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Abstract

Motivation: Plasmacytoid dendritic cells (pDC) play a major role in the regulation of adaptive and

innate immunity. Human pDC are difficult to isolate from peripheral blood and do not survive in

culture making the study of their biology challenging. Recently, two leukemic counterparts of pDC,

CAL-1 and GEN2.2, have been proposed as representative models of human pDC. Nevertheless,

their relationship with pDC has been established only by means of particular functional and pheno-

typic similarities. With the aim of characterizing GEN2.2 and CAL-1 in the context of the main circu-

lating immune cell populations we have performed microarray gene expression profiling of

GEN2.2 and carried out an integrated analysis using publicly available gene expression datasets of

CAL-1 and the main circulating primary leukocyte lineages.

Results: Our results show that GEN2.2 and CAL-1 share common gene expression programs with

primary pDC, clustering apart from the rest of circulating hematopoietic lineages. We have also

identified common differentially expressed genes that can be relevant in pDC biology. In addition,

we have revealed the common and differential pathways activated in primary pDC and cell lines

upon CpG stimulatio.

Availability and implementation: R code and data are available in the supplementary material.

Contact: pedro.carmona@genyo.es or concepcion.maranon@genyo.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Plasmacytoid dendritic cells (pDC) are key players in the control of

the immune responses. They are located at the interface between the

innate and adaptive branches of the immune system, where they

control both immunity and tolerance (Mathan et al., 2013). pDC

are main actors in the stimulation of B lymphocytes (Shaw et al.,

2010), NK cells (Swiecki et al., 2010) and conventional dendritic

cells (cDCs). Therefore the study of this cell line is crucial for the

understanding of protective responses against pathogens or tumors

and mechanisms of deregulated responses in autoimmunity.

pDC derive from a common dendritic cell precursor (Satpathy

et al., 2012) in the bone marrow, in steady state, are located mainly

in the marginal zone and the T-cell areas of the human spleen

(Nascimbeni et al., 2009). They are found at extremely low frequen-

cies in the blood, and they do not proliferate and die in less than

72 h in culture (Sisirak et al., 2011). In contrast to cDCs, there is no
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standardized protocol to generate bona fide pDC from hematopoi-

etic precursors in vitro and hence the study of human pDC biology

is a great challenge to immunologists.

In the last few years, a renewed interest in the leukemic counter-

parts of pDC has arisen and some pDC-like lines have been gener-

ated from biopsies of pDC neoplasm patients (Chaperot et al., 2001;

Watanabe et al., 2010). Several authors have reported their similar-

ities with primary pDC in terms of surface phenotype (Chaperot

et al., 2006) and cytokine responses (Wang et al., 2016) or gene

regulation (Cheng et al., 2015) and therefore they are promising

models for the study of the pDC biology. However, there is lack of

more systematic studies to support the use of these cell lines as rele-

vant pDC models. Therefore, a more global characterization of these

cell lines will benefit our understanding of their biology and will

help us evaluate how well they represent bona fide pDC.

The main goal of this work was to characterize the global gene

expression profile of the most commonly used pDC models, the

GEN2.2 and CAL-1 leukemic cell lines, and to compare them with

gene expression signatures derived from a panel of immune cell

populations. To accomplish this, we generated microarray gene ex-

pression data of GEN2.2 cells and performed an integrated analysis

with previously reported datasets of CAL-1 and different primary

hematopoietic cell types. Using public gene expression data we

defined the main immune system-related metagenes covering differ-

ent cell populations, based on the methodology proposed by

Tamayo et al. (2007). Projection of CAL-1 and GEN2.2 expression

profiles into this metagene space allowed us to define the main simi-

larities of these cell lines to other immune cell populations and to es-

tablish a clear connection with pDC.

Additionally, we also analyzed microarray data from GEN2.2,

CAL-1 and pDC after stimulation with a synthetic oligonucleotide

containing unmethylated CpG motifs. This analysis revealed signifi-

cant similarities in the molecular pathways that were induced in

GEN2.2, CAL-1 and pDCs after stimulation, which provides add-

itional evidence to support the use of these cell lines as relevant pDC

models.

2 Materials and methods

2.1 Microarray gene expression profiling
GEN2.2 cell line was grown at log phase in complete me-

diumþ10% calf fetal serum. CpG stimulation was carried out add-

ing 1 lM of ODN2006 (Life Technologies) for 2 h in triplicates.

Total RNA was isolated from treated and untreated samples with

High Pure RNA Isolation Kit (Roche Diagnostics, Mannheim,

Germany) and 300 ng was processed using Illumina TotalPrep RNA

Amplification Kit and hybridized with Illumina Human-HT12 v4

expression beadchip. Raw data were exported from Illumina

GenomeStudio and processed using the normexp followed by quan-

tile normalization. Gene expression values for replicated genes were

aggregated using the median value. Gene expression data is available

in NCBI-GEO with accession number GSE59887.

2.2 Analysis of public data and defining immune system

metagenes
NCBI-GEO database (Barrett et al., 2013) was queried to find pDC-

related datasets. After careful revision six gene expression datasets

were selected for the study (Supplementary Table S1 in additional

file 1). Cel files from affymetrix platforms were downloaded and

processed applying RMA and quantile normalization. Samples were

inspected for quality control and sample mDC 16 from the dataset

GSE28490 was removed from the analysis as this was not correlated

with the mDC specific metagene (data not shown). Soft-formatted

files from GEO were used for Illumina and NCI/ATC Hs-Operon

V3. The median was computed for probe sets corresponding to the

same gene, non annotated probes were discharged and gene expres-

sion data were rank normalized.

The dataset generated by Allantaz et al. (2012), which contains

gene expression profiles of different human immune cell subsets,

was used to define immune system related metagenes using the

methodology reported by Tamayo et al. (2007). Briefly, Non-

Negative Matrix Factorization (NMF) was applied to reduce the

dimensionality and define a small subset of factors that summarizes

the main features of the cell populations. These features represent

subsets of genes co-expressed in subsets of experimental conditions

(Carmona-Saez et al., 2006). The number of classes (nine cell popu-

lations) was known, but to evaluate the best factorization rank we

computed different stability metric, including the correlation cophe-

netic coefficient (ccc) for different values of k (Brunet et al., 2004).

Based on this analysis we selected k¼9 as the best factorization

rank (Supplementary Fig. S1 in additional file 1), which is in agree-

ment with the number of different cell populations.

Samples from independent datasets were projected into the

metagene space by means of pseudoinverse of factor matrix after

rank normalization and matching datasets by common genes.

Hierarchical clustering analysis was then applied to group samples

based on similarities of metagene profiles. All analyses were per-

formed in the R statistical environment. All processed data and

R scripts are available in the additional material (additional File 5).

2.3 Differential expression and functional analysis
To define a common signature among pDCs and immune cell lines

we compared each pDCs related-cell (primary pDCs, GENE2.2 and

CAL-1) with all immune cell population. Linear models were

applied for differential expression analysis and genes that were

found significant in all comparisons (fdr corrected P-value<0.01

and absolute log fold change>0.5) were selected. For differential

expression analysis in stimulated cells we used RankProducts which

is particularly powerful for a small number of replicates (Breitling

et al., 2004). Enrichment analysis in gene lists was performed

with the GeneCodis (Carmona-Saez et al., 2007) and Gene Set

Enrichment Analysis (GSEA).

3 Results

3.1 Metagene projection reveals that GEN2.2 and CAL-1

cell lines share common gene expression patterns

with pDC
In order to create a projection space with immune system-related

metagenes we used as a model the dataset generated by Allantaz

et al. (2012). This study provides gene expression data for the main

immune cell populations and, additionally, an independent dataset

from a set of different samples. Therefore, this study provides a gold

standard for our analysis, enabling us to extract metagenes that

summarize the gene expression programs of different immune cell

populations. In addition, the second set of samples that can be used

as internal controls of the data analysis pipeline.

Once the metagenes were defined, samples from different data-

sets were projected into this new space, including GEN2.2, CAL-1

(Cisse et al., 2008), the validation dataset mentioned before, and

other public datasets that contained gene expression profiles of pri-

mary pDC (Supplementary Table S1 in additional file 1).
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Specifically, we used data from a study carried out by Haniffa

et al. (2012) in which gene expression profiles of pDC, monocytes

and dendritic cell subpopulations were compared. Initially, we ex-

pected that each metagene would define the distinguishing features

of each subclass, but a careful exploration of the results revealed

that metagene 6 was associated with two different cell populations,

CD4þ and CD8þ T-cells, evidencing that both cell lines share some

common gene expression features. This is in agreement with the fact

that CD4þ and CD8þ T lymphocytes constitute the most related lin-

eages in this dataset. Indeed, these two cell subpopulations were

considered as a single group of ‘T cells’ in the original work because

few transcripts were exclusive of CD4þ or CD8þ cells (Allantaz

et al., 2012). On the other hand, metagene 1 presented features that

were partially associated with different samples in the dataset, rather

than capturing specific features of one particular class. The rest of

metagenes revealed specific features for the different cell popula-

tions. Metagene 2 and 3 were specific to eosinophils and neutrophils

respectively. Metagenes 4, 5, 7, 8 and 9 showed clear specificity for

monocytes, NK cells, B cells, cDC (named originally mDC) and

pDC respectively (Fig. 1A). As can be noted some samples from

CD8þ T cells also showed high coefficients for factor 5 (NK cells),

likely as a reflection of their shared functional features. A GSEA

analysis was performed in each metagene and we found that gene-

sets derived from the comparison of pDC and other cell lines were

highly associated to metagene 9 (Supplementary Table S2 in add-

itional file 1), which reinforces the notion that this metagene cap-

tured the main patterns associated to pDC.

As expected, samples from the validation dataset (Fig. 1C)

showed high coefficients for the corresponding metagenes extracted

from the model dataset. The projection of the other primary cell

dataset (Fig. 1E) fits also perfectly with the expected model. The

three monocyte subsets (CD14þ, CD16þ and CD14þCD16þ) shared

high coefficients for metagene 4, while the two cDC populations

(CD141þ and CD1cþ) showed high values for metagene 8, and pDC

gave high coefficients for metagene 9. Moreover, the pDC neoplasm

cell lines CAL-1 (Fig. 1D) and GEN2.2 (Fig. 1B) showed the highest

coefficients in the pDC metagene. These data suggest that the

GEN2.2 and CAL-1 cell lines share common gene expression pro-

grams with primary pDC.

To further explore the similarity among cell types based on gene

expression programs a hierarchical clustering analysis was per-

formed. Using all genes the different samples were grouped based on

the platform/study rather than distinguishing different cell lineages

(Fig. 2A). On the other hand, clustering analysis in the metagene

space grouped identical or nearly related primary cell types

(Fig. 2B). All NK, B lymphocytes, pDC, cDC, monocytes, neutro-

phils and eosinophils clustered in discrete branches regardless of the

platform or dataset. cDC (both CD141þ and CD1cþ) and pDC clus-

tered in related branches in agreement with their common origin

(Satpathy, 2012). Regarding the cell lines, both GEN2.2 and CAL-1

cells clustered with all the pDC samples included in the study. See

also Supplementary Figure S2 in additional file 1. We assessed clus-

tering stability by multiscale bootstrap resampling (Supplementary

Figs S3 and S4 in additional file 1) and a consensus clustering ap-

proach (Supplementary Fig. S5 in additional file 1), finding an over-

all high stability.

3.2 Definition of the common signature among pDC,

GEN2.2 and CAL-1
A total of 211 genes were found significant across all comparisons

of pDC related cells (primary pDC, GEN2.2 and CAL-1) and the

rest of immune cell populations (Supplementary Fig. S6 in additional

file 1). Some genes previously related to the biology of pDC were

included in this list, i.e. SLC7A5, SRPX, COL24A1, CDH1,

Fig. 1. Analysis of samples in the metagene space. Heatmap representing

encoding coefficients of each sample (rows) in each metagene (columns) for

model dataset (A) and test datasets (B–E). A: GSE28490; B: GSE59887

(GEN2.2); C: GSE28491; D: GSE12507 and E: GSE15215

Fig. 2. Hierarchical clustering analysis. Hierarchical clustering analysis of

samples of all merged and normalized datasets before (A) and after (B) meta-

gene projection. Same shape represents samples from the same study and

same color represents an equivalent cell population. Information about study

and cells is also represented with the same color in bars below the dendro-

gram. GEN2.2 samples are marked with asterisks
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CLEC4C, TNFRSF21, SCN9A, GPM6B, PACSIN1, NRP1,

KCNK17, DAB2, SLC7A11, BSPRY, MCC, SLC35F3, MOXD1 or

AHI1 (Allantaz et al., 2012), some of them also reported in inde-

pendent works such as CLEC4C (Dzionek et al., 2000), or GPM6B

and PACSIN1 (Robbins et al., 2008). Many others, such as

SLITRK5, or SEC61A2 had not been described before as pDC-

specific, although we found evidence of their pDC-expression

pattern in other gene expression datasets (compiled in Immuno-

Navigator: http://sysimm.ifrec.osaka-u.ac.jp/immuno-navigator/).

The analysis of GO annotations revealed that functions related with

transmembrane transport and cell adhesion were enriched in the list

of over-expressed genes (see Supplementary Table S3 in additional

file 1), processes that have not been specifically studied in the con-

text of pDC biology. We also evaluated expression patterns of pDC

related genes from previously published work (Supplementary Fig.

S7 in additional file 1), and we found a good agreement. This com-

parison also revealed some discrepancies since some previously re-

ported genes are over-expressed in other cell types. The comparison

of the transcription profiles of pDC-like cell lines and primary pDC

confirmed that the main pathways over-expressed are a consequence

of the tumoral transformation, since they were all related with DNA

replication and cell cycle (Supplementary Table S4 in additional file

1 and additional file 4). Also of note, pathways related with tran-

scription regulation, signal transduction and intracellular traffic

were consistently down-regulated in GEN2.2 and CAL-1 compared

with pDC (see additional file 4).

3.3 CAL-1 and GEN2.2 activate common pathways with

primary pDC after CpG stimulation
Oligonucleotides containing unmethylated CpG motifs stimulate

pDC to produce type I interferons and proinflammatory cytokines

(Kerkmann et al., 2003). To determine whether CAL-1 and GEN2.2

mimic the response of primary pDC after stimulation, we compared

the gene expression profiles of these cell lines after stimulation with

CpG. To this end, public gene expression datasets of stimulated and

non-stimulated samples of CAL-1 (Steinhagen et al., 2012) and pDC

(Loures et al., 2015) were retrieved from GEO and processed as

described in methods. Microarray gene expression data were experi-

mentally generated for GEN2.2 after 2 h of CpG treatment.

Differential expression analysis yielded 273 genes in GEN2.2, 111 in

CAL-1 and 125 in primary pDC whose expression was significantly

increased (corrected P-value<0.05) after stimulation (Supplementary

Table S5 in additional file 1). Although the overlapping of genes in

these three lists was moderate, a GSEA analysis revealed a significant

enrichment of GEN2.2 and CAL-1 gene sets in the primary pDC sig-

nature (Supplementary Fig. S8 in additional file 1). In addition, func-

tional analysis of GO terms also indicated that the majority of the

biological processes that were significantly activated upon pDC stimu-

lation were also found enriched in stimulated CAL-1 and GEN2.2

(Supplementary Fig. S9 in additional file 1). However, some pathways

were under-represented in CAL-1 and GEN2.2, such as negative regu-

lation of T cell differentiation and collagen catabolic processes. Other

pathways were exclusively defective in stimulated CAL-1 cells.

4 Conclusion

Our data show that GEN2.2 and CAL-1 share common expression

programs with primary human pDC. In addition, their responses to

CpG genes also activate common pathways, supporting the use of

both cell lines as pDC models in vitro. On the other hand, our study

reveals that some pDC specific pathways are not fully recapitulated

in GEN2.2 and CAL-1. All these similarities and differences should

be taken into account when a particular pDC function needs to be

investigated using these models.
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