
Numerical simulation of tsunamis generated by

landslides on multiple GPUs

M. de la Asuncióna,∗, M. J. Castroa, J. M. Mantasb, S. Ortegaa

aDpto. Análisis Matemático, Universidad de Málaga, Spain
bDpto. Lenguajes y Sistemas Informáticos, Universidad de Granada, Spain

Abstract

In this work we propose a two-layer Savage-Hutter type model that is the
natural extension of the 1D system proposed by E. D. Fernández-Nieto et al
in 2008 to simulate tsunamis generated by landslides. We describe a single
GPU and a multi-GPU implementation of this model using MPI and the
CUDA framework over structured meshes. The distributed implementation
is tested for several artificial and realistic problems using up to 24 GPUs.
We also propose a static and a dynamic load balancing algorithm in order to
deal with the unbalanced computational load due to different amount of wet
and dry areas among the subdomains. The validity of the model is tested by
simulating the tsunami occurred in Lituya Bay, Alaska, in 1958. Numerical
experiments show the efficiency of the multi-GPU solver, the usefulness of
the load balancing algorithms and the validity of the model to simulate real
tsunamis generated by landslides.

Keywords: Tsunamis generated by landslides, Finite volume schemes,
Structured meshes, CUDA, MPI, Load balancing

1. Introduction

Giant landslides, underwater or not, are one of the main causes of tsunami
generation and can have a dramatic impact on life, property and infrastruc-
tures [1].

∗Corresponding author. Tel.: +34 952 131898; fax: +34 952 131894.
Email address: marcah@uma.es (M. de la Asunción)

Preprint submitted to Advances in Engineering Software February 8, 2016

In [2] a two-layer Savage-Hutter 1D model that can be used to simulate
tsunamis generated by underwater landslides was presented. Here the natural
extension of this model to 2D domains is considered to simulate landslides
and the generated tsunami on realistic bathymetries. The application of this
model requires a great computational demand due to the big sizes of the
spatial and temporal domain. For this reason, very efficient parallel solvers
are required to perform these simulations in real domains in order to obtain
results in reasonable times.

In recent years, the Graphics Processing Units (GPUs) have proved to be
a powerful accelerator for intensive scientific simulations. The high memory
bandwidth and massive parallelism of these platforms make it possible to
achieve dramatic speedups over a standard CPU in many applications [3, 4],
and several programming toolkits and interfaces, such as NVIDIA CUDA [5]
and Open Computing Language (OpenCL) [6], have shown a high effective-
ness in the mapping of data parallel applications to GPUs [3, 7].

Currently most of the proposals to simulate shallow flows on a single GPU
are based on the CUDA programming model. There are several proposals of
finite volume CUDA solvers to simulate one-layer shallow water flows over
structured regular meshes [8, 9] and for the two-layer shallow water system
[10, 11]. In this work, we are interested in the efficient acceleration, using
GPU-enabled hardware, of a sophisticated first order numerical model to
simulate realistic tsunamis generated by landslides.

Realistic tsunami simulations involve huge meshes, many time steps and
possibly real time accurate predictions. These characteristics suggest to use
a cluster of GPU-enhanced computers (hereafter, a GPU cluster) in order to
scale the runtime reduction and overcome the memory limitations of a GPU-
enhanced node by suitably distributing the data among the nodes, enabling
us to simulate significantly larger realistic models.

Most of the proposals to exploit GPU clusters in computational fluid
dynamics (CFD) simulations use CUDA to program each GPU, and MPI
[12] to implement interprocess communication, and they use non-blocking
communication MPI functions to overlap the remote transfers with GPU
computation [13, 14, 15, 16, 17, 18].

There are several studies related with the multi-GPU solution of shal-
low water systems. A one-layer shallow water solver is implemented on a
GPU cluster for tsunami simulation in [13], achieving good performance re-
sults in the range 1-32 GPUs. The multi-GPU implementation of a Lattice-
Boltzmann solver of the one-layer shallow water system is tackled in [19] for

2

a small GPU cluster. In [20], the performance of a MPI-CUDA finite vol-
ume solver of one-layer shallow flows is evaluated on a GPU cluster with 32
nodes. In [16], an efficient MPI-CUDA implementation of a structured mesh
finite volume solver for the one-layer shallow water system coupled with a
pollutant transport equation is described, and the impact of using the ghost
cell expansion technique [21] in InfiniBand GPU clusters is analyzed.

An important issue with the distributed simulation of these kind of prob-
lems arises when there is a high variation in the amount of wet and dry zones
among the subdomains. Since a wet zone requires more numerical processing
than a dry zone, special attention should be paid so that the computational
load of all the subdomains is as equal as possible. Therefore, load balancing
methods are required in order to overcome this issue. It have been published
several works which analyze the influence of load balancing algorithms in the
obtained runtimes on shallow water problems. See, for example, [22, 23, 24].
A review of some partitioning and load balancing methods for the numerical
resolution of partial differential equations can be found in [25].

In this work we propose a state-of-the-art finite volume numerical scheme
to simulate tsunamis generated by landslides. We have developed an effi-
cient MPI-CUDA implementation of this numerical scheme over structured
meshes for GPU clusters which follows a row-block domain decomposition
and incorporates several techniques to improve the efficiency, such as the
overlapping of computation and communication, and load balancing algo-
rithms. Specifically, we have developed a static (SLB) and a dynamic (DLB)
load balancing algorithm to deal with the variations of wet and dry zones
among the submeshes. We show that it is possible to obtain scalable multi-
GPU implementations of the model which works on big realistic domains.
The influence on the scalability (weak and strong scalability) of the load
balancing algorithms has been studied using up to 24 GPUs by perform-
ing several experiments with artificial and real simulation problems on an
InfiniBand GPU cluster.

The numerical scheme described in this paper is also validated by sim-
ulating the tsunami occurred on July 9, 1958, in Lituya Bay, Alaska. This
tsunami was caused by a subaerial landslide and it reached the highest run-
up ever measured for a tsunami: 524 meters. A comparison of real and model
data is presented.

The rest of this paper is organized as follows. Section 2 introduces the
two-layer Savage-Hutter type system used to simulate tsunamis generated
by landslides and Section 3 describes the finite volume numerical scheme

3

proposed to solve the equations of this model. Section 4 introduces the SLB
and DLB algorithms. Section 5 describes the main details of the CUDA
implementation of this solver and its extension for GPU clusters using MPI
and CUDA. The efficiency of the developed implementations is analyzed in
Section 6 by using artificial and realistic problems, and a validation of the
model is performed by simulating the Lituya Bay tsunami. Finally, in Section
7 we collect the main conclusions of the work.

2. A two-layer Savage-Hutter type model for simulating landslides
generated tsunamis

In [2] a new model for the simulation of tsunamis generated by submarine
landslides was presented for 1D geometries. In this work, we consider the
natural extension for 2D domains, so that real problems, like those considered
in Section 6, could be simulated.

We consider a stratified media composed by a non viscous and homoge-
neous fluid with constant density ρ1 (water) and a fluidized granular material
with density ρs and porosity ψ0. We suppose that the fluid and the granular
material are immiscible and that the mean density of the granular material
is given by: ρ2 = (1−ψ0)ρs+ψ0ρ1. The following 2D system is derived under
the assumption of shallow-flows and could be used to simulate the interaction
of a granular landslide with the ambient water (see [2] for details about its
derivation in 1D problems):

∂W

∂t
+
∂F1

∂x
(W) +

∂F2

∂y
(W) = B1(W)

∂W

∂x
+B2(W)

∂W

∂y

+ S1(W)
∂H

∂x
+ S2(W)

∂H

∂y
+ SF (W) (1)

being

4

W =



h1
q1,x
q1,y
h2
q2,x
q2,y


, F1(W) =



q1,x

q21,x
h1

+
1

2
gh21

q1,xq1,y
h1
q2,x

q22,x
h2

+
1

2
gh22

q2,xq2,y
h2


, F2(W) =



q1,y

q1,xq1,y
h1

q21,y
h1

+
1

2
gh21

q2,y

q2,xq2,y
h2

q22,y
h2

+
1

2
gh22


,

B1(W) =



0 0 0 0 0 0

0 0 0 −gh1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−rgh2 0 0 0 0 0

0 0 0 0 0 0


, S1(W) =



0

gh1
0

0

gh2
0


,

B2(W) =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −gh1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−rgh2 0 0 0 0 0


, S2(W) =



0

0

gh1
0

0

gh2


,

SF (W) =
(
0 Sf1(W) Sf2(W) 0 Sf3(W) + τx Sf4(W) + τy

)T
.

In the previous system, hl(x, y, t), l = 1, 2 denotes the thickness of the
water layer (l = 1) and the granular material (l = 2), respectively, at point
(x, y) ∈ D ⊂ R2 at time t, being D the horizontal projection of the 3D
domain where the landslide and tsunami take place. H(x, y) is the depth

5

Figure 1: Scheme of the model. Relation between h1, h2 and H.

of the bottom at point (x, y) measured from a fixed level of reference. Let
us also define the function η1(x, t, t) = h1(x, y, t) + h2(x, y, t)−H(x, y) that
corresponds to the free surface of the fluid, and η2(x, y, t) = h2(x, y, t) −
H(x, y), the interface between the granular layer and the fluid. Let us denote
by ql(x, y, t) = (ql,x(x, y, t), ql,y(x, y, t)) the mass-flow of the l-layer at point
(x, y) at time t. The mass-flow is related to the height-averaged velocity
ul(x, y, t) by means of the expression: ql(x, y, t) = hl(x, y, t)ul(x, y, t), l =
1, 2. r = ρ1/ρ2 is the ratio of the constant densities of the layers (ρ1 < ρ2).
Figure 1 shows graphically the relation between h1, h2 and H.

The terms Sfk(W), k = 1, . . . , 4, model the different friction effects, while
τ = (τx, τy) is the Coulomb friction law. Sfk(W), k = 1, . . . , 4, are given by:

Sf1(W) = Scx(W) + S1x(W) Sf3(W) = −r Scx(W) + S2x(W)

Sf2(W) = Scy(W) + S1y(W) Sf4(W) = −r Scy(W) + S2y(W)

Sc(W) =
(
Scx(W), Scy(W)

)
parameterizes the friction between the two lay-

ers, and is defined as:
Scx(W) = mf

h1h2
h2 + rh1

(u2,x − u1,x) ∥u2 − u1∥

Scy(W) = mf
h1h2

h2 + rh1
(u2,y − u1,y) ∥u2 − u1∥

6

where mf is a positive constant.
Sl(W) =

(
Slx(W), Sly(W)

)
, l = 1, 2 parameterizes the friction between

the fluid and the non-erodible bottom (l = 1) and between the granular
material and the non-erodible bottom (l = 2), and both are given by a
Manning law 

Slx(W) = −ghl
n2
l

h
4/3
l

ul,x ∥ul∥

Sly(W) = −ghl
n2
l

h
4/3
l

ul,y ∥ul∥
, l = 1, 2

where nl > 0 (l = 1, 2) is the Manning coefficient. Note that S1(W) is only
defined where h2(x, y, t) = 0. In this case, mf = 0 and n2 = 0. Similarly, if
h1(x, y, t) = 0 then mf = 0 and n1 = 0.

Finally, the Coulomb friction term τ = (τx, τy) controls the stopping
mechanism of the landslide and it is defined as follows:

If ∥τ∥ ≥ σc ⇒


τx = −g(1− r)h2

q2,x
∥q2∥

tan(α)

τy = −g(1− r)h2
q2,y
∥q2∥

tan(α)

If ∥τ∥ < σc ⇒ q2,x = 0, q2,y = 0

where σc = g(1 − r)h2 tan(α), being α the Coulomb friction angle. Let us
remark that r is set to zero in σc and τ , if h1(x, y, t) = 0, that is, if it is an
aerial landslide.

Note that the previous model reduces to the usual one-layer shallow-water
system if h2 = 0 and to the Savage-Hutter model if h1 = 0.

3. Numerical Scheme

In this section, we present the finite volume method that we use to dis-
cretize the system (1). To discretize system (1), the domain D is divided into
L cells or finite volumes Vi ⊂ R2, i = 1, . . . , L, which we assume they are
squares or rectangles with edges parallel to the cartesian axes. Given a finite
volume Vi, Ni ⊂ R2 is the center of Vi, ℵi is the set of indices j such that Vj
is a neighbour of Vi; Γij is the common edge of two neighbouring volumes Vi

7

Figure 2: Finite volumes.

and Vj, and |Γij| is its length; ηij = (ηij,x, ηij,y) is the unit vector which is
normal to the edge Γij and points towards the volume Vj (see Figure 2).

We denote by W n
i an approximation of the average of the solution in the

volume Vi at time tn:

W n
i
∼=

1

|Vi|

∫
Vi

W
(
x, y, tn

)
dx dy

where |Vi| is the area of the volume and tn = tn−1 + ∆t, being ∆t the time
step.

The source terms corresponding to friction terms are discretized semi-
implicitly following the ideas described in [2]. Thus, in a first step, friction
terms are neglected and only physical flux, source and nonconservative terms
are considered. In this first step, a 2D extension of IFCP scheme (see [26]) is
used to approximate the non-conservative and source terms. Here, only the
first step is detailed. The discretization of the friction terms are performed
following [2].

In order to extend to 2D problems, the 1D IFCP Riemann solver, a family
of projected Riemman problems in the normal direction to each edge of the
mesh is considered. These projected Riemann problems can be easily defined
as system (1) verifies the property of invariance by rotations (see [17] for more
details). Thus, if we define

Tηij
=

(
Rηij

0
0 Rηij

)
, Rηij

=

 1 0 0
0 ηij,x ηij,y
0 −ηij,y ηij,x



8

the 2D extension of the IFCP scheme could be written as follows:

W n+1
i = W n

i −
∆t

|Vi|
∑
j∈ℵi

|Γij|F−
ij (W

n
i ,W

n
j , Hi, Hj) (2)

where

F±
ij (W

n
i ,W

n
j , Hi, Hj) = T−1

ηij
G±

ij (3)

with

G±
ij =

[(
Φ±

ηij

)
[1]

(
Φ±

ηij

)
[2]

(
Φ±

η⊥
ij

)
[1]

(
Φ±

ηij

)
[3]

(
Φ±

ηij

)
[4]

(
Φ±

η⊥
ij

)
[2]

]T
.

Here Φ±
ηij

and Φ±
η⊥
ij
are 1D numerical fluxes corresponding to the 1D pro-

jected Riemann problem associated to edge Γij (see [17]) and
(
Φηij

)
[l]
is the

component l of vector Φηij
(similar notation is used with vector Φ±

η⊥
ij
). The

description of the 1D numerical fluxes Φ±
ηij

and Φ±
η⊥
ij
is given in Appendix A.

The resulting numerical scheme is explicit, therefore, it is necessary to
impose a CFL (Courant-Friedrichs-Lewy) condition to ensure linear stability
of the scheme. In practice, this condition implies a restriction on the time
step given by:

∆tn = min
i=1,...,L

(∑
j∈ℵi
|Γij| max |λij|
2γ|Vi|

)−1

(4)

where 0 < γ ≤ 1 and λij are the eigenvalues of matrix Aij (see Appendix
A).

In order to deal with wet-dry transitions, we have used the modification
of the numerical scheme described in [27] for the one dimensional case and
we have extended it to 2D.

The resulting scheme is exactly well-balanced for the stationary water at
rest solution (q1 = q2 = 0 and µ1 and µ2 constant), that is, it solves exactly
this stationary solution. Moreover, the scheme is able to approximate accu-
rately the stationary solutions corresponding to q1 = q2 = 0 , µ1 constant
and ∂xµ2 < tan(α) and ∂yµ2 < tan(α), that is an stationary water at rest so-
lution for which the Coulomb friction term balances the pressure term in the
granular material. In fact, this last property is critical to simulate landslides
accurately.

9

4. Load Balancing Algorithms

The row-block domain decomposition is the partitioning method which
we have used in this work because of its simplicity and its straightforward
implementation. However, as stated in Section 1, if there is a high variation
in the amount of wet and dry zones among the subdomains, it may affect
the obtained efficiency due to the unbalanced computational load among the
different subdomains. Next, we describe two load balancing algorithms which
we have developed to overcome this issue.

4.1. Static Load Balancing

The SLB algorithm may be useful in simulations with little variations
of wet and dry zones during the simulation, since the domain partition is
performed only once in a preprocessing step.

In this algorithm, firstly we assign four weights corresponding to a wet
or dry edge, and a wet or dry cell. An edge (similarly for cells) is wet if
h1 > 0 or h2 > 0 for at least one of its adjacent volumes. The values of
these weights depend on the graphics card, and they are independent of
the simulated problem. These weights are obtained experimentally based
on the computational demand of the processing of the edges and volumes.
Specifically, we run a particular test problem with a fixed time step, and we
measure the runtimes of the processing of the edges and volumes. Next, we
set both layers to zero and repeated the same procedure. Finally, the relative
weights of the processing of edges and volumes are assigned.

Once the previous weights are determined, using the initial state we get
the total weight ωi for each row i of the spatial mesh, where ωi is computed
by adding the weights of all the vertical edges, the volumes and the lower
horizontal edges of the row i (see Figure 3a). Finally, the domain decompo-
sition is performed by adding consecutive rows to a particular submesh until
the ideal weight of a submesh is reached.

Note that, if the submeshes are big enough, the influence of the upper
horizontal edges of the first row of every submesh, which are not taken into
account, is negligible. Figure 3b shows an example of application of the SLB
algorithm to a spatial domain, where it can be seen that the upper submesh
is bigger than the others because it has a very small wet area.

4.2. Dynamic Load Balancing

The DLB algorithm is an extension of the SLB algorithm in order to be
useful in problems with high variations of wet and dry zones during the sim-

10

(a) (b)

Figure 3: SLB algorithm: (a) Computation of weight ωi for each row. (b) Example of
application of the SLB algorithm to a spatial domain.

ulation. Basically, in this case we check a balancing condition every certain
number of iterations and, if this condition fulfills, we perform a redistribution
of the rows among the submeshes in the same way as in the SLB algorithm.
We define the balancing condition as the existence of at least one submesh s
that satisfies: ∣∣∣∣1− Ωs

ΩI

∣∣∣∣ > d (5)

being Ωs the weight of the submesh s, ΩI its ideal weight, and d a given
threshold. That is, if the deviation of the weight of a submesh with respect
to its ideal weight is greater than d, a redistribution of the rows among the
submeshes is performed. Section 5.2 gives some details about the implemen-
tation of the load balancing algorithms.

The number of iterations between two consecutive checks of the balancing
condition and the value of the d threshold should be chosen carefully, and
their appropriate values depend on the features of the particular problem.
For example, if the dry areas become flooded in a fast way, you may want
to check the balancing condition more often than if the inundation advanced
slowly.

5. Implementation Details

5.1. One GPU Implementation

In this section we describe the most important aspects of the implemen-
tation of the numerical scheme presented in Section 3 that we have carried

11

Figure 4: Parallel CUDA implementation.

out using the CUDA framework. The general steps of the parallel implemen-
tation are shown in Figure 4. Each step executed on the GPU is assigned to
a CUDA kernel. Next we describe each step of the algorithm:

• Build finite volume mesh: In this step the main data structure
which will be used in GPU is built. For each volume Vi we store its
state and depth H in two arrays of float4 elements, where the size
of both arrays is the number of volumes. The first array contains h1,
q1,x, q1,y and H, whereas the second array contains h2, q2,x and q2,y.
Since a structured mesh has a regular spatial pattern, both arrays can
be accessed in a coalesced way and, therefore, they are stored in global
memory [28]. Figure 5 depicts the format of these arrays.

The area of the volumes and the length of the edges are precalculated

12

�����������

������

���� ����

���	 ���
��

���	 ���
�� ���� ���
����	

����
�

Figure 5: Main data structure used in GPU.

and passed directly to the CUDA kernels that need them.

We can know at runtime if an edge or volume is located at the frontier
of the spatial domain and which is the value of the normal ηij of an
edge by checking the position of the thread in the grid.

• Process edges: In this step, each thread represents an edge and com-
putes the contribution of the edge to its adjacent volumes. If the two
adjacent volumes of the edge do not contain any layer (h1 ≃ 0 and
h2 ≃ 0), the thread finishes without processing the edge. In this imple-
mentation we follow a similar approach to that of we applied in [10] and
[8], where the edge processing was divided into horizontal and vertical
edge processing, allowing some terms of the numerical calculation to
be removed and thus improving the efficiency.

The edges synchronize each other when contributing to a particular
volume by means of two arrays (accumulators) of float4 elements in
global memory. The size of each accumulator is the number of volumes.
The meaning and functionality of these accumulators is similar to that
of used in [10]. Each element of the first accumulator stores the con-
tribution of the edges to the layer 1 of Wi (a 3 × 1 vector) and to the
local ∆t of the volume (a float value), whereas each element of the
second accumulator stores the contributions of the edges to the layer 2
of Wi (a 3× 1 vector).

Note that the division of the edge processing into four kernels (process-
ing of even horizontal edges, odd horizontal edges, even vertical edges
and odd vertical edges) has allowed us to use only two accumulators
instead of the four accumulators which were used in [10], thus reducing
the memory requirements.

• Get W n+1
i and ∆ti for each volume: In this step, each thread

13

represents a volume and obtains the next state W n+1
i and the local ∆ti

of the volume Vi by using the values stored in the position associated
with the volume Vi of the two accumulators.

• Get minimum ∆t: In this step the minimum of all the local ∆ti
values of the volumes is obtained by applying a reduction algorithm in
GPU, in the same way as we did in [10] and [8].

We assign sizes of 48 KB and 16 KB to the L1 cache and to the shared
memory of the GPU, respectively, for all the edge processing kernels. Thread
block size is 8×8 = 64 threads for the edge processing kernels and the kernel
which obtains the next state W n+1

i .

5.2. Multi-GPU Implementation

In this section we describe an extension of the CUDA implementation
explained in Section 5.1 so that it can exploit efficiently a GPU cluster.
Basically we perform a row-block decomposition of the volume mesh taking
into account the load balancing algorithms described in Section 4, and each
submesh is assigned to a CPU process, which in turn uses a GPU to carry
out the computations associated to its submesh. We use MPI [12] for the
communication between the processes. Hereafter, we will use the submesh
term to refer either the submesh or its associated CPU process.

5.2.1. Creation of the Submesh Data

In order to create the submeshes we perform by default an equitable
partition of the domain by creating disjoint blocks of consecutive rows. If
the problem is suitable to take advantage of the SLB algorithm described in
Section 4.1, we perform the partition by applying this algorithm, which is
fully implemented in CPU since it is executed only once at the beginning.

An edge of a submesh is a communication edge if its two adjacent volumes
belong to different submeshes. A communication volume is a volume which
has, at least, a communication edge. Note that each submesh, in order to
process its communication edges, also needs to store the data of the commu-
nication volumes of its neighbouring submeshes. Therefore, at each iteration
of the process, each submesh will have to send its communication volumes to
its neighbouring submeshes. Figure 6 shows a partition example of a 8 × 12
mesh into 3 submeshes of size 8 × 4, where the sendings that are performed
at each iteration are also indicated.

14

Figure 6: Example of data distribution among the submeshes using a 8 × 12 mesh. The
ghost cells are noted in grey and the sendings performed at each iteration are noted with
arrows.

We also impose that all the submeshes, but not necessarily the last, have
an even number of rows, so that the edges are always processed globally in
the same order regardless of the number of submeshes.

All the submeshes use the same data structures in GPU to store the data
of their local volumes and edges, which were described in Section 5.1.

5.2.2. Multi-GPU Code

As we did in [17] for triangular meshes, we have implemented a multi-
GPU algorithm which overlaps MPI communications with kernel processing
and memory transfers between host and device. We use the host term to
specify the CPU and its memory, while device refers to the GPU and its
memory.

Algorithm 1 shows the general steps of the algorithm, in which the DLB
algorithm is executed at every iteration for the sake of simplicity. We suppose
that there are n submeshes numbered from 0 to n−1, where the submesh 0 is
at the top. First of all, lines 1 and 2 get the local ∆t of each submesh and the
global initial ∆t of all the submeshes applying MPI reduction, respectively.
Line 4 evaluates the condition given by Equation (5) for the current submesh,

15

and line 5 performs a reduction to check if at least one submesh satisfies this
condition. If so, in line 7 the load balancing is carried out.

If no load balancing is performed at the current iteration, in lines 12–17
all the submeshes initiate the reception of the communication volumes from
their adjacent submeshes by calling non-blocking MPI functions. Lines 18–19
copy from device to host the new states of the communication volumes ob-
tained in the previous iteration. In lines 20–25 all the submeshes send their
communication volumes to their adjacent submeshes. In lines 26–28 the ver-
tical edges and the non-communication even horizontal edges are processed,
since they do not need external data to be processed. In lines 29–34 all the
submeshes wait for the communication volumes of their adjacent submeshes
to arrive and, once they have arrived, in lines 35–36 they are copied to de-
vice. In line 37 only the even horizontal communication edges are processed
by launching a specific kernel.

Note that the reception of the communication volumes from the adjacent
submeshes (lines 12–17) could overlap with the memory transfers from device
to host of the new states of the volumes (lines 18–19) and also with the pro-
cessing of all the vertical edges and the even horizontal non-communication
edges (lines 26–28). The sending of the communication volumes to the ad-
jacent submeshes (lines 20–25) could also overlap with the edge processing
performed in lines 26–28.

Finally, in line 39 the remaining edge processing kernel are executed for
each submesh. Next, the state of the volumes of each submesh is updated
and a new global time step ∆t is computed.

Also note that, if the load balancing is performed, we do not need to
exchange the communication volumes with the adjacent submeshes because
a redistribution of the rows has been carried out inside the loadBalancing

function of line 7. Next section gives more details about the load balancing
implementation.

5.2.3. Load Balancing Code

Algorithm 2 shows the main steps of the checkLoadBalancing routine.
We have four edge processing kernels (lines 1–4) to compute the weight of
the submesh. The partial weight computed by each edge is stored in an ac-
cumulator of float elements in global memory, whose size is the number of
volumes of the submesh. Line 5 performs a GPU reduction on the accumu-
lator to get the weight Ωs of the submesh, line 6 obtains the total weight of
the global mesh, and finally, in lines 7 and 8 the condition given by Equation

16

Algorithm 1 Multi-GPU

1: ∆t← getInitialDeltaT(. . .)
2: MPI Allreduce(∆t, min∆t, . . .)
3: while (t < tend) do
4: balance submesh = checkLoadBalancing(. . .)
5: MPI Allreduce(balance submesh, balance, . . .)
6: if (balance) then
7: loadBalancing(. . .)
8: processEvenVerticalEdges<<<grid, block>>>(. . .)
9: processOddVerticalEdges<<<grid, block>>>(. . .)
10: processEvenHorizontalEdges<<<grid, block>>>(. . .)
11: else
12: if (submesh > 0) then
13: MPI Irecv(Layers 1 and 2 of the lower comm. volumes of the upper submesh)
14: end if
15: if (submesh < n− 1) then
16: MPI Irecv(Layers 1 and 2 of the upper comm. volumes of the lower submesh)
17: end if
18: CudaMemcpy(Layers 1 and 2 of the upper comm. volumes from device to host)
19: CudaMemcpy(Layers 1 and 2 of the lower comm. volumes from device to host)
20: if (submesh < n− 1) then
21: MPI Isend(Layers 1 and 2 of the lower comm. volumes to the lower submesh)
22: end if
23: if (submesh > 0) then
24: MPI Isend(Layers 1 and 2 of the upper comm. volumes to the upper submesh)
25: end if
26: processEvenVerticalEdges<<<grid, block>>>(. . .)
27: processOddVerticalEdges<<<grid, block>>>(. . .)
28: processNonCommEvenHorizontalEdges<<<grid, block>>>(. . .)
29: if (submesh > 0) then
30: MPI Waitall(Comm. volumes from upper submesh)
31: end if
32: if (submesh < n− 1) then
33: MPI Waitall(Comm. volumes from lower submesh)
34: end if
35: CudaMemcpy(Layers 1 and 2 of the upper comm. volumes from host to device)
36: CudaMemcpy(Layers 1 and 2 of the lower comm. volumes from host to device)
37: processCommEvenHorizontalEdges<<<grid, block>>>(. . .)
38: end if
39: processOddHorizontalEdges<<<grid, block>>>(. . .)
40: getStateAndDeltaTVolumes<<<grid, block>>>(. . .)
41: t← t+min∆t
42: ∆t← getMinimumDeltaT(. . .)
43: MPI Allreduce(∆t, min∆t, . . .)
44: end while

17

Algorithm 2 Check load balancing

1: getWeightsEvenHorizontalEdges<<<grid, block>>>(. . .)
2: getWeightsOddHorizontalEdges<<<grid, block>>>(. . .)
3: getWeightsEvenVerticalEdges<<<grid, block>>>(. . .)
4: getWeightsOddVerticalEdges<<<grid, block>>>(. . .)
5: Ωs ← getWeightSubmesh(. . .)
6: MPI Allreduce(Ωs, total weight, . . .)
7: Ωi ← total weight/n

8: balance←
∣∣∣∣1− Ωs

Ωi

∣∣∣∣ > d

9: return balance

(5) is evaluated.
Algorithm 3 shows the general steps of the loadBalancing routine. First

of all, in lines 1–3 we apply, for each row of the submesh and using CUDA
streams, a GPU reduction on the accumulator which stores the partial weights.
Once we have the weight of all the rows, we gather all the row weights of the
global mesh in lines 4–5. Then we perform in CPU the domain partition by
applying the SLB algorithm described in Section 4.1 and get the number of
rows that must be sent and received from the lower and upper submeshes (if
any). In lines 8 and 9 we copy to the host the rows that must be sent to the
adjacent submeshes. Lines 10–15 perform the sending of the volumes, and
in lines 16–23 we receive the volumes from the adjacent submeshes and copy
them to device.

We suppose that every submesh only needs rows from its adjacent sub-
meshes. The redistribution of the rows has been implemented using blocking
MPI functions in order to keep the load balancing code independent and
easily integrable in other numerical schemes.

6. Numerical Results

In this section we analyze the efficiency of the CUDA and multi-GPU
implementations described in Section 5. For the multi-GPU implementa-
tion, we also study the influence on the obtained runtimes and scalability of
the SLB and DLB algorithms by using several test problems with different
amounts of wet and dry zones. Finally, the numerical scheme is validated by
simulating the Lituya Bay tsunami.

18

Algorithm 3 Load balancing

1: for i in 1 . . . nrows submesh do
2: ωi ← getWeightRow(i, . . .)
3: end for
4: MPI Allgather(Number of rows of all the submeshes)
5: MPI Allgatherv(Vector of row weights of all the submeshes)
6: Apply SLB algorithm
7: Compute the number of rows to send/receive to/from adjacent submeshes
8: CudaMemcpy(Layers 1 and 2 of the upper volumes from device to host)
9: CudaMemcpy(Layers 1 and 2 of the lower volumes from device to host)
10: if (submesh > 0) and (nrows to upper > 0) then
11: MPI Bsend(Layers 1 and 2 of the upper volumes to the upper submesh)
12: end if
13: if (submesh < n− 1) and (nrows to lower > 0) then
14: MPI Bsend(Layers 1 and 2 of the lower volumes to the lower submesh)
15: end if
16: if (submesh > 0) and (nrows from upper > 0) then
17: MPI Recv(Layers 1 and 2 of the lower volumes of the upper submesh)
18: CudaMemcpy(Layers 1 and 2 of the upper volumes from host to device)
19: end if
20: if (submesh < n− 1) and (nrows from lower > 0) then
21: MPI Recv(Layers 1 and 2 of the upper volumes of the lower submesh)
22: CudaMemcpy(Layers 1 and 2 of the lower volumes from host to device)
23: end if

6.1. One GPU

In this section we analyze the efficiency of the CUDA implementation
described in Section 5.1 for one GPU using a test problem consisting of
an internal circular dam break in the [−5, 5] × [−5, 5] domain. The depth
function is given by H(x, y) = 5 and the initial conditions are:

W 0
i (x, y) =

(
h1(x, y), 0, 0, h2(x, y), 0, 0

)T
, i = 1, . . . , L. (6)

where

h1(x, y) =

{
4.0 if

√
x2 + y2 > 1.5

0.5 otherwise
, h2(x, y) = H(x, y)− h1(x, y)

The ratio of densities is r = 0.5, CFL parameter is γ = 0.9 and simulation
time is 4 seconds. The Coulomb angle is α = 12◦ and the friction parameters

19

(a) (b)

Figure 7: Initial state of the artificial test problems: (a) Dam break, (b) Wet-dry.

Volumes Iterations GTX Titan Black MVols/s

100 × 100 652 0.096 67.9
200 × 200 1315 0.38 139.2
400 × 400 2647 1.98 214.3
800 × 800 5322 13.90 245.0
1600 × 1600 10693 107.62 254.4
2400 × 2400 16075 366.28 252.8
3200 × 3200 21463 862.12 254.9

Table 1: Number of iterations performed, execution times in seconds and millions of
volumes processed per second for the dam break test.

are mf = 0.02, n1 = 0.02 and n2 = 0.05. We consider wall boundary
conditions (q1 · η = 0, q2 · η = 0). Figure 7a shows the initial state.

The CUDA program was executed using a GeForce GTX Titan Black.
Table 1 shows the number of iterations performed, the runtimes in seconds
and the millions of volumes processed per second for all the mesh sizes. Fig-
ure 8 shows graphically the GFLOPS and GB/s, obtained using the nvprof
utility, for the two main kernels. Theoretical maximums for the GTX Ti-
tan Black are 5.1 TFLOPS in single precision and 336 GB/s. We can see
that both kernels have reached approximately half the maximum theoretical
bandwidth, and the edge and volume processing kernels have achieved about
570 and 850 GFLOPS, respectively. The CUDA implementation has also
been able to process up to 254 millions of volumes per second.

20

(a) (b)

Figure 8: GFLOPS and GB/s reached for the two main kernels in the dam break test
problem: (a) GFLOPS, (b) GB/s.

6.2. Multi-GPU

In this section we analyze the strong and weak scalability [29] obtained
with the multi-GPU distributed implementation described in Section 5.2 for
several real and artificial examples. In order to measure the strong scalability,
the number of GPUs is increased keeping constant the global problem size
(in our case, we consider the number of volumes to specify the problem size),
whereas the weak scalability is studied by increasing the global problem size
so that the problem size per GPU remains constant.

The multi-GPU implementation has been executed, for all the real and
artificial test problems, on the Picasso supercomputer located at the Super-
computing and Bioinnovation Center (SCBI) of the University of Málaga.
This cluster is formed by 16 nodes, where each node has two Intel Xeon E5-
2670 processors, 64 GB of RAM memory and two Tesla M2075 cards. The
nodes are interconnected by an InfiniBand FDR network [30]. We have used
up to 24 GPUs of this cluster to perform the experiments.

In the load balancing algorithms (see Section 4), we have obtained the
weights of a wet/dry edge and a wet/dry volume by considering the dam
break test problem presented in Section 6.1 with the 3200 × 3200 mesh. Us-
ing a Tesla M2075 we have obtained the following weights for our distributed
solver: 1.0 and 0.44 for a wet and dry edge, respectively, and 0.98 and 0.74
for a wet and dry volume, respectively.

21

6.2.1. Artificial Problems

We consider two artificial test problems:

• Dam break : The dam break example used in Section 6.1.

• Wet-dry : This test is also defined in the [−5, 5]× [−5, 5] interval. Ini-
tially layer 1 exists in the 60 % of the domain, and layer 2 exists in
the 15 % of the domain. Figure 7b shows the initial state. The depth
function is:

H(x, y) =

{
1.0 if x < −1.0
6.0− e−(x−2)2−y2 otherwise

The initial conditions are given by (6), where

h2(x, y) =

{
2.0− e−(x−2)2−y2 if − 1.0 ≤ x ≤ 0.5
0.0 otherwise

,

h1(x, y) =

{
4.0− e−(x−2)2−y2 − h2(x, y) if x ≥ −1.0
0.0 otherwise

For both tests problems, the ratio of densities is r = 0.5, CFL parameter
is γ = 0.9, Coulomb angle is α = 12◦ and friction parameters are mf = 0.02,
n1 = 0.02 and n2 = 0.05. We consider wall boundary conditions (q1 · η = 0,
q2 · η = 0).

The strong and weak scalabilities are also measured with and without the
SLB algorithm for the wet-dry test problem rotated 90 degrees with respect
to the z axis in order to study the influence of the distribution of the wet and
dry zones among the submeshes and the effectiveness of the SLB algorithm.

For measuring the strong scalability, we have considered 1, 2, 4, 8, 12, 16,
20 and 24 GPUs. In order to guarantee that all the submeshes have the same
number of rows, we set the total number of rows to be 3360 in all the cases.
The mesh sizes considered are 2000 × 3360, 4000 × 3360 and 8000 × 3360.
The simulation time is 20 seconds.

For measuring the weak scalability, we have also considered 1, 2, 4, 8,
12, 16, 20 and 24 GPUs. For all the test problems, we analyze the obtained
scalability when assigning one million of volumes per GPU. The simulation
time is also 20 seconds.

22

(a) (b)

(c) (d)

Figure 9: Strong scalability for all the artificial test problems: (a) Dam break, (b) Wet-dry,
(c) Wet-dry rotated 90◦, (d) Wet-dry rotated 90◦ with and without SLB.

Figure 9 is associated with the strong scalability and it represents the
evolution of the speedup with respect to one GPU when increasing the num-
ber of GPUs for all the mesh sizes and examples. As we can see, in general,
the bigger the mesh size, the better the speedup, because for small meshes
the GPUs are not fully exploited and MPI communications have a greater
impact in the execution time than with bigger meshes. In the dam break
and wet-dry test problems, we have obtained a scalability close to linear for
the two biggest meshes using up to 24 GPUs because all the submeshes have
a similar computational load. However, in the rotated wet-dry problem, we
have reached a notably worse strong scalability as expected, since some sub-
meshes have different amounts of wet and dry zones than other submeshes.
When applying the SLB algorithm to the two biggest meshes in the rotated

23

(a)

(b)

Figure 10: Minimum and maximum runtimes in seconds of the processing of edges and
volumes for all the MPI processes using the mesh of 13.440.000 volumes for the rotated
wet-dry test problem: (a) Without the SLB algorithm, (b) With the SLB algorithm.

wet-dry test problem, in both cases the runtimes have reduced up to a 17 %
(see Table 2 for a detailed percentage of reduction using the biggest mesh)
and the speedup with respect to one GPU has improved up to a 20 %.

In order to make it clear the benefits of the SLB algorithm, in Figure
10 we depict the minimum and maximum runtime of the processing of edges
and volumes for all the MPI processes using the rotated wet-dry test problem
and the medium mesh with and without the SLB algorithm. When applying
this algorithm, the computational load becomes much better balanced in all
the cases.

In the dam break test problem we have been able to process approximately
1900 millions of volumes per second using the largest mesh and 24 GPUs (see

24

(a)

(b)

Figure 11: Execution times in seconds using the mesh of 26.880.000 volumes for all the
artificial test problems: (a) Dam break and wet-dry, (b) Wet-dry rotated 90◦ with and
without the SLB algorithm.

Figure 16). Finally, Figure 11 shows the execution times for all the artificial
test problems and number of GPUs with the mesh size of 8000×3360 volumes.

Figure 12, for its part, is associated with the weak scalability and it rep-
resents the evolution of the efficiency when increasing the number of GPUs
keeping constant the number of volumes per GPU. As it happens with the
strong scalability, we have obtained rather similar weak scalability behaviour
for the dam break and wet-dry test problem for up to 24 GPUs (approxi-
mately efficiency values of 0.94–0.95 using one million of volumes per GPU).
In the rotated version of the wet-dry example, nevertheless, the scalability
drops significantly again because of the uneven distribution of the wet and
dry zones among the submeshes, obtaining efficiencies of 0.78–0.79. When

25

Figure 12: Weak scalability for all the artificial test problems using one million of volumes
per GPU.

Number of GPUs
Runtime reduction (%)

Wet-dry rot Sumatra Lituya 2x5m

2 15.0 7.1 3.3
4 14.5 10.2 7.9
8 15.2 10.9 6.6
12 13.8 10.7 8.2
16 16.6 10.8 8.7
20 13.9 8.0 4.9
24 12.7 4.6 4.4

Table 2: Percentage of runtime reduction when applying the load balancing algorithms.

applying the SLB algorithm to this example, the efficiency has improved
notably reaching 0.92–0.93.

6.2.2. Real Problems

In order to study the performance of the solver when applied to realistic
scenarios, we have considered two test problems using real data:

• Tsunami simulation in Sumatra: This example simulates a paleot-
sunami occurred in 1797 in Sumatra. The tsunami is generated by
a submarine landslide near the Siberut island. The topographic and
bathymetric data have been provided by the Institut de Physique du
Globe of Paris. The mesh size is 2410×3092 volumes with a resolution
of 22 meters.

26

(a)

(b)

Figure 13: Tsunami simulations using real data: (a) Sumatra, 2 min. (b) Lituya Bay, 1
min.

The ratio of densities is r = 0.4, CFL parameter is γ = 0.8, Coulomb
angle is α = 10◦ and friction parameters are mf = 10−4, n1 = 0.05 and
n2 = 0.4. We consider open boundary conditions. The simulation time
is 40 minutes. Figure 13a shows an image of the simulation.

• Tsunami simulation in Lituya Bay : This example simulates the tsunami
occurred on July 9, 1958 in Lituya Bay, Alaska. In this case, the
tsunami is generated by a subaerial landslide. The topographic and
bathymetric data are taken from several sources (digital elevation mod-
els from the Shuttle Radar Topography Mission, and data from two

27

(a) (b)

Figure 14: Strong scalability for all the real test problems: (a) Sumatra, (b) Lituya Bay.

oceanographic campaigns of the NOAA’s National Geophysical Data
Center). We have also performed a data reconstruction process in order
to represent the Gilbert Inlet bathymetry before the event. For this test
problem, we use two different meshes: a small mesh of 3650 × 1271 =
4.639.150 volumes with a resolution of 4× 7.5 m2, and a large mesh of
7301× 1907 = 13.923.007 volumes with a resolution of 2× 5 m2.

The ratio of densities is r = 0.44, CFL parameter is γ = 0.9, Coulomb
angle is α = 13◦ and friction parameters are mf = 0.08, n1 = 0.002
and n2 = 0.05. We consider open boundary conditions. The simulation
time is 12 minutes. Figure 13b shows an image of the simulation using
the small mesh.

We have executed the Sumatra test with and without the SLB algorithm,
and the Lituya Bay test with and without the DLB algorithm since there is
a significant inundation of the coastal areas in this last test. Specifically, the
wet zone occupies the 24 % of the domain at the initial state, and it reaches a
maximum of 37 %. In the DLB algorithm, we check the balancing condition
every 1000 iterations and d = 5%.

Figure 14 shows graphically the obtained strong scalability for both test
problems using up to 24 GPUs, and Figure 15 shows the execution times.
In the Sumatra example, as expected, we have reached better speedup with
respect to one GPU in all the cases by using the SLB algorithm than with
the trivial domain decomposition. In particular, the runtimes have reduced
up to a 11 % (see Table 2), and the speedup over one GPU has improved

28

(a)

(b)

Figure 15: Execution times in seconds for all the real test problems: (a) Sumatra, (b)
Lituya Bay.

up to a 12 %. Using 24 GPUs, we have achieved speedups of approximately
20 and 19 with and without the SLB algorithm, respectively, with respect to
one GPU.

About the Lituya Bay example, like in the artificial test problems, we have
obtained better strong scalability with the largest mesh. When applying the
DLB algorithm, the runtimes have reduced up to a 9 % (see Table 2) and
the speedup over a single GPU has augmented up to a 10 % for the biggest
mesh. We have reached an approximate speedup of 19 and 18 with and
without the DLB algorithm, respectively, with respect to one GPU using
the biggest mesh and 24 GPUs. The overhead introduced by the DLB has
represented at most the 0.2 % of the total runtime. Better results may be
expected in problems which present even higher variations of the wet and

29

Figure 16: Millions of volumes processed per second for some test problems.

dry zones among the subdomains during the simulation.
In Figure 16 we can see that, in the dam break and the Sumatra problems,

it have been processed approximately 1900 millions of volumes per second
using 24 GPUs, while in the Lituya Bay example we have been able to process
2200 millions of volumes per second due to the big dry area of the domain.

6.2.3. The Lituya Bay Tsunami

In this section we carry out a validation of the numerical scheme described
in Section 3 by simulating the Lituya Bay tsunami, introduced in Section
6.2.2, and comparing the obtained results with the real field data.

A magnitude 8.3 earthquake in Alaska on July 9, 1958, triggered a land-
slide in Gilbert Inlet which caused the largest tsunami ever recorded. The
upper limit of destruction of forest by water (known as trimline) extended
up to 524 meters above mean sea level, and the water reached a maximum
distance of 1100 meters in from the shoreline at Fish Lake. See [31] for a
more detailed description of the tsunami.

The two meshes used in Section 6.2.2 for this test problem provide similar
results. Therefore, here we only show the results with the small mesh.

The input parameters were cited in Section 6.2.2. In order to find the
optimal values for the ratio of densities, the Coulomb angle and the friction
parameters, many executions have been carried out so that the obtained
results were as close as possible to the real field data.

In general, there is a good agreement between the obtained impact times,
wave heights and trimlines with the real measures described in [31]. Figure

30

(a)

(b)

Figure 17: Validation of the numerical scheme using the Lituya Bay tsunami: (a) Maxi-
mum run-up of 523.9 meters, (b) Real trimline (in pink) and maximum wave heights.

17a shows a screenshot of the simulation corresponding to the maximum
run-up of 523.9 meters achieved in Gilbert Inlet at 39 seconds. Figure 17b
depicts the real trimline taken from [31] along with the flooded areas and
wave heights reached with the simulation. We can see that the trimline is
well adjusted in Gilbert Inlet, the east area of the north shore, The Paps,
the Cenotaph island, La Chausse Spit and the south coast in front of it.
The water also reaches more than 1100 meters in from the shoreline at Fish
Lake. Note also that the water breaks through the Cenotaph island opening
a narrow channel as described in [31]. Figure 18 shows closer views for the
Gilbert Inlet and the Cenotaph island. However, in the flat zones of Fish

31

(a) (b)

Figure 18: Closer view of maximum run-up and the real trimline in red: (a) Gilbert Inlet,
(b) Cenotaph island.

Lake and the east of The Paps in the south shoreline there is a worse fit
of the trimline, probably because it would be necessary to consider different
friction coefficients depending on the type of vegetation. See [32] for more
details about this numerical simulation.

7. Conclusions

In this paper we have proposed a 2D IFCP numerical scheme based on a
first order two-layer Savage-Hutter type model to simulate tsunamis gener-
ated by submarine landslides. A multi-GPU implementation over structured
meshes which uses overlapping techniques to improve the efficiency has been
developed and tested using several artificial and real problems. The results
show good strong and weak scalability in problems with equitable compu-
tational load among the subdomains using up to 24 GPUs. The numerical
scheme has also been validated using the Lituya Bay tsunami, showing that
the obtained results are comparable to the real field data.

We have also proposed a static and a dynamic load balancing algorithm
which are useful in problems where a trivial row-block domain decomposition
provides an unbalanced computational load due to different amount of wet
and dry areas among the submeshes. These load balancing algorithms have
been integrated in the multi-GPU solver and have allowed us to improve
the speedup with respect to one GPU up to a 12 % in some real problems.
Better results may be expected if the variations of wet and dry zones are

32

even higher, such as big landslides and inundations.

Appendix A. Definition of the 1D numerical fluxes

In this section we describe the 1D numerical fluxes Φ±
ηij

and Φ±
η⊥
ij

cor-

responding to the 1D projected Riemann problem associated to edge Γij.

The following notation is used here: Wηij
=
[
h1 q1,ηij

h2 q2,ηij

]T
=(

Tηij
W
)
[1,2,4,5]

, and Wηij
⊥ =

[
q1,η⊥

ij
q2,η⊥

ij

]T
=
(
Tηij

W
)
[3,6]

, where W[i1,...,is]

is the vector defined from W taking its components i1, . . . , is.

Appendix A.1. Definition of Φ±
ηij

Φ±
ηij

corresponds to the IFCP numerical flux applied to 1D two-layer
shallow-water system and it is defined as follows:

Φ−
ηij

=
1

2

(
Rij −

(
α0Ĩ

τ
ij + α1R

τ
ij + α2AijR

τ
ij

))
+ FQ(Wηij ,i) ,

Φ+
ηij

=
1

2

(
Rij +

(
α0Ĩ

τ
ij + α1R

τ
ij + α2AijR

τ
ij

))
− FQ(Wηij ,j) , (A.1)

where the coefficients αk, k = 0, 1, 2 are defined in terms of the eigenvalues
of the 1D two-layer shallow-water system following [26].

Here, the matrix Aij is defined by

Aij =


0 1 0 0

gh1,ij −
(
u1,ηij

)2
2u1,ηij

gh1,ij 0

0 0 0 1

rgh2,ij 0 gh2,ij −
(
u2,ηij

)2
2u2,ηij

 (A.2)

with

ul,ηij
= (ul,ij,x ul,ij,y) · ηij, ul,ij,α =

√
hl,i ul,i,α +

√
hl,j ul,j,α√

hl,i +
√
hl,j

,

and

hl,ij =
hl,i + hl,j

2
, l = 1, 2, α = x, y.

33

FQ(Wηij
) is given by

FQ(Wη) =

(
q1,η

q21,η
h1

q2,η
q22,η
h2

)T

.

Ĩτij is defined by

Ĩτij =



Ĩij if |h2,ij u2,ηij
| > ∆t σc

ij
µ1,j − µ1,i

q1,j,η − q1,i,η
0

q2,j,η − q2,i,η

 =


∆ijµ1

∆ijq1,η
0

∆ijq2,η

 otherwise

with σc
ij = g(1− r)h2,ij tan(α) and

Ĩij =
(
∆ijµ1 −∆ijµ2 ∆ijq1,η ∆ijµ2 ∆ijq2,η

)
where ql,i,η, l = 1, 2, is the value of ql,η in Vi, and µl,i, l = 1, 2, is the value of
µl in Vi, with µ1 = h1 + h2 −H and µ2 = h2 −H.

Rij is defined by

Rij = FQ(Wηij ,j)− FQ(Wηij ,i) + Pij,

where

Pij =
(
0 gh1,ij∆ijµ1 0 gh2,ij

(
r∆ijµ1 + (1− r)∆ijµ2

))T
and finally, Rτ

ij is defined by:

Rτ
ij =

{
Rij if |h2,ij u2,ηij

| > ∆t σc
ij

FQ(Wηij ,j)− FQ(Wηij ,i) + P ∗
ij otherwise

where

P ∗
ij =

(
0 gh1,ij∆ijµ1 0 rgh2,ij∆ijµ1

)T
.

34

Appendix A.2. Definition of Φ±
η⊥
ij

As in the one-layer and the two-layer shallow-water system, ql,η⊥ , l = 1, 2,
behaves as a passive scalar that is transported by ul,η, l = 1, 2. Using
this fact, we could define the following numerical flux for the two transport
equations:

Φ±
η⊥
ij

= ∓
[(

Φ−
ηij

)
[1]
u∗
1,η⊥

ij

(
Φ−

ηij

)
[3]
u∗
2,η⊥

ij

]T
, where u∗

k,η⊥
ij

is defined as

follows:

u∗l,η⊥
ij
=


ql,i,η⊥

ij

hl,i
if
(
Φ−

ηij

)
[2l−1]

> 0

ql,j,η⊥
ij

hl,j
otherwise

, l = 1, 2.

Acknowledgements

This work has been partially supported by FEDER and the Spanish and
Andalusian research projects MTM2012-38383-C02-01, MTM2014-52056-P,
P11-RNM7069 and P11-FQM8179, and the BSC project FI-2012-2-0004.
The authors also thank J. M. González, J. Maćıas and C. Sánchez for their
work in the Lituya Bay tsunami problem.

References

[1] P. Heinrich, A. Piatanesi, H. Hébert, Numerical modelling of tsunami
generation and propagation from submarine slumps: The 1998 Papua
New Guinea event, Geophysical Journal International 145 (2001) 97–
111.

[2] E. D. Fernández-Nieto, F. Bouchut, D. Bresch, M. J. Castro, A. Man-
geney, A new Savage-Hutter type model for submarine avalanches and
generated tsunami, Journal of Computational Physics 227 (2008) 7720–
7754.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, K. Skadron, A
performance study of general-purpose applications on graphics proces-
sors using CUDA, Journal of Parallel and Distributed Computing 68
(2008) 1370–1380.

35

[4] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, J. C.
Phillips, GPU computing, Proceedings of the IEEE 96 (2008) 879–899.

[5] NVIDIA, CUDA C Programming Guide,
http://docs.nvidia.com/cuda/index.html, Accessed February 2016.

[6] Khronos OpenCL Working Group, The OpenCL Specification,
http://www.khronos.org/opencl, Accessed February 2016.

[7] J. Fang, A. L. Varbanescu, H. Sips, A comprehensive performance com-
parison of CUDA and OpenCL, in: 40th International Conference on
Parallel Processing (ICPP 2011), Taipei (Taiwan), pp. 216–225.

[8] M. de la Asunción, J. M. Mantas, M. J. Castro, Simulation of one-layer
shallow water systems on multicore and CUDA architectures, Journal
of Supercomputing 58 (2011) 206–214.

[9] A. R. Brodtkorb, M. L. Sætra, M. Altinakar, Efficient shallow water
simulations on GPUs: Implementation, visualization, verification, and
validation, Computers & Fluids 55 (2012) 1–12.

[10] M. de la Asunción, J. M. Mantas, M. J. Castro, Programming CUDA-
based GPUs to simulate two-layer shallow water flows, in: P. D’ambra,
M. Guarracino, D. Talia (Eds.), Euro-Par 2010, volume 6272 of Lecture
Notes in Computer Science, Springer, 2010, pp. 353–364.

[11] M. J. Castro, S. Ortega, M. de la Asunción, J. M. Mantas, J. M. Gal-
lardo, GPU computing for shallow water flow simulation based on finite
volume schemes, Comptes Rendus Mécanique 339 (2011) 165–184.

[12] Message Passing Interface Forum: A Message Passing Interface Stan-
dard, University of Tennessee, Knoxville, Tennessee.

[13] M. A. Acuña, T. Aoki, Real-time tsunami simulation on a multi-node
GPU cluster, ACM/IEEE Conference on Supercomputing 2009 (SC
2009) [Poster], Portland (USA), November 2009.

[14] W. Xian, A. Takayuki, Multi-GPU performance of incompressible flow
computation by Lattice Boltzmann method on GPU cluster, Parallel
Computing 37 (2011) 521–535.

36

[15] P. Castonguay, D. M. Williams, P. E. Vincent, M. López, A. Jameson,
On the development of a high-order, multi-GPU enabled, compressible
viscous flow solver for mixed unstructured grids, in: 20th AIAA Com-
putational Fluid Dynamics Conference, Honolulu (USA).

[16] M. Viñas, J. Lobeiras, B. B. Fraguela, M. Arenaz, M. Amor, J. A.
Garćıa, M. J. Castro, R. Doallo, A multi-GPU shallow-water simula-
tion with transport of contaminants, Concurrency and Computation:
Practice and Experience 25 (2012) 1153–1169.

[17] M. de la Asunción, J. M. Mantas, M. J. Castro, E. D. Fernández-Nieto,
An MPI-CUDA implementation of an improved Roe method for two-
layer shallow water systems, Journal of Parallel and Distributed Com-
puting, Special Issue on Accelerators for High-Performance Computing
72 (2012) 1065–1072.

[18] D. A. Jacobsen, I. Senocak, Multi-level parallelism for incompressible
flow computations on GPU clusters, Parallel Computing 39 (2013) 1–20.

[19] M. Geveler, D. Ribbrock, S. Mallach, D. Göddeke, A simulation suite for
Lattice-Boltzmann based real-time CFD applications exploiting multi-
level parallelism on modern multi- and many-core architectures, Journal
of Computational Science 2 (2011) 113–123.

[20] S. Rostrup, H. D. Sterck, Parallel hyperbolic PDE simulation on clus-
ters: Cell versus GPU, Computer Physics Communications 181 (2010)
2164–2179.

[21] A. R. Brodtkorb, M. L. Sætra, Shallow water simulations on multiple
GPUs, in: PARA 2010: State of the Art in Scientific and Parallel
Computing, Reykjavik (Iceland).

[22] S. Blaise, A. St-Cyr, A dynamic hp-adaptive discontinuous Galerkin
method for shallow-water flows on the sphere with application to a global
tsunami simulation, Monthly Weather Review 140 (2012) 978–996.

[23] R. V. Dorneles, R. L. Rizzi, A. L. Martinotto, D. Picinin, P. O. A.
Navaux, T. A. Diverio, Parallel computational model with dynamic
load balancing in PC clusters, in: M. Daydé, J. Dongarra, V. Hernández,

37

J. M. L. M. Palma (Eds.), High Performance Computing for Computa-
tional Science - VECPAR 2004, volume 3402 of Lecture Notes in Com-
puter Science, Springer, 2005, pp. 468–479.

[24] B. F. Sanders, J. E. Schubert, R. L. Detwiler, ParBreZo: A parallel,
unstructured grid, Godunov-type, shallow-water code for high-resolution
flood inundation modeling at the regional scale, Advances in Water
Resources 33 (2010) 1456–1467.

[25] J. D. Teresco, K. D. Devine, J. E. Flaherty, Partitioning and dynamic
load balancing for the numerical solution of partial differential equations,
in: A. M. Bruaset, A. Tveito (Eds.), Numerical Solution of Partial Dif-
ferential Equations on Parallel Computers, volume 51 of Lecture Notes
in Computational Science and Engineering, Springer, 2006, pp. 55–88.

[26] E. D. Fernández-Nieto, M. J. Castro, C. Parés, On an intermediate
field capturing Riemann solver based on a parabolic viscosity matrix for
the two-layer shallow water system, Journal of Scientific Computing 48
(2011) 117–140.

[27] M. J. Castro, A. M. Ferreiro, J. A. Garćıa, J. M. González, J. Maćıas,
C. Parés, M. E. Vázquez-Cendón, The numerical treatment of wet/dry
fronts in shallow flows: applications to one-layer and two-layer systems,
Mathematical and Computer Modelling 42 (2005) 419–439.

[28] NVIDIA, Tuning CUDA applications for Fermi, Version 1.5, 2011.

[29] A. L. Lastovetsky, J. J. Dongarra, High Performance Heterogeneous
Computing, Wiley Series on Parallel and Distributed Computing, Wiley,
First edition, 2009.

[30] I. T. Association, InfiniBand architecture specification, Volume 1, Re-
lease 1.2, 2004, http://www.infinibandta.org, Accessed February 2016.

[31] D. J. Miller, Giant waves in Lituya Bay, Alaska, Professional paper:
United States Geological Survey, U.S. Government Printing Office, 1960.

[32] M. de la Asunción, M. J. Castro, J. M. González, J. Maćıas, S. Ortega,
C. Sánchez, Modeling the Lituya Bay landslide-generated mega-tsunami
with a Savage-Hutter shallow water coupled model, Technical Report,
University of Málaga, 2013.

38

