1 Analysis of SNP profiles in patients with major depressive disorder

- 2 Sulev Kõks^{1,4}, Tiit Nikopensius², Kati Koido¹, Eduard Maron³, Signe Altmäe², Evelin
- 3 Heinaste², Kristel Vabrit², Veronika Tammekivi², Pille Hallast², Ants Kurg², Jakov Shlik³,
- 4 Veiko Vasar³, Andres Metspalu^{2,5} and Eero Vasar¹
- ⁵ ¹ Department of Physiology, University of Tartu, Tartu, Estonia
- 6 ² Institute of Molecular and Cell Biology and Estonian Biocentre, University of Tartu, Tartu,
- 7 Estonia
- 8 ³ Department of Psychiatry, University of Tartu, Tartu, Estonia
- 9 ⁴ Visgenyx Ltd, Tartu, Estonia
- 10 ⁵ Asper Biotech Ltd, Tartu, Estonia

12 Abstract

13

genes to find associations with major depressive disorder (MDD). In total, 160 healthy 14 controls and 177 patients with MDD were studied. We applied arrayed primer extension 15 16 (APEX) based genotyping technology followed by association and haplotype analysis. SNPs 17 in CCKAR, DRD1, DRD2, and HTR2C genes showed nom- inally significant associations with MDD. None of these associations remained significant after adjustment for multiple 18 19 testing. Haplotype analysis revealed CCKAR haplotypes to be associated with MDD (global p=0.004). More precisely, we found the GAGT haplotype to be associated with increased risk 20 21 for MDD (OR 7.42, 95% CI 2.13-25.85, p=0.002). This haplotype effect remained 22 significant after Bonferroni correction (p=0.04 after Bonferroni's adjustment). Altogether we were able to find some nominal associations, but due to small sample size these results should 23 24 be taken as exploratory. However, the effect of GAGT haplotype on the CCKAR gene may be considered as increasing the risk for MDD. 25

The present study focused on 91 single-nucleotide polymorphisms (SNPs) in 21 candidate

26

Key words: Association, haplotype analysis, major depressive disorder, single-nucleotide
polymorphism (SNP).

30 Introduction

Mood disorders are among the most prominent causes of disability and the second leading 31 32 source of disease burden (Merikangas et al., 2002; Murray and Lopez, 1996). Most 33 epidemiological and family studies indi- cate that the lifetime prevalence of unipolar major depressive disorder (MDD) is between 5% and 10% (Moldin et al., 1991). Suicide has been 34 35 reported to occur in 10–15% of patients previously hospitalized for depression, a rate of death 36 that is three orders of magnitude greater than that reported for the American population as a whole (Angst et al., 1999; Zubenko et al., 2002). Therefore, MDD is obviously a serious 37 38 problem for public health.

Family and twin studies demonstrate that genetic factors typically account for 40–50% of the
risk for developing MDD (McGuffin et al., 1996). A large number of family studies have
demonstrated an increased risk of MDD among relatives of MDD pro- bands, with y2-fold
increased risk in first-degree relatives (Kupfer et al., 1989; McGuffin et al., 1991). However,
several reports do not support so high genetic risk for MDD, indicating the importance of
environmental factors (Sullivan et al., 2000).

45 The aim of our study was to screen a set of single- nucleotide polymorphisms (SNPs) for 46 their association with MDD. We defined the genes and their variations which have been previously published in the literature and yielded some (although inconsistent) significant 47 48 findings, as candidate genes in our study. Genes related to the following neurotransmitter 49 systems were included in the present survey: cholecystokinin (CCK), opioid peptides (OP), 50 serotonin (5-HT) and dopamine (DA). CCK has been extensively studied as a gene involved 51 in the pathogenesis of emotional dis- orders, especially anxiety and panic disorders (Bowen et 52 al., 1998; Geracioti et al., 1989; Hattori et al., 2002; Kennedy et al., 1999b). Opioid peptides are also implicated in the development of emotional disorders (Alda et al., 2000; 53

54 Peckys and Hurd, 2001). As proopio- melanocortin (POMC) is a precursor for adrenocorticotropin hormone (ACTH) and patients with mood disorders have disturbances in the 55 hypothalamic-pituitary-adrenal (HPA) system, POMC is a good target for association 56 57 studies (Galard et al., 2002). 5-HT and DA are monoamines which are frequently studied in respect to mood disorders (Nutt, 2002; Pania and Gessab, 2002). Genes of the above 58 59 described neuro- transmitters and their receptors were chosen for geno- typing. Altogether we 60 analysed 91 polymorphisms located in 21 candidate genes (detailed information about the 61 studied polymorphisms is available in Table 1). SNP analysis was performed by arrayed 62 primer extension (APEX) technology. APEX is a geno- typing and resequencing technology that combines Sanger dideoxy sequencing with the parallelization and high-throughput 63 64 potential of microarray format (To nisson et al., 2002). APEX technology is suitable for SNP 65 analysis allowing the screening of hundreds of SNPs in one sample.

66

67 Methods

68 Subjects and psychiatric assessment

Unrelated patients (n=177; 39 male, 138 female; age range 18-73yr; mean age 40.3yr) with 69 70 MDD were recruited in the study along with healthy control individuals (n=160; 49 male, 111 71 female; age range 18–71 yr; mean age 37.7 yr) from the Estonian population. Diagnoses of patients were substantiated by psychiatric interview and verified by Mini International 72 73 Neuropsychiatric Interview (M.I.N.I. 5.0.0) based on DSM-IV (Sheehan et al., 1998). The case group consisted of patients with only MDD (n=69) and MDD patients with comorbid 74 anxiety disorders [panic disorder, generalized anxiety disorder (GAD), obsessive-compulsive 75 disorder (OCD), social phobia] (n=108). Controls were evaluated using M.I.N.I. to exclude 76

those with psychiatric morbidity, and with a family history interview to exclude those with a
known history of major psychiatric disorders in first- degree relatives. Patients were recruited
among con- secutive outpatients and in-patients at the Clinic of Psychiatry of Tartu
University Clinics and controls were recruited by newspaper advertisement in Tartu, Estonia.
The study was conducted in accordance with the principles of the Declaration of Helsinki.
The study protocol was approved by the Ethics Review Committee on Human Research of
the University of Tartu. Each subject provided written informed con- sent.

84 Template preparation and genotyping

85 Standard high-salt extraction method was used to isolate genomic DNA from 9ml venous blood samples. Two different PCR programs were used to amplify the genomic regions 86 87 containing the whole set of studied 91 polymorphisms with 64 individual PCR reactions. In program 1 amplification reactions con- sisted of an initial 5 min denaturation at 95 xC, fol-88 89 lowed by 34 cycles of: 95xC for 30s, 55xC for 40s, 72 xC for 40 s. The final extension step was 72 xC for 6 min. Program 2 contained temperature decrements of 1 xC per cycle in 90 91 annealing step for first 10 cycles. Samples were processed in a PTC-200 thermal cycler (MJ 92 Research Inc., Watertown, MA, USA). Primer sequences and PCR conditions used for amplification are available upon request. 93

A 20% fraction of the dTTP in the amplification mixture was substituted by dUTP, allowing
later fragmentation of PCR products with uracil-N-glyco- sylase. Pooled amplification
products were concen- trated and purified, followed by fragmentation and functional
inactivation of the unincorporated dNTPs as described in To nisson et al. (2002). Production
of oligonucleotide microchips and APEX reactions were performed as described earlier
(To nisson et al., 2002). Slides were imaged with Genorama Quattroimager detector (Asper
Biotech Ltd, Tartu, Estonia) and polymorphisms were identified by GenoramaTM 4.1

101 genotyping software (Asper Biotech Ltd) by using signal patterns from a wild-type DNA102 sequence as the reference.

103 Selection of SNPs

104 By choosing missense SNPs for genotyping, we reasoned that at least some of them are 105 probably causative mutations affecting function of the encoded protein associated with the 106 underlying phenotype. We included common synonymous SNPs in our study under the 107 assumption that silent SNPs, being in link- age disequilibrium (LD) with unknown functional 108 polymorphism, can reveal an association with the actual disease-causing SNP(s). SNPs in 109 regulatory sequences are thought to have the potential to control the level of gene expression, therefore, in some genes polymorphisms in 5k or 3k untranslated regions and intronic SNPs 110 111 were included.

112 Statistical analysis

Association analysis statistics was performed using GENEPOP Version 3.3 software

114 (Raymond and Rousset, 1995). p values for allelic and genotypic association were calculated

using Fisher's exact test. The signifi- cance level for all statistical tests was 0.05. Haplo- type

analysis was performed using the maximum- likelihood method for estimating

simultaneously haplotype frequencies and haplotype-phenotype association as described in

118 Tregouet et al. (2002). Pairwise LD was estimated by a log-linear model and the extent of

- 119 disequilibrium was expressed in terms of standardized Dk characteristic. Bonferroni
- 120 correction was used after association and haplotype analysis to adjust for multiple testing.

121

123 Results

We genotyped 91 polymorphisms (87 SNPs and 4 insertions/deletions) in 21 candidate genes 124 125 in 177 unrelated MDD patients and 160 healthy controls. In our screening set, genetic 126 variations in altogether four genes displayed association with MDD. Data for statistically 127 significant SNPs are presented in Table 2. Namely, SNPs 246G/A in CCKAR, x2102C/A in DRD1, x7054C/A in DRD2, and 68G/C (rs6318) in HTR2C genes were associated with 128 129 MDD. In the case of CCKAR and DRD2 markers an excess of minor alleles in the affected group was found. In contrast, the minor alleles of DRD1 and HTR2C markers were more 130 131 frequent in control subjects. After Bonferroni correc- tion, none of the described marker-132 disease associations remained statistically significant. There was no devi- ation from Hardy-133 Weinberg equilibrium expectations at any of the genotyped loci. A gender comparison between females (n=139) and males (n=38) of the MDD sample did not show any significant 134 135 differences with regard to alleles and/or genotypes. Our data in- dicate that the relationship between unipolar affective disorder and analysed loci appear to be independent of sex. 136 137 Haplotype analysis was performed according to particular pairwise LD pattern for each gene 138 (cases+ controls, n=337). Only genes that were genotyped for two or more SNPs and 139 showing the presence of LD in both affected and control groups, and having pre-liminary 140 evidence of marker-disease association were included in haplotype analysis. It was also 141 possible to investigate the effect of each SNP on different haplo- typic background using the 142 inference method. The odds ratio for MDD was estimated according to the haplotypic 143 background conferred by other poly- morphisms. Haplotype analysis revealed CCKAR 144 haplotypes to be associated with MDD and altogether six haplotypes (HT) were found (Table 145 3). Reference haplotypes combined with the major alleles at each locus, which taken together 146 with another common haplotype constituted almost 90% of all alleles. Both haplotypes were 147 almost equally represented in cases and control subjects. Other haplotypes were rare.

148	Haplotype 3 (GAGT) was significantly over- represented in the affected group, reflecting a
149	higher frequency of the rare 246A allele in cases by compari- son to the reference haplotype
150	(GGGT). This haplo- type (GAGT) was associated with a higher risk for MDD (OR 7.42,
151	95% CI 2.13–25.85, p=0.002) com- pared to the reference haplotype (GGGT). This haplo-
152	type effect also remained significant after Bonferroni correction (p=0.04 after Bonferroni's
153	adjustment). We detected a significant individual SNP effect (OR 7.40, p=0.002) for 246G/A
154	in a haplotype context HT1 (GGGT) vs. HT3 (GAGT). The test of a global CCKAR
155	haplotypic association with MDD was significant in the population studied ($x^2 = 17.60$,
156	d.f.=5, p=0.004).
157	Taken together, results of haplotype analysis con- firmed our findings from the association
158	study. Haplotype analysis revealed that CCKAR haplotype (GAGT) formed by SNPs at

159 positions x128G/T (rs1800908), 246G/A, 608G/A (rs1800856), and 1266T/ C (rs1800857) is

a possible susceptibility haplotype for MDD.

161

162 Discussion

163 Clinical as well as molecular genetic studies indicate that MDD is a polygenic disorder.

164 Many genes, each of minor individual contribution, are likely to be involved in the

development of affective disorders. In our screening set of 91 polymorphisms in 21 candi-

date genes, variations in four genes displayed an association with MDD. Polymorphisms in

167 CCKAR (246G/A), DRD1 (x2102C/A), DRD2 (x7054C/A), and HTR2C (68G/C, rs6318)

168 genes were associated with MDD phenotypes.

169 Pharmacological studies have suggested that MDD is associated with impairment of brain

170 monoaminergic transmission (Nemeroff, 2002). The role of 5-HT in the pathology of mood

disorders is based mainly on the efficacy of selective 5-HT reuptake inhibitors in the
treatment of MDD. DA has also been implicated in the pathophysiology of mood disorders
and hypoactivity of the mesolimbic DA pathway may be related to de- pressive symptoms.
Thus, genes that control the brain 5-HT and DA pathways seem to be good candidates for
mediating genetic susceptibility to MDD.

176 Association of CCKAR gene polymorphism with MDD was further confirmed by haplotype analysis, where the GAGT haplotype carrying the risk for MDD (OR 7.418, p=0.002) was 177 established. CCKAR poly- morphisms have been shown to be involved in schizophrenia and 178 auditory hallucinations (Wang et al., 2002; Wei and Hemmings, 1999), and also in panic 179 180 disorder (Miyasaka et al., 2004). Preclinical studies suggest that CCKAR directly regulates 181 the release of DA in the nucleus accumbens and amygdala (Hamilton and Freeman, 1995). Therefore, CCKAR is implicated in the regulation of emotional behaviour and motivation. 182 183 Supportive evidence of CCKAR gene involvement in mood disorders is also related to its genomic localization (4p15.1–p15.2). This locus is close to the 4p16 region which has been 184 185 repeatedly shown to be related to bipolar disorder (Kennedy et al., 1999a). In our previous 186 study we found that polymorphisms in the wolframin (WFS1) gene, also located in the 4p16 187 region, are possibly related to an increased risk for mood disorders (Koido et al., 2004). This 188 study sample was partially the same as in the present study. Als and colleagues found that 189 markers in the 4p15 region appeared to be associated with schizophrenia and schizophrenia 190 combined with bipolar disorder, and also supportive evidence for schizophrenia and bipolar 191 disorder being associated with the 4p16 region (Als et al., 2004). Therefore, the 4p15–p16 192 region seems to be a good candidate risk locus for psychiatric disorders.

193 Results of this study provide further evidence for the involvement of genes related to194 monoaminergic and peptidergic neurotransmission in the regulation of mood disorders.

However, we cannot exclude a hypothesis describing polymorphisms as being in LD with
other functionally significant polymorphisms, which could actually be involved in mood
disorders. It has been shown that missense SNP itself probably does not cause disease but it is
in strong LD with non- functional SNP which may actually contribute to the susceptibility for
disease (Handoko et al., 2004). This warrants studying not only functional polymorphisms
but also untranslated SNPs.

Due to the limited size of our sample this study should be considered an exploratory in
nature. A multi-stage approach is recommended to distinguish false-positive discoveries from
real associations (Hirschhorn and Daly, 2005). As many association studies produce
unreplicable results due to false- positive findings induced by multiple testing, it is suggested
that first, many markers should be typed for a subset of individuals. Afterwards the most
promis- ing markers can be evaluated on a larger sample (van den Oord and Sullivan, 2003).
Therefore, replication studies with larger and independent samples are needed.

208

209 Acknowledgements

210 We thank the patients and volunteers for partici- pation. This study was financially supported

211 by grants from Estonian Scientific Foundation (ETF) 5688 (S. Kõks, P.I.), 5467 (A. Kurg,

212 P.I.), 4614 (J. Shlik, P.I.), 4635 (V. Vasar, P.I.), 4578 and 6465 (A. Metspalu, P.I.) and by

- grants from the Estonian Ministry of Education and Science 0182584Bs03 (E. Vasar, P.I.)
- and 0182582s03 (A. Metspalu, P.I.). Kind support from Asper Biotech Ltd (Tartu, Estonia) in
- 215 DNA microchip manufacture is appreciated.

217 Statement of Interest

218 A. Metspalu is a scientific advisor and member of the Council of Asper Ltd.

220 References

- 221 Alda M, Turecki G, Grof P, Cavazzoni P, Duffy A, Grof E, Ahrens B, Berghofer A, Muller-
- 222 Oerlinghausen B, Dvorakova M, Libigerova E, Vojtechovsky M, Zvolsky P, Joober R,
- 223 Nilsson A, Prochazka H, Licht RW, Rasmussen NA, Schou M, Vestergaard P, Holzinger A,
- 224 Schumann C, Thau K, Rouleau GA (2000). Association and linkage studies of CRH and
- PENK genes in bipolar disorder : a collaborative IGSLI study. American Journal of Medical
 Genetics 96, 178–181.
- 227 Als TD, Dahl HA, Flint TJ, Wang AG, Vang M, Mors O, Kruse TA, Ewald H (2004).
- 228 Possible evidence for a common risk locus for bipolar affective disorder and schizophrenia
- on chromosome 4p16 in patients from the Faroe Islands. Molecular Psychiatry 9, 93–98.
- Angst J, Angst F, Stassen HH (1999). Suicide risk in patients with major depressive disorder.
 Journal of Clinical Psychiatry 60, 57–62.
- Bowen T, Norton N, Jacobsen NJ, Guy C, Daniels JK, Sanders RD, Cardno AG, Jones LA,
- 233 Murphy KC, McGuffin P, Craddock N, O'Donovan MC, Owen MJ (1998). Linked
- polymorphisms upstream of exons 1 and 2 of the human cholecystokinin gene are not
- associated with schizophrenia or bipolar disorder. Molecular Psychiatry 3, 67–71.
- 236 Galard R, Catalan R, Castellanos JM, Gallart JM (2002). Plasma corticotropin-releasing
- 237 factor in depressed patients before and after the dexamethasone suppression test. Biological
- **238** Psychiatry 51, 463–468.
- 239 Geracioti TD, Kling MA, Joseph-Vanderpool JR, Kanayama S, Rosenthal NE, Gold PW,
- 240 Liddle RA (1989). Meal-related cholecystokinin secretion in eating and affective disorders.
- 241 Psychopharmacology Bulletin 25, 444–449.

- Hamilton ME, Freeman AS (1995). Effects of administration of cholecystokinin into the
 VTA on DA overflow in nucleus accumbens and amygdala of freely moving rats. Brain
 Research 688, 134–142.
- 245 Handoko HY, Nyholt DR, Hayward NK, Nertney DA, Hannah DE, Windus LC, McCormack
- 246 CM, Smith HJ, Filippich C, James MR, Mowry BJ (2004). Separate and interacting effects
- 247 within the catechol-O-methyltransferase
- 248 (COMT) are associated with schizophrenia. Molecular Psychiatry. Published online 26249 October 2004.
- 250 doi :10.1038/sj.mp.4001606.
- 251 Hattori E, Yamada K, Ebihara M, Toyota T, Nankai M, Shibuya H, Yoshikawa T (2002).
- 252 Association study of the short tandem repeat in the 5k upstream region of the cholecystokinin
- gene with mood disorders in the Japanese population. American Journal of Medical Genetics
 114, 523–526.
- 255 Hirschhorn JN, Daly MJ (2005). Genome-wide association studies for common diseases and
 256 complex traits. Nature Reviews in Genetics 6, 95–108.
- 257 Kennedy JL, Basile VS, Macciardi FM (1999a). Chromosome 4 Workshop Summary : Sixth
- 258 World Congress on Psychiatric Genetics, Bonn, Germany, October 6–10, 1998. American
- 259 Journal of Medical Genetics 88, 224–228.
- 260 Kennedy JL, Bradwejn J, Koszycki D, King N, Crowe R, Vincent J, Fourie O (1999b).
- 261 Investigation of cholecystokinin system genes in panic disorder. Molecular Psychiatry 4,
- 262 284–285.

- 263 Koido K, Koks S, Nikopensius T, Maron E, Altme S, Heinaste E, Vabrit K, Tammekivi V,
- 264 Hallast P, Kurg A, Shlik J, Vasar V, Metspalu A, Vasar E (2004). Polymorphisms in
- wolframin (WFS1) gene are possibly related to increased risk for mood disorders.
- 266 International Journal of Neuropsychopharmacology. DOI: 10.1017/ S1461145704004791.
- 267 Kupfer DJ, Frank E, Carpenter LL, Neiswanger K (1989). Family history in recurrent
- 268 depression. Journal of Affective Disorders 17, 113–119.
- 269 McGuffin P, Katz R, Rutherford J (1991). Nature, nurture and depression: a twin study.
- 270 Psychological Medicine 21, 329–335.
- 271 McGuffin P, Katz R, Watkins S, Rutherford J (1996). A hospital-based twin register of the
- heritability of DSM-IV unipolar depression. Archives of General Psychiatry 53, 129–136.
- 273 Merikangas KR, Chakravarti A, Moldin SO, Araj H, Blangero JC, Burmeister M, Crabbe Jr.
- J, DePaulo Jr. JR, Foulks E, Freimer NB, Koretz DS, Lichtenstein W, Mignot E, Reiss AL,
- 275 Risch NJ, Takahashi JS (2002). Future of genetics of mood disorders research. Biological
- 276 Psychiatry 52, 457–477.
- 277 Miyasaka K, Yoshida Y, Matsushita S, Higuchi S, Shirakawa O, Shimokata H, Funakoshi A
- 278 (2004). Association of cholecystokinin-A receptor gene polymorphisms and panic disorder in
- 279 Japanese. American Journal of Medical Genetics, Part B : Neuropsychiatric Genetics 127B,
- **280** 78–80.
- Moldin SO, Reich T, Rice JP (1991). Current perspectives on the genetics of unipolar
 depression. Behavior Genetics 21, 211–242.
- 283 Murray CJL, Lopez AD (1996). Evidence-based health policy lessons from the Global
- Burden of Disease Study. Science 274, 740–743.

- 285 Nemeroff CB (2002). Recent advances in the neurobiology of depression.
- 286 Psychopharmacology Bulletin 36 (Suppl. 2), 6–23.
- 287 Nutt DJ (2002). The neuropharmacology of serotonin and noradrenaline in depression.
- 288 International Clinical Psychopharmacology 17, S1–S12.
- Pania L, Gessab GL (2002). Dopaminergic deficit and mood disorders. International Clinical
 Psychopharmacology 17, S1–S7.
- 291 Peckys D, Hurd YL (2001). Prodynorphin and kappa opioid receptor mRNA expression in
- the cingulate and prefrontal cortices of subjects diagnosed with schizophrenia or affective
- disorders. Brain Research Bulletin 55, 619–624.
- Raymond M, Rousset F (1995). GENEPOP (version 1.2) : population genetics software for
 exact tests and ecumenicism. Journal of Heredity 86, 284–295.
- 296 Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P,
- 297 Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998). The Mini-International
- 298 Neuropsychiatric Interview (M.I.N.I.) : the development and validation of a structured
- diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry 59,
 22–33.
- 301 Sullivan PF, Neale MC, Kendler KS (2000). Genetic epidemiology of major depression :
- 302 review and meta- analysis. American Journal of Psychiatry 157, 1552–1562.
- 303 To nisson N, Zernant J, Kurg A, Pavel H, Slavin G, Roomere H, Meiel A, Hainaut P,
- 304 Metspalu A (2002). Evaluating the arrayed primer extension resequencing assay of TP53
- 305 tumor suppressor gene. Proceedings of the National Academy of Sciences USA 99, 5503-
- **306** 5508.

- 307 Tregouet DA, Barbaux S, Escolano S, Tahri N, Golmard JL, Tiret L, Cambien F (2002).
- 308 Specific haplotypes of the P-selectin gene are associated with myocardial infarction. Human
- 309 Molecular Genetics 11, 2015–2023.
- 310 van den Oord EJ, Sullivan PF (2003). False discoveries and models for gene discovery.
- **311** Trends in Genetics 19, 537–542.
- 312 Wang Z, Wassink T, Andreasen NC, Crowe RR (2002). Possible association of a
- cholecystokinin promoter variant to schizophrenia. American Journal of Medical Genetics
 114, 479–482.
- 315 Wei J, Hemmings GP (1999). The CCK-A receptor gene possibly associated with auditory
- 316 hallucinations in schizophrenia. European Psychiatry 14, 67–70.
- 317 Zubenko GS, Hughes III, HB, Stiffler JS, Zubenko WN, Kaplan BB (2002). D2S2944
- 318 identifies a likely susceptibility locus for recurrent, early-onset, major depression in women.
- 319 Molecular Psychiatry 7, 460–467.

Gene name (abbreviation)	Gene and SNP	Position from ATG	Location	db SNP rs #	Allele 1	Allele 2	Function	Allele 1 frequency
Cholecystokinin	CCK - 45	CCK -1172	3p22-p21.3	rs1799923	С	Т	5'-UTR	0.89
(CCK)	CCK 1270	ССК -9	3p22-p21.3	rs754635	C	G	5'-UTR	0.85
()	CCK 6662	CCK 5386	3p22-p21.3	rs3774396	C	Т	intron	0.98
Cholecystokinin A	CCKAR -128	CCKAR -333	4p15.1-p15.2	rs1800908	G	Т	5'-UTR	0.96
receptor (CCKAR)	CCKAR 201	CCKAR -286	4p15.1-p15.2	rs1799723	Ă	G	5'-UTR	0.94
·····	CCKAR 246	CCKAR -241	4p15.1-p15.2	rs#n.a.	G	A	5'-UTR	0.97
	CCKAR 608	CCKAR 122	4p15.1-p15.2	rs1800856	G	A	intron	0.96
	CCKAR 1260	CCKAR 773	4p15.1-p15.2	rs1800855	T	A	intron	0.71
	CCKAR 1266	CCKAR 779	4p15.1-p15.2	rs1800857	T	C	intron	0.76
	CCKAR 3849	CCKAR 8231	4p15.1-p15.2	rs1805037	C	Т	12961	0.99
Cholecystokinin B	CCKBR -215	CCKBR - 216	11p15.4	rs1799721	C	A	5'-UTR	0.95
receptor (CCKBR)	CCKBR 109	CCKBR 109	11p15.4	rs1805000	C	Т	L37F	0.93
	CCKBR 1550	CCKBR 9962	11p15.4	rs1805002	G	A	V125I	0.92
	CCKBR 2491	CCKBR 10907	11p15.4	rs1800843 rs8192470	C	A	Intron	0.88
Dopamine receptor	DRD1 -2218	DRD1 -2218	5a35.1	rs # n.a.	Т	С	5'-UTR	0.94
D1 (DRD1)	DRD1 -2102	DRD1 -2102	5q35.1	rs # n.a.	C	A	5'-UTR	0.93
()	DRD1 - 2030	DRD1 - 2030	5q35.1	rs # n.a.	Т	C	5'-UTR	0.97
	DRD1 -1251	DRD1 - 1252	5a35.1	rs # n.a.	G	C	5'-UTR	0.86
	DRD1 - 800	DRD1 - 800	5q35.1	rs265981	T	č	5'-UTR	0.38
	DRD1 -94	DRD1 -94	5q35.1	rs5326	G	Ā	5'-UTR	0.84
	DRD1 - 48	DRD1 - 48	5q35.1	rs4532	G	A	5'-UTR	0.44
Dopamine receptor	DRD2 - 241	DRD2 - 50978	11a23	rs1799978	Ă	G	5'-UTR	0.78
D2 (DRD2)	DRD2 -141	DRD2 - 50878	11a23	rs1799732	C	del	5'-UTR	0.84
()	DRD2 -7054	DRD2 - 7053	11a23	rs # n.a.	C	A	5'-UTR	0.92
	DRD2 -913	DRD2 -913	11q23	rs1079597	A	G	5'-UTR	0.32
	DRD2 - 901	DRD2 - 901	11a23	rs1079598	C	Т	5'-UTR	0.32
	DRD2 286	DRD2 287	11a23	rs # n.a.	Т	C	intron	0.93
	DRD2 3625	DRD2 3626	11a23	rs2734834	A	Т	intron	0.49
	DRD2 3785	DRD2 3786	11a23	rs1800498	C	Т	intron	0.39
	DRD2 11924	DRD2 11890	11a23	rs1801028	Č	G	S311C	0.93
	DRD2 11997	DRD2 11915	11a23	rs6277	Т	č	P319P	0.94
	DRD2 16893	DRD2 16891	11a23	rs2234689	C	G	3'-UTR	0.72
	DRD2 24470	DRD2 24546	11q23	rs1800497	C	Т	K713E (in ANKK1	0.80
							gene)	
Dopamine receptor	DRD3 -707	DRD3 -710	3q13.3	rs1800828	G	С	5'-UTR	0.71
D3 (DRD3)	DRD3 - 343	DRD3 - 346	3q13.3	rs1800827	G	А	5'-UTR	0.96
	DRD3 25	DRD3 25	3q13.3	rs6280	Α	G	G9S	0.69
Dopamine receptor	DRD4 - 1217	DRD4 -1216	11p15.5	rs # n.a.	G	del	5'-UTR	0.62
D4 (DRD4)	DRD4 - 809	DRD4 -808	11p15.5	rs936461	G	Α	5'-UTR	0.80
	DRD4 - 768	DRD4 - 767	11p15.5	rs4987058	G	А	5'-UTR	0.86
	DRD4 -616	DRD4 -615	11p15.5	rs747302	С	G	5'-UTR	0.68
	DRD4 -521	DRD4 -521	11p15.5	rs1800955	С	Т	5'-UTR	0.41
	DRD4 - 376	DRD4 - 376	11p15.5	rs916455	С	Т	5'-UTR	0.96
Dopamine receptor D5 (DRD5)	DRD5 1481	DRD5 1481	4p16.1	rs1967551	С	Т	3'-UTR	0.65
Tyrosine hydroxylase	TH 241-243	TH 2066	11p15.5	rs6356	G	Α	V81M	0.61
(TH)	TH 614	TH 3891	11p15.5	rs # n.a.	Т	С	L205P	0.96
5-hydroxytryptamine	HTR1A -1018	HTR1A - 1019	5q11.2–q13	rs6295	С	G	5'-UTR	0.43
(serotonin) receptor 1A (HTR1A)	HTR1A -480	HTR1A -480	5q11.2–q13	rs # n.a.	Α	del	5'-UTR	0.91
5-hydroxytryptamine	HTR1B	HTR1B -1089	6q13	rs1778258	Т	С	5'-UTR	0.24

Table	1	(cont.)
-------	---	---------

Gene name (abbreviation)	Gene and SNP	Position from ATG	Location	db SNP rs #	Allele 1	Allele 2	Function	Allele 1 frequency
(serotonin) receptor	HTR1B	HTR1B -700	6q13	rs1228814	С	А	5'-UTR	0.55
1B (HTR1B)	HTR1B -511	HTR1B - 511	6q13	rs130056	G	Т	5'-UTR	0.995
	HTR1B -161	HTR1B - 161	6q13	rs130058	Α	Т	5'-UTR	0.78
	HTR1B 129	HTR1B 129	6q13	rs6298	С	Т	S43S	0.74
	HTR1B 276	HTR1B 276	6q13	rs130059	G	А	A92A	0.96
	HTR1B 371	HTR1B 371	6q13	rs130060	Т	G	F124C	0.99
	HTR1B 705	HTR1B 705	6q13	rs130062	С	Т	A235A	0.80
	HTR1B 861	HTR1B 861	6q13	rs6296	G	С	V287V	0.74
	HTR1B	HTR1B 1180	6q13	rs6297	G	А	3'-UTR	0.23
5-hydroxytryptamine	HTR2A - 1438	HTR2A -1437	13q14–q21	rs6311	А	G	5'-UTR	0.42
(serotonin) receptor	HTR2A 73	HTR2A 74	13q14–q21	rs1805055	С	Α	T25N	0.98
2A (HTR2A)	HTR2A 102	HTR2A 102	13q14–q21	rs6313	Т	С	S34S	0.37
	HTR2A 1354	HTR2A 61008	13q14–q21	rs6314	С	Т	H452Y	0.94
5-hydroxytryptamine	HTR2C 68	HTR2C 4390	Xq24	rs6318	G	С	C23S	0.83
(serotonin) receptor 2C (HTR2C)	HTR2C 2831	HTR2C 181359	Xq24	rs1801412	Т	G	3'-UTR	n.a.
5-hydroxytryptamine	HTR3A 1302	HTR3A - 507	11q23.1-q23.2	rs1150226	Т	С	5'-UTR	0.31
(serotonin) receptor 3A (HTR3A)	HTR3A 1596	HT3A 14378	11q23.1-q23.2	rs1176713	G	А	L459L	0.26
Solute carrier family	SLC6A4	SLC6A4 18784	17q11.1–q12	rs6352	Α	С	K605N	0.96
6 (neurotransmitter	SLC6A4	SLC6A4 10647	17q11.1–q12	rs6353	G	А	T439T	0.92
transporter, serotonin), member 4 (SI C6A4)	SLC6A4	SLC6A4 167	17q11.1-q12	rs6355	G	С	G56A	0.77
Tryptophan	TPH1 218	TPH1 14494	11p153_p14	rs1800532	А	C	intron	0.29
hydroxylase 1 (tryptophan 5- monooxygenase) (TPH1)	TPH1 779	TPH1 15055	11p15.3–p14	rs1799913	A	c	intron	0.27
Opioid receptor mu 1	OPRM1 31	OPRM1 50665	6a24-a25	rs#na	G	А	intron	0.92
(OPRM1)	OPRM1 118	OPRM1 118	6q24-q25	rs1799971	A	G	N40D	0.78
(011011)	OPRM1 440	OPRM1 50431	6q24-q25	rs # n a	C	G	S147C	0.84
	OPRM1 691	OPRM1 51325	6q21-q25	rs2075572	C	G	intron	0.54
Opioid receptor.	OPRD1 80	OPRD1 80	1p36.1-p34.3	rs1042114	T	G	C27F	0.91
delta 1 (OPRD1)	OPRD1 921	OPRD1 50702	1p36.1-p34.3	rs2234918	Т	C	G307G	0.63
Opioid receptor,	OPRK1 36	OPRK1 36	8a11.2	rs1051660	G	Т	P12P	0.84
kappa 1 (OPRK1)	OPRK1	OPRK1 10807	8q11.2	rs1365097	А	G	intron	0.69
	OPRK1	OPRK1 10915	8q11.2	rs1365098	G	Т	intron	0.66
	OPRK1	OPRK1 11220	8a11.2	rs997917	A	G	intron	0.54
	OPRK1 459	OPRK1 16128	8q11.2	rs7815824	С	Т	S153S	0.90
	OPRK1 843	OPRK1 21441	8q11.2	rs702764	A	G	A281A	0.72
	OPRK1 846	OPRK1 21444	8q11.2	rs # n.a.	С	Т	V282V	0.97
Proopiomelanocortin	POMC 18	POMC 18	2p23.3	rs8192605	С	Т	C6C	0.99
(POMC)	POMC 282	POMC 3170	2p23.3	rs # n.a.	С	Т	S94S	0.92
	POMC 313	POMC 3201	2p23.3	rs # n.a.	G	Т	E105Stop	0.96
	POMC 346	POMC 3234	2p23.3	rs # n.a.	С	Т	L116L	0.98
	POMC 585	POMC 3473	2p23.3	rs2071345	С	Т	A195A	0.94
	POMC 866	POMC 3755	2p23.3	rs1042571	С	Т	3'-UTR	0.85
Proenkephalin	PENK 28	PENK - 588	8q23–q24	rs2609999	С	А	5'-UTR	0.57
(PENK)	PENK 808	PENK 4686	8q23-q24	rs3839874	С	del	3'-UTR	0.67

db SNP rs # – accession number of SNP in NCBI dbSNP database; allele frequency is based on controls of this study. rs # n.a. – SNP is not listed in NCBI dbSNP database (http://www.ncbi.nlm.nih.gov/SNP/).

	All	ele			Allele 2 frequencies		
SNP	1	2	Gene	Allelic P MDD	MDD	Controls	
246	G	Α	CCKAR	0.006	0.09	0.03	
-2102	С	Α	DRD1	0.008	0.02	0.07	
-7054	С	Α	DRD2	0.03	0.14	0.08	
68	G	С	HTR2C	0.02	0.10	0.17	

Table 2. Results of association analysis of 91

 polymorphisms in major depressive disorder

SNP, single-nucleotide polymorphism; MDD, major depressive disorder.

HT	Single-nucle	otide polymo	orphism		Haplotype	efrequency		p
	-128G/T	246G/A	608G/A	1266T/C	Controls	Patients	OR (95% CI)	
1	G	G	G	Т	67.5	65.6	*	
2	G	G	G	С	21.6	20.0	0.905 (0.611-1.338)	0.625
3	G	Α	G	Т	1.2	7.5	7.418 (2.129-25.85)	0.002*
4	Т	G	G	Т	3.8	2.6	0.517 (0.203-1.320)	0.168
5	G	G	Α	Т	2.4	1.3	0.588 (0.137-2.523)	0.475
6	G	Α	G	С	2.4	1.3	0.588 (0.137-2.523)	0.475

Table 3. Estimated haplotype (HT) frequencies and HT effects in the CCKAR gene

330

p = 0.04 after Bonferroni's adjustment.