, the Sciri153

Tower. The Sciri Tower is a civic tower located in the city of Perugia (Italy) that was continuously instrumented154

during three weeks with an environmental/dynamic SHM system. The modal features of the tower have been155

extracted by automated OMA and used in the inverse calibration of a computationally intensive 3D FEM of the156

structure. The presented results prove that the proposed BMU approach for damage identification is compatible157

with real-time SHM under varying environmental conditions, which constitutes the main innovation of this work.158

The damage identification capabilities of the proposed approach are finally validated through several synthetic159

damage scenarios.160

The remainder of this paper is organized as follows. Section 2 outlines the proposed surrogate model-based161

BMU for automated damage identification. Sections 3 and 4 overview the theoretical fundamentals of the de-162

veloped sparse PCE-Kriging meta-model and BMU, respectively. Section 5 presents the numerical results and163

discussion and, finally, Section 6 concludes the paper.164

2. General framework165

The overarching purpose of the proposed approach is the continuous Bayesian St-Id of structures by exploiting166

continuous data-flows from permanent dynamic SHM systems. Typically, the monitoring system consists of a167

sensor network deployed on the structure of interest and of a data acquisition system (DAQ) that permanently168

collects the monitoring data. Subsequently, computer files containing monitoring records of certain time duration169

are sent to a server or to the cloud where the data are stored and processed. At this point, the outcomes of the170

processed signals are inserted into the newly proposed BMU approach. The general work-flow is sketched in171

Fig. 1 and comprises the following three consecutive steps:172
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Figure 1: Flowchart of the proposed surrogate model-based continuous Bayesian St-Id approach.

(A): Initial calibration of the FEM: The initial FEM is constructed based on available structural drawings,173

on-site inspections, and geometrical/material surveys. Additionally, a series of assumptions typically need174

to be made, including boundary conditions, material homogeneity or structural connectivity. Therefore, the175

initial FEM may involve considerable sources of uncertainty that should be minimised before constructing176

the subsequent surrogate model. To contribute to this process, certain parameters of the FEM are calibrated177

using the modal properties determined by an initial AVT.178

(B): Construction of the surrogate model: Based upon the previously tuned FEM, a surrogate model is con-179

structed as a black-box function mapping between certain damage-sensitive model parameters contained in180

vector x and the modal signatures of the structure.181

(C): Automated surrogate model-based Bayesian damage identification: This last step comprises the auto-182

mated OMA of the structure, modal tracking, elimination of environmental effects, and surrogate model-183

based BMU. The first three sub-steps are routine practice in vibration-based SHM, so interested readers are184

referred to reference [54] for further theoretical details, while just a few highlights are reported below.185

(C.1) Automated OMA: The modal features of the structure are identified through automated OMA of peri-186

odically recorded ambient vibrations.187

(C.2) Modal tracking: This step is aimed at obtaining the time series of modal features of the structure188

by tracking a reference set of natural modes (typically obtained from an initial AVT) over the whole189

dataset of identified modal properties. The outcome of this stage at every step j comprises a set of190

resonant frequencies f j and mode shapes ϕ j.191

(C.3) Data normalization and cleansing: The time series of modal signatures obtained in the previous step192

are usually highly affected by environmental and operational conditions (EOC). Such effects conceal193

the appearance of damage and need to be filtered out to attain effective damage identification. This194

is accomplished by training a pattern recognition model from an initial baseline dataset where the195

structure is assumed to remain in healthy conditions. Finally, the appearance of abnormal features due196

to identification and random errors can be eliminated through data cleansing techniques.197

5



(C.4) Surrogate model-based BMU: The design variables at step j, x j, are fitted by the proposed BMU198

approach. Upon setting a statistical threshold associated with a certain confidence level, it is possible199

to trigger an alarm system when anomalies in the PDFs of the model parameters are detected. Since200

every design variable relates to the intrinsic stiffness of a specific element/region of the structure,201

anomalies in their PDFs directly indicate the location and severity of the damage.202

3. Surrogate modelling203

Let us consider a computational modelMmapping between a vector of input variables x = [x1, . . . , xM]T ∈ RM
204

(e.g. material and/or geometrical properties) and a certain quantity of interest or model response y ∈ R (e.g. modal205

property, local displacement), i.e. y = M (x). Within the context of this work, M is given by a computationally206

intensive FEM of the instrumented structure, and the output response y relates to a monitored or derived quantity.207

Note that in the case of a vector-valued model response, y =
[
y1, . . . , yQ

]T ∈ RQ, the following derivations hold208

component-wise.209

3.1. Adaptive sparse polynomial chaos expansion210

Assuming the components of x as independent random variables, the PCE representation of the output response211

is defined as an expansion of y onto an orthogonal multivariate polynomial basis as [55, 56]:212

y =M (x) =
∑
α∈NM

aαψα(x), (1)

where aα are unknown deterministic coefficients, and ψα are multivariate polynomials. Given the statistical inde-213

pendence of the input random variables, the input joint PDF may be cast as:214

fX (x) =

M∏
i=1

fXi (xi) , (2)

where fXi (xi) denotes the marginal PDF of xi. A family of univariate polynomials
{
ψ(i)

j , j ∈ N
}

orthogonal with215

respect to fXi is adopted, that is:216

E
[
ψ(i)

j (xi)ψ
(i)
k (xi)

]
=

∫
ψ(i)

j (u)ψ(i)
k (u) fXi (u) du = δ jk, (3)

with δ jk being the Kronecker delta operator. A variety of families of orthogonal polynomials have been proposed217

in the literature (see e.g. [57]), being the Legendre and Hermite polynomials the most commonly used ones218

for uniformly and normally distributed input variables xi, respectively. Based upon the resulting M families of219

univariate polynomials, the basis of multivariate polynomials
{
ψα, α ∈ NM

}
is defined as:220

ψα(x) =

M∏
i=1

ψ(i)
αi

(xi), (4)

where the multidimensional index notation α = [α1, . . . , αM] has been adopted. Such a construction guarantees the221

orthogonality property of the multivariate polynomials, i.e. E
[
ψα(x)ψβ(x)

]
= δαβ. In computational applications,222

the PC expansion in Eq. (1) must be truncated after P terms. A classical approach consists in retaining all those223

polynomials ψα with total degree up to p, that is 0 ≤ |α| ≤ p, with |α| = ∑M
i=1 αi. On this basis, the truncated PCE224

can be written in matrix form as:225

Mp (x) =
∑

0≤|α|≤p

aαψα(x) = aTψ(x), (5)

where a and ψ are vectors containing the coefficients {aα, 0 ≤ |α| ≤ p} and the corresponding basis polynomials226

{ψα, 0 ≤ |α| ≤ p}. The PC coefficients can be estimated by least squares regression. To do so, a set of N realizations227

X =
[
x(1), . . . , x(N)

]
of the input random variables are selected in order to cover the design space, also referred to228

as the experimental design (ED) or training dataset. Accordingly, a set of model realizations/evaluations Y =229 [
y(1), . . . , y(N)

]T
is obtained by Monte Carlo simulations (MCS) of the forward model, i.e. y(i) = M

(
x(i)

)
. Then,230

the least squares estimate of a reads:231

â =
(
ΨTΨ

)−1
ΨTY, (6)
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where the components of the data matrix Ψ are defined as Ψi j = ψα j

(
x(i)

)
, i = 1, . . . ,N, j = 0, . . . , P − 1. The232

truncation scheme in Eq. (5) leads to a total number of terms in the expansionAM,p =
{
α ∈ NM : 0 ≤ |α| ≤ p

}
:233

cardAM,p =

(
M + p

p

)
=

(M + p)!
M!p!

. (7)

In general, any truncation scheme corresponds to a specific choice of a non empty finite set A of indices α.234

On this basis, it is possible to use the ED to estimate the coefficients of the associated PCE by least squares fitting235

following Eq. (6), leading to:236

M̂A =
∑
α∈A

âαψα(x) = âTψ(x). (8)

The quality of the fitted PCE can be assessed through several error measurements. A common error quantity237

is the empirical generalization error Err defined as the mean squared value of the residuals, that is the differences238

between the model evaluations and the predicted values by the fitted PCE:239

Err =
1
N

N∑
i=1

[
M(x) − M̂A(x(i))

]2
. (9)

A key limitation of Err in Eq. (9) regards its sensitivity to overfitting, which typically leads to underestimates of240

the generalization error. Indeed, it is clear that Err systematically decreases as the complexity of the PC expansion241

in Eq. (5) increases. A better metric for cross-validation applications with less sensitivity to overfitting is the242

so-called leave-one-out error ErrLOO [58]. Let us denote by M̂(−i)
A the meta-model that has been built from the243

ED but removing the i-th observation. Then, the predicted residual is defined as the difference between the model244

evaluation at x(i) and its prediction by M̂(−i)
A :245

∆(i) =M(x(i)) − M̂(−i)
A (x(i)), (10)

and the leave-one-out error is estimated as:246

ErrLOO =
1
N

N∑
i=1

(
∆(i)

)2
. (11)

The definition in Eq. (11) involves multiple PCE fittings and model evaluations, although within the context247

of linearly parametrized regression, it is possible to calculate ErrLOO analytically [59]:248

ErrLOO =
1
N

N∑
i=1

M(x(i)) − M̂A(x(i))
1 − hi

2

, (12)

where249

hi = ψA(k)

(
ψT

A(k)ψA(k)

)−1
ψT

A(k) . (13)

The computational cost involved in the fitting of the PCE using the truncation scheme in Eq. (5) may be very250

high if the number of input variables M or the polynomial degree p are considerably large. Note that, as a rule251

of thumb, the number of realizations in the ED to uniformly cover the input design space is usually defined as252

two or three times the cardinality of the expansion, i.e. cardAM,p. An alternative hyperbolic truncation scheme253

was proposed by Blatman and Sudret [58] to alleviate the computational cost in the PCE. Those authors defined a254

q-norm, 0 < q < 1, as:255

‖α‖q =

 M∑
i=1

α
q
i

1/q

, (14)

in such a way that a truncated PCE can be obtained by selecting a finite set of indices α with q-norm less than or256

equal to p:257

AM,p,q =
{
α ∈ NM : ‖α‖q ≤ p

}
. (15)

The previous approach reduces the number of terms in the PCE by penalizing high-rank indices and favouring258

low-order interactions. Nonetheless, the resulting expansion may remain too costly when large-dimensional and259

highly non-linear problems are to be addressed. In such cases, it is often found that the non-zero coefficients in260
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the expansion form a sparse subset of AM,p,q. This motivates the use of sparse linear regression methods such as261

the LAR algorithm to further reduce the number of basis polynomials ψα in the expansion. LAR is an efficient262

algorithm for model selection of sparse linear models [53]. In the context of PCE, LAR provides a collection263

of PC expansions incorporating an increasing number of basis polynomials, from 1 to P = cardAM,p,q. The264

resulting sequence of index setsA(k), k = 0, . . . ,min (P,N − 1), is used to construct different PC expansionsMA(k)265

and, finally, a cross validation procedure is implemented for selecting the best meta-model. The definition of the266

optimum PCE using the LAR algorithm involves the following steps [58]:267

1. Run the LAR procedure for given degree p and norm q.268

(a) Initialize to zero the polynomial coefficients, i.e. aα0, . . . , aαp−1 = 0. Set the initial residual equal to269

the vector of observations Y.270

(b) Find the vector ψα j, which is most correlated with the current residual.271

(c) Move aα j from 0 towards the least-square coefficient of the current residual on ψα j, until some other272

predictor ψαk has as much correlation with the current residual. Such a move corresponds to the273

approximation of the active coefficients towards their least-square value, that is â(k+1) = â(k) + γ(k)w̃(k).274

Vector w̃(k) and coefficient γ(k) are referred to as the LAR descent direction and step, respectively. Both275

quantities may be derived algebraically as shown in [53].276

(d) Continue the procedure until m = min (P,N − 1) basis polynomials have been entered.277

2. Recompute the coefficients of each produced sparse meta-model by least-squares regression.278

3. Estimate the leave-one-out-error ErrLOO in Eq. (12) associated to each meta-model and retain the one with279

the lowest error estimate.280

It was shown in reference [53] that LAR is noticeably efficient since it only requires O
(
NP2 + P3

)
compu-281

tations (i.e. the computational cost of ordinary least-square regression on P predictors) for producing a set of m282

meta-models. Additionally, in order to select the optimal degree p, the previous LAR approach can be performed283

for a series of potential degree values within certain interval p ∈ [
pmin, pmax

]
. After every step in the analysis, the284

best PC expansion is stored and certain error/quality measurement is computed. Once complete, the optimal PC285

expansion is chosen as the meta-model with the minimum error/quality measurement. As the quality measure-286

ment, a corrected error estimate of the leave-one-out error in Eq. (12) accounting for the number of terms in the287

PC approximation P and the number of realizations in the ED N is used in this work as:288

Err∗LOO = ErrLOO T (P,N), (16)

with T (P,N) a correcting factor derived in [60] as:289

T (P,N) =
N

N − P

1 +
tr

(
C−1

emp

)
N

 , (17)

where290

Cemp =
1
N
ΨTΨ. (18)

3.2. PCE-based Kriging interpolation291

The universal Kriging model approximates the response of a computational model as a realization of a Gaus-292

sian random process as [61]:293

M̂(x) = F (x) +Z(x), (19)

where F (x) is a regression model, also called trend, andZ(x) is a zero-mean stochastic process. The latter is fully294

determined by its covariance function:295

Cov
(Z (x) ,Z (

x′
))

= E
[Z(x)Z(x′)

]
= σ2 R

(∣∣∣x − x′
∣∣∣ ; θ) , (20)

with σ2 being the Gaussian process variance, and R (|x − x′| ; θ) an auto-correlation function between two arbitrary296

input sample points x and x’ and dependent upon certain hyper-parameters θ. The trend term of the universal297

Kriging model in Eq. (19) approximates the global behaviour ofM, while the local variability is captured by the298
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stochastic term. In this work, the trend term is defined as the truncated PC expansion using the LAR procedure299

introduced in the previous section as:300

M̂(x) =
∑
α∈A

âαψα(x) +Z(x) = aTψ(x) +Z(x). (21)

Then, the construction of the Kriging meta-model in Eq. (21) consists in the determination of the coefficients301

of the PC expansion, a, the process variance, σ2, and the hyper-parameters of the auto-correlation function, θ. In302

this work, auto-correlation functions are defined as the product of one-dimensional Gaussian correlations in the303

form [62]:304

R
(
xi, x j, θ

)
=

M∏
k=1

exp
[
−θk

(
x(k)

i − x(k)
j

)2
]
. (22)

Hyper-parameters θk in Eq. (22) determine the shape of the correlation function, with larger values of θk305

leading to faster decreases along the k-th dimension of input vector x. This definition allows one to accommodate306

anisotropic auto-correlations (i.e. different correlations in different directions). Nevertheless, for the sake of307

simplicity, in this work correlations are assumed isotropic with equal hyper-parameters θk across the dimensions308

of x, i.e. θk = θ ∀ 1 ≤ k ≤ M. Given the values of the auto-correlation hyper-parameters θ̂, the calibration309

of the trend model parameters
{
a
(
θ̂
)
, σ2

(
θ̂
)}

may be computed using an empirical best linear unbiased estimator310

(BLUE). The optimization yields analytical solutions as functions of θ̂ [61]:311

a
(
θ̂
)

=
(
FTR−1F

)−1
FR−1Y, (23)

312

σ2
(
θ̂
)

=
1
N

(Y − Fa)T R−1 (Y − Fa) , (24)

where Ri j = R
(∣∣∣x(i) − x(i)

∣∣∣ ; θ̂) and Fi j = ψ j

(
x(i)

)
are the autocorrelation and the information matrices, respectively,313

evaluated at all the samples of the ED.314

The optimal correlation parameters θ̂ are typically determined by either the maximum-likelihood-estimated315

(labelled with ML) or by the leave-one-out cross validation (labelled with CV) [56], which lead to the following316

minimization problems:317

θ̂ML = arg min
θ

[
1
N

(Y − Fa)T R−1 (Y − Fa) (det R)1/N
]
, (25)

318

θ̂CV = arg min
θ

[
YTR−1diag

(
R−1

)−2
R−1Y

]
. (26)

Determining the optimal correlation parameters in Eqs. (25) and (26) is a complex multi-dimensional mini-319

mization problem. In order to prevent the solution from depending upon initial guesses on the hyper-parameters,320

a global optimization approach based on GA has been implemented in this work. Once the optimal model param-321

eters are determined, the prediction of a new point x is given by a Gaussian random variable with mean µ (x) and322

variance σ2 (x):323

µ (x) = aTψ(x) + r(x)TR−1 (Y − Fa) , (27)

324

σ2 (x) = σ2
(
1 −

〈
ψ(x)Tr(x)T

〉 [
0 FT

F R

] [
ψ(x)
r(x)

])
, (28)

where ri (x) = R
(∣∣∣x − x(i)

∣∣∣ ; θ) is the correlation between the new sample x and the sample x(i) of the ED. The325

prediction error mean is used as the surrogate to the original modelM, whereas the variance gives a local error326

indicator about the precision. It is important to note that the Kriging model perfectly interpolates the data of the327

ED, i. e. M̂(x(i)) =M(x(i)), ∀x(i) ∈ X.328
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4. Surrogate model-based Bayesian model updating329

Once the previous PC-Kriging surrogate model is constructed, it is used to continuously infer the model330

parameters x conditional on a set of experimentally identified modal properties d(t) ∈ Rm(1+No). The modal data331

in d(t) comprise periodically identified resonant frequencies fr(t) and mode shapes ϕr(t) ∈ RNo at time instants t,332

with m and No being the number of identified modes and measured degrees of freedom (DOFs), respectively. The333

Bayes’ theorem is used to estimate the posterior distribution p
(
x (t)|d(t), M̂

)
of the model parameters x(t) at time334

instants t given the surrogate model M̂ as:335

p
(
x (t)|d(t), M̂

)
=

p
(
d(t)| x (t) , M̂

)
p
(
x (t)| M̂

)
p
(
d (t)| M̂

) , (29)

where p
(
x (t)| M̂

)
is the prior distribution of the model parameters, p

(
d(t)| x (t) , M̂

)
denotes the likelihood336

function, and p
(
d (t)| M̂

)
stands for the evidence of the model class, selected so that p

(
x (t)|d(t), M̂

)
integrates337

to one. For clarity of the notation, the dependence on time t is dropped in the following formulation and, since338

only a surrogate model is used, specific reference to the model class M̂ is also omitted.339

The likelihood function p (d | x) represents the probability of observing the measured data d for model param-340

eters equal to x. Its definition is of pivotal importance in Bayesian inference, since it determines the probabilistic341

relation between the model predictions and experimental data including the unavoidable model and measurement342

errors. For modal frequencies, the most common approach to represent the likelihood function is the uncorrelated343

Gaussian error assumption for each identified modal frequency (see e.g. [38, 45]):344

fr = f̂r(x) + ε fr , (30)

where f̂r(x) is the PC-kriging model prediction, while ε fr is the prediction error for the r-th modal frequency taken345

to be Gaussian with zero mean and standard deviation σ fr . Then, the likelihood term of the r-th resonant frequency346

reads:347

p ( fr | x) =
1

σ fr

√
2π

exp

−1
2

(
fr − f̂r (x)

)2

σ2
fr

 . (31)

With regard to the mode shapes, an often-used formulation is to assume that the discrepancy vector between348

the measured mode shape vector and the model predicted one follows a zero-mean multivariate Gaussian distribu-349

tion [51, 63]. The prediction error equation for the r-th mode shape is then:350

ϕr = βr(x)ϕ̂r(x) + εϕr , (32)

where εϕr is the prediction error vector for the r-th mode shape taken to be Gaussian with zero mean and covariance351

matrix σ2
ϕr
Σϕr , where matrix Σϕr specifies the possible correlation between the components of the prediction error352

of the r-th mode shape. Term βr(x) is a normalization constant to accommodate the different normalizations of353

the experimental mode shapes ϕr (normalized to unit Euclidean norm) and the model predicted ones ϕ̂r(x) (often354

mass-normalized). The scalar βr(x) is determined as the least squares solution of
∥∥∥ϕr − βr(x)ϕ̂r(x)

∥∥∥ = 0, with ‖·‖355

denoting Euclidean norm. This leads to:356

βr(x) =
ϕT

r ϕ̂r(x)
ϕ̂r(x)Tϕ̂r(x)

. (33)

The definition of the covariance matrix Σϕr may be challenging in practice. For simplicity, the mode shape357

prediction error vectors are assumed uncorrelated in this work, whereby the covariance matrix simplifies to a358

diagonal matrix:359

Σϕr =
ϕT

r ϕr

N0
IN0 , (34)

with IN0 being the N0 × N0 identity matrix. In this way, the likelihood term of the r-th mode shape reads:360

p (ϕr | x) =
exp

{
− 1

2
[
ϕr − βr(x)ϕr(x)

]T
Σ−1
ϕr

[
ϕr − βr(x)ϕr(x)

]}√
(2π)N0 det

∣∣∣Σϕr

∣∣∣ . (35)
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In order to limit the number of parameters in the inference, a common approach in the literature consists of361

considering equal prediction errors σ fr and σϕr for all the modes (see e.g. [27, 63, 64]) as a trade-off between362

computational burden and accuracy. Therefore, the dependence of prediction errors on r is dropped hereafter.363

Alternatively, the likelihood term of the r-th mode shape can be expressed using Modal Assurance Criterion364

(MAC) values. The MAC value measures the similarity between the experimental and model predicted mode365

shapes as:366

MACr =

∣∣∣ϕT
r ϕ̂r(x)

∣∣∣2(
ϕT

r ϕr
) (
ϕ̂r(x)T ϕ̂r(x)

) , (36)

and spans between 0 and 1. A value of 0 implies that the modes do not show any correlation, whereas a value of 1367

indicates absolute correlation. Taking the square root of (1-MAC) gives the fractional error between the measured368

and calculated mode shapes, i.e. εms = (1 −MACr)1/2. Assuming the mode shape fractional error εms follows a369

zero-mean Gaussian distribution, the PDF of the mode shapes in terms of MAC values can be written as [65]:370

p (ϕr | x) =
1√

2πσ2
ϕ

exp
− 1

2σ2
ϕ

(1 −MACr)
 . (37)

On this basis, assuming the errors independence, the total likelihood function can be easily calculated as371

the product of the individual likelihoods. Considering that m modes of vibration have been identified, the total372

likelihood function reads:373

p (d | θ) =

m∏
r=1

p ( fr | θ) p (ϕr | θ) , (38)

where the parameter set θ includes the model parameters x and the standard deviations σ f and σϕ. Note that374

the error uncertainties are unknown in reality, being necessary to make assumptions on their initial values. To375

do so, different methodologies have been proposed in the literature, including the posterior variance of the modal376

features estimated by Bayesian OMA, coefficients of variations of identified modal properties [51], or based on377

users’ intuition and experience [64].378

The evaluation in closed-form of the posterior PDF in Eq. (29) is infeasible in most applications, so an adap-379

tive MCMC sampling method is implemented herein. The adopted MCMC strategy, named DRAM and firstly380

proposed by Haario et al. [66], combines DR with an AM algorithm. In this work, the DRAM algorithm with one381

delayed rejection step has been implemented according to the following steps:382

1. Choose the length of the chain Nc and initialize the parameter set θc = θ0, the error variances σ2
f0

and σ2
ϕ0

,383

and the covariance of the proposal distribution Σp = Σ0. Select the initial non-adaptation period na and set384

i = 1.385

2. Propose a new parameter value θp,1 by sampling from a proposal Gaussian distribution S (θ, θc) with mean386

at the current point θc and covariance Σp, i.e. θp,1 = θc + ξ, with ξ ∼ N
(
0,Σp

)
.387

3. Compute the acceptance probability:388

α1

(
θc, θp,1

)
= min

1, p
(
θp,1

∣∣∣ d)
S (θp,1, θc)

p (θc |d) S (θc, θp,1)

 . (39)

4. Generate a random number ϑ ∼ U (0, 1). If α1

(
θc, θp,1

)
> ϑ, accept the candidate sample θi = θp,1 and389

move to step (8). Otherwise, propose a second stage move in step (5).390

5. Propose a second stage move θp,2 sampling from S 2(θ, θp,1, θc). This second stage proposal is allowed to391

depend not only on the current position of the chain, but also on the candidate that has just been proposed392

and rejected. In this work, the covariance of the proposal in the second stage proposal is scaled by a factor393

γ as γΣp.394

6. Compute the acceptance probability395

α2

(
θc, θp,1, θp,2

)
= min

1,
p
(
θp,2

∣∣∣ d)
S 1

(
θp,2, θp,1

)
S 2

(
θp,2, θp,1, θc

) [
1 − α1

(
θp,2, θp,1

)]
p (θc |d) S 1

(
θc, θp,1

)
S 2

(
θc, θp,1, θp,1

) [
1 − α1

(
θc, θp,1

)]
 . (40)
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7. Accept of reject θp,2 by setting:396

θi =

θp,2, with probabilityα2

(
θc, θp,1, θp,2

)
,

θc, with probability 1 − α2

(
θc, θp,1, θp,2

)
,

(41)

8. Update the error variances σ2
fi

and σ2
ϕi

. Assuming an inverse Gamma
(
Γ−1

)
prior distribution for the error397

variances, the conjugate posterior also follows an inverse Gamma distribution and new samples can be398

drawn following a standard Gibbs sampling procedure [67]:399

p
(
σ2

f

∣∣∣ θi,d
)
∼ Γ−1

no, f + m
2

,
no, f S 2

o, f + S S f (θi)

2

 , (42)

400

p
(
σ2
ϕ

∣∣∣ θi,d
)
∼ Γ−1

no,ϕ + m
2

,
no,ϕ S 2

o,ϕ + S S ϕ (θi)

2

 , (43)

where no, f , no,ϕ, S o, f and S o,ϕ are the input parameters of the prior distributions of σ2
f and σ2

ϕ. In this401

work, the following values are chosen with the aim of making the priors uniformative: no, f = no,ϕ = 1402

and S o, f = σ2
f0

, S o,ϕ = σ2
ϕ0

. Terms S S f (θi) and S S ϕ (θi) denote the sum of squared errors of resonant403

frequencies and mode shapes given by:404

S S f (θi) =

m∑
r=1

( fr − fr (θi))2 , (44)

405

S S ϕ (θi) =

m∑
r=1

N0

ϕT
r ϕr

[
ϕr − βr(θi)ϕr(θi)

]T [
ϕr − βr(θi)ϕr(θi)

]
. (45)

9. Update the covariance matrix Σp as:406

Σp =

Σ0 i ≤ na

sdcov (θ1, . . . , θi) i > na
(46)

with sd = 2.42/d a scaling parameter, with d being the number of fitting parameters [66].407

10. Set i = i + 1 and go to step 2 until the desired number of samples Nc is obtained.408

5. Numerical results and discussion409

The effectiveness of the proposed surrogate model-based damage identification approach is evaluated through410

three case studies. These firstly include a toy example of an analytical function in Section 5.1, and a numeri-411

cally simulated truss structure in Section 5.2. The first case study is intended to demonstrate the accuracy and412

robustness of the proposed surrogate model. On the other hand, the second case study analyses the effectiveness413

of the developed surrogate model-based BMU approach for damage identification. Finally, the application of the414

proposed approach is illustrated with a real case study of a historical masonry tower equipped with a long-term415

SHM system in Section 5.3 in order to demonstrate the feasibility of the proposed method for real-time full-scale416

applications.417

5.1. Case Study I: Ishigami function418

The Ishigami function is a highly non-linear three-dimensional function widely used for benchmarking in419

uncertainty and sensitivity analysis. It is defined as [68]:420

y(x1, x2, x3) = sin x1 + 7 sin2 x2 + 0.1x4
3 sin x1, (47)

where xi are i.i.d. uniform random variables in [−π, π].421

Numerical results are first presented to compare the effectiveness of the developed PCE-Kriging meta-model422

with standard sparse PCE and Kriging. To do so, different EDs with increasing sizes N varying from 20 to 300 are423

generated by Latin-hypercube sampling (LHS). The PCE-Kriging and PCE meta-models are generated considering424

an orthonormal basis of Legendre polynomials and a q-norm of 0.8. The order of the expansions is defined from425
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1 to 10 and the leave-one-out error in Eq. (16) is used to select the optimal expansions. The PCE-Kriging meta-426

models are constructed considering the leave-one-out cross validation objective function given by Eq. (25), and the427

regression model used for the standard Kriging meta-models is defined using second order polynomial functions.428

In order to evaluate the uncertainty in the fittings, 100 independent runs per training sample size are considered.429

The reliability and accuracy of the surrogate models are evaluated by comparing their predictions with the exact430

solutions of an independent validation set (VS ) of VS = 10E+3 samples. In this case study, such a comparison is431

conducted through the following relative mean squared error (MS Er):432

MS Er =

∑VS
i=1

[
y(x(i)) − ŷ(x(i))

]2∑VS
i=1

[
y(x(i)) − y

]2 , (48)

where y is the analytical mean of the output variable. On this basis, the box plots in Fig. 2 (a) report the MS Er433

values obtained for Kriging, PCE, PCE-Kriging. In general, it is observed that standard Kriging yields the largest434

errors and a slow convergence rate. Conversely, PCE and PCE-Kriging showed a similar performance, with435

slightly lower errors in the latter in terms of median values. For these models, a sharp decrease from 10−4 to436

10−7 is found for EDs with sample sizes above 50. A similar convergence trend is found in terms of the number437

of principle terms and the level of sparsity of the PC expansions as reported in Figs. 2 (b) and (c), respectively.438

Note in Fig. 2 (b) that, although the number of terms involved in the full PC expansion amounts to
(

10+3
3

)
= 286,439

convergence in the sparse PC expansions is achieved for a total number of terms below 30, which corresponds440

to a sparsity ratio of about 10% (≈30/286). The resulting predictions of the Ishigami function in the VS by the441

meta-models trained with an ED of 100 samples is shown in Fig. 3. Specifically, Fig. 3 (a) furnishes a scatter plot442

of the predictions by the meta-models versus the exact solution. This sort of representations allows one to readily443

assess the reliability of surrogate models by quantifying the dispersion (i.e. prediction errors) along the diagonal444

line, which represents the perfect regression. In this case, the large scatter of the data-points obtained using445

standard Kriging confirms the superior performance of PCE and PCE-Kriging, which approximate the perfect446

model (diagonal line) with coefficients of determination R2 very close to 1. To illustrate the close agreements447

found between the analytical function and the predictions by PCE-Kriging, Fig. 3 (b) shows a sample surf plot of448

the Ishigami function obtained for x3 = 1 and the corresponding predictions of the meta-model with blue scatter449

points. It is noted in Fig. 3 (c) that the meta-model achieves almost perfect fittings in all the domain, and only450

slight discrepancies can be observed at the boundaries of x1 and x2451
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Figure 2: Regression error results for the Ishigami function: (a) global regression error, (b) number of terms in the sparse
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and the predictions obtained by PCE-Kriging (b) and corresponding squared errors (c).

5.2. Case Study II: Planar truss structure452

This second case study analyses a simple 31-bar planar truss structure used as a benchmark in many research453

works on FEM updating (e.g. [69]). The aim of this second case study is to examine the effectiveness of the454

presented surrogate model-based BMU approach to deal with ill-conditioning and its robustness to noise pollution455

in the measurements. The geometry and boundary conditions of the structure are shown in Fig. 4. It has been456

discretized in Matlab using planar 2-D truss elements with two translational DOFs per node, and the material has457

been considered as linear elastic with Young’s modulus E = 70 GPa and mass density ρ = 770 kg/m3. In this case458

study, the elastic moduli of the bars numbered with 31, 1, 28, 4, 18, 14, 7 and 22 are defined as the model updating459

parameters in θ. Specifically, i.i.d. stiffness multipliers θi, i = 1, . . . , 8, uniformly distributed in [0.7, 1.1], are460

defined as the unknown parameters. The first eight resonant frequencies and mode shapes are taken into account461

in the subsequent inference analysis. The mode shapes are discretized considering that seven sensors aligned462

in the vertical direction are located at nodes N2, N4, N6, N8, N10, N12 and N12 (indicated with red arrows in463

Fig. 4). In the first place, a PCE-Kriging meta-model is generated to reproduce both the natural frequencies and464

mode shapes, which amounts to a total of 64 univariate surrogate models (eight resonant frequencies plus 8 · 7465

modal components). Legendre polynomials of orders ranging from 1 to 6 are chosen to build the PCE orthonormal466

basis with a q-norm of 0.6, and the leave-one-out error is used to select the optimal expansions. From preliminary467

convergence analyses of the statistical distribution of the modal properties of the structure, an ED of N = 256468

samples drawn using LHS has been selected. To evaluate the accuracy of the constructed surrogate model, a469

validation set of VS = 1024 samples has been defined. In addition, to provide a compact metric of the accuracy of470

the fittings of the mode shape, a cost function JMAC,r representing the median value of the 1-MAC values between471

the r-th exact mode shapes ϕr and the predictions by the surrogate model ϕ̂r(θ) in the validation set is introduced472

as:473

JMAC,r = med
[
1 − MAC (ϕr, ϕ̂r(θ))

]
. (49)

The resulting scatter plots of the exact resonant frequencies and the predictions by the surrogate model are474

shown in Fig. 5. The low scatter of the points around the diagonal line corroborates that the surrogate models475

are formed with accuracy, achieving coefficients of determination above 0.99. In addition, very close fittings of476

the mode shapes have been also obtained, with maximum JMAC,r metric values of the order of E-5. These results477

demonstrate the accuracy of the developed surrogate model when handling a large number of design variables and478

moderate to large variation ranges.479
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Figure 4: Geometry, boundary conditions and parametrization of the benchmark 31-bar planar truss structure.

47 48 49 50

47

48

49

50

SM, Mode 1 [Hz]

FE
M

,M
od

e
1

[H
z]

103 104 105 106 107
103

104

105

106

107

SM, Mode 2 [Hz]

FE
M

,M
od

e
2

[H
z]

150 155 160 165

150

155

160

165

SM, Mode 3 [Hz]

FE
M

,M
od

e
3

[H
z]

228 230 232 234 236

228

230

232

234

236

SM, Mode 4 [Hz]

FE
M

,M
od

e
4

[H
z]

260 265 270 275 280 285

260

265

270

275

280

285

SM, Mode 5 [Hz]

FE
M

,M
od

e
5

[H
z]

340 350 360

340

350

360

SM, Mode 6 [Hz]

FE
M

,M
od

e
6

[H
z]

370 375 380 385 390

370

375

380

385

390

SM, Mode 7 [Hz]

FE
M

,M
od

e
7

[H
z]

420 430 440 450 460
420

430

440

450

460

SM, Mode 8 [Hz]

FE
M

,M
od

e
8

[H
z]

R2>0.99 R2>0.99 R2>0.99 R2>0.99

R2>0.99 R2>0.99 R2>0.99 R2>0.99

JMAC,1=1.22E-10 JMAC,2=2.91E-10 JMAC,3=8.03E-09 JMAC,4=2.27E-08

JMAC,5=6.98E-07 JMAC,6=1.62E-06 JMAC,7=1.81E-05 JMAC,8=9.02E-07

Figure 5: Scatter plot of the PCE-Kriging meta-model (256 training samples) with respect to the FEM of the 31-bar planar
truss structure for the first eight natural modes (validation set of 1024 samples).

Once the surrogate model has been proved to accurately reproduce the modal signatures of the truss struc-480

ture, the BMU approach presented in Section 5 is applied. In these analyses, the likelihood functions reported481

in Eqs. (33) and (35) are implemented. Considering that the prediction error parameters are the same for all482

the considered modes, the number of uncertain parameters to be included in the inference amount to 10, i.e. θi,483

i = 1, . . . , 8, σ f and σϕ. To illustrate the effectiveness of the implemented adaptive MCMC algorithm, a first484

analysis considering only θ1 and θ2 as the uncertain parameters is presented in Fig. 6. Defining the exact values of485

θ1 = 0.8 and θ2 = 1.0, the Bayesian inference results considering only the resonant frequencies and both the reso-486

nant frequencies and mode shapes are presented in Fig. 6 (a) and (b), respectively. The joint PDF of the uncertain487

parameters is obtained by drawing 8000 Markov chain samples with a burning time of 900 samples. The adaptive488

MCMC algorithm is activated after the first 1000 samples. The Gaussian proposal is initially defined as a diagonal489

covariance matrix of value 1E-2 and scaled by the factor sd = 2.42/d. In the DR step, the covariance matrix of490

the proposal distribution is scaled down by a factor γ = 0.1. The initial location state θ0 is defined by considering491

all the uncertain parameters equal to 1.0. To evaluate the effectiveness of the inference of the prediction errors ac-492

cording to Eqs. (42) and (43), large initial values are selected as σ2
f = 3% and σ2

ϕ = 0.5% (Eq. (35)). The selected493

hyperparameters led to an average acceptance rate of 67%, which is within the reasonable interval [60% − 70%].494

Note that parameters θ1 and θ2 correspond to the stiffness multipliers of the symmetric vertical bars 31 and 1.495

Therefore, the problem becomes ill-posed when only the resonant frequencies are included in the inference, and496

two potential solutions arise, namely (θ1, θ2) = (0.8, 1.0) and (θ1, θ2) = (1.0, 0.8). It is observed in Fig. 6 that,497

indeed, the implemented DRAM algorithm is capable of finding the two solutions, leading to a bimodal PDF. It is498

evidenced in the Markov chain shown in Fig. 6 (a) how the adaptive MCMC algorithm allows exploring the two499

modes in the distribution, without getting stuck around as usual when implementing standard MCMC methods.500

Conversely, when both natural frequencies and mode shapes are included in the inference, the identification is501
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well-posed and the resulting PDF becomes unimodal with one single mode at the true solution. In addition, it is502

observed that the marginal chains of the prediction errors rapidly achieve convergence, reaching low mean values503

and dispersion as expected given that the model has been used to generate the pseudo-experimental values.504
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Figure 6: Bayesian inference results of the stiffness multipliers θ1 and θ2 of the end verticals of the 31-bar truss structure and
error variances considering: (a) resonant frequencies, (b) resonant frequencies and mode shapes. True solution: (θ1, θ2) =

(0.8, 1.0).

Finally, the Bayesian inference results considering 10 unknown parameters are reported in Table 1. The505

assigned exact values of the stiffness parameters θi, i = 1, . . . , 8, are given in the second column, and the model506

specified by those values is regarded as the reference model. The first eight frequencies and modal vectors at507

the five observation points compose the simulated measurement data. In these analyses, a total number of 1000508

samples are drawn by the previously introduced BMU. The rest of the hyperparameters are kept from the previous509

analysis. The robustness and reliability of the presented algorithm for model updating in the presence of noise in510

the identified modal signatures are tested herein. To do so, the simulated modal properties have been corrupted511

with Gaussian white noise at different levels as f n
r = fr (1 + η1) and ϕn

r,i = ϕr,i
[
1 + η2std (ϕr)

]
. Terms f n

r and512

ϕn
r,i denote the noisy r-th natural frequency and the i-th component of the r-th mode shape, respectively, while513

η1 and η2 are zero-mean Gaussian processes. On this basis, two different noise levels have been considered,514

including: Noise level 1: η1 ∼ N(µ = 0, σ = 1E − 2) and η2 ∼ N(µ = 0, σ = 1E − 1); Noise level 2:515

η1 ∼ N(µ = 0, σ = 5E − 2) and η2 ∼ N(µ = 0, σ = 5E − 1); and Noise level 3: η3 ∼ N(µ = 0, σ = 1E − 1)516

and η2 ∼ N(µ = 0, σ = 1E + 0). This noise model was considered to be consistent with typical measurement517

conditions, in which mode shape measurements often exhibit an order-of-magnitude lower precision. For each518

noise level, 30 realizations are carried out and the sample means of the obtained Markov chains and the relative519

estimation errors of the unknown structural parameters with respect to the exact values are presented in Table 1.520

It is noted that the updated parameters have close agreements with the assigned exact values for the first two521

noise levels, with mean absolute relative errors of 5.14%, 5.50% for noise levels 1, and 2, respectively. Errors522

start to increase considerably only for the third noise level, which represents a condition of severe noise pollution523

(10% noise in the resonant frequencies). In this case, the inference yields maximum and mean absolute relative524

errors of 13.95% and 6.36%, respectively. These results demonstrate the robustness and reliability of the presented525

surrogate model-based BMU for damage identification in the presence of noise in the modal signatures.526
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Table 1: Surrogate model-based BMU results of the stiffness coefficients θi of the 31-bar planar truss structure for different noise
levels. Noise level 1: η1 ∼ N(µ = 0, σ = 1E − 2) and η2 ∼ N(µ = 0, σ = 1E − 1); Noise level 2: η1 ∼ N(µ = 0, σ = 5E − 2)
and η2 ∼ N(µ = 0, σ = 5E − 1); and Noise level 3: η1 ∼ N(µ = 0, σ = 1E − 1) and η2 ∼ N(µ = 0, σ = 1E + 0).

Bar No. Parameter Exact θi Noise Level 1 Noise Level 2 Noise Level 3

Mean Error Mean Error Mean Error

31 θ1 0.80 0.76 4.89 0.85 -5.99 0.85 -6.63
1 θ2 1.00 0.94 6.34 0.93 6.92 0.88 12.44
28 θ3 0.90 0.90 -0.07 0.90 0.12 0.89 0.90
4 θ4 0.85 0.90 -5.51 0.91 -6.65 0.91 -6.70

18 θ5 0.90 0.89 1.05 0.89 1.19 0.90 -0.05
14 θ6 1.05 0.90 13.81 0.90 13.88 0.90 13.94
7 θ7 0.90 0.90 -0.21 0.90 0.54 0.91 -1.23

22 θ8 1.00 0.91 9.24 0.91 8.67 0.91 8.99

5.3. Case Study III: the Sciri Tower527

This last section reports the application of the proposed approach to a real case study of a historic civic tower528

located in the city centre of Perugia in Italy (Figure 7 (a)), named Torre degli Sciri. The tower is 41 m high with529

a rectangular cross-section (7.15 x 7.35 m), and it is made of white limestone masonry. Up to the first 17 m, the530

tower is inserted into a building aggregate with approximate cross-section dimensions of 20 x 25 m. This medieval531

tower has been the subject of study in several investigations by the authors, and interested readers may refer to532

references [70, 71] for further information about its architecture.533
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Figure 7: Sensors layout for continuous monitoring of the Sciri Tower (a), and tracking of the modes of vibration since February
13th until March 10th 2019 (b).

A continuous environmental/dynamic monitoring campaign with a relatively large number of sensors was534

performed from February 13th until March 10th 2019. As shown in Fig. 7 (b), twelve high sensitivity (10 V/g)535

uniaxial accelerometers model PCB 393B12 were installed at six different heights of the tower, acquiring ambient536

vibrations at a sampling frequency of 1652 Hz and down-sampled to 40 Hz. Two K-type thermocouples were537

also installed at the level z = 40.5 m to measure indoor and outdoor temperatures at a sampling frequency of 0.4538

Hz. The modal identification of the tower was continuously performed using 30-min long acceleration records539

via two in-house codes recently developed by the authors and reported in reference [54]. This pair of software540

codes, named MOVA and MOSS, provide all the necessary tools for the management of long-term integrated SHM541

systems. In particular, the Covariance-driven Stochastic Subspace Identification (COV-SSI) method was used to542
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identify the modal properties of the Sciri Tower. The parameters used in the identification included maximum543

and minimum numbers of block rows/columns in the Toeplitz matrix of covariances of 89 (time lag 2.23 s) to544

256 (time lag 6.40 s), respectively, with steps of 17, and model’s orders running from 20 to 120 with steps of 2.545

Figure 7 (b) reports the tracking of the modes of vibration of the Sciri Tower. Seven vibration modes have been546

identified in the frequency range between 0 and 10 Hz as shown in Fig. 8 (a): two flexural modes in NW direction547

(Fx1 and Fx2), two flexural modes in SW direction (Fy1 and Fy2), one torsional mode, Tz1, and two higher548

order flexural modes, Fx3, Fy3. Table 2 collects the identified resonant frequencies, damping ratios, and modal549

phase collinearity (MPC) values exploiting the first 30-min acceleration records acquired in the tower. The MPC550

values of all the modes are above 95% (classically damped), except for modes Fx2 and Fy2 with values of 84.9%551

and 80.2%, which indicates that the latter are non-classically damped or the level of excitation is insufficient to552

correctly identify these mode shapes.553
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Figure 8: Comparison between experimental (a) and numerical mode shapes (b) of the Sciri Tower.

Table 2: Experimentally identified natural frequencies f exp
i , damping ratios ζi and Modal Phase Collinearity (MPC) estimated

through COV-SSI on 13th February 2019 at 14:00 UTC.

No Mode f exp
i [Hz] ζi [%] MPCi [%] MPDi [%]

1 Fx1 1.691 0.898 100 0.4
2 Fy1 1.890 0.785 100 0.4
3 Fx2 5.534 2.980 87.0 41.2
4 Fy2 5.826 2.116 72.3 45.6
5 Tz1 8.209 1.777 99.9 4.9
6 Fx3 9.781 1.238 98.7 35.7
7 Fy3 10.814 3.133 93.1 16.4

5.3.1. Parametrization of the FEM of the Sciri Tower554

A fully detailed 3D FEM of the building ensemble of the Sciri Tower was built using the commercial software555

ABAQUS 6.10 in reference [50], and retrieved herein as the basis for the newly proposed BMU approach. The556

geometry was meshed using ten-node quadratic tetrahedral elements C3D10 with mean element size of about 50557

cm, leading to a total number of elements and nodes of 245148 and 411140, respectively. The material model558

of the masonry was initially considered as elastic isotropic with Young’s modulus E = 4.04 GPa, Poisson’s ratio559

ν = 0.25, and mass density w = 2.20 t/m3 according to the Italian technical standard for square stone masonry. A560

two-step model calibration was carried out using first-order sensitivity analysis followed by an inverse calibration561

using a GA, considering the modal features extracted from the first vibration data acquired on February 13th as562

reference modal signatures. The resulting comparison between the numerical and experimental modal properties563

from reference [50] is retrieved herein in Table 3. Good agreements were achieved for modes Fx1, Fy1, Tz1,564

Fx3 and Fy3 with relative differences in terms of resonant frequencies below 4% and MAC values above 0.84.565

Conversely, considerably small MAC values were found for modes Fx2 and Fy2, specially the latter one with a566

value of 0.084. As discussed in our previous work [50], the reason for such a low similarity between the numerical567
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and experimental mode shapes is ascribed to the high complexity of modes Fx2 and Fy2 reported previously in568

Table 2, which may possibly relate to unmodelled soil-structure interaction effects. For this reason, modes Fx2569

and Fy2 are later removed from those used for real-time BMU.570

Table 3: Comparison between experimental and numerical modal parameters of the Sciri Tower after the initial calibration by
GA.

Resonant frequencies [Hz]

Mode No. Exp. Numerical Rel. Diff. [%] MAC values

Fx1 1.692 1.692 -0.017 0.976
Fy1 1.891 1.886 0.259 0.965
Fx2 5.539 5.591 -0.941 0.757
Fy2 5.830 6.166 -5.760 0.084
Tz1 8.205 7.900 3.720 0.850
Fx3 9.795 9.654 1.445 0.934
Fy3 10.819 10.864 -0.415 0.846

X

Y
Z

1 2 45

6

7

8
9

10
11

16

12

13

14
15

17

18

19

20

21

3

Figure 9: Partitioning of the FEM of the Sciri Tower into 21 macro-elements.

For the subsequent Bayesian inference, the selection of uncertain structural model parameters critically de-571

termines the accuracy of the damage identification. A first challenge to be faced regards the circumstance that572

massive systems such as the Sciri Tower are composed of a large number of structural members, and defects573

typically develop diffusely across certain parts of the structure. In addition, performing element-wise damage574

identification is simply infeasible from both a computational and an observability standpoint. To address these575

limitations, a common approach consists in grouping certain parts of the structure forming macro-elements. The576

definition of such macro-elements may be conducted leveraging engineering knowledge and more systematic tech-577

niques like sensitivity-based clustering. The latter allows one to form in an unsupervised manner a reduced set of578

clusters (macro-elements) grouping model parameters with similar influence upon the sensitivities of the targeted579

modal features [23]. In this light, the tower is first densely divided into a large set of 21 sections as sketched in580

Fig. 9, including ten masonry walls, four floors, three parts of the roof of the building aggregate, and four portions581

of the tower. The latter is divided into four portions located between heights of 0-18.9 m (18), 18.9-26.8 m (19),582

26.8-33.8 m (20), and 33.8-41.0 m (21). Note that the ordering of the partitions in Fig. 9 has been defined accord-583

ing to the clustering results reported hereafter for ease in the discussion. The sensitivities are obtained numerically584

by individually perturbing the elastic moduli of the 21 sections by ±5%, and the corresponding natural modes are585

calculated by linear modal analysis of the FEM. Let us note the residual r ∈ Rm(No+1) as the differences between586

the perturbed z̃ and unperturbed z modal estimates, i.e. r = z̃ − z, and ∆θi the corresponding perturbation of the587

i-th model parameter. Then, the i j-th component of the sensitivity matrix S ∈ Rm(No+1)×M can be obtained by finite588
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differences as:589

S i j =
r j

∆θi
. (50)

In this particular case study, m = 7 natural modes are considered with No = 12 measured DOFs, leading to a590

sensitivity matrix of dimension 21 × 91. Then, a distance function is required to compute the proximity between591

sensitivities. The cosine distance is used in this work to evaluate the dissimilarity between pairs of sensitivities592

(α,β) as:593

cosine distance (α,β) = 1 − αTβ

αTαβTβ
. (51)

Note that the cosine distance as defined in Eq. (51) is susceptible to become a skewed metric when combining594

both frequency and mode shape sensitivities. Indeed, there is no natural scale for mode shapes, which can be595

arbitrarily normalized. It is thus necessary to scale the residual sensitivity vectors to accommodate both quantities.596

Inspired by the work by Bartilson et al. [72] who proposed an objective-consistent scaling of cosine distances,597

scaled sensitivities S i j are considered in this work as:598

S j =

[
W f 0
0 Wϕ

] [
r f /∆θ j

rϕ/∆θ j

]
, (52)

where r f and rϕ concentrate the residuals in terms of resonant frequencies and mode shapes, respectively, and599

W f and Wϕ are residual weighting matrices reflecting the relative contribution of resonant frequencies and mode600

shapes to the sensitivities. As reported in reference [72], W f and Wϕ can be estimated as the inverse of the601

measurement covariance matrices of resonant frequencies and mode shapes, respectively. In this work, given602

that sensors are only located in the Sciri Tower and the modal displacements are not monitored in the building603

aggregate, the weighting matrices are defined in a simplified manner as W f = αI and Wϕ = βI. Weighting604

parameters α and β concentrate the relevance of the contribution of resonant frequencies and mode shapes to605

the sensitivity matrix, respectively. On this basis, a hierarchical clustering approach has been applied to cluster606

the initial 21 model parameters into a reduced number of macro-elements with similar sensitivities. To do so,607

the Unweighed Pair Group Method with Arithmetic Mean (UPGMA) [73] has been implemented as the linkage608

method. With the aim of keeping at least three macro-elements between partitions 18 to 21 in Fig. 9 to discretize609

the tower, a β/α ratio of 12 was found suitable after some manual tuning. In this light, the hierarchical binary tree610

associated with the sensitivities of the partitions of the Sciri Tower is shown in Fig. 10 (a). The tree has been cut611

at a distance of 0.39, forming 9 clusters labelled with C1 to C9. The corresponding macro-elements are depicted612

in Fig. 10 (b). Note that the resulting discretization of the tower only includes three macro-elements, merging613

the previously defined top two elements (20,21) in Fig. 9 into C9. The resulting sensitivities grouped by macro-614

elements C1 to C9 are presented as 3-D bar plots in Figs. 11 (a) and (b) in terms of resonant frequencies and615

mode shapes, respectively. The cosine distance calculation utilized the complete set of mode shape sensitivities (5616

modes with 12 DOFs per mode), but the results in Fig. 11 (b) are represented by MAC sensitivities for clarity.617
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5.3.2. Training of the surrogate model and initial FEM updating618

According to the previous parametrization, the model updating parameters θi, i = 1, . . . , 9, to be identified in619

the subsequent Bayesian inference are defined as linear proportionality coefficients of the elastic moduli Ei of the620

corresponding macro-elements, i.e. Ei = θi · Ei,0, with Ei,0 being the nominal (undamaged) value of the Young’s621

modulus of the i-th macro-element. It is important to mention that every linear modal analysis of the 3D FEM622

takes around 5 minutes on a 4-core Intel Xeon CPU 3.30 GHz (64 GB RAM) computer. Given the large number of623

forward model evaluations involved in BMU, the direct use of the FEM is infeasible so it becomes imperative to624

build a more computationally efficient surrogate model. To this aim, the PC-Kriging surrogate model previously625

introduced in Section 3 is adopted herein. For the construction of the surrogate models, the design variables θi are626

assumed to be uniformly distributed in a considerably large interval [0.7, 1.3]. The first seven resonant frequencies627

and mode shapes of the Sciri Tower are taken into account, which amounts to a total of 91 uni-dimensional meta-628

models. To determine the optimal dimension of the design space, a convergence analysis is firstly conducted629

considering different design spaces sampled by LHS with increasing sizes of N = 50, 100, 200, 500, 1000, 2000,630

and 3000 samples. Figure 12 (a) shows the convergence curves of the average values of the resonant frequencies631

of the FEM of the Sciri Tower versus the size of the design space. The error bars in this figure represent the632

variance of the distributions. In view of these results, a design space of N = 500 samples achieves convergence633

so it is chosen to train the meta-model. The histograms of the resonant frequencies of the tower obtained by the634

selected training set are shown in Fig. 12 (b).635
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Figure 12: Convergence analysis of the mean values of the natural frequencies obtained by linear modal analysis of the FEM
of the Sciri Tower versus the size of the design space (a), and histograms of the resonant frequencies obtained for a design
space of N = 500 samples (b). The error bars in (a) denote the variance of the distributions.

Legendre polynomials of orders ranging from 2 to 6 are selected to build the PCE basis with a q-norm of 0.6,636

and the leave-one-out error is used to select the optimal expansions. To evaluate the accuracy of the constructed637

surrogate model, the largest design space of 3000 samples is used as the validation set. The resulting scatter638

plots of the resonant frequencies obtained by the FEM and the predictions by the surrogate model are shown639

in Fig. 13. The low scatter of the points around the diagonal line (R2 ≈ 1) and maximum root-mean-square640

errors (RMSEs) of 5E-2 corroborate that the surrogate models are formed with accuracy. In addition, very close641

fittings of the mode shapes have been also obtained, with maximum JMAC metric values of the order of E-3. Note642

that the computational time required to evaluate the surrogate model only takes about 0.5 ms, which ensures its643

applicability in the upcoming continuous BMU. Let us also indicate that the PCE-Kriging meta-model outperforms644

standard PCE in this case study, whose RMEs almost double the values reported in Fig. 13.645
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Figure 13: Scatter plot of the PCE-Kriging meta-model (500 training samples) with respect to the FEM of the Sciri Tower for
the first seven natural modes (validation set of 3000 samples, RMSE = Root Mean Squared Error).

Once the meta-model is constructed, the experimental modal features reported above are used to conduct646

continuous BMU. Note that the resonant frequencies previously shown in Fig. 7 exhibit strong variations induced647

22



by changes in the environmental conditions (both daily and seasonal to a certain extent). In order to filter out such648

variations, a data normalization approach combining Multiple Linear Regression (MLR) and Principal Component649

Analysis (PCA) has been implemented (refer to reference [11] for further details on the theoretical formulation).650

Firstly, the modal signatures until May 3rd (800 samples) are selected as the training period to build the data651

normalisation model. The time series of environmental temperature recorded by the two thermocouples located at652

the top of the tower (see Fig. 14 (a)) measuring indoor and outdoor of the tower are used as predictors in the MLR653

model. Then, the residual variances in the resonant frequencies due to unmodelled operational factors are further654

minimized using PCA. To do so, the residuals between the resonant frequencies and the predictions of the MLR655

model are decomposed using PCA and one principal component (explaining more than 90% of the total variance)656

is kept to reconstruct the residuals. Figure 14 (b) shows the comparison between the time series of experimental657

frequencies and the predictions of the MLR/PCA model. Once constructed using the training period dataset, the658

MLR/PCA model is applied to normalize the remaining resonant frequencies in the damage assessment period659

until March 10th. On this basis, the time series of normalised resonant frequencies to be included in the Bayesian660

inference are obtained as their average values in the training period plus the residuals computed between the661

predictions of the MLR/PCA model and the experimental data all throughout the monitoring period. On the other662

hand, the mode shapes are barely affected by the environmental conditions and, therefore, no data normalisation663

has been conducted. Following the previous discussion on the dynamic identification results reported in Table 2,664

mode shapes Fx2 and Fy2 are excluded in the subsequent St-Id.665
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An initial surrogate-model based BMU is carried out considering the whole normalized training period as666

reported in Fig. 15. Since mode shape displacements were only obtained in the tower and no information was667

acquired in the building aggregate, the inference limited to the identification of parameters θ9, θ8 and θ7, corre-668

sponding to the macro-elements pertaining to the tower. Moreover, given the relatively low number of measured669

modal displacements, the likelihood function formulated in terms of MAC values in Eq. (36) has been imple-670

mented herein. Gaussian prior distributions with a mean value of 1 and a standard deviation of 0.1 are defined for671

all the fitting parameters. During the analyses, a total number of 3000 samples with a burning time of 900 samples672

are drawn by the previously introduced Bayesian inference approach. The Gaussian proposal is initially defined673

as a diagonal covariance matrix of value 1E-2 and scaled by the factor sd = 2.42/d. In the DR step, the covariance674

matrix of the proposal distribution is scaled down by a factor γ = 0.1. The initial location state θ0 is defined by675

considering all the uncertain parameters equal to 1.0, and the initial prediction errors have been estimated from the676

statistical analysis of the time series of identified modal signatures as σ2
f = 3.0% and σ2

ϕ = 0.9% (Eq. (36)). All677

things considered, the selected hyperparameters led to an average acceptance rate of 67%. Figure 15 (a) presents678

a three-dimensional scatter plot of the Markov chain on a colour scale representing the normal kernel smoothed679

probability values of the samples ( p̂ (x|d ), normalized between 0 and 1). The statistical analysis of the marginal680

chains is reported in Fig. 15 (b). It is clearly noted that, in accordance with the sensitivity analysis previously681

reported in Fig. 11, the dispersion of the PDFs of the fitting parameters increases in height. Lastly, it is important682

to highlight that the total computational time to obtain the Markov chains amounts to about 20 min, which enables683

the integration of the proposed approach into a continuous SHM scheme, given that OMA is carried out every 30684
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minutes of data recording.685
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5.3.3. Continuous FEM updating - Damage Identification686

In order to assess the effectiveness of the proposed damage identification approach, four different synthetic687

damage scenarios have been created on the basis of the 3D FEM of the Sciri Tower as shown in Fig. 16. The688

scenarios have been defined by eliminating the stiffness of certain parts of the FEM to simulate crack-like defects.689

In particular, Damage Scenarios 1, 2, and 4 include damage in the macro-elements C9, C8 and C7, respectively,690

while Damage Scenario 3 simulates the detachment between the east façade of the tower and the building ag-691

gregate. The corresponding modal signatures have been obtained by linear modal analysis of the 3D FEM, and692

the resulting damage-induced frequency decays with respect to the undamaged condition are reported in Table 4.693

Note that, according to previous experience, anomalies in the time series of resonant frequencies are identifiable by694

standard novelty analysis techniques when relative damage-induced frequency decays approximately exceed 1%.695

Therefore, according to the decays reported in Table 4, Damage Scenario 1 can be considered as a mild damage696

condition, Damage Scenarios 2 and 3 as moderate damage conditions, and Damage Scenario 4 as a severe damage697

condition. These frequency decays have been incorporated in the time series of resonant frequencies in the shape698

of constant mean shifts. On the other hand, the mode shapes corresponding to the damage conditions are directly699

used in the damage assessment period. Note that the parametrization defined in Section 5.3.1 does not account for700

model parameters strictly related to the affected elements in the damage scenarios in Fig. 16. Instead, the selected701

parametrization was designed to offer a general model to identify structural defects conceivable as global stiffness702

reductions in horizontal sections of the tower. Therefore, an important aspect in subsequent assessment of the703

damage identification capabilities of the proposed approach regards its robustness to structural defects not exactly704

reproduced in the model parametrization.705
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Figure 16: Synthetic damage scenarios defined using the 3D FEM of the Sciri Tower.

Table 4: Damage-induced decays in the resonant frequencies of the Sciri Tower under Damage Scenarios 1 to 4.

Frequency decays [%]

Case scenario Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

Damage Scenario 1 -0.01 -0.02 -0.05 -0.05 -0.02 -0.12 -0.02
Damage Scenario 2 -0.49 -0.58 -1.00 -1.51 -1.55 -3.29 -0.35
Damage Scenario 3 -1.62 -1.70 -1.20 -2.69 -2.70 -3.81 -0.27
Damage Scenario 4 -6.24 -3.36 -1.95 -1.12 -9.11 -1.30 -0.85

To alleviate the computational burden, the modal data have been split into datasets containing 48 hours of706

measurements with 24 hours overlap, which amounts to a total of 20 model identifications. Nevertheless, as707

already mentioned the computational time involved in the MCMC sampling amounts to about 20 minutes, being708

possible to reduce the time resolution in the St-Id if needed. The covariance matrix of the proposal distribution709

has been taken as the covariance matrix of the Markov chains obtained by the previous BMU in Section 5.3.1710

exploiting the training period, as well as the initial prediction errors, while the rest of the identification parameters711

have been kept constant. The obtained marginal PDFs for the four damage scenarios are furnished in Fig. 17. It712

is observed that no clear variations can be found for Damage Scenario 1, while reasonably good identification713

results were obtained for the rest of the damage scenarios. The damage identification limitations in Section714

C9 are attributable to the low sensitivity of the modal signatures of the tower to variations in the stiffness of715

the upper part of the tower as previously shown in Fig. 11. In order to provide a comprehensive metric for716

damage identification, a damage index Di is presented in Fig. 18 as the relative percent differences of the medians717

of the Markov chains with respect to the initial one obtained in the training period. The results in this figure718

confirm the previous discussion, being possible to clearly identify damage in Scenarios 2 to 4. Damage Scenario719

2 is characterized by marked stiffness reductions in macro-elements C8 and C9 (see Fig. 17 (b)). Although this720

damage condition does not explicitly affect the stiffness of C9, the reductions in this macro-element are ascribed721

to ill-conditioning limitations given the low modal sensitivity related to the stiffness of the top section of the722

tower. This circumstance may be also explained by the inherent limitations of the adopted parametrization, since723

no model parameter accounting for the local stiffness reduction in the elements affected by the crack in Damage724

Scenario 2 are considered. This aspect may facilitate the obtained solution affecting C8 and C9 to appear more725

likely from a Bayesian perspective than the solution only affecting C8 (where the crack is truly located).726

Finally, it is noted that damage-induced variations in Damage Scenario 3 concentrate in macro-element C8727

(θ8) with some decreases in C7 (θ7). This indicates that given the defined parametrization, the implemented728

BMU approach finds as the most probable solution for the given observations the one with concentrated stiffness729

reductions in the middle section and with only moderate decreases in the bottom part of the tower. Despite730

Section C8 is directly in contact with the building aggregate, note that the detachment of the tower from the731

building aggregate in Damage Scenario 3 cannot be easily modelled by affecting the stiffness of the defined macro-732

elements. This circumstance evidences a natural limitation of any model parametrization that does not explicitly733

represent a certain damage mechanism, as it is in this case since there is no particular parameter accounting for734

the connection with the building aggregate. In fact, observe that Damage Scenario 4, which effectively affects the735

stiffness of C7, does concentrate reductions in the PDF of θ8. In this case, some spurious increases in the stiffness736

of C8 are found, which are ascribed to observability limitations related to the defined parametrization. Despite all737

the challenges that unavoidably exist when monitoring complex masonry structure like the investigated one, these738
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results demonstrate the potentials of the presented surrogate model-based BMU for online damage identification739

of large-scale structures.740
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Figure 17: Bayesian damage identification results of the Sciri Tower throughout all the monitoring period from February 13th

until March 10th 2019 considering four synthetic damage scenarios (a to d). Error bars indicate standard deviation values.
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Figure 18: Damage indices Di obtained as the relative percent differences of the medians of the Markov chains of parameters
θ9, θ8 and θ7 of the Sciri Tower with respect to the initial chain obtained in the training period for Damage Scenarios 1 to 4 (a
to d).

6. Conclusions741

This work has presented a high-fidelity surrogate modelling approach combining sparse adaptive PCE and742

Kriging meta-modelling for MCMC BMU of large-scale structures, with a focus on its implementation in real-743

time SHM of large-scale structures. The LAR algorithm has been adopted to automatically define the optimal744

order of the PCE and only retain the most significant terms in the expansion, minimizing the computational bur-745

den of the training and evaluation of the meta-model. The optimized PCE then plays the role of the trend term746

in a Kriging predictor, while the stochastic term is fitted through global optimization. Once built, the surrogate747

model is inserted into a DRAM MCMC approach to perform BMU exploiting monitoring data from long-term748

vibration-based SHM systems. The implemented MCMC approach combines AM sampling and DR, so attaining749

both global and local adaptation capabilities. This combination results in an MCMC algorithm that constantly750

alternates between larger and smaller steps in the Markov chain, allowing for better exploration of the parameters751

space and sample from multimodal PDFs. The effectiveness of the proposed methodology has been demonstrated752

through three case studies: (i) an analytical benchmark; (ii) a planar truss structure; and (iii) a real case study of a753

complex historical tower, the Sciri Tower in Italy. The accuracy and robustness of the developed meta-model have754

been validated by the first two benchmark cases, while the last case study has evidenced the real-time capabilities755

of the surrogate mode-based BMU when exploiting long-term SHM data. In particular, the time series of modal756

signatures extracted by automated OMA during three weeks have been utilized to conduct continuous St-Id of a757

high-fidelity 3D FEM of the Sciri Tower. Finally, four different synthetic damage scenarios have been generated758

to evidence the potentials of the proposed approach for damage detection, localization and quantification. Over-759

all, the presented results have demonstrated that the proposed BMU approach is compatible with real-time SHM760

owing to the computational efficiency of the meta-model and the MCMC sampling, enabling its incorporation into761

continuous damage identification applications for the autonomous management of civil infrastructures. Although762

the computational efficiency of the DRAM algorithm sufficed for the purpose of the present work, future devel-763

opments may involve the implementation of advanced sampling techniques such as parallelized TMCMC, BBL764

or nested sampling techniques with superior capabilities to handle engineering problems with large numbers of765

model parameters.766

Future developments involve the implementation of pathology-specific model parametrizations to minimise767

misclassifications of damage patterns. The definition of multiple model parametrizations (e.g. simulating the ap-768

pearance of earthquake-induced X-cracks, or vertical cracks due to differential settlements) would firstly allow to769

establish safety-related thresholds in terms of frequency decays and variations of the modal displacements. Sec-770

ondly, the implementation of model selection techniques would allow to infer the most likely damage mechanism771

27



being activated after a structural anomaly is detected, thus minimizing localization errors due to parametrization772

limitations.773
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