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Abstract. We investigate the consequences of the hybrid quantization approach for primor-
dial perturbations in loop quantum cosmology, obtaining predictions for the cosmic microwave
background and comparing them with data collected by the Planck mission. In this work, we
complete previous studies about the scalar perturbations and incorporate tensor modes. We
compute their power spectrum for a variety of vacuum states. We then analyze the tensor-
to-scalar ratio and the consistency relation between this quantity and the spectral index of
the tensor power spectrum. We also compute the temperature-temperature, electric-electric,
temperature-electric, and magnetic-magnetic correlation functions. Finally, we discuss the
effects of the quantum geometry in these correlation functions and confront them with obser-
vations.
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1 Introduction

In recent years, observational cosmology has experienced remarkable developments, with a
considerable improvement in the resolution of the measurements [1, 2]. This has provided us
with a clearer view of the physics of the early Universe and with invaluable tools to investigate
it. In this challenge, inflationary scenarios have played a prominent role. The inflationary
paradigm has the virtue of combining simplicity with efficiency in solving several conceptual
problems in cosmology, e.g. the flatness and horizon problems. Moreover, it supplies us with
a mechanism capable to generate the seeds that created the large scale structures which we
observe today [3]. In this sense, cosmological perturbation theory is crucial in our present way
to understand the origin of those structures and the temperature fluctuations in the cosmic
microwave background (CMB). The fluctuations of the quantum geometry, which are assumed
to be in fact the seeds of inhomogeneity, are described by means of linearized Einstein’s
theory within the framework of quantum field theory in a curved spacetime. In this context
of inflationary cosmology, it suffices to give suitable initial conditions for the perturbations at
the onset of inflation to reproduce, with a great deal of accuracy, the spectrum of anisotropies
observed in the CMB.

Certainly, there exist alternatives to inflation, for instance some matter bounce models
[4]. They include exotic matter content that, for certain solutions, may cause a bounce in the
evolution of the Universe, instead of a collapse into a singularity. Actually, other different and
more generic bouncing scenarios are presently under consideration as natural mechanisms to
remove the traditional big bang singularity, rather than as substitutes of inflation. The most
successful one is given by loop quantum cosmology(LQC) [5, 6]. It is based on the quantization
program of loop quantum gravity: a nonperturbative, background independent, and canonical
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quantization of general relativity [7]. For homogeneous and isotropic spacetimes, and different
matter contents, a neat understanding of the mechanism that cures the singularity has been
reached: a quantum bounce occurs [8]. It is due to quantum geometry corrections, that
dominate near the Planck regime and are able to stop the contraction of the Universe, which
instead extends its evolution into an expanding branch. This regular behavior and the good
control of the theoretical framework make of this formalism an appropriate arena to test
quantum gravity phenomena in cosmology.

In the last years, several approaches have been suggested to introduce small inhomo-
geneities in LQC, following the ideas of cosmological perturbation theory [9–13]. These ap-
proaches try to explore the way in which quantum gravity affects the effective equations of the
perturbations, with the hope that the comparison with observations will eventually permit
to falsify the predictions about those quantum corrections [14]. In this work, we will focus
on the hybrid quantization approach [13, 15]. It is based on the assumption that there exists
a regime in which the main corrections caused by the loop quantum geometry appear in the
homogeneous sector of the model, while the inhomogeneities (including those of a geometrical
nature) can be treated using a standard Fock representation. This approach was proposed
for the first time in Ref. [16], for a linearly polarized Gowdy model with T 3 topology. It was
proven to provide a consistent quantization of this Gowdy model [15, 17], even in presence
of matter degrees of freedom [18]. Besides, in the homogeneous sector, one can restrict the
study to quantum states with an effective behavior identical to that of isotropic cosmolo-
gies for certain physical properties [19]. It is remarkable that, for some of these states, the
geometry fluctuations can then behave collectively as perfect fluids [20, 21].

The hybrid quantization approach applied to cosmological perturbations is a well de-
veloped and well understood formalism in LQC [15]. A preliminary comparison of its con-
sequences with observations was recently presented in Ref. [22]. The approach has been
implemented in full detail for Friedmann-Robertson-Walker (FRW) models with positive cur-
vature [13], as well as for models with (compact) flat topology [23–25]. It is possible to
provide (at least formally) a complete quantization of the model, incorporating perturbations
[13]. Besides, uniqueness criteria regarding the Fock quantization of the perturbations have
been put forward in this context [26], a result that gives considerable robustness to the cor-
responding predictions. Concerning its treatment as a constrained theory, the system admits
a first-class algebra (free of anomalies) at the quantum level [25]. Moreover, the predictions
extracted so far for the CMB turn out to be in good agreement with observations [22].

The analysis carried out in Ref. [22] can be considered incomplete inasmuch as it fo-
cused just on scalar perturbations and on the extraction of the temperature-temperature
(TT ) correlation function of the CMB. In the present work, we will complete the analysis by
incorporating tensor modes, following the study of Ref. [27]. The inclusion of tensor per-
turbations is crucial to carry out an accurate comparison with observations, since single-field
inflationary models generate a significant amount of these perturbations. Furthermore, it is
well known that tensor perturbations provide really valuable information about the primordial
stages of the Universe because, on the one hand, the effect of tensor perturbations in the TT
anisotropy spectrum is more sensitive to features in the primordial power spectrum than in
the case of scalar perturbations [2] and, on the other hand, tensor perturbations are the only
primordial source for magnetic-magnetic anisotropies. In order to compute the primordial
power spectrum of the tensor perturbations, we will consider several adiabatic vacuum states,
as well as the so-called non-oscillating vacuum state, proposed in Ref. [22]. Remarkably, we
will see that a comparison of the spectra for these vacua by means of numerical techniques
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indicates that the non-oscillating vacuum indeed belongs to the (unitary) equivalence class of
adiabatic states. Moreover, we will show that it has the asymptotic behavior of an adiabatic
state of high order in the ultraviolet region of large wavenumbers. Then, supposing that the
scalar and the tensor perturbations are initially in the same vacuum, we will compute the
tensor-to-scalar ratio r. In this way we will be able to check the validity of the consistency
relation r ' −8nt, widely used in standard single-field inflation, where it is deduced assuming
that the scalar and the tensor perturbations are both in the Bunch-Davies state [28, 29] at the
onset of inflation. In addition, restricting our attention just to the non-oscillating vacuum, we
will compute the electric-electric (EE), magnetic-magnetic (BB), and temperature-electric
(TE) correlation functions. We will discuss the results, comparing them with the most recent
observations of the CMB obtained by the Planck mission.

The rest of the paper is organized as follows. In Sec. 2 we will present the classical
system. We will explain the effective dynamics of the background variables in Sec. 3, and
that corresponding to the perturbations within our hybrid approach in Sec. 4. In Sec. 5
we will introduce the initial states that will be considered for the inhomogeneities. We will
compute the relevant cosmological observables in Sec. 6. Finally, we will discuss the results
and conclude in Sec. 7.

2 Classical model

Let us consider a single-field inflationary cosmological model in which the spatial sections are
flat, homogeneous, isotropic, and have compact topology, isomorphic to the three-torus. The
scalar field, Φ, that plays the role of an inflaton, is subject to a potential V (Φ). Although the
analysis that we are going to carry out is valid for quite general choices of the potential, for
concreteness it will be convenient to restrict our attention to a quadratic potential of the form
V (Φ) = m2Φ2/2. The spacetime metric is characterized by a homogeneous lapse N0(t) and
by a variable α(t). Up to a constant, the latter is the logarithm of the scale factor, a(t), that
appears multiplying the auxiliary three-metric of the three-torus, 0hij , on each spatial section.
We take spatial coordinates θi on these sections such that 2πθi ∈ S1. It is useful to introduce
the connection 0∇i of the static auxiliary metric 0hij and the corresponding Laplace-Beltrami
operator 0h

ij 0∇i0∇j . Associated with this operator, we have at our disposal the set of its real
eigenfunctions, denoted by Q̃~n,ε(~θ), such that they are odd (ε = −1) or even (ε = 1) under the
transformation θi → 1 − θi. We choose these eigenfunctions to have unit norm with respect
to the auxiliary volume element. Their respective eigenvalues are −ω2

n = −4π2~n · ~n, where
~n = (n1, n2, n3) ∈ Z3 is any tuple in which the first nonvanishing component is a positive
integer (and where, for simplicity, we obviate the zero mode). With this set of eigenfunctions,
together with the connection 0∇i and the metric 0hij , it is possible to construct a complete
basis of scalar, vector, and tensor harmonics for the spatial sections (up to the mentioned
zero mode). See, e.g., Ref. [23] for additional details.

Around the studied homogeneous and isotropic geometries, we can now incorporate small
perturbations to second order in the standard Einstein-Hilbert action, and expand them in
modes using the harmonics introduced above. The scalar perturbations were already studied
in Refs. [13, 22–25]. The vector modes, to this level of truncation and in our model with only
a scalar field, do not play any physical role, and will be ignored in the following. Therefore, we
will mainly focus here on tensor perturbations. These can be described in terms of real tensor
harmonics G̃ij , which are eigenfunctions of the Laplace-Beltrami operator that are transverse
0hij 0∇iG̃jk = 0, and traceless 0hijG̃ij = 0. Here, the subscript ~n = (~n, ε, ε̃) indicates the
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tuple ~n, the parity ε = ±, and the polarization ε̃ = (+,×) of the tensor mode. For additional
details about their definition, see e.g. the appendix of Ref. [27]. The Hamiltonian resulting
from the truncation of the action to second order in the perturbations (or, strictly speaking,
its zero mode, which is the only relevant part for our discussion) can be written as

H = N0

[
H|0 +

∑
~n

TH~n
|2 + (scalar perturbations)

]
, (2.1)

where the first term within the square brackets depends on the homogeneous variables only.
It reads

H|0 =
e−3α

2

(
π2
ϕ −H

(2)
0

)
, (2.2)

where we have defined

H(2)
0 = π2

α − 2e6αV̄ (ϕ). (2.3)

The second term in Eq. (2.1) is quadratic in the tensor perturbations:

TH~n
|2 =

1

2
e−3α

[
π2
d~n

+ 8παd~nπd~n + 2
(

5H(2)
0 + 3π2

ϕ + 4e6αV̄ (ϕ)
)
d2
~n + e4αω2

nd
2
~n

]
. (2.4)

We have called V̄ (ϕ) = σ4V (ϕ/σ), with σ2 = 4πG/3 and G the Newton constant. Besides,
πα, πϕ, and πd~n are the momenta conjugate to the respective variables α, ϕ (the zero mode of
the scalar field, up to a constant factor [24]), and d~n (the variables that describe the expansion
of the tensor perturbations in modes). Regarding the contribution of the scalar perturbations
to the Hamiltonian, we encourage the reader to consult Refs. [24, 25].

The classical equations of motion can be easily computed by taking Poisson brackets
with the total Hamiltonian (2.1), i.e.,

ḟ = {f,H}, (2.5)

where f represents any function on the phase space of the system.

3 The homogeneous sector and its effective dynamics in loop quantum
cosmology

We now proceed to quantize the model introduced in the previous section. As we have already
mentioned, we will adopt a hybrid approach in this quantization. This means that we will
combine different types of quantum representations for the different degrees of freedom of our
model. In this section, we will explain the LQC quantization of the homogeneous modes and
the resulting effective dynamics in this homogeneous sector. The effective dynamics of the
perturbations will be explained in Sec. 4.

Following the ideas of Refs. [5, 6], one starts by adopting a description of the classical
geometry in terms of an su(2)-connection and a densitized triad. On homogeneous cosmolo-
gies, they are determined by two homogeneous functions, c and p, which respectively capture
the degrees of freedom of the connection and the triad. In terms of our original phase space
variables, they are given by

p = σ2e2α, pc = −γσ2πα, (3.1)
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where γ is the Immirzi parameter [7]. Here, as it is customary in LQC, we fix this parameter
equal to γ ' 0.2375, which is the value that allows us to recover the Bekenstein-Hawking
formula in loop quantum gravity, as the leading term for large horizon area in the black hole
entropy computation [30].

In the so-called polymeric representation that is commonly employed in LQC, there is
no well-defined operator corresponding to the connection, but rather to the holonomies of the
connection. In the implementation of this polymeric representation, we will adhere to the
improved dynamics scheme [8], since this choice provides quantum geometries for which the
singularity is replaced by a quantum bounce when the energy density ρ reaches a constant
critical value ρc = 3/(16πGγ2∆) ∼ 0.41ρPl. Here, ρPl is the Planck energy density and ∆
is twice the minimum nonzero eigenvalue of the area operator in loop quantum gravity [7].
Explicitly, ∆ = 4

√
3πγ`2Pl, where `Pl is the Planck length. From now on, we will set up the

Newton constant G, the reduced Planck constant ~, and the speed of light all equal to one,
and work in Planck units.

In the improved dynamics scheme, it is most convenient to pass from the triad and the
connection variables p and c to the volume, v = p3/2, and its conjugate variable, β = c/p1/2,
adopting the latter couple as basic variables. The new basic Poisson bracket is {β, v} = 4πγ.
The variable β has a natural interpretation in the classical system: up to a constant, it is the
Hubble parameter.

On the other hand, for the homogeneous mode of the scalar field and its momentum,
the usual variables employed in LQC are

φ =
ϕ

σ
, πφ = σπϕ. (3.2)

For convenience, we will also redefine the zero mode of the lapse function as N = σN0.
We now represent the homogeneous sector of the geometry on a Hilbert space Hgrav

kin

where the operator v̂ acts by multiplication. As a distinctive property of the polymeric
representation adopted in LQC, this Hilbert space admits a basis of eigenstates {|ν〉, ν ∈ R}
of v̂ that are normalized with respect to the discrete inner product 〈ν1|ν2〉 = δν1,ν2 . Their
eigenvalues are

v̂|ν〉 = 2πγ
√

∆ ν|ν〉. (3.3)

Together with this volume operator, we also have the matrix elements of the holonomies of the
connection along straight edges with auxiliary length equal to µ̄, where µ̄ =

√
∆/p according

to the improved dynamics scheme. Essentially, these matrix elements can be obtained from
the operators N̂±µ̄, which act on the basis states shifting their eigenvalues:

N̂±µ̄|ν〉 = |ν ± 1〉. (3.4)

For the homogeneous sector of the scalar field, we will adopt the standard representa-
tion on the kinematical Hilbert space Hmatt

kin = L2(R, dφ), i.e., the space of square integrable
functions on φ with the standard Lebesgue measure. In this representation, φ̂ acts by multi-
plication and π̂φ = −i∂φ.

With this representation of the homogeneous variables, we can construct the quantum
counterpart of the zero mode of the scalar constraint. In order to do so, we follow the
quantization prescription of Ref. [31], already used in the hybrid quantization of cosmological
perturbations in LQC discussed in Refs. [13, 22–25, 27]. The corresponding Hamiltonian
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operator is defined as

Ĥ|0 =
σ

2

[̂
1

v

]1/2

Ĉ0

[̂
1

v

]1/2

, (3.5)

where Ĉ0 is an operator representing the densitized version of the homogeneous part of the
Hamiltonian constraint. It has the form

Ĉ0 = π̂2
φ −

4π

3
Ĥ(2)

0 , (3.6)

Ĥ(2)
0 =

3

4π

(
3

4πγ2
Ω̂2

0 − 2v̂2V (φ̂)

)
. (3.7)

Here, Ω̂2
0 is an operator representation of (cp)2 in LQC. It is defined as the square of

Ω̂0 =
1

4i
√

∆
v̂1/2

[
ŝgn(v)

(
N̂2µ̄ − N̂−2µ̄

)
+
(
N̂2µ̄ − N̂−2µ̄

)
ŝgn(v)

]
v̂1/2, (3.8)

where ŝgn is the sign operator and N̂2µ̄ shifts the label of the basis states in two units [see
Eq. (3.4)].

The quantum states Ψ(v, φ) for the massless scalar field (m = 0) were studied in Ref.
[32]. Here, the scalar field can be regarded as a natural time function. Moreover, for highly
peaked states, the evolution of the expectation values of the fundamental operators (and
presumably of their products) turn out to follow the trajectories of an effective classical
Hamiltonian with a high level of accuracy [33]. In this effective dynamics for LQC, the
solutions depart from those of general relativity only when the energy density is at least a
few percents of its critical value ρc, and in particular they avoid the big bang singularity.

In the case of a massive scalar field, one has a nonzero potential V (φ̂) in the quantum
constraint. The full quantum dynamics of this system has not been studied in detail. A recent
analysis in Ref. [34] shows how one can carry out a perturbative treatment at the quantum
level, valid in those situations where the contribution of the potential is small compared with
the kinetic term. In the present work, nonetheless, we will consider regimes where the energy
density of the scalar field is so highly dominated by its kinetic contribution in the vicinity of
the bounce, that we can confidently ignore the influence of the field potential in the regions
where there may be departures from general relativity. In those kinetically dominated regions,
for states with large values of the scalar field momentum, all the numerical and analytic
studies carried out so far in LQC strongly support the validity of the effective dynamics of
LQC, as we have already mentioned, and hence we can ignore any possible further quantum
contribution to the evolution of the relevant expectation values. Moreover, it is well known
that in this kind of effective inflationary solutions, one can disregard all corrections arising
from the regularization of the inverse-volume operator [̂1/v], which is defined as

[̂
1

v

]1/3

=
3

4πγ
√

∆
ŝgn(v)|v̂|1/3

(
N̂−µ̄|v̂|1/3N̂µ̄ − N̂µ̄|v̂|1/3N̂−µ̄

)
. (3.9)

It has been shown that these corrections are negligible for highly peaked states, at least in
the sector of states with large momentum of the scalar field (see, e.g., the discussion in Refs.
[35, 36]).
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In this way, we arrive at the following effective set of equations for the evolution of the
expectation values of the basic operators of the homogeneous sector of our model:

1

N
φ̇ =

πφ
v
, (3.10a)

1

N
π̇φ = −vdV (φ)

dφ
, (3.10b)

1

N
v̇ =

3

2
v

sin(2
√

∆β)√
∆γ

, (3.10c)

1

N
β̇ = −3

2

sin2(
√

∆β)

∆γ
+ 4πγ

(
V (φ)−

π2
φ

2v2

)
. (3.10d)

The dot denotes the time derivative with respect to an arbitrary time function t. In addition,
the effective homogeneous Hamiltonian can be written in the form π2

φ = 4πH(2)
0 /3, where

H(2)
0 =

3

4π

(
3

4πγ2

v2 sin2(
√

∆β)

∆
− 2v2V (φ)

)
. (3.11)

Here, we have neglected backreaction contributions coming from the inhomogeneities. There-
fore, the effective equations of motion of the background coincide with the usual ones in LQC
[37]. Also, in order to simplify the notation, we have dropped the expectation value symbols.

It is worth remarking that, in this homogeneous model, any effective trajectory can be
determined by the value of the scalar field at the bounce, φB. Actually, the value of the
volume, vB, (or, equivalently, of the scale factor) at the bounce, can be reset arbitrarily,
e.g. fixing it equal to one, because there is no intrinsic absolute length scale, owing to the
homogeneity and the lack of spatial curvature. Besides, the time derivative of this volume
vanishes at the bounce. Finally, the momentum conjugate to the scalar field is determined
by the Hamiltonian constraint. Therefore, for a fixed value of the mass m of the inflaton field
and a given choice of the Immirzi parameter γ, a single piece of data turns out to specify the
solutions of our homogeneous model. Furthermore, since the energy density is bounded from
above in LQC, with the bound reached at the moment of the bounce, we conclude that, in
the considered case of the quadratic potential the mass of the inflaton field and the value of
the scalar field at the bounce must satisfy the inequality

m2φ2
B ≤ 0.82. (3.12)

4 Effective dynamics of the perturbations in the hybrid approach

In order to complete the quantization of the full system, including the inhomogeneities, and
deduce effective equations of motion for the perturbations, we will introduce a Fock rep-
resentation for them and define their quadratic contribution to the quantum Hamiltonian
constraint. Actually, the Fock representation of the scalar perturbations was detailed in Ref.
[24]. Thus, here we will focus on the quantization of the tensor perturbations. For these
tensor modes, the hybrid quantization approach was implemented in Ref. [27]. Let us sum-
marize the more important steps. Previous to the quantization, one performs the canonical
transformation

d̃~n = eαd~n, πd̃~n = e−α
(
πd~n + 3πα̃d~n

)
. (4.1)
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This transformation must be extended to the homogeneous sector by including appropriate
quadratic contributions of the perturbations in the definition of the canonical variables for
the homogeneous geometry [27]. However, we will ignore these corrections in this article,
admitting that they are sufficiently small (in fact, they can be interpreted as a kind of back-
reaction correction to the definition of the background variables). The resulting (zero mode
of the) Hamiltonian constraint is still of the form (2.1), but with the quadratic tensor term
replaced with

TH̃~n
|2 =

1

2
e−α

[
π2
d̃~n

+
(
e−4αH(2)

0 − 4e2αV̄ (ϕ) + ω2
n

)
d̃2
~n

]
. (4.2)

Hence, it follows that the evolution of the tensor modes, at the classical level, is given by a
set of second-order linear differential equations, involving time-dependent coefficients.

To incorporate the perturbations in the quantum theory, one adopts the Fock represen-
tation introduced in Ref. [27] for the tensor modes. For the subsequent representation of the
quadratic perturbative contribution (4.2), one casts its background dependence in terms of
the variables used in LQC, given by Eqs. (3.1) and (3.2). Then, the considered Hamiltonian
constraint becomes

Ĥ =
σ

2

[̂
1

v

]1/2 [
Ĉ0 − Θ̂T + (scalar perturbations)

] [̂1

v

]1/2

. (4.3)

The term associated with the tensor perturbations reads

Θ̂T = −
∑
~n

[(
ϑ̂ ω2

n + ϑ̂qT

)
ˆ̃
d2
~n + ϑ̂ π̂2

d̃~n

]
. (4.4)

The ϑ-operators are functions exclusively of other operators that have already been defined
in the representation of the homogeneous sector. Their explicit expressions are

ϑ̂ = v̂2/3, (4.5)

ϑ̂qT =
16π2

9

[̂
1

v

]1/3

Ĥ(2)
0

[̂
1

v

]1/3

− 16π

3
v̂4/3V (φ̂). (4.6)

In presence of inhomogeneities, the solutions to the constraint are not known explicitly, al-
though one can always carry out a formal quantization following the ideas of Ref. [13]. Here,
we will follow instead the strategy of Refs. [24, 25], where one adopts a Born-Oppenheimer
ansatz for the solutions to the constraint, Ξ, so that there is a separate dependence on the
background geometry and on the perturbations:

Ξ(v, φ, d̃~n) = Ψ(v, φ)ψ(d̃~n, φ). (4.7)

In this formula, we have ignored the scalar perturbations, and Ψ(v, φ) is a solution to the
background homogeneous constraint (sufficiently accurate at the perturbative level in which
one wants to allow for backreactions effects). On the other hand, ψ(d̃~n, φ) is the wave function
of the tensor perturbations defined on a suitable Fock space, F , once the homogeneous scalar
field φ is regarded as an internal time. This ansatz has already been studied in the context of
tensor perturbations in Ref. [27]. Under reasonable conditions (similar to those explained for
the scalar perturbations in Refs. [24, 25], and expected to hold in semiclassical regimes), it is
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possible to deduce a Schrödinger equation for the perturbations, with a physical Hamiltonian
that rules the evolution in the time φ given by

ĤT
phys =

〈Θ̂T 〉Ψ

2
〈√
Ĥ(2)

0

〉
Ψ

. (4.8)

These expectation values are taken over the homogeneous geometry, with the inner product of
LQC. The operator in the denominator can be understood as the square root of the positive
part of Ĥ(2)

0 . This physical Hamiltonian is a well defined operator acting on ψ(d̃~n, φ).
When the effective dynamics of LQC is valid for the background geometry, one then

arrives to effective equations of motion for the tensor perturbations that, in conformal time,
can be combined into the following second-order differential equation1

d̃′′~n +

(
ω2
n +

(
4π

3

)2 1

v4/3
H(2)

0 −
16π

3
v2/3V (φ)

)
d̃~n = 0. (4.9)

Here, the prime stands for the derivative with respect to the conformal time η, or which
N = v1/3. A similar equation has been derived for the scalar perturbations in Ref. [25], and
its physical consequences have been partially studied in Ref. [22]. As one would expect, these
equations do not depend on the compactification scale of the three-torus (or, equivalently, on
the period chosen for our coordinates θi [25, 27]). Then, one can remove that compactification
scale and pass to a continuous description in which the discrete eigenvalues ωn become a
wavenumber k that can take any positive real value. In the following, we adopt this continuous
formulation.

5 Initial state of the tensor perturbations

Our next task is to select a suitable initial state for the perturbations. Together with their
effective equations of motion, this will determine their value in the evolution. In this way,
we will be able to extract predictions about their primordial spectrum that eventually could
be compared with observations. Here, we will mainly follow the traditional procedures in
cosmological single-field inflation, based on quantum field theory in curved spacetimes. Let
us start with the choice of an initial time, ηi. Although any arbitrary choice is possible, we
will consider the bounce as a natural initial Cauchy surface to give initial conditions, and we
will denote the corresponding time as ηB. Obviously, we are not saying that other choices of
initial time are not acceptable. Other alternatives, like e.g. the limit of infinitely negative
conformal time, may be worth exploring.

Since we have adopted a Fock representation for the tensor perturbations, an equivalent
way to fix their initial vacuum state is to specify a complete orthonormal set of positive
frequency solutions to the equations of motion of the field. We choose these solutions so
that they do not mix modes (actually, this guarantees translational invariance on the spatial
sections) and coincide for all modes with the same wavenumber k (guaranteeing rotational

1In fact, the conditions to derive a Schrödinger equation are not necessary to obtain Eq. (4.9). Arguments
like those of Refs. [24, 25] show that it essentially suffices that: a) one can ignore geometry transitions
mediated by the (zero mode of the) Hamiltonian constraint after introducing the Born-Oppenheimer ansatz,
b) the effective dynamics of LQC is valid, and c) the quadratic perturbative terms admit an effective description
obtained with the direct classical counterpart of the annihilation and creation operators.
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symmetry in the considered continuous case). Moreover, we take such a set of complex
solutions {µk(η)} to be orthonormal with respect to the usual Klein-Gordon inner product:(

µ
(1)
k , µ

(2)
k

)
= i
[(
µ

(2)
k

)∗
µ
′(1)
k − µ(1)

k

(
µ
′(2)
k

)∗]
, (5.1)

where i is the unit imaginary number and the star symbol stands for complex conjugation
(in this expression, and in what follows, we do not display explicitly the time dependence
of µk, and the prime denotes again the conformal time derivative). Since the equations
are of second order and possess real (time-dependent) coefficients, a complete set of linearly
independent solutions is given by µk and its complex conjugate µ∗k, provided the former has
indeed unit norm: (µk, µk) = 1. Actually, one can easily check that (µk, µ

∗
k) = 0, and that µ∗k

is normalized in the sense that (µ∗k, µ
∗
k) = −1. These orthonormality conditions are fulfilled

at any time, because the Klein-Gordon inner product is preserved on shell in the evolution. In
particular, they must be satisfied at the initial time ηi, that we let arbitrary for the moment.
These conditions constrain the freedom in the choice of initial data. In terms of our solutions,
the variables rep resenting the perturbations then have the form

d̃~k(η) = µk(η)a~k + µ∗k(η)a∗~k (5.2)

where a~k and a∗~k are, respectively, time-independent annihilation and creation variables for

the mode ~k (with wavenumber equal to k).
Summarizing, the choice of initial data µk(ηi) and µ′k(ηi) for the sector of positive fre-

quency, orthonormalized with respect to the Klein-Gordon inner product, completely deter-
mines the initial vacuum state of the perturbations. This is indeed equivalent to introducing
a complex structure [38]. We recall that a complex structure J is a real linear transformation
in the complex vector space of solutions such that J2 = −1. Besides, J must be compatible
with the inner product (5.1) (in the sense that an appropriate composition of J with the
inner product provides a positive bilinear map [38]). Any complex structure induces a split-
ting of the space of solutions into two orthogonal subspaces, that are usually identified with
the positive and negative frequency sectors. The freedom in the choice of complex structure
J is equivalent to the freedom in the choice of orthonormalized initial data for the positive
frequency solutions, and therefore to the selection of an initial vacuum state of the field.

In our case the initial data, and in consequence the initial vacuum of the tensor modes,
can be parameterized in terms of two real functions for each mode k. If we call µk,0 = µk(ηi)
and µ′k,0 = µ′k(ηi), any arbitrary set of initial conditions, up to an irrelevant global phase, can
be written as

µk,0 =
1√
2Dk

, µ′k,0 =

√
Dk

2
(Ck − i) . (5.3)

We restrict the function Dk to be strictly positive, whereas Ck can take any real value.
Although one can choose freely these mode functions, there exist natural restrictions on them
based on physical arguments. These restrictions refer mainly to their ultraviolet behavior.
For instance, the requirement of a unitary dynamics [26, 39, 40] employed in the hybrid
quantization that we have adopted [27], as well as the prescriptions of adiabatic states that
are typical in inflationary contexts [41–43], or the Hadamard condition [38], they all restrict
the asymptotic ultraviolet behavior in the form2 Dk = k + o(k−1/2) and Ck = o(k−3/2) for

2After the scaling of the tensor modes carried out in Eq. (4.1), this asymptotic behavior ensures that the
requirement of unitary dynamics picks out a unitary equivalence class of vacua that includes the Hadamard
and the adiabatic states.
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infinitely large k, where the symbol o(kl) denotes terms that are negligible compared to kl

for a given power l.
In this work, we will consider two different types of prescriptions for the selection of

initial data. The first one is based on adiabatic states. We will consider two ways to select a
specific set of initial data of 0th, 2nd, and 4th adiabatic order, following constructions that
are similar to those described in Ref. [41] and in Refs. [42, 43], respectively. The second
prescription corresponds to the non-oscillating vacuum that was introduced in Ref. [22]. Both
prescriptions will be detailed below.

5.1 Adiabatic states

Adiabatic states were originally introduced as approximated solutions to the equations of
fields propagating in cosmological spacetimes. They are also considered in cosmology as a
way to prescribe initial conditions for the quantum fields with convenient physical properties.
As we will see, these states provide initial data with a suitable behavior for asymptotically
large k. Here, for the sake of brevity, we will define them only for the particular model under
consideration.

Let us adopt the following ansatz for the solutions:

µk =
1√

2Wk(η)
e−i

∫ ηWk(η̄)d η̄. (5.4)

If we substitute this into Eq. (4.9), we obtain for Wk the differential equation

W 2
k = k2 + s− 1

2

W ′′k
Wk

+
3

4

(
W ′k
Wk

)2

. (5.5)

The function s = s(η) is given by the time-dependent mass of the corresponding Klein-Gordon
equation. In the case of the tensor perturbations in the hybrid approach, we have

s(t) =

(
4π

3

)2 1

v4/3
H(2)

0 −
16π

3
v2/3V (φ). (5.6)

Different adiabatic solutions W (n)
k , where n is an integer that indicates the adiabatic order,

are in fact approximations to the exact solutions Wk. Each of them converges to the exact
one at least as O(k−1−n) in the limit k → ∞, where the symbol O stands for asymptotic
order3. Therefore, this method provides good approximate solutions for the ultraviolet modes.
However, this is not necessarily the case for small k. Indeed, while adiabatic states constrain
the behavior of the solutions in the asymptotic limit of large k, i.e., at small scales, they
still allow for an infinite freedom in the behavior of the large scale solutions. Even so, this
prescription has proven very useful in order to obtain analytic expressions approximating
the exact solutions [41], as well as for the renormalization of the stress-energy tensor in
cosmological scenarios [42, 43].

Within LQC, adiabatic states have been used to specify initial data in inflationary models
that are closely related to the one under study here, for instance in Ref. [44] for the dressed
metric approach, and in Ref. [22] for the scalar perturbations in the context of the hybrid

3Our definition of adiabatic order n differs from others in the literature [44] for which the convergence rate
is O(k−n). Our convention is motivated by the fact that the asymptotic expansion of Wk does not contain
even inverse powers, and we start the counting at 0th order.
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quantization approach. These initial data associated with adiabatic states are given in the
form (5.3) with

Dk = Wk, Ck = −
W ′k

2W 2
k

. (5.7)

Here, Wk and its time derivative have to be evaluated at the chosen initial time. To get initial
data for different adiabatic orders, one only has to replaceWk in the previous expression with
the adiabatic solution at the order in question.

In this article, we are going to consider the initial data for different adiabatic orders
obtained by two different constructions, as it was done also in Ref. [22]. The first construction
follows ideas presented in Ref. [41]. A solution of order (n + 2), i.e. W (n+2)

k , is obtained by
plugging W (n)

k in the right-hand side of Eq. (5.5). This process is carried out iteratively,
starting with W

(0)
k = k, the 0th-order adiabatic state. It is worth mentioning that W (0)

k

corresponds to the natural solution of a free massless scalar field in a Minkowski spacetime.
In the second construction, one performs an asymptotic expansion of the solution Wk in
inverse powers, in the limit k → ∞, and truncates this expansion at the considered order.
We will call W(n)

k the functions obtained in this way. This method is analogous to the one
used in Ref. [44], and the resulting state is known in the literature as the obvious adiabatic
state of nth order.

For each of these two constructions of adiabatic states, we will consider here the adiabatic
initial conditions of 0th, 2nd, and 4th order, which are determined by the functions

W
(0)
k = W

(0)
k = k, (5.8)

W
(2)
k =

√
k2 + s, W

(2)
k = k +

s

2k
, (5.9)

W
(4)
k =

√
k2 + s+

5

16

(
s′

k2 + s

)2

− s′′

4(k2 + s)
, W

(4)
k = k +

s

2k
− s2 + s′′

8k3
. (5.10)

The derivatives of the time-dependent mass that appear in these expressions are calculated
using the effective equations of motion of the homogeneous variables.

It is obvious that the two constructions provide different initial conditions (except at 0th
order). Besides, none of the two procedures can be considered rigorously sound, inasmuch as
there is no guarantee that the corresponding initial conditions are meaningful for all values
of k and independently of the behavior of the time-dependent mass. In order to explain this
statement, let us consider, for instance, the 2nd-order adiabatic solutions W (2)

k and W
(2)
k . If

one selects an initial time in which the time-dependent mass is negative, then W (2)
k provides

meaningful initial conditions only for k >
√
−s, whereas W(2)

k does so only for k >
√
−s/2.

Therefore, in this situation, none of the two constructions can be trusted in order to determine
a complete set of physically acceptable initial data. Fortunately, in the case of the hybrid
approach (and in the regimes that we are interested to discuss), the time-dependent mass of
the tensor perturbations, and also that of the scalar perturbations, turn out to be both strictly
positive at the bounce (and close to it). For completeness, let us recall that the expression of
the mass of the scalar perturbations is [22],
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s(s) =
16π2H(2)

0

9v4/3

(
19− 32π2γ2H(2)

0

Ω2

)
+ v2/3

(
d2V (φ)

dφ2
+

16πγπφΛ

Ω2

dV (φ)

dφ
− 16π

3
V (φ)

)
,

(5.11)
where Λ = |v| sin (2

√
∆β)/(2

√
∆). This expression is equivalent to the one provided in Ref.

[22], modulo the homogeneous constraint. Evaluating also the first and second derivatives of
s(t) and s(s) at the bounce, we have checked that all the adiabatic initial conditions considered
here are well defined for all modes with our hybrid approach, at least for the set of initial
values of the background variables that we have explored in our numerical simulations.

At this stage of our discussion, it is also worth noting that, if one considers instead the
dressed metric approach, the time-dependent mass becomes negative when one approaches
the bounce4. Let us recall that the dressed metric approach and the hybrid approach are the
two only proposals within the framework of LQC that lead to hyperbolic equations for the
perturbations, and at present are the only proposals in this framework that can be considered
compatible with observations [45]. As it was already pointed out in Ref. [22], the LQC
corrections that appear in the hybrid and the dressed metric approaches differ slightly, owing
to the different strategies that are followed in the quantization, a fact that leads to distinct
predictions for the primordial spectra. Even without carrying out a direct comparison, it
is easy to see that (when one considers in the dressed metric approach a scaling of the
perturbations like the one performed in Eq. (4.1), namely, by a factor ã = eα), the time-
dependent mass for the tensor perturbations is [44]

s̃(t)(η) = − ã
′′

ã
, (5.12)

whereas, for the scalar perturbations in the expanding phase, one obtains

s̃(s)(η) = − ã
′′

ã
+ ã2

(
f2V (φ) + 2f

dV (φ)

dφ
+
d2V (φ)

dφ2

)
. (5.13)

Here, f =
√

24πφ′/
√
ã2ρ. Note that ã is proportional to the scale factor a = v1/3 of the

effective dressed metric. At the time of the bounce, ã′′ is positive, and therefore the time-
dependent mass is negative for the tensor perturbations (as well as for the scalar perturbations
in bounces that are dominated by the kinetic energy). Therefore, one is forced to consider
different constructions for the initial conditions, or initial times that render them physically
meaningful. In Fig. 1 we compare the evolution of the time-dependent mass of the tensor
and the scalar perturbations for the two mentioned approaches. Analyzing each of the two
prescriptions separately, we observe that the values and the evolution of the time-dependent
mass for the two types of perturbations are almost identical, including the region around the
bounce. On the contrary, if we compare the two prescriptions, we see that the time-dependent
masses differ around the bounce, where the LQC corrections are important, but then they
quickly converge to the same values, far enough away from that bounce. Clearly, this shows

4While the effective equations of the perturbations in the hybrid approach have a smooth transition con-
necting the collapsing and he expanding branches, such that general relativity is recovered asymptotically
in the two branches, it is not obvious how these two properties of smoothness and semiclassicality can be
attained in the dressed metric approach on the union of both branches. For this reason, we will only compare
the results of the two approaches in the expanding branch.
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Figure 1. Comparison of the time-dependent mass of the tensor and the scalar perturbations for
the hybrid approach and the dressed metric approach in a dynamical trajectory with φB = 0.97
and m = 1.20 · 10−6 in Planck units (kinetically dominated bounce). Here, s(s)(η) and s(t)(η) are the
time-dependent masses of the scalar and the tensor perturbations in our hybrid approach, respectively,
while s̃(s)(η) and s̃(t)(η) are their counterparts in the dressed metric approach. Dashed lines in the
right panel indicate negative values of the quantity of which we plot the absolute value.

that the effective equations of motion for the perturbations are not the same in the two
approaches, even if one neglects the backreaction in both cases.

Turning back to the issue of the election of initial data for the perturbations, we em-
phasize that, although the adiabatic conditions that we have discussed reduce the freedom
of choice, there is still an infinite number of possible adiabatic states at any order. Then,
additional criteria must be required in order to remove this freedom. For instance, in Ref. [46]
it has been proposed that one should select the state that provides a regularized stress-energy
tensor which vanishes at the given initial time. Although there is an infinite ambiguity in
the adiabatic renormalization process, once one fixes that ambiguity (as it is done in Ref.
[46]) from the point of view of an observer at the end of inflation, one is left only with a
one-parameter family of states that arise from the remaining freedom in the specification of
the initial time. If this initial time is fixed, the vacuum state turns out to be unique.

5.2 Non-oscillating vacuum

As an alternative to these adiabatic considerations, Ref. [22] puts forward another criterion
that seems to identify also a unique set of initial data for the perturbations. This criterion can
be understood in terms of a variational problem for the data (5.3). The coefficients Dk and
Ck are selected so that the time variation of the power spectrum associated with the 2-point
function gets minimized on an appropriate interval. In fact, this criterion, when applied to
a massive (or massless) scalar field in Minkowski spacetime, or to a massless scalar field in
the cosmological chart of de Sitter spacetime, picks out the Poincaré vacuum state, or the
Bunch-Davies one, respectively. For de Sitter spacetime, hence, the criterion is equivalent to
de Sitter invariance plus the Hadamard condition.

In more detail, let us consider the 2-point function of the tensor perturbations at the
end of inflation. Its power spectrum (obtained from its Fourier transform) is

PT (k) =
32k3

π

|µk|2

a2

∣∣∣∣
η=ηend

, (5.14)
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where we recall that a = v1/3 is the scale factor (see, for instance, Refs. [3, 47]). The criterion
to select the so-called non-oscillating vacuum is based on a specific choice of the functions
Dk and Ck that determine the initial data of each mode solution µk. The choice is such that
the oscillations in the power spectrum during the evolution, oscillations that are often naively
attributed to particle creation, are minimized in a given time interval: in the present situation,
the interval from the bounce to the instant at which φ′ = 0. In this way, the criterion selects
the initial conditions that minimize the temporal variation of |µk|2 in the studied period of
time. In order to determine these initial conditions, we define the quantity∫ ηf

ηi

∣∣∣∣∣d
(
|µk|2

)
dη̄

∣∣∣∣∣ dη̄ (5.15)

for each mode, where ηf is a final time. This integral depends on the initial conditions and
the dynamical equations through the mode solution µk, as well as on the considered interval
of integration (ηi, ηf ) (obviously, this implies a nonlocal dependence). To find out the desired
values of Dk and Ck, we vary them in order to minimize (5.15). Analytic calculations are
possible in some specific scenarios. For instance, the appendix of Ref. [22] contains a detailed
computation for the case of a massless scalar field in a de Sitter cosmological spacetime. It
turns out that, in that case, the set of initial data that minimizes the integral is unique and
reproduces the Bunch-Davies vacuum provided that the (conformal) time interval under con-
sideration starts at minus infinity. In that reference, initial data were also determined such
that they minimize the temporal oscillations of the power spectrum for the scalar pertur-
bations in LQC when the time interval goes from the bounce to the moment in which the
kinetic energy of the field vanishes. This last computation was carried out using numerical
techniques, since no analytic tools were available. In this sense, we would like to call the
reader’s attention to Ref. [48], where approximated analytic expressions have been deduced
for the perturbations in the dressed metric approach. Those expressions might be useful
as well in the context discussed here, although they would have to be extended first to the
hybrid approach. Finally, let us comment that the results of our computations show that
the non-oscillating vacuum determined with the above numerical method does not depend
significantly on the selection of the bounce as the initial instant of time in the interval of in-
tegration. This initial time can be changed in a surrounding of the bounce without affecting
much the form of the non-oscillating vacuum state.

5.3 Numerical analysis of the initial conditions

In this subsection, we want to compare the initial conditions corresponding to adiabatic
states of different orders and to the non-oscillating vacuum. In the following, we will take
the bounce as initial Cauchy surface, i.e., ηi = ηB. With this choice, it is easy to specify
initial data for the background variables, as we have already explained. Besides, the main
corrections of quantum gravity nature happen in the bouncing regime. Therefore, we expect
that the perturbations at the end of inflation may keep memory of the physical processes
around the bounce.

We will carry out the comparison of the initial data in two different manners. First, we
will make a quantitative analysis, comparing the functions Dk and Ck that parameterize the
initial conditions and define the corresponding annihilation and creation variables, restricting
the study to the set of wavenumbers k that are of physical relevance in cosmology. In Fig. 2
we plot these functions for a particular choice of the mass m, and of the initial value of the
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Figure 2. Comparison between different vacuum prescriptions: functions that determine the initial
conditions of the tensor field, for φB = 0.97 and m = 1.20 · 10−6. Left panel: function Dk. Note that
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k ). Right panel: function Ck. Here, dashed lines indicate negative values of

Ck. We note that, for the 0th-order adiabatic initial conditions, Ck(W
(0)
k ) = 0 = Ck(W

(0)
k ).

background scalar field, φB. Other choices have also been considered, and the corresponding
functions Dk and Ck have been checked to show similar behaviors. It is worth noticing that,
for all such choices, one always obtains smooth functions of k. Besides, all the considered
prescriptions lead to functions that agree in the sector of ultraviolet modes, where Dk → k
and Ck → 0. Notice that, for the considered 0th-order adiabatic state, Dk = k and Ck = 0
exactly for all k. In addition, in the interval of wavenumbers k of interest, the function Ck
turns out to be negligible for all the analyzed prescriptions except for the non-oscillating
vacuum. In this latter case, Ck takes considerably bigger values. Nonetheless, Ck → 0 when
k → ∞ in all cases, and for the non-oscillating vacuum this convergence seems to be faster
than for the other adiabatic vacua.

The second procedure by which we will compare the different initial conditions is by
means of the antilinear coefficients of the Bogoliubov transformations that relate them. Let
us start with the set of (orthonormal) complex solutions determined by some given initial
data. We will call {µ(r)

k }k∈R this reference set of solutions, and denote the considered initial
data as {(

µ
(r)
k,0, µ

′(r)
k,0

)}
k∈R

. (5.16)

Any other (new) set of complex solutions {µ(n)
k }k∈R, selected by the initial data{(

µ
(n)
k,0 , µ

′(n)
k,0

)}
k∈R

, (5.17)

is related to the previous one by a Bogoliubov transformation:

µ
(n)
k = αk µ

(r)
k + βk µ

(r)∗
k , |αk|2 − |βk|2 = 1, ∀k ∈ R. (5.18)

The linear and antilinear coefficients are determined by the initial conditions respectively as

αk = −i
[
(µ
′(r)
k,0 )∗µ

(n)
k,0 − µ

(r)∗
k,0 µ

′(n)
k,0

]
, βk = i

[
µ
′(r)
k,0 µ

(n)
k,0 − µ

(r)
k,0 µ

′(n)
k,0

]
. (5.19)

Recall that the prime stands for the derivative with respect to the conformal time. The usual
physical interpretation of the antilinear coefficients of the Bogoliubov transformation is that
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Figure 3. Comparison between different vacuum prescriptions for the initial data of the tensor
perturbations, for φB = 0.97 and m = 1.20 · 10−6: absolute value of the antilinear coefficients of
the Bogoulibov transformation relating the vacuum state of reference, (r), with another vacuum, (n).
Left panel: comparison taking the non-oscillating (no) vacuum as the reference state.

the square of their absolute value, |βk|2, represents the number of particles in a mode ~k (with
wavenumber equal to k) that contains the vacuum state characterized by the solutions {µ(n)

k },
as seen in the quantum representation defined by the original vacuum.

As we have commented, for adiabatic initial data of order n, the functionsW (n)
k and W

(n)
k

(as well as any other function of order n) have the same asymptotic behavior up to terms
that are O(k−1−n). If we consider an adiabatic state of order n as the vacuum of reference,
then it is not difficult to realize that the antilinear coefficients |βk| corresponding to any other
different adiabatic state of order ñ behave for large k as k−2−m, where m = min(n, ñ) is the
minimum of the two adiabatic orders. In other words, the decay of |βk| for large k is completely
determined by the adiabatic state of lower order. In Fig. 3 we represent the absolute value
of the antilinear Bogoliubov coefficients (multiplied by k3/2) obtained with different sets of
initial data, providing both the reference vacuum and the final state, with labels (r) and (n),
respectively. In the right panel, one can see that the coefficients have the same asymptotic
decay for the non-oscillating vacuum state as in the case of the 4th-order adiabatic vacua
considered in our discussion, taking one of the latter as reference vacuum. We have also
generated adiabatic initial data up to 8th order and compared them numerically with the
non-oscillating vacuum. Once more, both sets of initial data happen to lead to Bogoliubov
coefficients with the same asymptotic behavior. However, since we are not providing analytic
expressions for such adiabatic vacua of 6th and 8th order in this article, we have preferred
not to display those numerical results.

In conclusion, our numerical analysis suggests that the non-oscillating vacuum behaves
like a high-order adiabatic state at least up to 8th order, and perhaps up to an even higher
order. If this is actually the case, our prescription for the selection of initial data corresponding
to the non-oscillating vacuum in fact picks out a state that is tantamount to a high-order
adiabatic vacuum, although by means of a procedure that overcomes the potential problems
of ill-definiteness that one finds in the usual constructions of adiabatic states.
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6 Comparison with observations

6.1 Preliminaries

We will now use the prescriptions that we have proposed above for the choice of vacuum
of the perturbations (keeping in mind that other interesting choices do exist) and extract
predictions about cosmological observables in the hybrid quantization approach, comparing
them with observations. In this section, we will derive the power spectrum of the tensor
perturbations, PT , and compute its spectral index, nt, as a function of k. Besides, recalling
previous results of Ref. [22] for scalar perturbations, we will calculate the tensor-to-scalar
ratio, r = PT /PR. Here, PR denotes the comoving curvature primordial power spectrum.
Finally, we will study possible deviations with respect to the standard results, deduced for
perturbations in the Bunch-Davies state at the onset of inflation, paying special attention to
the slow-roll consistency relations.

Different strategies can be followed in order to compute these cosmological observables.
One possibility, numerically accurate but computationally expensive, is to evolve the set of
tensor modes from the bounce to the end of inflation. This gives the exact value of the
power spectrum, up to numerical errors. Alternatively, one can employ the standard (slow-
roll) single-field inflation formulation. In this case, although one does not need to evolve the
tensor modes, resulting in a procedure which is numerically more efficient, one must take
into account that the approximations that are implicit in the adopted formulation reduce the
precision at the end of the day.

Let us describe succinctly the kind of computations that are typical in standard (slow-
roll) single-field inflation, before we derive the power spectrum of the tensor perturbations for
the different vacua under consideration. In this way, we will be able to compare predictions
obtained in different ways, checking the robustness of our results.

It is well known that, for modes that leave the Hubble horizon during inflation in the
slow-roll regime, the power spectrum of the scalar and the tensor perturbations can be ap-
proximated by the first-order slow-roll expressions [47]

P(0)
R (k) =

H2
∗

πεH∗
, (6.1)

and

P(0)
T (k) =

16H2
∗

π
, (6.2)

where H = ȧ/a is the Hubble parameter and εH = −Ḣ/H2 is the first slow-roll parameter
in the Hubble-flow functions. The subscript ∗ means that the time-dependent variable is
evaluated at η∗, defined as the moment when k = a(η∗)H(η∗), namely, when the studied
mode crosses the Hubble horizon. Besides, the dot stands here for the derivative with respect
to the proper time. By convention, we will consider that the slow-roll regime starts when
the absolute values of the slow-roll parameters εH and ηH = Ḧ/(2ḢH) are both smaller
than 10−2. The above expressions give relatively good results in such a slow-roll regime.
But we must keep in mind that they are only first-order slow-roll formulas. This means that
they disregard contributions of higher order in the slow-roll parameters. Those contributions
can actually be restored. In fact, together with the power spectra provided by the previous
expressions, in this article we will consider more accurate formulas that involve second-order
corrections in the slow-roll parameters. In doing so, we follow several strategies. The first
one consists in taking the second-order slow-roll expressions and evaluate them at the time
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when the modes under consideration exit the Hubble horizon (i.e. at the horizon crossing).
The second strategy for the computation of the primordial power spectra is based on the
previous evaluation, but this time considering only a reference mode, and introducing then a
suitable extrapolation from this reference scale to other wavenumbers k. We will employ two
different extrapolation functionals that are often used in the literature and lead to suitable
parameterizations of the primordial power spectra of the scalar and the tensor perturbations
[2, 49].

The first extrapolating expansion we will consider here can be found in Ref. [49] (and
the references therein). It assumes the following parameterization for the power spectrum of
the scalar perturbations:

PR(k; kref)

P(0)
R (kref)

= aR0 (kref) + aR1 (kref) ln

(
k

kref

)
+
aR2 (kref)

2
ln2

(
k

kref

)
, (6.3)

and the same form for the tensor power spectrum, but replacing the ratio on the left-hand side
with PT (k; kref)/P

(0)
T (kref), and the coefficients aRi with other coefficients aTi (i = 0, 1, and 2).

Both collections of coefficients are functions of time, and the notation aRi (kref) and aTi (kref)
indicates that they must be evaluated at the instant when the mode kref exits the horizon.
In the approximation that we will consider here, these coefficients are truncated at second
order in the slow-roll parameters expansion. For explicit expressions of all these coefficients
in terms of Hubble-flow functions, see Eqs. (2.18)-(2.25) of Ref. [49]. The wavenumber kref

is an arbitrary reference scale that must exit the Hubble horizon during the slow-roll regime.
Note that each of the expressions PR(k; kref) and PT (k; kref), for the power spectrum of the
scalar and the tensor perturbations respectively, is a parabola in the logarithm of k. We
expect that different choices of kref will yield slightly different power spectra. On the other
hand, if one is not extrapolating, but instead tracking the exit of all the modes of interest,
the second-order slow-roll formulas reduce simply to

P(2)
R (k) =

(
aR0
)
∗ P

(0)
R (k) (6.4)

and
P(2)
T (k) =

(
aT0
)
∗ P

(0)
T (k). (6.5)

Again, the asterisk stands for the evaluation of the time-dependent coefficients aR0 and aT0
(truncated at second order) when the mode k crosses the horizon during slow roll.

The second and last strategy that we will consider in this article follows the very same
idea, but adopts a different expansion of the power spectra, namely, the one used by the
Planck Collaboration in Ref. [2]. In this case the expansion is given by

PPl
R (k; kref) = As(kref)

(
k

kref

)ns(kref)−1+ 1
2

ln
(

k
kref

)
dns
d ln k

(kref)

, (6.6)

and

PPl
T (k; kref) = At(kref)

(
k

kref

)nt(kref)+ 1
2

ln
(

k
kref

)
dnt
d ln k

(kref)

. (6.7)

These expressions can be found in Eqs. (5) and (6) of Ref. [2]. The spectral indices ns and nt,
and their derivatives (runnings) dns/d ln k and dnt/d ln k, are polynomials of second order
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Figure 4. Comparison between power spectra calculated with different strategies in the slow-roll
regime. Here, φB = 0.97 and m = 1.20 · 10−6. A dashed line indicates modes that exit the Hubble
horizon in an inflationary phase but not in slow-roll regime. Left panel: slow-roll power spectra for
the scalar perturbations. Right panel: slow-roll power spectra for the tensor perturbations.

in the Hubble-flow functions. As it happens with the coefficients As and At, they depend on
the reference mode kref . Their explicit expressions are given in Eqs. (8)-(11) of Ref. [2].

In Fig. 4 we show a generic example of the power spectra of the scalar and the tensor
perturbations obtained using the different strategies that we have mentioned above. As we
see, all computations are in good agreement for scales that exit the Hubble horizon well into
the slow-roll regime, although the first-order formulas (6.1) and (6.2) are not as accurate as
the second-order ones, with relative discrepancies of about 0.5%. For instance, the second-
order formulas give slightly more power in the scalar spectrum and slightly less power in the
tensor case. Therefore, the value of the tensor-to-scalar ratio obtained with the first-order
formulas is slightly bigger than the actual value, increase which, in this particular model,
goes against the observational bounds on this parameter. Moreover, this approximation is
the source of the small discrepancies that were already discussed in Ref. [22] for the scalar
perturbations. With this panorama, we can be confident that our numerical calculations are
robust and provide accurate estimations of the power spectrum of the perturbations.

6.2 Primordial power spectrum of the tensor modes

We will now focus our attention on the primordial power spectrum of the tensor modes that
follows from the hybrid quantization approach adopted in our discussion. For these tensor
modes, we will compare the numerical results, obtained evolving the perturbations from the
bounce to the end of inflation, with the power spectra computed by using the second-order
slow-roll formulas in which one either tracks the exit of all the relevant modes [given in
expressions (6.4) and (6.5)], or employs the expansion around a reference scale [given in Eqs.
(6.3), (6.6), and (6.7)]. In addition, we will consider all the different prescriptions that we
detailed above for the choice of initial state of the tensor perturbations at the bounce. The
same computations were carried out for the scalar perturbations in Ref. [22] and will not be
repeated here.

In the left upper panel of Fig. 5, we plot the power spectra obtained either with non-
oscillating initial conditions, denoted by Pno

T , with the slow-roll formula (6.5), or with the
extrapolation functional (6.7). They all agree very well for modes that cross the Hubble
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Figure 5. Comparison between primordial power spectra obtained with different sets of solutions for
the perturbations. Here, φB = 0.97 and m = 1.20 · 10−6.

horizon within the slow-roll regime. Nevertheless, those modes that exit the Hubble horizon
before the slow-roll phase, have a power spectrum with significantly less power in the case
of the non-oscillating vacuum than when it is estimated using the extrapolation (6.7). In
fact, this power spectrum displays two regions with different behaviors (with respect to the
slow-roll formula), as it is known that happens as well for the scalar perturbations [22]: (i)
small oscillations for 2.5 · 10−3 / k / 10−2, with a moderate enhancement and (ii) power
suppression for k / 2.5 · 10−3, that becomes stronger as k decreases. This strong suppression
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for large scales is very similar (maybe not surprisingly) to the one found in scenarios where
the slow-roll regime is preceded by a kinetically dominated era [50] (as it is also the case
studied here). In any case, we expect the presence of genuine modifications in the spectrum,
originated in the earlier phase in which the LQC corrections dominate.

The primordial power spectra resulting from adiabatic initial conditions are displayed
in the rest of panels of Fig. 5. They have been computed starting with the power spectrum
of the non-oscillating vacuum, by taking into account the Bogoliubov transformation that
relates this vacuum with the adiabatic ones. The corresponding primordial power spectrum
is given by

PT (k) =
[
1 + 2|βk|2 + 2|αk||βk| cos

(
ϕαk − ϕ

β
k + 2ϕ

(no)
k

)]
Pno
T (k), (6.8)

where we have used αk = |αk|eiϕ
α
k , βk = |βk|eiϕ

β
k , and µ

(no)
k = |µ(no)

k |eiϕ
(no)
k . Since the

strong oscillations are produced by the term containing the cosine, we have also plotted the
primordial power spectrum obtained by setting this term equal to zero. This power spectrum,
that we have called P̄T , gives a good approximation to the result of averaging the highly
oscillatory spectrum in small bins in k, and also in small bins in ln k for k ' 10−2. For the
primordial power spectra of adiabatic states, we can distinguish three regions with different
behavior. In the first one, formed by large wavenumbers k, the behavior is similar to that of
the slow-roll formula, and consequently similar to the non-oscillating spectrum. The second
region covers the interval 10−3 / k / 4. Here we observe high oscillations. This region
is usually interpreted as governed by particle production processes, owing to the fact that
the corresponding modes exit and reenter the Hubble horizon in the pre-inflationary regime.
Finally, in the third region, which runs over k / 10−3, one gets a suppression of power for
W

(0)
k , W (2)

k , W(2)
k , and W (4)

k , but a large and approximately constant power for W(4)
k . For all

of them, the existence of big oscillations produce in average a large enhancement in the power
spectrum that is not compatible with present observations, unless the involved scales are not
currently observable in the CMB. We have checked numerically that the presence of these
big oscillations and the associated enhancement of power for the adiabatic states are robust
results, independent of the choice of the bounce as the initial time surface. Namely, the same
kind of qualitative results are obtained if one changes the instant where the initial conditions
that determine the adiabatic vacuum are imposed, moving this initial instant away from the
bounce, as far as it is not chosen very close to the onset of inflation. For these reasons, and
owing to the fact that adiabatic vacuum states have already been studied within LQC in
several references (see for instance [12, 44, 51]), in this work we will mostly concentrate our
attention on the non-oscillating vacuum.

The Planck Collaboration has not been able to detect primordial tensor perturbations,
e.g. by carrying out accurate measurements of the B-modes polarization. However, it has
been possible to provide bounds on the tensor-to-scalar ratio

r =
PT
PR

. (6.9)

Here, we have obviated the k-dependence of the different involved quantities. The mentioned
bounds, which correspond to a comoving scale of 0.002Mpc−1, are given by r0.002 < 0.10
(95%CL, Planck TT+lowP) and r0.002 < 0.11 (95%CL, Planck TT+lowP+lensing)5. To

5CL stands for confidence level. Each bound is based on a different set of observations which are described
in the legend inside the parentheses, and that are explained in Ref. [2].
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derive these bounds, the Planck Collaboration mostly assumes the validity of the first-order
slow-roll consistency relation r = −8nt, although they also use the second-order relation
nt = −r(2− r/8− ns)/8 when they consider the possibility of a running.

For primordial power spectra computed numerically, we have looked at the spectral index
for the tensor perturbations locally, defined as nt = d lnPT /d ln k. Nonetheless, for scales in
which the power spectrum oscillates rapidly, it seems much more natural to use the averaged
spectrum in order to compute the tensor-to-scalar ratio and the spectral index. This ratio
will be called r̄. In Fig. 6 we show the tensor-to-scalar ratios for the non-oscillating vacuum
and the two 4th-order adiabatic vacua considered in our discussion, along with the relative
difference between r and −8nt, that immediate tells us the sector of wavenumbers k where
the consistency relation is violated. Several comments are in order. First, for the inflationary
model and the parameters considered here, the consistency relation is not satisfied exactly
even for scales that exit the Hubble horizon during the slow-roll regime. For those scales,
the value of −8nt, with nt obtained by numerical differentiation, turns out to be about 2%
higher than the actual value of the tensor-to-scalar ratio. This relative discrepancy can be
reduced to 1% for large wavenumbers k when the power spectra are computed using the
expressions (6.6) and (6.7). Second, the consistency relation is violated and does not even
give approximate results at scales around or smaller than the one where the strong oscillations
start in the power spectrum. For these scales with oscillations, as we have already discussed,
there is in average an increase in power, both for the scalar and the tensor perturbations.
From Fig. 6, it is clear that this enhancement is the same for both kinds of perturbations,
given that the tensor-to-scalar ratio is approximately the same as the one calculated with
the second-order slow-roll formulas. Nonetheless, such enhancement modifies significantly
the value of the spectral index, making it more negative. A final comment concerns the non-
oscillating vacuum. In this case, the consistency relation gives a fairly good approximation to
the tensor-to-scalar ratio for scales exiting the horizon during slow roll; however, the relation
does not hold for scales that show a strong suppression. In fact, for these latter scales, the
tensor-to-scalar ratio depends significantly on the phases at which the tensor perturbations
and the scalar ones get frozen at the horizon crossing. For the parameters explored in this
particular inflationary model, we always obtain a larger tensor-to-scalar ratio in this region
of large scales.

6.3 CMB polarization: TT , TE, EE, and BB correlation functions

We will now compare the predictions obtained with our hybrid quantization approach in the
case of the non-oscillating vacuum with observations of the Planck Collaboration. Actually, in
order to do this, we need first to perform a scale matching. In our numerical simulations, we
have arbitrarily fixed the volume at the bounce as vB = 1. Nevertheless, for the observations
registered by the Planck Collaboration, the convention consists in fixing the scale factor today
by setting vo = 1 (the subindex o denotes evaluation at present), as it is usually done in the
cosmology literature. Therefore, one must provide a correspondence between the comoving
scales k and the physical scales of the observations. With this aim, we will follow this
procedure: we will take the value of the power amplitude As observed by Planck at the pivot
mode k∗ = 0.05 Mpc−1, find the corresponding scale k? at which our theoretical value of the
primordial power spectrum coincides with As, and identify this latter scale with k∗. Namely,
we will adjust the scale so that Pno

R (k?) = As. It is worth recalling that the amplitude of the
power spectrum given by the Planck Collaboration is inferred from the observational data
by adopting a parameterization of the form (6.6), motivated by the slow-roll approximation.
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Figure 6. Comparison between different vacuum prescriptions: tensor-to-scalar ratio and validity of
the consistency relation r = −8nt. In the two upper panels, we show the tensor-to-scalar ratio for
the non-oscillating vacuum and for the two 4th-order adiabatic vacua considered in the text. The
ratio for these adiabatic vacua has been computed both from the full power spectrum and from its
averaged version. Since it turns out that r̄(W (4)

k ) ≈ r̄(W(4)
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these ratios. In the lowest panel, we plot the quantity |r+8nt|/|r−8nt|. Dashed (solid) lines indicate
negative (positive) values of r+ 8nt. For both W

(4)
k and W

(4)
k , we plot the results using the averaged

power spectra. Here, we have taken φB = 0.97 and m = 1.20 · 10−6.

Since the primordial power spectra studied here are not monotonous functions of k in the
intervals under consideration, it might happen that there exists more than one scale that
satisfies our matching condition. Nonetheless, the power spectra are in fact monotonous in
the region of scales that are well inside the slow-roll regime at the horizon crossing. So, we
will consider only those scales to perform the scale matching, choosing in this way k? as a
mode that exits the horizon definitively in the slow-roll phase. The resulting value of the
pivot scale k? will depend both on the mass m of the scalar field and on the value φB of its
homogeneous mode at the bounce.

We will compare our results with the best-fit curve provided by the Planck Collaboration
[1] (which is given for the TT+lowP data). The corresponding scale of reference used by the
Planck mission is k∗ = 0.05Mpc−1, and its amplitude is ln(1010As) = 3.089 ± 0.036 (68%CL)
[2]. As an additional constraint, we must check that the obtained pivot scale is indeed a
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plausible scale, observed nowadays in the CMB. This imposes a condition in the number of
e-folds N? that took place from the exit of the pivot scale beyond the Hubble horizon until
the end of inflation. Explicitly, N? = ln(aend/a?), where a? and aend are the values of the
scale factor at the time when the pivot scale crossed the horizon and when inflation ended,
respectively. Taking into account the bounds given in Ref. [52] and that we are considering
the pivot scale k∗ (and not the horizon scale at present, k0 = a0H0 ≈ k∗/220), we have
checked that 65 > N? > 45. Let us remark, nevertheless, that this range of values depends
considerably on the behavior and duration of the reheating phase, as well as on the transition
to it from the inflationary phase (see Refs. [49, 53] for a better treatment of this reheating
phase). Table 1 gives the corresponding value of the pivot scale that results from our scale-
matching method for different choices of the homogeneous initial conditions. There, we also
list the value of several background quantities at the time of the horizon crossing, as well as
the (local) spectral index for the pivot scale.

Let us also comment briefly on the issue of the weak gravitational lensing corrections.
This phenomenon affects the trajectory of the photons in the CMB from the last scattering
surface until today. This lensing is caused by the gravitational potential of large scale struc-
tures [54], and therefore it is ultimately determined by the power spectrum of the cosmological
perturbations. In this work, we follow the method of Ref. [55], which gives accurate results
for all scales, provided that the non-Gaussianities that are due to nonlinear effects are not
important. In absence of lensing, the only source of power in the BB-correlation function are
the tensor perturbations [56]. However, the gravitational lensing produces a mixing between
E and B polarizations, mixing that is not negligible at small scales.

To account for this lensing, we have computed again (see also Ref. [22]) the spectrum of
the temperature anisotropies of the CMB, but this time including also tensor perturbations
in our computations, and assuming that the perturbations are in the non-oscillating vacuum
at the bounce. In these computations, we have employed the CLASS code [57]. We have
considered the base ΛCDM model with the best-fit values of the baryon density, cold dark
matter density, angular size of the sound horizon, and Thompson scattering optical depth
for the TT+lowP data. These best-fit values are given in the first column of Table 4 in Ref.
[1]. The results are summarized in Fig. 7. The addition of tensor perturbations produces
an increase of power at low multipole moments `. However, if the modes that cross the
Hubble horizon today are within the suppression region that characterizes the non-oscillating
vacuum state, this enhancement in the spectrum turns out to affect modes with ` ∼ 20. The
enhancement is very small, in any case. Besides, although we have not carried out a rigorous
statistical analysis, it seems that the calculations that include lensing are in better agreement
with the observational data, as well as with the best fit of the Planck Collaboration. The
lensing effect modifies the spectrum of the anisotropies mainly at large multipole moments.
Roughly speaking, its contribution reduces the amplitude of the oscillations of the baryonic
resonances.

We have also computed the spectrum of other correlation functions and compared them
with observational data. For instance, in Fig. 8 we display the EE-correlation function.
We see that the suppression of the primordial power spectrum reduces the amplitude of this
correlation function at very low multipole moments `, in comparison with the behavior of
the Planck best fit. The lensing, as in the TT -correlation function, gives a better fit to the
observations at large `.

In addition, in Fig. 9 we plot the angular power spectrum for the TE-cross-correlation
function. Again, the behavior of the best fit provided by the Planck Collaboration at low
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φB m (·10−6) k? N? ns φ? V? (·10−12) H? (·10−6)

0.950 1.180 0.03013 61.0226 0.96694 3.10229 6.70038 7.50248

0.960 1.180 0.04415 61.0228 0.96704 3.10230 6.70041 7.50250

0.970 1.180 0.06486 61.0220 0.96704 3.10228 6.70031 7.50245

0.980 1.180 0.09528 61.0224 0.96699 3.10229 6.70035 7.50248

0.990 1.180 0.13996 61.0238 0.96701 3.10232 6.70052 7.50256

0.950 1.190 0.04786 60.5087 0.96681 3.08912 6.75668 7.53402

0.960 1.190 0.07015 60.5087 0.96672 3.08912 6.75669 7.53403

0.970 1.190 0.10280 60.5100 0.96673 3.08915 6.75683 7.53411

0.980 1.190 0.15101 60.5102 0.96673 3.08916 6.75685 7.53412

0.990 1.190 0.22233 60.5093 0.96673 3.08913 6.75674 7.53406

0.950 1.200 0.07534 60.0045 0.96646 3.07614 6.81309 7.56550

0.960 1.200 0.11041 60.0044 0.96646 3.07614 6.81308 7.56549

0.970 1.200 0.16218 60.0032 0.96644 3.07610 6.81294 7.56542

0.980 1.200 0.23823 60.0031 0.96644 3.07610 6.81294 7.56542

0.990 1.200 0.34995 60.0044 0.96645 3.07613 6.81308 7.56549

0.950 1.210 0.11776 59.5075 0.96616 3.06329 6.86938 7.59678

0.960 1.210 0.17258 59.5073 0.96617 3.06329 6.86935 7.59676

0..970 1.210 0.25293 59.5083 0.96617 3.06331 6.86946 7.59682

0.980 1.210 0.37154 59.5080 0.96617 3.06331 6.86944 7.59681

0.990 1.210 0.54702 59.5068 0.96616 3.06327 6.86930 7.59673

0.950 1.220 0.18281 59.0180 0.96589 3.05058 6.92557 7.62787

0.960 1.220 0.26730 59.0199 0.96588 3.05063 6.92580 7.62800

0.970 1.220 0.39264 59.0184 0.96588 3.05059 6.92562 7.62790

0.980 1.220 0.57677 59.0180 0.96588 3.05059 6.92558 7.62788

0.990 1.220 0.84723 59.0190 0.96688 3.05061 6.92568 7.62793

Table 1. For each pair of parameters (φB ,m), this table provides the corresponding pivot scale, the
number of e-folds until the end of inflation, the (local) spectral index, the value of the scalar field,
the value of the potential, and the Hubble parameter. All background quantities are evaluated at the
time when the pivot scale crosses the Hubble horizon.

multipole moments differs from the predictions obtained here for the non-oscillating vacuum
when the suppression of the primordial power spectrum becomes relevant in the modes that
cross the Hubble horizon today. We also notice that, at large `, the lensing plays again an
important role in improving the agreement between predictions and observations.

Finally, we have compared the BB-correlation function of the non-oscillating vacuum
with the theoretical value predicted for it by the Planck Collaboration. This comparison can
be found in Fig. 10. We observe a good agreement between the spectra at large multipole
moments `, but important differences arise at low `. One of the reasons is the fact that the
predictions reached by Planck ignore tensor perturbations in the calculations. For large `,
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Figure 7. TT angular power spectrum provided by Planck best fit and spectra computed for the non-
oscillating vacuum with different values of the scalar field at the bounce. Left panel: m = 1.20 · 10−6.
Right panel: m = 1.18 ·10−6. The corresponding cosmological parameters determined by Planck best
fit for TT+lowP data are given in Ref. [2]. Both panels incorporate lensing corrections.
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Figure 8. EE angular power spectrum provided by Planck best fit and spectra computed for the non-
oscillating vacuum with different values of the scalar field at the bounce. Left panel: m = 1.20 · 10−6.
Right panel: m = 1.18 ·10−6. The corresponding cosmological parameters determined by Planck best
fit for TT+lowP data are given in Ref. [2]. Both panels incorporate lensing corrections.

the main contribution to the power spectrum comes from weak gravitational lensing, which
is known to be responsible of the large amplitude in that region (see, for instance, Ref. [55]).
However, lensing does not contribute significantly to the spectrum at low `. Indeed, the
BICEP Collaboration [58] studied some few years ago the BB-correlation function in the
interval 30 / ` / 150. This interval is actually in the region of multipole moments that is not
considerably contaminated by lensing. Consequently, the presence of power in this region,
had it not been explained eventually by other sources, would have been a strong evidence of
the presence of primordial tensor modes in the CMB.

In summary, if the suppression of power in the primordial power spectrum of the non-
oscillating vacuum is relevant for modes that are in the large scale sector today, such ef-
fect would translate into a decrease of power in the correlation functions at small multipole
moments. This is the main characteristic of the non-oscillating vacuum within our hybrid
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Figure 9. TE angular power spectrum provided by Planck best fit and spectra computed for the non-
oscillating vacuum with different values of the scalar field at the bounce. Left panel: m = 1.20 · 10−6.
Right panel: m = 1.18 ·10−6. The corresponding cosmological parameters determined by Planck best
fit for TT+lowP data are given in Ref. [2]. Both panels incorporate lensing corrections.
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Figure 10. BB angular power spectrum provided by Planck best fit and spectra computed for
the non-oscillating vacuum with different values of the scalar field at the bounce. Left panel: m =
1.20 · 10−6. Right panel: m = 1.18 · 10−6. The corresponding cosmological parameters determined by
Planck best fit for TT+lowP data are given in Ref. [2]. Both panels incorporate lensing corrections.

approach: the suppression of power at low ` in the studied correlation functions of the CMB.

7 Discussion and conclusions

In this work, we have discussed possible physical consequences of the hybrid quantization
approach in LQC [13, 22–25, 27] on the behavior of cosmological perturbations in an infla-
tionary universe. More specifically, we have considered a flat FRW spacetime coupled to a
massive scalar field. In this system, scalar and tensor perturbations have been introduced
in order to account for the small inhomogeneities that originated the large scale structures
of our Universe. We have mostly focused on the analysis of tensor perturbations, because
the scalar ones were already studied and (at least partially) compared with observations in
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Ref. [22]. We emphasize that, in both cases (i.e., for scalar and tensor perturbations), the
backreaction has been ignored in the discussion, treating the perturbations as as test fields.
Besides, we have considered that the wave function of the system can be factorized as in
Eq. (4.7), namely, separating the dependence on the background geometry from that on the
perturbations. This kind of Born-Oppenheimer ansatz allows us to deal with the evolution of
the FRW geometry independently of the inhomogeneities. In addition, we have concentrated
our analysis on quantum states of the background geometry that are sufficiently and suitably
peaked, so that the effective dynamics of LQC is valid to describe the evolution of the peak
trajectory and any relevant expectation value associated with it. We have also admitted the
reasonable hypothesis that the quantum dependence on the perturbations, with a Hamilto-
nian that is quadratic, has a direct effective counterpart in which creation and annihilation
operators are replaced with classical variables. Finally, we have followed a standard treatment
of those perturbations subject to such an effective dynamics.

In this way, we have deduced effective equations of motion for the perturbations (see
Ref. [27]). They take the form of an infinite collection of decoupled ordinary differential
equations with a time-dependent mass. These equations can be easily integrated provided
that suitable initial data are given. In Fig. 1, we compare the time-dependent masses of
the scalar and the tensor perturbations in the hybrid and the dressed metric [44] approaches
(in both cases, once backreaction is ignored and the effective description is accepted). These
time-dependent masses agree with their values in general relativity away from the bounce.
Moreover, the values of the mass for the scalar and the tensor perturbations esentially coincide
in each of the two approaches separately, at least for background solutions that are kinetically
dominated at the bounce. But, in general, these values differ in the two approaches, especially
in regimes where the quantum corrections are important, as it actually happens around the
bounce, so that they can even get opposite signs. In conclusion, although both approaches
provide effective equations for the perturbations that are similar and share several qualitative
aspects, the way in which they incorporate quantum gravity corrections in those equations
leads to significant differences.

Contrary to the typical situation in standard general relativity, in LQC there seems to
exist a privileged Cauchy surface where initial data can be supplied: the quantum bounce.
Nevertheless, since quantum gravity corrections are important at this bounce, it is not com-
pletely clear which choice of initial data should be adopted for the scalar and the tensor
perturbations there. At least, it is natural to assume that both types of perturbations start
in the same vacuum state. Actually, there exist several prescriptions in the literature to deter-
mine such initial data. For instance, adiabatic states seem an appealing choice for very large
wavenumbers, because they are approximate solutions with a convenient splitting between
positive and negative frequency contributions in the ultraviolet sector, roughly speaking.
However, the adiabatic approximation breaks down for solutions corresponding to large scale
modes. These modes can be subject to strong curvature effects during their evolution and
experience excitations that can produce an enhancement in the power spectrum. In these
circumstances, the adiabatic approximation is not appropriate. In fact, this is a common
problem shared by the hybrid and the dressed metric approaches for the treatment of cos-
mological perturbations in LQC. With this motivation in mind, a new vacuum was proposed
for the perturbations in Ref. [22]: the so-called non-oscillating vacuum state. This state
minimizes the particle creation along the evolution, and in this sense can be regarded as the
best adapted to the background. In particular, this affects the splitting between positive
and negative frequency solutions, even for some large scale modes (at least for those that
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oscillate a sufficient number of times between the bounce and the onset of inflation). For the
scalar perturbations, this vacuum has an associated power spectrum that agrees with that of
standard slow-roll inflation, even for those scales that notice the large value of the curvature
of the spacetime in the quantum regime. Besides, it is remarkable that this vacuum shows
a suppression of power at large scales (low multipole moments), in agreement with what is
apparently suggested by the present observations of the anisotropies of the CMB.

In our study, we have investigated in detail the evolution of the tensor perturbations
in LQC for the hybrid quantization approach (without backreaction and within the effective
approximation), assuming that their initial state at the bounce is an adiabatic vacuum state of
0th, 2nd, or 4th order. In addition, we have also considered the possibility of a non-oscillating
vacuum state, as proposed in Ref. [22]. We have computed the power spectrum of the tensor
perturbations for all of these vacua. In the case of the adiabatic states, we have observed a
strong particle production at scales that feel the curvature of the background in the quantum
regime. One of the main conclusions is that, in LQC, the existence of a bounce introduces an
upper bound on the possible enhancement of the power spectrum (by particle creation), a fact
which is in clear contrast with the situation found in general relativity when one approaches
the cosmological singularity. This seems a robust prediction in LQC, valid for both the hybrid
and the dressed metric approaches. Another important result of our study is a surprising
property of the non-oscillating vacuum: it behaves asymptotically as a high-order adiabatic
state. In the left panel of Fig. 3 we display the absolute value of the antilinear coefficients
βk (multiplied by k3/2) of the Bogoliubov transformation between this vacuum and several
adiabatic states. We see that, the higher the adiabatic order is, the faster the decay is for
large k. In the right panel, we observe a similar behavior when we consider transformations
between adiabatic states. The rate of convergence is determined by the adiabatic state of
lower order. From our analysis, we conclude that the non-oscillating vacuum belongs in fact
to the equivalence class of the adiabatic vacua, with the same asymptotic behavior as an
adiabatic state of at least 4th order.

We have also computed the tensor-to-scalar ratio derived from our hybrid quantization
approach. With the family of vacuum states that we have considered here, and the results
of Ref. [44], the ratio appears to be constant, even at scales where the quantum gravity
corrections are important (provided that one gets rid of the strong oscillations). This is our
next important conclusion: the tensor-to-scalar ratio seems approximately constant in LQC,
regardless of the initial state and the adopted quantization approach, when one assumes that
the scalar and the tensor perturbations have the same vacuum. One might have guessed this
result, given our assumption about the coincidence of the vacua and the fact that the time-
dependent masses of both the scalar and the tensor perturbations are very similar everywhere
(for background spacetimes that are kinetically dominated at the bounce). On the other
hand, if one takes into account the strong oscillations, the tensor-to-scalar ratio also oscillates
around a constant value. These oscillations are caused by the difference between the phases
of the scalar and the tensor modes at the horizon crossing. Besides, we observe that the
consistency relation between the tensor-to-scalar ratio and the tensor spectral index is satisfied
for sufficiently large values of k. However, the relation is violated for adiabatic states that
entail an important enhancement of the power, in the region of wavenumbers k where this
power increase occurs. Most remarkably, nonetheless, the non-oscillating vacuum turns out
to be compatible with the consistency relation up to very small wavenumbers k.

Finally, we have computed the TT , EE, TE, and BB correlation functions for the non-
oscillating vacuum. For this purpose, we have employed the CLASS code. We have compared
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our predictions with the best fit of the TT+lowP data of the Planck Collaboration, assuming
a base ΛCDM model with value of the cosmological parameters given in the first column of
Table 4 in Ref. [1]. To get a better fit of the spectrum, we have introduced corrections caused
by cosmological lensing. These corrections introduce slight modifications of the amplitude
of the baryonic peaks, improving the fit at small scales. In addition, the BB-correlation
function is considerably affected by these corrections at relatively large multipole moments.
Our numerical computations indicate that a general property of the non-oscillating vacuum
is the suppression of power at low multipole moments ` (large scales), an effect that we have
noticed in all the studied correlation functions. Therefore, a suitable choice of vacuum state,
based on first principles, might suffice to explain the plausible lack of power suggested by
present observations.

In summary, LQC provides a powerful formalism for the study of cosmological pertur-
bations in inflation that leads to robust predictions, even though some phenomena crucially
depend on the choice of initial state for the perturbations and on the concrete quantiza-
tion approach. Robust predictions of this type are the existence of a bound on the particle
production and the intrinsic similarities between the dynamics of the scalar and the tensor
perturbations (at least for kinetically dominated bounces). Furthermore, these predictions are
in good agreement with the available observations. In this way, LQC is able to connect suc-
cessfully the physics of the early Universe at the Planck regime with the present observations,
extending the traditional formalism based in general relativity.
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