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Abstract—Large scale group decision making (LSGDM) 

problems are becoming one of the hotspots in recent research 
fields. This paper focuses on the hesitant fuzzy LSGDM problems, 
where decision makers (DMs) use hesitant fuzzy reciprocal 
preference relations (HFPRs) to express their assessment 
information. The HFPRs can well represent the fuzziness and 
hesitancy of DM’s assessment information. To improve the 
efficiency of hesitant fuzzy LSGDM problems, we propose a 
reliability index-based consensus reaching process (RI-CRP). By 
assessing the ordinal consistency of DM’s assessment information 
and measuring the deviation with the collective opinion, the DM’s 
opinion reliability index is given. To avoid unreliable information, 
we propose an unreliable DMs management method to be used in 
the RI-CRP, based on the computation of the DM’s opinion 
reliability index. Moreover, an alternative ranking-based 
clustering (ARC) method with HFPRs is proposed to improve the 
efficiency of the RI-CRP. The similarity index between two DMs’ 
opinions is provided, to ensure the ARC method can be effectively 
implemented. Compared with those clustering methods which 
need to preset several correlated parameters, the presented ARC 
method is more objective with a different approach based on the 
alternative ranking. Finally, a numerical example proves that the 
proposed ARC method and the RI-CRP are feasible and effective 
for hesitant fuzzy LSGDM problems. 
 

Index Terms—Large scale group decision making (LSGDM), 
reliability index (RI), alternative ranking-based clustering (ARC), 
consensus reaching process (CRP). 
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I. INTRODUCTION 
ITH the rapid development and applications of science 
and technology, such as e-democracy [1], social 

networks [2],[3], and public participation [4], more and more 
decision makers (DMs) are involved in decision making 
problems. It makes the large scale group decision making 
(LSGDM) problems becoming a hotspot in the related research 
fields [5]-[7]. As the number of DMs involved in LSGDM 
problems is huge, thus, it is of great importance to effectively 
manage the DMs and improve the efficiency of LSGDM 
problems. 

In LSGDM problems, there are a large number of DMs 
involved. They may have different culture, education 
backgrounds and personal interest preferences. Meanwhile, 
there are also fuzziness and hesitancy natures in human 
judgement. Thus, when expressing their assessment 
information, DMs may have several possible numerical values 
and may perform hesitance to give the decisions [8]. We 
focused our attention on the hesitant fuzzy set (HFS) [9]-[12]. 

In the decision making process, preference relation is one of 
the most usual preference structures to be used in expressing 
DM’s assessment information. Hesitant fuzzy preference 
relation (HFPR) [13] is an effective tool to express DM’s 
hesitancy and fuzziness. Meanwhile, the HFPR is widely used 
in the decision making events [11],[14]-[16]. In HFPR, DM’s 
assessment information consists of hesitant fuzzy elements 
(HFEs), which denotes all possible preference values, and can 
be utilized to well express DM’s hesitant and fuzzy information 
in LSGDM problems. 

As we all know, in LSGDM problems, it is really hard to 
ensure the final decision can be accepted by all the DMs since 
there are a large number of DMs participated. Thus, the 
consensus reaching processes (CRPs) [17],[18] were proposed 
to improve the efficiency of LSGDM problems [5]-[7], 
[19]-[22]. Additionally, to improve the efficiency of CRPs, 
clustering methods were proposed and widely used in the CRPs 
for LSGDM problems. All the existing CRPs models play an 
important role in improving the efficiency of LSGDM 
problems. However, there are still some flaws that in the 
research for LSGDM problems that need to be discussed: 
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(a) All the existing CRPs models are almost based on the 
hypothesis that all the DMs’ opinions provided for LSGDM 
problems are reliable. Their assessment information is used 
directly in the decision making process without checking the 
reliability of them. Actually, it is very difficult to ensure that 
each DM’s assessment information is reliable in LSGDM 
problems. The reason is that there are a huge number of DMs 
participated in LSGDM problems, and some of them may give 
dishonest or contradictory opinions, which are presented only 
for their interests. Once the unreliable opinions are utilized in 
the CRPs, the validity and reliability of the final decision will 
be great decreased for LSGDM problems. 

(b) Most of the existing clustering methods for LSGDM 
problems are almost the expansions of fuzzy-c means 
[6],[20],[23],[24], and interval fuzzy c-means clustering [25]. 
All these methods usually need to preset several subjective 
clustering coefficients, which may reduce the objectiveness of 
the clustering results. Additionally, some innovative clustering 
methods are provided with fuzzy set [26], interval-valued 
intuitionistic fuzzy set [21], interval type-2 fuzzy [22], rather 
than HFS. Whether they are applicable to hesitant fuzzy 
LSGDM problems or not, it needs further verification. 

(c) In the CRPs for LSGDM problems, some clusters’ 
opinions may be far from the collective opinion and the DMs in 
them may do not make any compromise despite the guidance of 
the moderator. Those DMs prefer to stick with their own 
opinions, which are good for their own interests. We call the 
cluster’s behavior that contains these DMs as “non-cooperative 
behavior”. To achieve a high level of consensus and improve 
the efficiency of the CRPs in LSGDM problems, these 
non-cooperative clusters need to be managed reasonably. 

In order to tackle these three gaps in LSGDM problems 
mentioned above, we propose an alternative ranking-based 
clustering (ARC) method with HFPRs, and a corresponding 
reliability index-based CRP (RI-CRP). The proposed ARC 
method and the RI-CRP for hesitant fuzzy LSGDM problems 
are mainly based on the following hypotheses: 

(1) As DMs always give the assessment information which is 
conducive to their own interests, the assessment information 
given by DMs may be unreliable in hesitant fuzzy LSGDM 
problems. The unreliability can be reflected by the following 
two aspects. One is the contradictory views in DMs’ 
assessment information, and the other is the excessive deviation 
between individual and collective opinions. Furthermore, if the 
unreliable DMs’ opinions are used in the decision making 
process, the validity and efficiency of the CRPs for hesitant 
fuzzy LSGDM problems will be greatly reduced. 

(2) The aim of clustering method is to classify the DMs who 
provide similar opinions into a group. Generally, the similarity 
between two DMs’ opinions can be reflected by the DMs’ 
HFPRs alternative ranking. According to the majority principle 
in decision making, those DMs who express the majority of 
similar opinions in the HFPRs alternative ranking should be 
classified into the same group. We introduce the similarity 
index (SI) between two DMs’ opinions. The implementation of 
ARC method can well improve the efficiency of the CRPs for 
hesitant fuzzy LSGDM problems. This is a greatly different 

hypothesis in the comparison with the literatures, grouping 
experts by their preferences instead of alternative ranking. 

(3) Although the DMs, which provide the reliable assessment 
information, can participate in the further hesitant fuzzy 
LSGDM process, some of them may do not make any 
compromise to protect their interests in the CRPs. It makes the 
clusters which contains those non-cooperative DMs contribute 
less for the consensus. Thus, in order to reach a high level of 
consensus for hesitant fuzzy LSGDM problems, the clusters 
that contain these DMs need to be managed reasonably. 

The improvements of the ARC method and the RI-CRP for 
hesitant fuzzy LSGDM problems in this paper can be mainly 
listed as the following three aspects: 

(1) By assessing the ordinal consistency of DMs’ opinions 
and measuring the deviation between individual and collective 
opinions, the DM’s opinion reliability index (ORI) is given. 
Meanwhile, the algorithm of DM’s opinion reliability detection 
is provided. By checking the DM’s ORI, the unreliable DMs 
reasonable management processes are proposed. This allows us 
to guarantee all the DMs involved in the CRPs can provide 
reliable assessment information, which ensures that the final 
decision is reasonable and reliable. 

(2) An ARC method is given with DMs’ HFPRs alternative 
ranking. By comparing the number of alternatives with the 
same position (NASP) between two DMs, the SI between them 
is provided, which ensure the ARC method can be effectively 
implemented. Additionally, the Algorithm of the ARC method 
for hesitant fuzzy LSGDM problems is proposed. Compared 
with those clustering methods which need to preset several 
correlated parameters, the ARC method is more objective with 
a different approach based on the alternative ranking. 

(3) In the RI-CRP, the group consensus index (GCI) is given 
to measure the consensus level. To achieve a high level of 
consensus, the management processes for non-cooperative 
clusters in the RI-CRP are proposed. For the non-cooperative 
clusters which are unwilling to make any compromise, their 
weights will be punished. The implementations of the weight 
punishment make the RI-CRP more efficient for hesitant fuzzy 
LSGDM problems. 

The proposed ARC method and the RI-CRP for hesitant 
fuzzy LSGDM problems are examined by a numerical example. 
The example shows that the utilization of ARC method and 
RI-CRP can effectively improve the efficiency of the hesitant 
fuzzy LSGDM problems. From the example results, we can 
show that unreliable DMs and the non-cooperative clusters are 
effectively managed and the consensus is reached up to the 
threshold in a limited three rounds of the RI-CRP, which shows 
the efficiency of the proposed ARC method and the RI-CRP for 
hesitant fuzzy LSGDM problems. 

The rest of this paper is organized as follows. In Section II, 
some preliminaries related to fuzzy reciprocal preference 
relation (FPR), HFS, HFPR, the score functions of HFPR, and 
the assessment method of ordinal consistency for FPR are 
reviewed. In Section III, DM’s opinion reliability detection 
processes are proposed, and the corresponding reasonable 
management methods for unreliable DMs are given. In Section 
IV, the ARC method is given, detailing the steps for clustering 
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processes. In Section V, the RI-CRP for hesitant fuzzy LSGDM 
problems is proposed. A numerical example and analysis of the 
proposed ARC method and RI-CRP for hesitant fuzzy LSGDM 
problems are shown in Section VI. Finally, some conclusions of 
this paper are summarized in Section VII. 

II.  PRELIMINARIES 
Before giving the ARC method and the RI-CRP, some 

related preliminaries are presented in this section. In Section 
II.A, we first provide the preliminary knowledge regarding the 
FPR, HFS and HFPR. Subsequently, we review the score 
function of HFEs and HFPR in Section II.B, which provide the 
basis for ARC method of hesitant fuzzy LSGDM problems. 
Finally, the assessment method of ordinal consistency for FPR 
is provided, which is used in the RI-CRP to detect the DM’s 
opinion reliability. For simplicity, we denote   
as the number of the alternatives. 

A. Basic concepts of FPR, HFS and HFPR 
Definition 1 (see [27]). An additive FPR   on a finite set of 

alternatives   is a fuzzy relation on the 
product set   with membership function 

    verifying: 

, , . 
Generally, an FPR is represented by an  matrix 

 in which  denotes the preference degree of  

over  Where  implies indifference between  and 

 ;  indicates that  definitely preferred to 

;  means that  is preferred to  

;  indicates that  is preferred to , the 

smaller  the stronger the preference of  over . 

Definition 2 (see [12]). Let  be a fixed set 
of alternatives. An HFS  on  is characterized by a 
membership function  that when applied to  returns a 
subset of [0,1], which can be represented by a mathematical 
expression: 

 
where  is a set of some different values in [0,1], denoting 
the possible hesitant membership degree of the elements 

 to . For convenience,  is called an HFE. 
A detailed review on HFS and the further use are provided in 

[28],[29]. Based on HFS and FPR, the concept of the HFPR is 
defined by Xu et al. [11] as follows: 

Definition 3 (see [11]). Let  be a fixed set 
of alternatives, then an HFPR  on  is represented by a 
matrix  where  
(  is the number of elements in ) is an HFE, which 
indicates all the possible values of preference degree of the 
alternative  over  For all   should satisfy the 

following conditions: 
   

where  and  are the th elements in  respectively. 
Remark 1. The Definition 3 is different from [30]’s 

definition of HFPR, it does not have the constraint that the 
values in  are supposed to be arranged in ascending order, 
i.e.,   The detailed explanation can be 
seen in Remark 1 of [11]. Generally, the number of values in 
different  is different. In order to operate correctly, there 
exists a normalization process in [11],[31], which make the 
different HFEs with the same number of values. In this paper, 
we assume the HFPRs offered by the DMs are normalized. 

B. Basic concepts of the score function of HFE and HFPR 
To compare the HFEs, Xia and Xu [32] defined the 

following comparison laws: 
Definition 4 (see [32]). For an HFE   is 

called the score function of  and  is the number of the 
elements in  For two HFEs  and  if  then 

 is superior to  denoted by  if  then 
 is indifferent to  denoted by  
According to the Definitions 3 and 4, suppose an HFPR 

 where  represents the preference degree 

between alternative  and   is the number of the 

elements in  and  be a fixed set of 

alternatives, then the score value of each alternative  
 can be calculated as follows: 

                       .                       (1) 

Then, the alternative ranking with HFPRs can be obtained 
based on the overall score values, as well as the best 
alternative(s) can be selected. 

C. The ordinal consistency with FPR 
In [33], the definition of ordinal consistency for FPR is 

introduced as follows: 
Definition 5 (see[33]). Let  be a FPR, for all 

  
(1) if   or   we have 

; 

(2) if  and  we have  
Then FPR  is said to have ordinal consistency. 
Remark 2. Definition 5 is the minimum requirement that a 

consistent FPR should possess, and it is the usual transitivity 
condition that a logical and consistent DM should use if he/she 
does not want to provide contradictory opinions. 

Then, Xu et al. [33] discuss the ordinal consistency of FPR 
from the perspective of graph theory, and present some basic 
theory of digraph as follow: 

{1,2, , }N n= 

R

1 2{ , , , }nX x x x= 

X X´
: [0,1],R X Xµ ´ ® ( , ) ,R i j ijx x rµ =

1ij jir r+ = 0.5iir = ,i j NÎ
n n´

( ) ,ij n nR r ´= ijr ix

.jx 0.5ijr = ix

jx ( )i jx x 1ijr = ix

jx ( )i jx x 0.5 1ijr< < ix jx

( )i jx x 0 0.5ijr£ < jx ix

ijr jx ix

1 2{ , , , }nX x x x= 

A X
( )Ah x X

{ , ( ) | },AA x h x x X= < > Î

( )Ah x

x XÎ A ( )Ah h x=

1 2{ , , , }nX x x x= 

H X
( ) ,ij n nH h X X´= Ì ´ ( ){ | 1, ,# }l

ij ij ijh h l h= = 

# ijh ijh

ix .jx , ,i j NÎ ijh

( ) ( ) 1,l l
ij jih h+ = {0.5},iih = # # ,ij jih h=

( )l
ijh

( )l
jih l ,ijh

ijh
( ) ( 1) ,l l
ij ijh h +< ( 1) ( ) .l l

ji jih h+ <

ijh

,h 1
#( ) h h

s h
g
g

Î
= å

,h #h
.h 1h 2 ,h 1 2( ) ( ),s sh h>

1h 2 ,h 1 2 ;h h 1 2( ) ( ),s sh h=

1h 2 ,h 1 2.h h

( ) ,ij n nH h ´= ijh

ix ,jx # ijh

,ijh 1 2{ , , , }nX x x x= 

( ),is x
,i NÎ

1

1( )
# ij

n
i j h

ij

s x
h g

g
= Î

= å å

( )ij n nR r ´=

, , ,i j k NÎ ,i j k¹ ¹
0.5,ikr > 0.5;kjr ³ 0.5,ikr ³ 0.5,kjr >

0.5ijr >

0.5,ikr = 0.5,kjr = 0.5.ijr =
R



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4 

Definition 6 (see [33]). Let  be a FPR, the 
adjacency matrix  of  is defined as follows: 

                                                  (2) 

Then, a digraph  of  is constructed, where 
 denotes the node set and 

 denotes the arc set. That is, if 

 then there is a directed arc in  from  to  
denoted by  or   is called the weight of the 
arc  Therefore, if   then there exist two 

arcs between  and  one from  to  and another form 

 to  A directed path  in a digraph  is a sequence of 
arcs  in  where the nodes  are different. The 

length of a directed path is the number of successive arcs in the 
directed path. A cycle is a directed path that begins and ends at 
the same node. 

According to the Definition 5 of ordinal consistency for a 
FPR  if  does not have ordinal consistency, then there 
exist some unreasonable judgment elements in  satisfying 
one of the following: 

(a)   but  

(b)   but  

(c)   but  
In each situation, there is a directed cycle of length 3 

(simplified 3-cycle)  in the digraph  of 
That is, the inconsistent judgments could be represented by 

3-cycle in  
Theorem 1 (see [33]). Let  be a FPR, there is a 

directed 3-cycle  in the digraph  of  
if and only if there exist the elements   
satisfying one of the following: 

(a)   or   but  

(b)   but  

(c)    
Remark 3. Theorem 1 shows that a directed 3-cycle 

 would be determined from the above 

three cases. When   and  satisfy the third case of 
Theorem 1, there would be two 3-cycles 

 in the digraph  But 
these judgment elements would be considered reasonable, 
because   and  are indifferent  Thus, 
these two 3-cycles would not result in order inconsistency. 

Based on the analysis of 3-cycle, Xu et al. [33] introduce the 
ordinal consistency index (OCI) of  FPR as follows: 

Definition 7 (see [33]). Let  be a FPR, 
 is the adjacency matrix of  and 

 we call 

                                                         (3) 

is the OCI of where  is the number of 3-cycles that 
satisfies the condition (c) in Theorem 1. Meanwhile, the 

 is the Hadamard product of  and . Suppose 

that  and  then,  
Theorem 2 (see [33] ). Let  be a FPR,  has ordinal 

consistency if and only if  
Proof. The proof process of Theorem 2 can be seen in [33]. 

III. OPINION RELIABILITY DETECTION AND THE MANAGEMENT 
FOR UNRELIABLE DMS 

Almost the remaining methods for LSGDM problems are 
based on the hypothesis that the assessment information 
provided by DMs is reliable and can be utilized in the decision 
making process directly. Actually, some DMs may give 
unreliable opinions in LSGDM problems, which may reduce 
the reliability of final decision. Thus, it is of great importance to 
detect the opinion reliability of DMs and to manage the 
unreliable DMs in LSGDM problems. In this section, we 
provide the DM’s opinion reliability detection, the specific 
processes are shown in Section III.A. For unreliable DMs, the 
corresponding management methods are presented in Section 
III.B. 

A. Opinion reliability detection 
Usually, if a DM provides unreliable opinion, it can be 

reflected by the following two aspects: 
• DM’s opinion is contradictory, that is, the preference 

relation given by the DM does not have ordinal 
consistency. 

• The deviation between individual and collective opinions is 
excessively large. Namely, the DM’s contribution to the 
CRPs may be lower than those DMs which have low 
deviation level with the collective opinion. 

Compared with the second aspect, the contradictory 
remained in the DMs’ opinions can reflect more objectively the 
unreliability of DMs. Thus, in the DMs’ opinions reliability 
detection processes, we firstly assess the contradictory degree 
of DMs’ HFPRs based on the ordinal consistency. 

(1) DM’s opinion contradictory detection based on the 
ordinal consistency 

As mentioned, the contradiction remained in the DM’s 
opinion can be detected by assessing the DM’s HFPR ordinal 
consistency. Thus, we expands [33]’s method in this paper. 

Let  denotes the DMs set, 
 represents the number of DMs, and the 

  be the HFPRs provided by DM  
Then, based on the Theorem 2, the contradictory degree of 
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DM’s HFPR defined as follows: 
Definition 8. Let  be an HFPR, and 

 denotes the FPRs transformed by 

 where  and  is the number of 
the elements in  Then the contradictory degree of DM

’s HFPR is defined as 

                ,                  (4) 

Remark 4. In the Definition 8, the  is 

the number of  in HFPR  and 

the can be calculated by Eq. (3). 

Obviously,  have the following characteristics: 
(1) . 
(2) If  all the FPRs transformed by HFPR are of 

ordinal consistency. Then, the opinion provided by  is 
completely logical opinion without any contradiction. 

(3) If  some of FPRs transformed by HFPR 
are of ordinal consistency. Then, the opinion provided by  is 
considered partially contradictory. 

(4) If  all the FPRs transformed by HFPR are 
ordinal inconsistent. Then, the opinion provided by  is 
completely contradictory opinion, which is regarded as 
completely unreliable opinion. 

In a hesitant fuzzy LSGDM problem, DM’s opinion is 
completely contradictory, or completely logical, belonging to 
two relatively extreme phenomena. Thus, we consider the 
acceptable ordinal consistency as a way to assess the 
contradictory degree of DM’s opinion in this paper. We assume 
that if  (where  is an acceptable ordinal 
consistency parameter, and ), then  is considered 
to provide an acceptable ordinal consistency HFPR. For those 
DMs which , their opinions are regarded 
as unreliable. 

Based on the majority principle, we supposed that  in 
this paper. That is, if  then ’s HFPR is 
considered of acceptable ordinal consistency, and  can 
participate in the next stage of DM’s opinion reliability 
detection. If  gives partly contradictory opinions, but not 
within the acceptable level, namely, . 
Then,  will be involved in the management process for 
unreliable DMs. Moreover, if  then ’s opinion 
will be directly rejected. See the Example 1 for the detail 
calculation process. 

Example 1. Assume that there are four alternatives 
for a hesitant fuzzy LSGDM problem, and 

DM   provides his/her HFPR as follows: 

. 

Firstly, this HFPR can be transform into two FPRs as follow: 

. 

By Eq. (3), we can calculate   
Obviously, we have Then, utilizing 

Eq. (4), we have  ( ), namely, 

all the FPRs  transformed by HFPR  are ordinal 

inconsistent. Then, we concluded that ’s opinion is 
completely a contradictory opinion. 

Remark 5. Actually, for the Example 1, based on the 
Definition 1, we can also clearly find the contradiction of ’s 
opinion. Such as in ,  provides , means 

; , indicates ; and , 
representation , then according to the Definition 5, we 
should have . However, the  gives the  
implies  It is obvious that ’s opinion is illogical and 
contradictory. In the same way, we can easily find there are 
contradictions in  between  and . 

(2) Deviation measure between individual and collective 
opinions 

To achieve a high level of consensus in the CRPs for hesitant 
fuzzy LSGDM problems, after the contradiction detection 
processes, we need to further detect the DM’s opinion 
reliability by measuring the deviation level (DL) between the 
individual opinion and the collective opinion. 

Let  denotes the weight vector of DMs, 

where   Considering the 
fairness of the decision making, we suppose the weights of 
DMs are equal as  Meanwhile, let 

  be the HFPR given by DM  and 
suppose all of the HFPRs are of an acceptable ordinal 
consistency. By using the weighted arithmetic average (WAA) 
operator, the collective preference relation  can be 
calculated as follows: 

                               .                                (5) 

Then the DL between individual and collective opinions 
defined as follows: 

Definition 9. Let   be the 
individual HFPR and the collective opinion, respectively. Then, 
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the  can be calculated by the following: 

                     ,                     (6) 

where  is the 

number of the elements in . ,  are the -th elements 
in  and  respectively. Obviously, the . 

As with DM’s opinion contradiction detection, we should 
consider an acceptable reliability level. Then, the ORI of DM 

 is defined as follows: 
Definition 10. Let   be the 

individual preferences and collective opinion, respectively, and 
 as calculated by Eq. (6). Then the DM’s ORI is given by 

                            ,                             (7) 
where  is the acceptable deviation threshold, and . 

Additionally, we suppose that: 
(1) If  then  provide the acceptable reliability 

opinion. 
(2) If  then  is considered to provide 

unreliable opinion. 
Based on the above analysis, we present the detail processes 

of DM’s opinion reliability detection in Algorithm 1. 
 
ALGORITHM 1 DM’S OPINION RELIABILITY DETECTION 
Step 1 Transform the HFPR  into FPRs 

  is the number elements in . 

Step 2 Compute the with Eq. (3). 

Step 3 Compute the  of  with Eq. (4).  
• If  then  is considered to 

provide acceptable ordinal consistency preference relation. 
Turn to Step 4. 

• Otherwise, ’s opinion is contradictory and  need to 
be managed reasonable. 

Step 4  By Eq. (6) and Eq. (7), we have the  of . 
• If  then  provide acceptable reliability 

opinion, and allowed to participate in further LSGDM 
processes. 

• Otherwise,  is considered to provide unreliable opinion 
and needs to be managed reasonable. 

Output: The reliable set and the unreliable set. 
 

B. The unreliable DMs management process 
To ensure the fairness and democracy in hesitant fuzzy 

LSGDM problems, a moderator is introduced to persuade the 
DMs with unreliable opinions to make some modifications. 
Additionally, in order to guarantee the efficiency of the RI-CRP 
in hesitant fuzzy LSGDM problems, we need to preset the 

maximum modification rounds   By checking the DM’s 
opinion reliability, we can obtain an unreliable DMs set. The 
corresponding management methods for those unreliable DMs 
are provided in this section. 

The unreliable DMs are obtained considering two aspects: 
one is the DMs with unacceptable contradictory in the Step 3 of 
Algorithm 1; and the other is the DMs which are too biased 
against collective opinion obtained in Step 4 of Algorithm 1. 

Correspondingly, the unreliable DMs management is carried 
out in the following two parts. 

(1) The management for DMs who offer contradictory 
opinions 

By Eq. (4), we can obtain the  of  For the DMs 

,  their opinions are regarded as 
contradictory and they need the following management to 
modify their opinions. 
• If  DM  provides completely contradictory 

opinion, then his/her opinion will be directly rejected to 
ensure the final decision reliability.  

• If  DM  gives part 
contradictory opinions. A moderator will be introduced to 
persuade  to make some modifications: 
i. If  follows the persuasion, then ’s HFPR ordinal 

consistency degree will be reconsidered after he/she 
makes a modification within the maximum modification 
rounds. If ’s revised preference relation is of ordinal 
consistency, then ’s opinion reliability will be further 
redetected by measuring the deviation with collective 
opinion. 

ii. If  is unwilling to make any adjustment. Or in the 
maximum permissible modification rounds, ’s revised 
opinion still does not possess ordinal consistency. Then, 

’s opinion will be rejected directly. 
Additionally, in order to retain the original preference 

information of DMs as much as possible, we allow the DMs to 
select how many FPR they want to modify in the HFPR, but the 
minimum cannot be lower than the acceptable ordinal 
consistency level. For example, an HFPR can be transformed 
into 4 FPRs, that is,  and by Eq. (4), we have  
( ). Thus, the DM  needs to modify at least one of the 
FPRs to meet the acceptable ordinal consistency requirements. 

(2) The management for DMs who are too biased against 
collective opinion 

According to the deviation measure shown in Step 4 in 
Algorithm 1, if  then  is considered to provide 
unreliable opinion. The moderator will try to persuade  to 
make some modifications on his/her opinion. 
• For those DMs with unreliable opinions and willing to 

modify their opinions, we redetect ’s opinion reliability 
after he/she made modification, and allow  participating in 
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the next decision making when  within the 
maximum modification rounds limit.  

• For the DMs who unwilling to make compromise, or in the 
case of maximum permissible modification rounds, the DM’s 
revised opinion still does not meet the reliability requirement. 
Then, their opinions will be rejected directly to ensure the 
final decision is reliability. 
After apply the unreliable DMs management process, only 

the DMs who provide acceptable reliable opinions can enter the 
following decision making process. To clarify, the specific 
processes of DM’s opinion reliability detection and the 
unreliable DMs management are depicted in Fig. 1. 

 
Fig 1. The processes of DM’s opinion reliability detection and the unreliable 

DMs management. 

IV. ALTERNATIVE RANKING-BASED CLUSTER METHOD FOR 
HESITANT FUZZY LSGDM PROBLEMS 

Clustering methods aim to classify the DMs who provide 
similar opinions into a group to improve the CRPs efficiency in 
LSGDM problems. A novel ARC method for hesitant fuzzy 
LSGDM problems, based on the DM’s HFPR alternative 
ranking, is presented in this section. 
Based on the score function of HFPRs in Section II, the DMs’ 

alternative ranking can be obtained, which can be used to get 
the alternatives position order for each DM, as shown in 
Example 2. 
Example 2. Suppose there are four alternatives 

 can be selected, DM  provides his/her 
normalized HFPR  as follows: 

. 

By Eq. (1), we have the score value of each alternative  
( ), 

   . 
Thus, the alternative ranking for  is  and 

the alternatives position order of  is  
In addition, if there are equivalent alternatives given by DM, 

in order to obtain a reasonable clustering result, we propose to 
consider all the possible alternatives position orders. For 

instance, the alternative ranking of  is  
then we have  and  at the 

same time. 
The alternative position order can be used to find the 

similarity degree of each pair of DMs, which can be further 
used in the clustering method based on alternative ranking. 
Definition 11. Let  be the number of alternatives, for 

two DMs their opinions SI is defined as: 

                 .                (8) 
Where  and the  is the 

number of alternatives with the same position between  and 

 If , then we consider that there exist 

similar or completely consistent opinion between  and  
Remark 6. For Eq. (8), the  already means 

that the opinions between  and  are completely 
consistent. Thus, we set  instead of 

 
Considering the feasibility of the numerical example in 

section VI.A, we assume that  in this paper. It means 
that if  then we consider 

that  and  have a majority of the same opinions, and 
classify them into one group. The detail cluster analysis steps 
can be seen in Algorithm 2. 

ALGORITHM 2 THE ARC METHOD FOR HESITANT 
FUZZY LSGDM PROBLEMS 
Step 1 According to Eq. (1), we can calculate the alternatives 
score function values of DMs with HFPRs. Then the 
alternatives position order of DMs can be obtained; 
Step 2 Firstly, cluster the DMs with the completely consistent 
alternative position order, and the remaining DMs are 
considered as a unique cluster, then we have the initial 
clustering results  .  
Step 3 The clusters  are then compared with each other to 
obtain the  between them. Suppose that  :  
• If  and  

then   are divided into one group. 
• If  but  

then: 
i. If  then,  and  are divided 

into one group. 
ii. If  then,  and  are divided 

into one group. 
iii. If  then: 

a) if , divide  and 
 into one group;  

b) if classify  and 
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 into one group. 
Step 4 End. 

Remark 7. To reduce the complexity of alternative position 
order comparisons among DMs, in Algorithm 2, we firstly 
classify the DMs who have the completely consistent opinions. 
Furthermore, the  represents the average of the cluster 

 The  denotes the distance between  
and  which can be obtained by Eq. (6). Others symbols 
which have the same formula with  and  
are also have the similar meaning with them. 

V. THE RI-CRP FOR HESITANT FUZZY LSGDM PROBLEMS 
In this section, we first present the consensus measure for 

hesitant fuzzy LSGDM problems, and the GCI is proposed 
based on the consensus measure presented at Section V.A. 
Subsequently, the management processes for non-cooperative 
clusters in the RI-CRP are given in Section V.B. Finally, the 
flowchart of RI-CRP for hesitant fuzzy LSGDM problems is 
provided in Section V.C. 

A. The consensus measure for hesitant fuzzy LSGDM problems 
Using the ARC method which is provided in Section IV, the 

remaining DMs can be divided into  clusters, 
denoted as  ( ). Based on two rules: (a) DMs in the 
same cluster can be assigned the same weight because they 
have similar opinions, and (b) clusters that have large number 
DMs should be assigned larger weights based on the majority 
principle. Then, the weight of DM  in different clusters is 
calculated as follows: 

, 

where    is the number of DMs in 
cluster  The weight of cluster  can be obtained: 

                                                                  (9) 

It is obvious that  and  Meanwhile, the 

decision matrix of cluster  can be obtained as  

                                 .                          (10) 

Similarly, the group decision matrix can be represented as 
 

                                    .                               (11) 

In order to obtain the GCI, we give the following definition 
based on distance measure: 

Definition 9. Let  be the decision matrix of 
cluster  and  be the group decision matrix 
obtained by Eq. (10) and Eq. (11), respectively. Then the 
deviation degree between the individual cluster matrix  and 
the group decision matrix  is defined as 

                           (12) 

where the  and  is 

the number of the elements in  and  Furthermore,  

and  are the -th elements in  and , respectively. 

It is clear that,  has the following properties: 
(1)  
(2)  if and only if  namely, there is no 

deviation between  and  
(3)  if and only if  and  are completely 

dissimilar, that is, they are contrary. 
Accordingly, the weighted sum of all the  then the GCI 

can be defined as follows: 
Definition 10. Let  and  be the weight and deviation 

degree of cluster , respectively. By the WAA operator, the 
GCI can be calculated as 

                                 .                            (13) 

Obviously, if  there is no deviation between clusters’ 
opinions. Generally, we suppose that if  (where  is 
consensus threshold), then the acceptable consensus is reached 
in the RI-CRP for hesitant fuzzy LSGDM problems. 

B. The management processes for non-cooperative clusters in 
the RI-CRP 

In the RI-CRP for hesitant fuzzy LSGDM problems, some 
clusters’ opinions may be far from the collective opinion, and 
the DMs in them may do not make any compromise despite the 
guidance of the moderator. We call the clusters’ behavior that 
contains these DMs as “non-cooperative behavior”. To achieve 
a high level of consensus and improve the efficiency of the 
RI-CRP, these non-cooperative clusters need to be managed 
reasonably. The detail RI-CRP for hesitant fuzzy LSGDM 
problems can be seen in Algorithm 3. 

ALGORITHM 3 THE RI-CRP FOR HESITANT FUZZY 
LSGDM PROBLEMS 
Input: The alternatives set  the individual 
HFPRs   the DMs set 

 the initial weights vector of DMs
 the maximum modification rounds  

in the reliability detection process, the maximum number of 
iterations  in the RI-CRP, the predefined deviation 
threshold  consensus threshold  Meanwhile, the 
acceptable ordinal consistency parameter  and the SI 
parameter  
Step 1 Use the Algorithm 1 to detect the DM’s opinion 
reliability. Let  denotes the DM set that provides completely 
contradictory opinions. Let  denotes the DM set that 
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provides partial contradictory opinions, and  means the DM 
set that provides acceptable ordinal consistency opinions. DMs 
in  are directly rejected.  
Step 2 For DMs in  a moderator is introduced to persuade 
them to make some adjustments of their opinions, and then go 
to Step 1. If the DM is unwilling to make compromise, or in the 
case of  the revised preference relations that are still 
ordinal inconsistent, then their views will be rejected directly. 
Step 3 Let  denotes the DM set that provides reliable 
opinions, and  denotes the unreliable DMs set. For the DM 

 in  we use Eq. (7) to calculate ’s . If  
then  belongs to otherwise,  belongs to  

Step 4 Similar to Step 2, for the DMs that belongs to  the 
moderator has to persuade them to make modifications of their 
opinions, if they follow the persuasion and then go to Step 3. 
Otherwise, reject their opinions directly. 
Step 5 Suppose that there are remaining  DMs after 
Step 4. Using the Algorithm 2, the remaining DMs are divided 
into   small clusters  By Eq. (9) and Eq. 
(10), the weights  and the decision matrix  of 

 can be obtained, respectively. 
Step 6 The group decision matrix  can be 

obtained by Eq. (11). The  can be calculated by Eq. (13). 
If  then go to Step 8; otherwise go to the next step. 
Step 7 Find the cluster  which has the largest deviation from 
the collective opinion, namely, the one that has the maximal 
value of  Let the moderator to persuade the DMs in this 
 cluster to modify their preferences. For the non-cooperative 
clusters which are unwilling to make any compromise, their 
weights will be punished. The principle of punishment is as 
follows: 

                             ,                                (14) 
where the  is the punishment parameter, and  Let  
be the number of clusters excluding non-cooperative clusters. 
Then, their weights are accordingly as 

                          ,                     (15) 

set  and go to Step 6. 
Step 8 Let  according to the Eq. (1), the alternatives 
score values of the collective opinion  can be calculated, 
and the best alternative(s) can be selected. 
Step 9 End. 
Output: The group consensus level  the number of 
iteration  and the best alternative(s) selection. 

C. Flowchart of RI-CRP for hesitant fuzzy LSGDM problems 
Once the consensus among DMs is reached, the selection 

process based on the score function which was introduced in 

Section II is employed to obtain the group alternative ranking. 
Then, the final decision can be obtained. The detail RI-CRP for 
hesitant fuzzy LSGDM problems is depicted in Fig 2. 

 
Fig. 2. Flowchart of the RI-CRP for hesitant fuzzy LSGDM problems. 

VI. A NUMERICAL EXAMPLE AND ANALYSIS 
In this section, a numerical example is provided to examine 

the proposed ARC method and the RI-CRP for hesitant fuzzy 
LSGDM problems utility and applicability. Meanwhile, the 
analysis of the ARC method is given in Section VI.B. 

A. Numerical example 
Suppose there are five alternatives  for a 

hesitant fuzzy LSGDM problem, and 30 DMs  
are involved. All the DMs use the normalized HFPRs to make 
the comparisons of alternatives and give their assessment 
information. Then we can obtain 30 original HFPRs 

  and the specific preference 
information can be seen in the Table I . Moreover, some related 
parameters are set as follows: 

(1) The maximum modification round is set to  the 
acceptable ordinal consistency parameter   and the 
acceptable deviation threshold  in the DM’s opinion 
reliability detection process. Meanwhile, the SI parameter is

 
(2) The minimum level of consensus threshold , and 

the maximum number of iterations is  in the RI-CRP. 
(3) The punishment parameter for updating the weight is 
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Step 1 Apply Algorithm 1 to detect the DM’s opinion 
reliability. Then, we have  

 and  

Step 2 DMs in  are rejected directly. A moderator is 
introduced to persuade the DMs in  to make some 

adjustments. Only the DM  is willing to follow the advice of 
moderator to revise his/her preference relation. At ’s 
revised opinion have ordinal consistency. Thus, DM  is 
classified into  In this step, we use the repairing ordinal 
inconsistency method provided in [33] to effectively modify 
the inconsistency. The specific steps of this method can be seen 
in the Algorithm 2 of [33]. Furthermore, ’s opinion is 
rejected directly due to he/she is unwilling to make any 
modifications. The revised results of  can be seen in Table II. 

Table II 
THE REVISED PREFERENCE RELTION OF THE DM . 

     
 

     
 

     
 

     
 

     
 

     
 

Step 3 The remaining 26 DMs’ HFPRs are acceptable ordinal 
consistent and the weights of DMs are  

 By Eq. (5), the collective preference relation 
 can be obtained. Then using Eq. (6) and Eq. (7), 

we have the  and  of DMs   

Furthermore, we have the unreliable DMs set  
The detailed results are seen in Table III. 

TABLE III 
THE RESULTS OF DL AND ORI OF THE DMS  . 

   
   
   

… … … 
   

Step 4 In  the DMs   are not willing to change 
despite the guidance of the moderator. Thus, their opinions are 
rejected directly. The DMs   are willing to make 
some modifications by the advice of the moderator, and in the 

 limitation, their revised preference relations satisfy the 
reliability requirement. Then,   are classified in to 
the reliable DMs set . In this step, we take the principle 
which is provided in [34] to repair the deviation between the 
individual opinion and the collective opinion. Finding the 
position  and  of the maximum elements  of  

where and return  to  to 

construct a new HFPR  according to ’s new 
judgment, where 

 

This repairing method does not only can satisfy the 
reliability requirements, but also could preserve the initial 
DM’s preference information as much as possible. The detail 
results are shown in Table IV. 

TABLE IV 
THE REVISED RESULTS OF THE DMS  . 

   
 

 
 

 

   

 

Step 5 Applying the Algorithm 2, the remaining 24 provides 
reliable opinions DMs are divided into four clusters, and the 
cluster results as follows: 

 
 

  
According to Eq. (9), we have the weights  of cluster : 

  . 
Then, the decision matrix  of cluster  can 

be obtained by Eq. (10). Detailed results are omitted due to 
space constrictions. 
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THE ORIGINAL PREFERENCE INFORMATION MATRIX OF DMS 
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1x 2x 3x 4x 5x

1d 1x {0.5} {0.7,0.1,0.6} {0.9,0.6,0.7} {0.5,0.7,0.4} {0.4,0.2,0.3}

2x {0.3,0.9,0.4} {0.5} {0.6,0.8,0.7} {0.7,0.4,0.3} {0.1,0.2,0.3}

3x {0.1,0.4,0.3} {0.4,0.2,0.3} {0.5} {0.8,0.9,0.4} {0.1,0.4,0.2}

4x {0.5,0.3,0.6} {0.3,0.6,0.7} {0.2,0.1,0.6} {0.5} {0.2,0.4,0.3}
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> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

11 

Step 6 Utilizing Eq. (11), the collective decision matrix 
 can be obtained, and then by Eqs. (12) and (13), 

we have the  and  as follow: 
   

. 
Then go to Step 7. 

Step 7 Cluster  has the largest deviation from collective, 

. DMs in  in this round are unwilling to make 
any comprise. Thus, the weight of  will be punished, and 
return to the Step 6, we have  

  still needs to make adjustments. In the next 

rounds, the DMs in  are willing to make some modifications. 
Similar to the modification method in Step 4, we find the 
position  and  of the maximum elements  in , 

which has the largest deviation from the group’s opinion. That 
is, the  having the maximal value of  where 

  return  to the cluster 

 to construct a new preference relation   

according to ’s new judgment, where 

 

Return to the Step 6. After 3 modify rounds, we have 
 then the acceptable consensus is 

reached. The detail results of the RI-CRP are shown in Table V. 
TABLE V 

THE DETAIL RESULTS OF THE RI-CRP  

t   ,  

 
 

… 

 

 
 

… 

 

 
 

  

 
 

  

Finally, by Eq. (1), we can calculate the alternatives score 
values of  as follow: 

 
. 

Thus, we have  then the optimal 
consensus alternative is . 

B. Analysis	of	the	ARC	method	in	the	numerical	example	
In the numerical example of Section VI.A, considering the 

feasibility of the numerical example, we assume . By 
applying Eq. (8), we have , which denotes that  

and  have a majority of the same opinions. Thus, we classify 
them into one group. Actually, all the  possible values 

in this numerical example are  Moreover, we can 
obtain the different number cluster based on the different value 
of SI. The detailed results can be seen in the Fig. 3. 

 
Fig. 3. The ARC results with different SI for numerical example in VI.A. 

From Fig. 3, we conclude that the different value of SI, the 
different number of cluster can be obtained. Meanwhile, the 
higher of SI, the more number of clusters, that is, the possible 
number of isolated DMs is greater. Obviously, the value of SI is 
directly affected by the selection of  Thus, in the real 
hesitant fuzzy LSGDM problems, the DMs can select the value 
of  based on the actual needs, to get a 
reasonable clustering result and improve the efficiency of the 
RI-CRP. 

VII. CONCLUSION 
This paper focuses on the hesitant fuzzy LSGDM problems, 

and presents the ARC method and RI-CRP to improve the 
efficiency of the hesitant fuzzy LSGDM problems. The major 
contributions of this paper are concluded as follow: 

(1) By assessing the DMs’ HFPRs ordinal consistency and 
measuring the deviation with the collective opinion, the DM’s 
ORI is proposed, so that in the reliability detection process, it is 
easy to detect the unreliable DMs by calculating the DM’s ORI. 
For the unreliable DMs, a moderator is introduced to work on 
them, and a relatively reasonable limited modification round is 
given to save the costs. By detecting the DM’s opinion 
reliability and managing the unreliable DMs, we can avoid the 
unreliable DMs involved in the further CRPs, thus ensuring that 
the final decision is reasonable and reliable. 

(2) To improve the efficiency of the RI-CRP for hesitant 
fuzzy LSGDM problems, an ARC method is proposed with 
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HFPRs in this paper. Meanwhile, the SI between two DMs’ 
opinions is provided, to ensure the ARC method can be 
effectively implemented. Compared with those clustering 
methods which need to preset some correlated parameters, the 
presented ARC method is more objective with a different 
approach based on the alternative ranking. 

(3) In the RI-CRP of hesitant LSGDM problems, a weight 
penalizing mechanism is implemented for the non-cooperative 
clusters. The implementation of the weight punishment makes 
the RI-CRP more efficient for hesitant LSGDM problems. 

In some real LSGDM problems, due to time pressure, lack of 
knowledge, and the DM’s limited experience related with the 
problem domain, DMs may provide the incomplete assessment 
information [17],[35]-[37]. Thus, in further work, we will try to 
extend the proposed ARC method and RI-CRP to the LSGDM 
with incomplete assessment information, to further verify the 
validity of them. 
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