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Abstract

Motivation: The identification of differentially methylated regions (DMRs) among phenotypes is

one of the main goals of epigenetic analysis. Although there are several methods developed to de-

tect DMRs, most of them are focused on detecting relatively large differences in methylation levels

and fail to detect moderate, but consistent, methylation changes that might be associated to com-

plex disorders.

Results: We present mCSEA, an R package that implements a Gene Set Enrichment Analysis

method to identify DMRs from Illumina450K and EPIC array data. It is especially useful for detecting

subtle, but consistent, methylation differences in complex phenotypes. mCSEA also implements

functions to integrate gene expression data and to detect genes with significant correlations

among methylation and gene expression patterns. Using simulated datasets we show that mCSEA

outperforms other tools in detecting DMRs. In addition, we applied mCSEA to a previously pub-

lished dataset of sibling pairs discordant for intrauterine hyperglycemia exposure. We found sev-

eral differentially methylated promoters in genes related to metabolic disorders like obesity and

diabetes, demonstrating the potential of mCSEA to identify DMRs not detected by other methods.

Availability and implementation: mCSEA is freely available from the Bioconductor repository.

Contact: pedro.carmona@genyo.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is by far the most studied epigenetic mark. It

affects gene expression and has an important role in several disor-

ders. Epigenome-wide association studies (EWASs) are performed to

find associations between DNA methylation alterations and a given

phenotype (Flanagan, 2015).

There are several methodologies to determine DNA methylation

status, including high-throughput techniques such as whole-genome

bisulfite sequencing (WGBS) or methylation arrays. WGBS is the one

with the highest coverage but Illumina’s BeadChip arrays (Infinium

HumanMethylation450and InfiniumMethylationEPIC) are still much

more affordable and simpler to analyze, and they are currently the

most used platforms in human EWAS (Teh et al., 2016).

EWAS are usually applied to find associations between individ-

ual CpG sites and outcomes. However, methylation patterns are

not usually found in isolated CpGs, but clusters of proximal CpGs

are hypermethylated or hypomethylated (Peters et al., 2015). That

is the reason why several methods have been designed to detect

differentially methylated regions (DMRs) instead of differentially

methylated positions (DMPs).In this context, some methods use

predefined regions as candidates for DMRs identification [e.g. gene

promoters or CpG Islands (CGIs)], whereas others do not rely on

previous annotations and search de novo DMRs.

There are two different paradigms related to DNA methylation

pointed out in a recent review by Leenen et al. (2016). The first one

is that, in some disorders such as cancer, regulatory regions are
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clearly hypermethylated or hypomethylated, with methylation dif-

ferences greater than 60% (see e.g. De Smet et al., 1999; Mikeska

and Craig, 2014). However, there is a second paradigm in which

complex disorders are associated with very subtle differences in

CpGs methylation, with methylation differences of 1–10% between

phenotypes. As remarked by Leenen et al. these subtle methylation

differences are relevant hallmarks associated to the diversity of

many complex non-malignant diseases, such as Type 2 diabetes,

major depression, schizophrenia, hypertension and cardiovascular

diseases (see e.g. Guerrero-Bosagna et al., 2014; Levenson, 2010).

Nevertheless, most of the available DMR methods have focused

on detecting large methylation differences between phenotypes. In

this context, they have worked properly and they have allowed the

discovery of many epigenetic causes of several diseases (Lappalainen

and Greally, 2017). However, these tools may fail to detect signifi-

cant DMRs in complex diseases or heterogeneous phenotypes,

wherethere might be small differences among methylation signals

but consistent across the analyzed regions and samples. Therefore,

no individual CpGs or regions may meet the threshold for statistical

significance in many published studies, although there may be bio-

logically meaningful differences (see e.g. Bohlin et al., 2015;

Chiavaroli et al., 2015; Gervin et al., 2012; Kim et al., 2017; van

Dongen et al., 2015).

In addition, some of these tools average all sites in a given region,

but if a significant pattern is associated to a subset of sites it may be

underestimated if all sites are analyzed as a block.

This scenario motivated us to develop a new approach based on

Gene Set Enrichment analysis (GSEA) (Subramanian et al., 2005), a

popular methodology for functional analysis that was specifically

designed to avoid some related drawbacks in the field of gene ex-

pression. GSEA is able to detect significant gene sets that exhibit

strong cross-correlation when differential expression of individual

genes is modest from the statistical point of view. GSEA uses a given

statistical metric to rank all genes of a genome and applies a

weighted Kolmogorov–Smirnov (KS) statistic (Hollander and Wolfe,

1999) to calculate an Enrichment Score (ES). Basically, ES for each

set is calculated running through the entire ranked list increasing the

score when a gene in the set is encountered and decreasing the score

when the gene encountered is not in the analyzed set. ES of this

set is the maximum difference from 0. The significance of each ES

is calculated permuting the sets and recomputing ES, getting a null

distribution for the ES.

We have developed a new R package in which we have imple-

mented a GSEA-based differential methylation analysis where gene

sets are defined as sets of CpG sites in predefined regions. This new

tool, named mCSEA (methylated CpGs Set Enrichment Analysis), is

capable to detect subtle but consistent methylation differences in

predefined genomic regions from 450 K and EPIC microarrays data.

The R package is freely available in Bioconductor repository.

2 Materials and methods

2.1 mCSEA workflow
mCSEA R package consists of five main functions (Fig. 1). The first

step is to rank all the CpG probes by differential methylation. As in-

put, a presorted list can be used, but if a matrix of b-values or M-

values is provided the rankProbes() function applies limma (Ritchie

et al., 2015) to fit a linear model and return the t-statistic assigned

to each CpG site.

The main mCSEA function, mCSEATest(), evaluates the enrich-

ment of CpG sites belonging to the same region in the top positions

of the ranked list by applying the GSEA implementation of the fgsea

package (Sergushichev, 2016). Regions whose CpG sites are over-

represented in the top or bottom of the list can be detected as differ-

entially methylated.

As predefined regions, mCSEA allows users to perform

analysis based on promoters, gene bodies and CGIs. These

predefined regions were defined based on R annotation

packages IlluminaHumanMethylation450kanno.ilmn12.hg19 and

IlluminaHumanMethylationEPICanno.ilm10b2.hg19 for 450 K

and EPIC arrays, respectively. We defined each region as shown

in Table 1, following previous works (Sandoval et al., 2011). In

addition, researchers can provide a set of defined regions in the

analysis by providing a file with genomic positions.

mCSEATest() function provides different statistics for each ana-

lyzed region, including a P-value of the regions to be differentially

methylated, a P-value adjusted by false discovery rate (FDR) and the

ES. In addition, a Normalized Enrichment Score (NES) is calculated

in order to correct the bias for the different region sizes. The neces-

sity and implementation of NES was explained in the original

GSEA’s paper (Subramanian et al., 2005).

mCSEA package include two functions to visualize the results:

mCSEAPlot() and mCSEAPlotGSEA(). The former represents

Fig. 1. mCSEA workflow. Gray boxes are input data and green boxes are

mCSEA’s functions. The scheme also shows the order in which functions

should be executed

Table 1. Terms from annotation data used for defining each type of

region in mCSEA

Region type Column from

annotation data

Terms

Promoters UCSC_RefGene_Group TSS1500, TSS200, 5’

untranslated region [UTR],

1stExon

Gene bodies UCSC_RefGene_Group Body

CGIs Relation_to_Island Island, N_Shore, S_Shore,

N_Shelf, S_Shelf
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methylation values of a given region in its genomic context (see e.g.

Fig. 3A). The latter generates GSEA’s enrichment plot (see e.g.

Fig. 3C), showing the positions of the CpG in a determined region

along the entire ranked list.

Finally, the package implements a function, mCSEAIntegrate(),

which integrates gene expression data in the analysis. For that pur-

pose, the leading edge CpGs of each region is first defined. The lead-

ing edge is the set of CpGs that contributes to the ES of the region, so

these CpGs are the most differentially methylated ones. These sites are

averaged for each region in each sample. Then, Pearson’s correlation

coefficient is calculated between each region’s methylation and the

proximal gene(s)’ expression (i.e. genes within 1500 base pairs up-

stream and downstream from the region). If the integration is per-

formed with promoters, significant negative correlations are returned,

due to it has been observed an inverse correlation between promoters’

methylation and gene expression (Jones and Baylin, 2002). On the

contrary, if the integration is performed in gene bodies, significant

positive correlations are returned instead, due to a positive correlation

between gene body methylation and expression has been observed

(Aran et al., 2011). If the integration is performed in CGIs, both posi-

tive and negative significant correlations are returned, due to CGIs

can be located in both promoters and gene bodies.

2.2 Methods comparison
In order to test our method, we used both simulated and real data.

We simulated 450Kb-values for 20 samples using the same approach

as Peters et al. (2015). We randomly selected 714 promoters to be

hypermethylated and another 714 promoters to be hypomethylated

in 10 samples (cases) compared with the other 10 (controls). Only

promoters with at least five associated CpGs were selected. We

simulated datasets with a b-value mode differences among pheno-

types (Db) ranging from 0.9 to 0.05 across promoter CpG sites. We

compared mCSEA’s performance with state-of-the-art solutions,

both predefined [IMA (Wang et al., 2012) and RnBeads (Assenov

et al., 2014)] and de novo [DMRcate (Peters et al., 2015), bump-

hunter (Jaffe et al., 2012) and Probe Lasso(Butcher and Beck,

2015)] algorithms. IMA package uses as input raw idat files and not

a b-values matrix. Therefore, to compare its approach using the

simulated data we implemented the method that is applied by IMA,

that is to calculate the median of the methylation values for each

predefined region and to apply limma to these averaged values. We

did not included COHCAP package (Warden et al., 2013) due to it

restricts the analysis to CGIs. For all methods we used default

parameters with the exceptions compiled in Supplementary Table

S1.

All results were considered significant using P-value adjusted by

FDR<0.05 threshold. For IMA and RnBeads, we searched for

DMRs in promoter regions and we considered as true positives

(TPs) those promoters annotated with the actual differentially

methylated promoters, and as false positives (FPs) the called regions

not annotated with the actual DMRs. For the rest of the methods,

due to they return de novo DMRs, we considered as TP those actual

DMRs overlapping at least one called region, and as FP the called

regions not overlapping any actual DMR. For all methods we con-

sidered as false negatives (FNs) the actual DMRs not called by the

corresponding method.

For each method and Db we calculated the sensitivity (Equation

1) and the precision or positive predictive value (PPV) (Equation 2).

sensitivity ¼ TP

TPþ FN
� 100 (1)

precision ¼ PPV ¼ TP

TPþ FP
� 100 (2)

We also tested the performance of the proposed method in the

methylation datasets previously published by Kim et al. (2017). This

dataset contains Illumina 450 K methylation data from 18 sibling

pairs discordant for intrauterine exposure to maternal gestational

diabetes mellitus (GDM). This data are publicly available from

GEO database (GEO ID: GSE102177).We reanalyzed the data with

IMA, RnBeads, DMRcate, Probe Lasso, bumphunter and mCSEA.

We selected these methods because all of them are popular tools for

DMRs analysis and allow complex experimental designs with paired

samples and covariates, as was our case. Probe Lasso does not dir-

ectly allow paired analysis but we adapted its functions to include it

in the comparison.

3 Results

3.1 Comparison of DMRs analysis packages
We performed a functional comparison of mCSEA and the most

popular R packages used to DMRs analysis from Illumina microar-

rays data (Table 2). An essential function of this kind of software is

the capability to analyze data from complex experimental designs,

due to methylation data is very sensitive to environmental factors

(Marsit, 2015) and it is important to take into account sex, age, ethni-

city and other confounding factors. In addition, some experiments

require a paired analysis (e.g. when normal and cancer cells are

extracted from the same patient). mCSEA can handle with both,

covariates adjusting and paired analysis. Other important features

compared were the type of regions that can be included in the analysis

and the capacity of integrating gene expression data. Our method and

COHCAP are the only tools capable to integrate gene expression data

in the analysis to define genes that show strong correlation in gene

expression and methylation data, which is a very relevant feature.

3.2 Simulated data results
We calculated the number of TP, FP and FN returned by each tested

method for each Db interval, in addition to sensitivity and PPV

(Supplementary Table S2). As can be noted in Figure 2, mCSEA

yielded a 100% of sensitivity detecting methylation differences rang-

ing from Db¼0.9 to Db¼0.2 and it outperformed the rest of meth-

ods when the methylation differences were especially small (0.05).

In addition, mCSEA returns a low number of FP, resulting in a high

PPV for all Db (Supplementary Table S2). Only DMRcate and Probe

Lasso overcome mCSEA in PPV, but at the cost of having a signifi-

cantly lower sensitivity for all Db.

3.3 DMRs in maternal diabetes exposure discordant

siblings
To demonstrate the mCSEA’s functionality, we analyzed the data

reported by Kim et al. (2017). This is a methylation dataset from

child sibling pairs: one of the siblings was exposed to maternal dia-

betes during their gestation, while the other was not. This intrauterine

hyperglycemia exposure is associated with an increased risk of obesity

and diabetes. Authors collected data from discordant siblings for

maternal diabetes exposure in order to get insight into possible epi-

genetic aberrations in the exposed sibling. Methylation differences in

such type of experiment were expected to be very subtle and, in fact,

the authors did not report any significant result from the statistical

point of view (FDR<0.05), but they focused in the most differentially

methylated genes and discussed their biological relevance.
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In this dataset, DMRcate and Probe Lasso did not return any sig-

nificant DMR. These methods applied limma to detect significant

DMPs and call DMRs based on them. Although they work properly

when methylation differences are high they did not reveal any sig-

nificant result for slight methylation differences.

RnBeads is also based on limma or detecting DMRs, but it com-

bines the results by region types (promoters, CGIs and so on) aggre-

gating the P-values obtained by the linear modeling, so, even if there

are not any significant DMPs, RnBeads is potentially capable to find

significant DMRs. However, this was not the case. This method did

not return any significant DMR (FDR<0.05).IMA approach did

not return any significant DMR neither.

Bumphunter yielded one significant DMR (FDR¼0.03, Family-

wise error rate (FWER)¼0.01) located at the promoter of SDHAP3

pseudogene. Up to our knowledge, there is not any known relation-

ship between SDHAP3 and development or metabolic disorders.

mCSEA yielded 1055 significant DMRs (FDR<0.05) in gene

promoters: 228 hypermethylated and 827 hypomethylated pro-

moters in cases compared with controls (Supplementary Table S3).

To assess the biological significance of these results, we performed

an enrichment analysis using Enrichr (Chen et al., 2013). The most sig-

nificant enriched pathway in KEGG database (Kanehisa and Goto,

2000) is ‘Maturity onset diabetes of the young’ (hsa04950) pathway

(adjusted P-value¼0.0011) (Supplementary Table S4). This pathway

is related with a type of diabetes characterized to appear in patients

younger than 25-years old and to be non-insulin dependent. Promoter

regions of 9 out of the 26 genes associated to this pathway were identi-

fied as significantly differential methylated regions, including PDX1,

FOXA2, PAX6 or INS. INS gene, which we found to be hypermethy-

lated in cases, is an important gene that has been previously associated

to diabetes in several works and it has been reported as a silenced gene

with a fully methylated promoter associated to diabetes development

(Yang et al., 2011). In addition, it has been observed that high levels

of glucose increase the INS methylation level (Yang et al., 2011), so

this hypermethylation could be induced during gestation. Methylation

differences in INS promoter between children exposed and non-

exposed to intrauterine hyperglycemia are subtle, but consistent

across all CpG sites of the promoter (Fig. 3). Such small methylation

Table 2. Comparison of available R packages for DMRs analysis using Illumina’s microarray data

IMA RnBeads DMRcate Bumphunter COHCAP Probe Lassoa mCSEA

References Wang et al.

(2012)

Assenov et al.

(2014)

Peters et al.

(2015)

Jaffe et al. (2012) Warden et al.

(2013)

Butcher and

Beck (2015)

—

DMRs analyzed Predefined Predefined De novo De novo Predefined De novo Predefined

Platforms 27K and 450K 27K and 450K 450K and

EPIC

27K, 450K and

EPIC

27K and 450K2 450K and EPIC 450K and EPICb

Statistical test Wilcoxon rank-

sum, t-test and

empirical Bayes

CpG-level P-val-

ues aggregation

with Fisher’s

method

Kernel

smoothing

Bumphunter

algorithm

Analysis of

variance

Probe Lasso

algorithm

GSEA

Accepts methyla-

tion matrix as

input

No Yes Yes Yes Yes Yes Yes

Adjusting for

covariates

Yes Yes Yes Yes Only onec No Yes

Paired analysis Yes Yes Yes Yes Yesc No Yes

Implemented

parallelization

No Yes Yes Yes No Yes Yes

Integration of

Gene

Expression

Data

No No No No Yes No Yes

Predefined

Regions

UCSC-defined

regions

(TSS1500, 5’

UTR, gene

body. . .)

Promoters, gene

bodies, CGIs,

tilling regions,

user-defined

regions

— — CGIs — Promoters, gene

bodies, CGIs,

user-defined

regions

aImplemented in ChAMP package (Morris et al., 2014).
bOther platforms can be analyzed introducing custom annotations.
cIt is only possible to adjust for one covariate or to perform a paired analysis, but not both.

Fig. 2. Performance with simulated data. Each line represents results from dif-

ferent methods. The Y-axis represents the number of TP for each Db. Red line

represents the total number of TP included in the dataset (1428)
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difference is the cause why this DMR remains undetected by all the

other tested methods. The same may be occurring in many other gen-

omic regions.

On the other hand, the most significant enriched pathway from

Online Mendelian Inheritance in Man Disease database is obesity

(adjusted P-value¼0.0085) (Supplementary Table S5). Eight out of

fifteen genes related to this disease contained significant DMRs,

including UCP1, UCP3, GHRL or PCSK1. So, we found methylation

alterations in genes related to diabetes and obesity, the two main

diseases associated to intrauterine GDM exposure.

4 Conclusions

Here we present mCSEA, a novel R package for predefined DMRs

detection based on GSEA method. We compared mCSEA with the

most widely used methods to detect DMRs. Our method outper-

formed the rest of solutions for detecting small methylation differen-

ces in the simulated dataset. It is especially remarkable the

capability of mCSEA to find DMRs even with the methylation

difference as small as 0.05 between groups, but consistent along a

relatively large region. We re-analyzed a previously published data-

set, obtaining barely any significant results with other methods.

However, mCSEA yielded several significant DMRs in promoters

for genes associated to relevant biological pathways.

We think that mCSEA will provide researchers with a useful tool

to detect DMRs in datasets from complex diseases in which the

methylation differences among phenotypes are small but consistent.
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Fig. 3. INS gene promoter methylation in GDM and control samples. Methylation is quantified with b-values. (A) Genomic context of INS promoter. Each point

represents the methylation of each sample. Lines link the mean methylation of each group. KS leading edge panel marks with green bars those CpGs contributing

to the ES and with red bars the rest of them. This plot was obtained with mCSEAPlot() function, implemented in mCSEA package. (B) Boxplot showing the subtle

difference in INS promoter methylation status between controls and GDM samples. (C) GSEA plot for INS promoter. Vertical lines mark the location of INS-associ-

ated CpGs along the entire ranked list of analyzed CpGs (horizontal black line). Red lines represent the maximum and minimum ES. This plot was obtained with

mCSEAPlotGSEA() function, implemented in mCSEA package
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