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Abstract 

Social network group decision-making (SNGDM) is increasingly valued since the 

advancement and development of intelligent decision-making. Generally, real SNGDM cases 

involve not only the mathematical formulation of the social network analysis but the experts’ 

psychological behaviors. Self-confidence, an expert’s psychological implication of self-statement, 

is a meaningful topic in SNGDM problems, while it is overlooked in the most existing researches. 

To fill this gap, this study takes experts’ self-confidence into account in SNGDM. All experts are 

allowed to use self-confident fuzzy preference relations (SC-FPRs) to express their opinions. 

Subsequently, we develop a novel self-confidence-based consensus approach for SNGDM with 

SC-FPRs, in which a dynamic importance degree determination of experts combining the external 

trust and internal self-confidence to assign their weights. A consensus index considering 

self-confidence is defined to assess the consensus level among experts. Meanwhile, a trust-based 

feedback mechanism is presented to improve the consensus efficiency. The rule of the feedback 

mechanism is that experts are allowed to dynamically adjust their self-confidence levels while 

revising the preferences. Using self-confidence score function, an alternative that has the highest 

self-confidence score can be selected as the best solution. An illustrative example and some 

comparisons are given to verify the feasibility and effectiveness of the proposed method. 

Keywords: Social network group decision making; Self-confident fuzzy preference relations; 

Consensus; Trust; Self-confidence. 
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Social network group decision making (SNGDM) can be described as a scenario 

that some experts (decision makers) participate in decision-making through a social 

networking platform and then to choose the best solution from given alternatives. 

Nowadays, SNGDM gained increasing attention because of the advancement and 

development of intelligent decision-making [1-7]. In SNGDM events, preference 

relation is useful to voice the assessment information of experts since its advantages 

of pairwise comparison [8, 9]. To date, many different types of preference relations 

have been presented and applied to decision-making analyses [10-17]. 

Generally, real SNGDM scenarios involve not only the mathematical formulation 

of the social network analysis but the human psychological factors [18, 19]. In reality, 

experts usually own differentiated decision-making habits, risk preferences or 

knowledge backgrounds. As a result, they may have different psychological cognition 

which will influence their expression of preference information. For example, in 

SNGDM process, some experts may not be able or unwilling to provide complete 

preference relations when making a pairwise comparison among alternatives. The 

possible reasons are as follows: 

(a) Some experts may own limited knowledge or experience referring the 

SNGDM problem domain. 

(b) Some experts may show a negative attitude in the decision-making process 

since they are unwilling to take the responsibility for the failure of the final 

decision or possible negative impact. 

Consequently, in some real SNGDM scenarios, experts may provide incomplete 

preference relations. That is, experts only give the preference information that they are 

fully sure of, while for the uncertain information, they prefer to keep the elements 

missing [20]. In some senses, this behavior can be called self-confidence 

psychological in the decision-making process [21, 22]. The preference information 

that experts provide indicates that they are fully self-confident while the missing 

elements mean that experts have no self-confidence. 

Self-confidence is a person’s psychological implication of self-statement, and 

can reflect one’s knowledge, experience or attitude in SNGDM process [22, 23]. 

Hence, it would be an interesting and valuable research to explore the impact of 

expert’s self-confidence on SNGDM. Although incomplete preference relations can 

reflect expert’s self-confidence to some extent, it is still not the best preference tool to 
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analyze the expert’s self-confidence in SNGDM events. The main reason is that 

different experts usually own different self-confidence levels. Some experts may have 

varying self-confidence degrees in their own preference information. In other words, 

experts may have multiple self-confidence levels except as the absolute confidence or 

total lack of confidence. In order to deeply explore the effect of experts’ multiple 

self-confidence on decision-making, a novel self-confident fuzzy preference relation 

(SC-FPR) was introduced in [20]. The main advantage of the SC-FPRs is that experts 

can simultaneously voice their preferences and multiple self-confidence. And then, 

enabling them truthfully voices their assessment information as well as guaranteeing 

that the final decision can be closer to the truth. 

Self-confident preference relations provide a more general theoretical 

background in researching multiple self-confidence in decision sciences and have 

aroused widely attention. For example, Dong, Liu, Chiclana, Kou and 

Herrera-Viedma [24] validated that compared with incomplete preference relations, in 

most situations self-confident preference relations can improve the quality of the final 

decision(s). Liu, Zhang, Chen and Yu [25] proposed a new consensus approach to 

group decision making based on self-confident multiplicative preference relations. Liu, 

Xu, Montes, Dong and Herrera [26] presented a novel additive consistency 

measurement and improvement methods for SC-FPRs, and then introduced a novel 

SCI-IOWA operator applied to group decision making. After that, Liu, Xu and 

Herrera [27] developed a novel consensus model which detecting and managing 

overconfidence behaviors under large-scale group decision-making scenarios. 

Additionally, Liu, Xu, Ge, Zhang and Herrera [28] presented a new group decision 

making method considering self-confidence behaviors, and applied it to 

environmental pollution emergency management. All the studies on self-confident 

preference relations mentioned above have strongly demonstrated the necessity of 

considering the multiple self-confidence of experts in decision-making analysis. 

Consensus reaching process (CRP) aims to reduce the objections of the minority 

while pursuing the agreements of the majority. To date, many consensus models have 

been developed for decision-making events [29-38]. Especially, the existing CRPs 

referring the SNGDM problems mainly include the following categories: 

(a) Preference relations-based consensus. For instance, Wu and Chiclana [39] 

introduced a CRP considering trust relationships for SNGDM with 
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interval-valued fuzzy reciprocal preference relations. And then, Wu, Chiclana 

and Herrera-Viedma [40] explored a trust-based CRP for SNGDM with 

incomplete linguistic information. In addition, Wu, Chang, Cao and Liang [41] 

developed a trust propagation and collaborative filtering method for 

incomplete information in SNGDM with type-2 linguistic trust, and presented 

a novel CRPs for SNGDM with incomplete information. 

(b) Consensus model based on minimum adjustment cost. Generally, in the CRPs 

of SNGDM events, the minimum adjustment cost is an important rule. To 

date, Dong, Ding, Martínez and Herrera [42] explored a leadership-based 

consensus with a tactic adding a minimum interactions time. Additionally, 

based on SNGDM with distributed linguistic trust, Wu, Dai, Chiclana, Fujita 

and Herrera-Viedma [6] provided a consensus based on minimum adjustment 

cost feedback mechanism. 

(c) Managing non-cooperative behaviors-based consensus model. Usually, 

non-cooperative behavior refers to a series of negative behaviors of experts in 

SNGDM process to protect personal or alliance interests.  To reduce the 

negative impact of non-cooperative behavior on SNGDM, Zhang, Palomares, 

Dong and Wang [19] presented a consensus tactic to manage the 

non-cooperative for multi-attributes SNGDM scenarios. 

(d) Other consensus researches for SNGDM problems. Wu, Chiclana, Fujita and 

Herrera-Viedma [1] presented a visual interaction consensus approach to 

SNGDM problems considering trust propagation. Dong, Zha, Zhang, Kou, 

Fujita, Chiclana and Herrera-Viedma [2] reviewed the CRPs in SNGDM, and 

proposed some new challenges for future research in SNGDM. In addition, 

Ding, Chen, Dong and Herrera [43] investigated the influence of the 

self-confidence level and the node degree on CRPs and the consensus 

convergence speed in the social network DeGroot model. 

The above four kinds of research on the consensus model have enriched the 

theory and application of SNGDM. Nevertheless, using self-confidence preference 

relations to analyze the CRPs in SNGDM have not been concerned. As 

aforementioned, real SNGDM cases involve not only the mathematical formulation of 

the social network analysis but the experts’ self-confidence psychological behaviors. 

Hence, in order to ensure the rationality and authenticity of the final decision(s), it 
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would be of great importance to consider the experts’ inner multiple self-confidence 

in SNGDM scenarios. In addition, if we introduce the multiple self-confidence levels 

of experts into SNGDM, the following points are concerned in our research: 

(1) In the context of social networks, how to reasonably allocate the importance 

degree of experts based on their trust relationships and self-confidence levels, 

and then to aggregate their information into a collective one? 

(2) How to make the consensus measure in SNGDM considering experts’ 

multiple self-confidence levels? 

(3) How to utilize the trust relationships among experts and their self-confidence 

levels to effectively promote the negotiation in the CRPs, and then to reach a 

high level of consensus? 

(4) Finally, how does the experts’ self-confidence influence the final decision in 

SNGDM scenarios 

In summary, this paper aims to explore a new CRP considering the multiple 

self-confidence levels of experts in SNGDM as well as to resolve the above research 

concerns. To do so, we propose a novel self-confidence-based consensus model with a 

dynamic importance degree of experts and trust-based feedback mechanism. The 

proposed method considers the external trust and internal self-confidence for defining 

the dynamic importance degrees of experts and the feedback adjustment in the CRPs. 

The main innovations are: 

(1) Experts’ multiple self-confidence levels are discussed in SNGDM scenarios. 

We allow experts to use SC-FPRs to voice their evaluations, and then to 

analyze the influence of self-confidence on SNGDM. 

(2) A novel trust and self-confidence-based consensus model is proposed. In the 

proposed model, a dynamic importance degree determination of experts which 

combining the trust and self-confidence is provided to assign their weights. 

That is, if an expert is highly trusted while she/he also has a high level of 

self-confidence, then it means that she/he not only has a good reputation in 

social networks, but may have rich knowledge or experience referring to the 

SNGDM domain. Thus, she/he plays an important role in SNGDM and should 

be assigned high weight. 

(3) A new group consensus index (GCI) which considers both the external trust 

and internal self-confidence of experts is given to measure the consensus level 
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among them. 

(4) A trust-based feedback adjustment mechanism is presented to allow experts to 

modify their opinions according to their most trusts participants (MTPs). To 

accelerate the consensus, experts are suggested to dynamically adjust their 

self-confidence levels while revising their preferences in the CRPs. In addition, 

the importance degree of experts also changed based on the changing of their 

self-confidence levels. 

The remainder of this paper is as follows. Section 2 reviews some preliminaries 

regarding the 2-tuple linguistic model, fuzzy preference relation (FPR), SC-FPRs, and 

SNGDM problems. Section 3 presents a self-confidence-based consensus reaching 

with dynamic importance degree of experts and trust-based feedback mechanism in 

SNGDM with SC-FPRs. Section 4 gives an illustrative example. Section 5 provides 

some comparisons and discussions. The concluding remarks are outlined in Section 6. 

2. Preliminaries 

Some preliminaries are reviewed in this section. In Section 2.1, the 2-tuple 

linguistic model is provided. In Section 2.2, the concepts of FPR and SC-FPR are 

given. The SNGDM problems are described in Section 2.3. 

2.1. 2-tuple linguistic model 

The 2-tuple linguistic model, which is utilized to express the experts’ multiple 

self-confidence levels, is reviewed in this section. Suppose a linguistic term set 

{ | 0,1, , }iS s i g  , and 
is  represents a probable value of a linguistic variable. For 

any is , 
js  in S, they are assumed that 

i js s  iff i j . Herrera and Martínez [44] 

first proposed the 2-tuple linguistic model: 

Definition 1 [44]. Assume [0, ]g   be a value in S. Let ( )i round   and 

i    be two values, where [0, ]i g , [ 0.5,0.5)  . Then   is known as a 

symbolic translation, and the round is the general round operation. 

Herrera and Martínez [44] proposed to use 2-tuple ( , )is  , is S  and 

[ 0.5,0.5)   to represent the linguistic information. It is worth pointing out that the 

2-tuple linguistic model gives a one-to-one mapping function to ensure the linguistic 

2-tuple and quantitative value conversion mutually. 
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Definition 2 [44, 45]. Suppose a linguistic term set S, and its granularity interval is 

[0, ]g . Then, the 2-tuple that expresses the equal information to [0, ]g   is 

obtained by the following function: 

:[0, ] [ 0.5,0.5)g S    , 

( ) ( , )is   , with 
, ( )

, [ 0.5,0.5)

is i round

i



  

 


    
. 

Moreover, an inverse function 1  of the S and ( , )is   is also provided in [44]: 

1 : [ 0.5,0.5) [0, ]S g    , 

1( , )is i      . 

Especially, 1 1( ,0) ( )i is s    . Let 
1

( , )ls   and 
2

( , )ls   be two 2-tuples, some 

operators were introduced by [44-46]: 

(1) Operations: 

 if 
1 2l l , then 

1
( , )ls   is smaller than 

2
( , )ls  ; 

 if 
1 2l l , then 

(a) if   , then 
1

( , )ls  , 
2

( , )ls   denotes the equal information; 

(b) if   , then 
1

( , )ls   is smaller than 
2

( , )ls  . 

(2) Negation operator:  1( , ) ( , )i iNeg s g s    . 

2.2. The concepts of FPR and SC-FPR 

Suppose that 1 2{ , , , }nX x x x  is an alternative set, {1,2, }M m  and

{1,2, }N n .  

Definition 3 [47]. Let ( )ij n nR r   be a matrix, where 
ijr  denotes the preference 

degree of ix  over 
jx . If the elements in R satisfy 1ij jir r  , 0.5iir  ,

 
for 

,i j N  , then R is called an FPR. 

Let { | 0,1, , }
SL

i
S s i g   be a linguistic term set, which is used to denote the 
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multiple self-confidence levels of experts. Then, the SC-FPR is defined as below: 

Definition 4 [20]. Let ( , )ij ij n nP p l   be an FPR with self-confidence on a set of 

alternatives X . P  has two components, the first one indicates the preference degree 

of ix
 
over 

jx , and the second one indicates the self-confidence level associated to 

the first component. Meanwhile, the components in P satisfy the following 

conditions: 

1, 0.5

,

[0,1],

ij ji ii

ij ji ii g

SL

ij ij

p p p

l l l s

p l S

    


  


  

, for ,i j N  , 

then P can be called an SC-FPR. 

This study supposes that experts use 
0 1 8{ , , , }SLS s s s  to express multiple 

self-confidence levels. Fig.1 shows the language labels of the 
SLS . To effectively fuse 

the SC-FPRs in SNGDM problems, Liu, Xu, Montes, Dong and Herrera [26] 

introduced some new operations of the 2-tuples in SC-FPRs: 

Definition 5 [26]. Assume two 2-tuples
 

( , )i ip l , ( , )k kp l , ip , kp  are the fuzzy 

preference values, and il , kl  are the self-confidence levels associated with ip  and 

kp , where , SL

i kl l S , [0,1] . The operations of the 2-tuples are given below: 

(1) ( , )+( , ) ( + ,min{ , })k k i i k i k ip l p l p p l l ; 

(2) ( , ) ( , ) ( ,min{ , })k k i i k i k ip l p l p p l l   ; 

(3) ( , ) ( , )i i i ip l p l    ; 

(4) ( , ) (( ) , )i i i ip l p l  ; 

(5) ( , ) ( , )i i i ip l p l  . 
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Fig. 1. The language labels of the multiple self-confidence levels of experts. 

2.3. SNGDM problems 

Social network can be seen as a platform that users can share information and 

communicate with each other. Meanwhile, the relationships among users can be 

obtained by social network analysis. Generally, in a social network, there are three 

main elements: a) the user set; b) the user relationship; and c) the user property. 

Detailed information is shown in Table 1. 

Table 1. Different representation schemes in social networks. 
Graph Sociometric Algebraic 

 
 

            

 

         

 

0 1 0 1 1

0 0 1 0 0

1 0 0 1 0

0 0 0 0 1

0 1 0 0 0

A

 
 
 
 
 
 
 
 

 

 

  

1 2 3 1

1 4 3 4

1 5 4 5

2 3 5 2

e Re e Re

e Re e Re

e Re e Re

e Re e Re

 

Additionally, there are three elements commonly used in social networks are 

described below: 

(a) Sociometric: Socio-matrix ( )kh m mA a   ( {0,1}kha  ) is used to denote the  

relationships among experts in social networks. 1kha   denotes that there 

exists a direct trust relationship from experts ke  to he . 

(b) Graph theoretical: The directed graph is used to view the social network . In 

the directed graph, nodes denote the experts, k he e  denotes expert ke  

trusts expert he . 

(c) Algebraic: this notation allows distinguishing several unique relations and 

e1 

e2 

e3 

e5 

e4 

None Low 

Slightly  

low 

Medium 

 

Slightly 

high  
High Very high Perfect 

s0 s1 s2 s3 s4 s5 s6 s7 s8 

Very Low 
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representing the combinations of them. 

Actually, a social network can be denoted as a graph ( , )G E V . 1 2{ , , , }mE e e e  

is the set of experts, denotes the nodes of experts. V is the set of edges, denotes the 

social relations among experts. The detailed definitions associated with SNGDM are 

given below: 

Definition 6 [42, 48]. A social network is a directed graph ( , )G E V , where 

1 2{ , , , }mE e e e  denotes the experts set, V is a set of an ordered pair of elements of 

E and edge ( , )k he e V  represents that expert ke  directly trusts expert he  

( ,k h M ). 

Definition 7 [42, 48]. A sociometric ( )kh m mA a   is utilized to represent ( , )G E V  

such that 

1, ( , )

0,

k h

kh

e e V
a

otherwise


 


, 

where 1kha   indicates expert ke  directly trusts he  ( ,k h M ). 

It is obvious that Definition 7 can only describe two relations among experts in 

social networks: total trust or no trust at all. Whereas, in some cases, it is hard to 

crisply describe the trust relationships among experts since there exists 

indetermination in trust relationship description in social networks [19, 40]. Thus, a 

fuzzy sociometric was introduced in [2, 19, 42] as follows: 

Definition 8 [2, 19, 42]. A fuzzy sociometric ( )kh m mA a   on E is a relation in 

E E  with : [0,1]AU E E  , and ( , )A k h khu e e a , where [0,1]kha   denotes the 

trust degree that ke  allocates to he  ( ,k h M ). 

Without loss of generality, this paper adopts the fuzzy sociometric to describe the 

trust relationships among experts. Example 1 is illustrated to explain this. 

Example 1. For the five experts depicted in Table 1, the 5 5( )khA a   (k,h=1,2,3,4,5;

k h ) denotes the trust relationships among them: 
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0.7 0 0.8 0.75

0 0.82 0 0

0.9 0 0.88 0

0 0 0 0.9

0 0.6 0 0

A

 
 

 
  
 

 
  

. 

3. Self-confidence-based consensus model with dynamic importance degree of 

experts and trust-based feedback mechanism 

This section mainly presents the self-confidence-based CRPs with dynamic 

importance degree of experts and trust-based feedback mechanism. In Section 3.1, a 

method to dynamically determine the experts’  importance degree is proposed. In 

Section 3.2, a consensus measure is given. After that, a trust-based feedback 

adjustment is given in Section 3.3. Additionally, the self-confidence-based consensus 

model for SNGDM with SC-FPRs is implemented in Algorithm 1. Finally, a selection 

process for SNGDM with SC-FPRs is provided in Section 3.4. 

3.1. Determination of the dynamic importance degree of expert 

To aggregate individual’s assessment information into a group one, and then to 

explore the CRPs in SNGDM, the first step is to determine each expert’s importance 

degree. In the following, we propose to combine the external trust of experts gained 

from others and their internal self-confidence to determine their importance degrees. 

Detailed processes are given below: 

(1) Calculate the trust degree of expert 

In SNGDM scenario, the external trusts of an expert gained from others can 

reflect her/his reputation in the decision-making process. Generally, the more trusted 

an expert is, the more important or influential she/he will be. Thus, the external trusts 

of an expert gained from others can be regarded as an objective importance degree to 

determine her/his weight. 

To measure the trust degree of an expert, it needs to obtain the corresponding 

fuzzy sociometric firstly. However, it is generally incomplete because some experts 

may not give a direct trust value for a specific expert as shown in Fig. 2 (a). Clearly, 

there is no direct trust relationship between 1e  and 3e  in Fig. 2(a). Nevertheless, the 

indirect trust between 1e  and 3e  can be inferred based on the transitivity. In order to 
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evaluate the missing trust values in the fuzzy sociometric, a t-norms-based trust 

propagation is introduced in [48, 49]: 

Fig. 2. Trust propagation through indirect trust path. 

Definition 9 [48, 49]. Let 
11 2 3

(1) (2) ( )

q q

k q he e e e e  



      be a path from ke  to 

he , and the length is 1q  . The trust value kha  can be evaluated using t-norm: 

, (1) (1), (2) ( ),( , , , )kh k q ha T a a a     

1

, (1) ( ), ( ), ( 1)1

1 1

, (1) ( ), ( ), ( 1) , (1) ( ), ( ), ( 1)1 1

2

(2 )(2 ) (2 )

q

k q h z zz

q q

k q h z z k q h z zz z

a a a

a a a a a a

   

       





 

  

 


    



 
.   (1) 

Specifically, if the length is two from ke  to he , that is 1q  . Then, the trust 

value kha  is computed by: 

 
(1) (1)

, (1) (1),

(1) (1)

( , )
1 (1 )(1 )

k h

kh k h

k h

a a
a T a a

a a

 

 

 

 
  

.                    (2) 

Example 2. In Fig. 2(b), suppose that 12 0.75a   and 23 0.88a  . Then, utilizing Eq. 

(2), the trust value 13a  between 1e  and 3e  is 0.641. 

There is usually more than one trust path between two experts in a social network. 

Fig. 3 illustrates the trust relationships among five experts in an SNGDM problem. 

Clearly, there are three paths from expert 1e  to expert 5e : 

(a) 1 2 3 5e e e e   ; 

e1 

e2 e3 

e1 

e2 
e3 

a12 

a23 

a12 

a23 

a13=T(a12, a23) 

(a) No direct trust between e1 and e3 (b) Trust propagation between e1 and e3 via e2 
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(b) 1 3 5e e e  ; 

(c) 1 2 4 1 3 5e e e e e e     . 

 

 

 

 

 

Fig. 3. The trust relationships among five experts in an SNGDM problem 

As aforementioned, the trust degrees of experts gained from others represent their 

possible influence in SNGDM process. To compute a more accurate trust value, we 

suggest to consider all the trust propagation paths between two experts. Hence, as per 

the case (c) mentioned in Fig. 3, although the trust path goes back to 1e  in the middle, 

this trust path from 1e  to 5e  still needs to be considered. The reason is that as the 

node of trust delivery, 2e  generates two trust delivery paths to 5e , i.e., 2 3e e  and 

2 4e e , respectively. In order to obtain the accurate trust degree of 1e , that is, to 

measure the possible influence of expert 1e  more authentically, the case (c) is 

considered in this study. 

For the case that there are multiple trust paths among experts, we need to 

aggregate different trust values into a total trust degree. To do so, a trust aggregation 

using the ordered weighted averaging (OWA) operator [50] is presented: 

Definition 10 [50]. Assume that there are   trust paths from ke  to he , and the 

1 2, , ,kh kh kha a a  denote the trust values. Then, kha  can be computed by: 

1 2 ( )

1

( , , , ) z

kh kh kh kh z kh

z

a OWA a a a a


 


  ,                           (3) 

where ( )z

kha  is the z
th

 largest value in 1 2{ , , , }kh kh kha a a , and 
1 2( , , , )T

z     is 

the weight vector such that 0z   and 
1

1zz





 . 

e1 

e3 

e4 

e2 

e5 
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To compute the trust value kha  between ke  and he , an important issue is to get 

the weight vector 
1 2( , , , )T

z    . This paper adopts the quantifier-guided 

method based on the linguistic quantifiers Q proposed by Zadeh [51] to compute the 

weights z  
( 1,2,...,z  ): 

1
z

z z
Q Q

 

   
    

   
, 1,2, ,z  ,                          (4) 

where ( )Q b  can be denoted as 

0, ,

( ) , ,

1, ,

b f

b f
Q b f b c

c f

b c

 



  


 

                                    (5) 

with , , [0,1]b c f  . Meanwhile, the parameters (f,c) are (0,1), (0.3,0.8), (0,0.5), and 

(0.5,1)), denoting the “All”, “Most”, “At least half”, “As many as possible” of the 

proportional quantifiers respectively. 

Then, the complete sociometric denoted as ( )kh m mA a  , ( ,k h M , k h ) can 

be obtained. Subsequently, the definition of the trust degree of an expert in SNGDM 

with SC-FPRs is given below. 

Definition 11. Let ( )kh m mA a   ( ,k h M , k h ) be a complete sociemetric matrix, 

then the trust degree ( )hTD e  of an expert he  in SNGDM with SC-FPRs can be 

calculated by: 

1,

1
( )

1

m

h kh

k h k

TD e a
m  




 .                                       (6) 

Example 3. Suppose that the five experts 1 2 3 4 5, , , ,e e e e e  which are depicted in Fig. 3. 

The corresponding fuzzy sociometric are assumed as follows: 
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0.7 0.6

0.8 0.9

0.7

0.6

0.8

A

   
 
   

     
 

    
     

. 

From Fig. 3, we observe that at least one path exists between any two experts who 

are not directly connected. The detailed indirect linkages for the incomplete trust 

values of Example 3 are shown in Table 2. 

Table 2. The detailed indirect linkage for incomplete trust values in Example 3 

 Indirect linkage  Indirect linkage 

14a  

1 2 4

1 3 5 4

1 2 3 5 4

e e e

e e e e

e e e e e

 

  

   

 
15a  

1 2 3 5

1 3 5

1 2 4 1 3 5

e e e e

e e e

e e e e e e

  

 

    

 

21a  
2 3 5 4 1

2 4 1

e e e e e

e e e

   

 
 

25a  
2 3 5

2 4 1 3 5

e e e

e e e e e

 

   
 

31a  3 5 4 1e e e e    
32a  3 5 4 1 2e e e e e     

34a  3 5 4e e e   
42a  4 1 2e e e   

43a  
4 1 3

4 1 2 3

e e e

e e e e

 

  
 

45a  
4 1 2 3 5

4 1 3 5

e e e e e

e e e e

   

  
 

51a  5 4 1e e e   
52a  5 4 1 2e e e e    

53a  

5 4 1 2 3

5 4 1 3

5 4 1 2 4 1 3

e e e e e

e e e e

e e e e e e e

   

  

     

   

Then, utilizing Definitions 9 and 10, the complete sociometric 5 5( )khA a   

(k,h=1,2,3,4,5) can be computed. For example, as for the 14a , using Eqs. (1) and (2), 

we have: 

1 12 24
14

12 24

0.612
1 (1 ) (1 )

a a
a

a a


 

   
, 

2 13 54 35
14

13 54 35 13 54 35

2
0.267

(2 ) (2 ) (2 )

a a a
a

a a a a a a

  
 

       
; 

3 12 54 23 35
14

12 54 23 35 12 54 23 35

2 ( )
0.228

(2 ) (2 ) (2 ) (2 ) ( )

a a a a
a

a a a a a a a a

   
 

          
. 

After that, using Eqs. (4) and (5), the z  (z=1,2,3) are (here we use the 

linguistic quantifier “Most”): 
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1 0.067  , 2 0.666  , 3 0.267  . 

Then, the 14 0.28a   by Eq. (3). All other values in 5 5( )khA a   (k,h=1,2,3,4,5) 

can be determined similarly. The final A is derived as follows: 

0.7 0.6 0.28 0.26

0.32 0.8 0.9 0.3

0.27 0.15 0.53 0.7

0.6 0.38 0.28 0.16

0.44 0.27 0.16 0.8

A

 
 

 
  
 

 
  

. 

Thus, using Eq. (6), the ( )hTD e  (h=1,2,3,4,5) in Fig. 3 can be obtained: 

1( ) 0.41TD e  , 2( ) 0.38TD e  , 3( ) 0.46TD e  , 4( ) 0.63TD e  , 5( ) 0.36TD e  . 

(2) Measure the self-confidence degree of an expert 

Due to the time pressure, limited knowledge or experience referring the SNGDM 

domain, experts may give different self-confidence in the decision-making process. 

Consequently, the self-confidence degree of an expert also needs to be considered. 

The self-confidence generally means one’s self-affirmation on her/his opinion. The 

higher the degree of self-confidence, the more knowledge or experience the expert is 

likely to own. Hence, the self-confidence levels of experts can be seen as the 

subjective importance degree to determine their weights. However, as far as we know, 

the existing methods only consider the external trust, while ignoring the internal 

self-confidence of experts. For Example 3, it is clear that the diagonal elements that 

represent the self-confidence of experts themselves are missing in A . As 

aforementioned, self-confidence can reflect one’s knowledge, experience or attitude 

in SNGDM process [23]. Thus, the authenticity and objectivity of the measurement of 

expert’s importance degree can be further ensured by combining the multiple 

self-confidence. 

For an SC-FPR 
, ,( , )k ij k ij k n nP p l   provided by an expert ke , the overall 

self-confidence matrix 
,( )k ij k n nL l   of ke  can be obtained. Then, according to the 

distance measure, the self-confidence deviation level (SCDL) of ke  is defined as: 

Definition 12. Assume that ke  provides an SC-FPR 
, ,( , )k ij k ij k n nP p l  . Then, 
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,( )k ij k n nL l   of ke  can be obtained, and let ( )g n nL s   be the maximal 

self-confidence matrix such that , , SL

ij k gl s S . Then, the SCDL of ke  ( k M ) is 

calculated by: 

1

1 1

2
( ) ( , )

( 1)

n n

k k

i j i

SCDL e d L L
n n



  



  

                            

1 11
,

1 1

| ( ) ( ) |2

( 1)

n n
ij k g

i j i

l s

n n g

 

  

 



 .        (7) 

And then, the self-confidence degree ( )kSCD e  of ke  is: 

 ( ) 1 ( )k kSCD e SCDL e  . (8) 

Clearly, ( ) [0,1]kSCD e  . The larger the ( )kSCD e , the higher the self-confidence 

of ke  will be. 

Example 4. In an SNGDM problem, let 1 2 3 4 5{ , , , , }E e e e e e  be a set of five experts 

in Fig. 3, and 
0 2 8{ , , , }SLS s s s  is utilized to express the multiple self-confidence 

levels of experts. Each expert provides her/his SC-FPRs 
, ,( , )k ij k ij k n nP p l   

(k=1,2,3,4,5) over a set of four alternatives 1 2 3 4{ , , , }X x x x x  as follows: 

8 5 7 8

5 8 6 4

1

7 6 8 5

8 4 5 8

(0.5, ) (0.1, ) (0.6, ) (0.7, )

(0.9, ) (0.5, ) (0.8, ) (0.6, )

(0.4, ) (0.2, ) (0.5, ) (0.6, )

(0.3, ) (0.4, ) (0.4, ) (0.5, )

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

, 

8 3 5 2

3 8 4 6

2

5 4 8 3

2 6 3 8

(0.5, ) (0.6, ) (0.8, ) (0.2, )

(0.4, ) (0.5, ) (0.6, ) (0.7, )

(0.2, ) (0.4, ) (0.5, ) (0.4, )

(0.8, ) (0.3, ) (0.6, ) (0.5, )

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

, 

8 5 7 4

5 8 6 3

3

7 6 8 2

4 3 2 8

(0.5, ) (0.3, ) (0.4, ) (0.7, )

(0.7, ) (0.5, ) (0.2, ) (0.4, )

(0.6, ) (0.8, ) (0.5, ) (0.9, )

(0.3, ) (0.6, ) (0.1, ) (0.5, )

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

, 
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8 5 4 5

5 8 6 3

4

4 6 8 7

5 3 7 8

(0.5, ) (0.4, ) (0.2, ) (0.1, )

(0.6, ) (0.5, ) (0.6, ) (0.5, )

(0.8, ) (0.4, ) (0.5, ) (0.3, )

(0.9, ) (0.5, ) (0.7, ) (0.5, )

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

, 

8 6 4 6

6 8 5 4

5

4 5 8 7

6 4 7 8

(0.5, ) (0.6, ) (0.3, ) (0.4, )

(0.4, ) (0.5, ) (0.6, ) (0.7, )

(0.7, ) (0.4, ) (0.5, ) (0.3, )

(0.6, ) (0.3, ) (0.7, ) (0.5, )

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

. 

Then, the self-confidence matrices 
,( )k ij k n nL l   of experts ke  (k=1,2,3,4,5) are: 

5 78 8

5 8 6 4

1
7 56 8

58 4 8

s s s s

s s s s
L

s s s s

s s s s

 
 
 
 
  
 

 , 

8 3 5 2

3 8 4 6

2

5 4 8 3

2 6 3 8

s s s s

s s s s
L

s s s s

s s s s

 
 
 
 
 
 

, 

8 5 7 4

5 8 6 3

3

7 6 8 2

4 3 2 8

s s s s

s s s s
L

s s s s

s s s s

 
 
 
 
 
 

, 

8 5 4 5

5 8 6 3

4

4 6 8 7

5 3 7 8

s s s s

s s s s
L

s s s s

s s s s

 
 
 
 
 
 

, 

8 3 4 7

3 8 6 3

5

4 6 8 4

7 3 4 8

s s s s

s s s s
L

s s s s

s s s s

 
 
 
 
 
 

. 

Using Eqs. (7) and (8), ( )kSCD e  (k=1,2,3,4,5) can be obtained: 

1( ) 0.72SCD e  , 2( ) 0.47SCD e  ,  

3( ) 0.55SCD e  , 4( ) 0.61SCD e  , 5( ) 0.66SCD e  . 

(3) The dynamic importance degree of an expert 

After the trust degree and self-confidence degree of an expert have been obtained, 

the dynamic importance degree of expert combining the trust degree and the 

self-confidence degree is given below: 

Definition 13. Let ( )kTD e  be the trust degree of ke  in an SNGDM with SC-FPRs, 

and ( )kSCD e  be the self-confidence degree of ke  in her/his opinions. Then, the 

importance degree ( )ke  of ke  ( k M ) is defined by: 

 ( ) ( ) (1 ) ( )k k ke TD e SCD e     ,    (9) 



19 
 

where [0,1]  is a parameter to control the weight of ( )kTD e  and ( )kSCD e . 

Specially, we set 0.5   since this paper supposes that the trust degree and 

self-confidence degree of an expert is of equal importance. 

Remark 1. As per Definition 13, we have ( ) [0,1]ke  . The smaller the value of 

( )ke , the less the importance degree of expert ke  will be. 

Afterwards, in an SNGDM with SC-FPRs, let 1 2{ ( ), ( ), , ( )}me e e    be the set 

of importance degrees of experts 1 2{ , , , }mE e e e . The normalized weight kw  of 

an expert ke  ( k M ) can be obtained by: 

1

( )

( )

k
k m

kk

e
w

e









.                                           (10) 

Example 5 (Example 4 continuation). The ( )ke  (k=1,2,3,4,5) can be obtained by 

Eq. (9): 

1( ) 0.57e  , 2( ) 0.42e  , 3( ) 0.51e  , 4( ) 0.64e  , 5( ) 0.18e  . 

Then, utilizing Eq. (10), the weights kw  of ke  (k=1,2,3,4,5) are: 

1 0.24w  , 2 0.18w  , 3 0.22w  , 4 0.28w  , 5 0.08w  . 

3.2. Consensus measure 

After the initial experts’ weights are obtained by Eq. (10), we can compute the 

temporary collective SC-FPR 
, ,( , )c ij c ij c n nP p l   using the WA operator: 

Definition 14. Let 
, ,( , )k ij k ij k n nP p l   ( k M ) be the SC-FPRs given by experts in an 

SNGDM problem, and 
1 2( , , , )T

mW w w w  be the expert’s weighting vector. Then, 

the collective SC-FPR 
, ,( , )c ij c ij c n nP p l   is: 

    
1

m

c k k

k

P w P


 .                                           (11) 

Then, the individual consensus index (ICI) between individual and collective 

SC-FPR can be obtained. 
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Definition 15. Let 
, ,( , )k ij k ij k n nP p l   ( k M ) be an SC-FPR of ke , and 

, ,( , )c ij c ij c n nP p l   be the collective SC-FPR. Then, the ICI is defined by: 

( ) 1 ( , )k k cICI P d P P  ,                      (12) 

where ( , )k cd P P  is the distance between kP  and cP : 

1

, , , ,

1 1

2
( , ) | ( , ) ( , ) |

( 1)

n n

k c ij k ij k ij c ij c

i j i

d P P p l p l
n n



  

 

 . (13) 

And then, the GCI can be calculated as: 

1

( )
m

k k

k

GCI w ICI P


  .                                         (14) 

Obviously, [0,1]GCI  . The larger the value of GCI, the higher the consensus 

among experts. Generally, to achieve an unanimous agree among experts is 

impossible. Therefore, a soft consensus is adopted in the consensus reaching process. 

In order to achieve soft consensus in SNGDM, a consensus threshold [0,1]   is 

predefined to measure the consensus degree among experts. At the same time, if 

GCI  , then a soft consensus for SNGDM with SC-FPRs is achieved. Otherwise, 

the feedback process is carried out to promote a soft consensus achieved. 

3.3. Trust-based feedback mechanism 

To achieve a soft consensus, a trust-based feedback mechanism is presented in 

this section. The experts are suggested to dynamically adjust their self-confidence 

while revising the preferences according to the MTPs. It mainly contains the 

following three processes: 

(a) Identification of the MTP of each expert; 

(b) Identification of the preferences which has the minimal self-confidence for 

each expert; 

(c) Generation of the adjustments. 

The detailed processes are described as follows: 

(1) Identification of the MTP of each expert. The MTP of an expert can be 
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determined by the values of kha  in A : 

,( ) { | max { }}k h h h k khMTP e e a , k M . (15) 

(2) Identification of the preferences that has minimal self-confidence for each 

expert: self-confidence usually reveals the experts’ knowledge, abilities or 

experiences referring the SNGDM domain. Generally, if an expert expresses a 

low self-confidence, it indicates that she/he may lack sufficient knowledge or 

experience. In other words, the fuzzy preference value provided by the expert 

may lack reliability. Based on this hypothesis, after identifying the MTP of 

each expert, we suggest experts to modify their fuzzy preference values which 

they own minimal self-confidence in each round of feedback. That is, find the 

position i  and j  of the minimal elements ( )

,i j kl
 

  (  is the  th
 iteration in 

the CRPs), for each expert ke  ( k M ), where 

( ) ( )

, , ,= min { }i j k i j ij kl l
 

 
, ,i j N .                     (16) 

And then, the 
( )

,i j kp
 


 corresponding to ( )

,i j kl
 

  can be determined. 

(3) Generation of the adjustments. The elements in 
, ,( , )k ij k ij k n nP p l   of ke  

( k M ) are suggested to be: 

( )

,( 1)

, ( )

,

,  if ,

, otherwise

ij h

ij k

ij k

p i i j j
p

p










     

 


,                               (17) 

( )

,( 1)

, ( )

,

, if ,

, otherwise

ij h

ij k

ij k

l i i j j
l

l










     

 


.                                 

(18) 

Especially, if there exist two minimal self-confidence levels that are equal, i.e., 

( ) ( )

, ,i j k i j kl l
   

 
  , then find 

( )

,i j kp
 


 and ( )

,i j k
p

 


‘ ’ , make the modifications based on the 

following rules: 

 if ' '

( ) ( )

, ,i j k i j k
d d

   

  , then ke  needs to improve ' ' ' '

( ) ( )

, ,
( , )

i j k i j k
p l

   

  ; 

 if ' '

( ) ( )

, ,i j k i j k
d d

   

  , then ke  needs to modify ( ) ( )

, ,( , )i j k i j kp l
   

  ; 
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 if ' '

( ) ( )

, ,i j k i j k
d d

   

  , then ke  can randomly choose any ( ) ( )

, ,( , )i j k i j kp l
   

   and 

' ' ' '

( ) ( )

, ,
( , )

i j k i j k
p l

   

   to repair; 

where 
( ) ( ) ( )

, , ,| |i j k i j k i j cd p p
     

    , and ' ' ' ' ' '

( ) ( ) ( )

, , ,
| |

i j k i j k i j c
d p p

     

    . 

Moreover, Algorithm 1 depictes the self-confidence-based consensus model for 

SNGDM with SC-FPRs. 

Algorithm 1. Self-confidence-based consensus model for SNGDM with SC-FPRs 

Input: the individual SC-FPRs 
, ,( , )k ij k ij k n nP p l 

 
( k M ), the maximum number of 

iterations  
. The consensus threshold   and the parameter  . 

Output: the collective SC-FPR 
, ,( , )c ij c ij c n nP p l  , terminal iteration step   and

( )GCI 
. 

Step 1. Compute ( )kTD e  of ke  using Eq. (6). 

Step 2. Let 0  , calculate ( )kSCD e  using Eq. (8). And then, using Eqs. (9) and (10) 

to obtain the weight (0)

kw  of ke . 

Step 3. Compute the collective SC-FPR ( ) ( ) ( )

, ,( , )c ij c ij c n nP p l  

  using Eq. (11). 

Step 4. Using Eq. (14) to compute the 
( )GCI 

. If 
( )GCI   , go to Step 6. 

Otherwise, go to the next step. 

Step 5. Utilize Eq. (15) to identify the MTP of each expert ke  ( k M ). Subsequently, 

use Eq. (16) to identify the preference that has minimal self-confidence for each ke  

( k M ). And then, advice ke  to revise her/his SC-FPR by Eqs. (17) and (18). 

Then, let 1    and go to Step 2. 

Step 6. End. 

Remark 2. As per Algorithm 1, suppose that the MTP of ke  is he , it is worth 

pointing that if the elements 
( ) ( )

, ,( , )ij h ij hp l 
 of he  needs to be modified at the iteration 

1   , the adjusted elements of ke  should adopt the following rules: 

( 1)

,( 1)

, ( )

,

, if ,

, otherwise

ij h

ij k

ij k

p i i j j
p

p












     

 


,                                      (19) 
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( 1)

,( 1)

, ( )

,

, if ,

, otherwise

ij h

ij k

ij k

l i i j j
l

l












     

 


.                                    (20) 

3.4. Selection process 

After an acceptable consensus is reached, we can compute the final collective 

SC-FPR 
, ,( , )c ij c ij c n nP p l  . Then, a selection process is activated for SNGDM with 

SC-FPRs. 

Definition 16. Suppose that an alternative set
 1{ , , }nX x x , and 

, ,( , )c ij c ij c n nP p l   

is the collective SC-FPR, then the alternative SCS function is defined by: 

1

, ,

1

1
( ) ( ( ))

n

i ij c ij c

j

s x p l
n





  , 1,2,...,i n .                    (21) 

Clearly, the larger the value of ( )is x , the more the self-confidence of an expert 

on ix  will be. As a result, if ( ) ( )i js x s x , then 
i jx x . Additionally, the decision 

process for SNGDM with SC-FPRs: trust and self-confidence-based consensus 

reaching and selection processes are depicted in Fig. 4. 



24 
 

 

Fig. 4. Decision process for SNGDM with SC-FPRs: Trust and self-confidence-based consensus 

reaching and selection processes 

4. Illustrative example 

An example is provided in this section to show how the proposed consensus 

model works in SNGDM scenario. For simplicity, we continue Example 5, and 

suppose 6  , 0.7   and 0.5  , respectively. Then, detailed trust and 

self-confidence-based CRPs for SNGDM with SC-FPRs are given below: 

Step 1. In Example 5, we have obtained the original weights of ke  (k=1,2,3,4,5) 

(0)

1 0.24w  , (0)

2 0.18w  , (0)

3 0.22w  , (0)

4 0.28w  , (0)

5 0.08w  . 

Then, using Eq. (11) to compute the temporary collective SC-FPR 

SNGDM  

problem 

Social network analysis

 

e1 

e3 

e4 

e2 

e5 

Calculate the TD of each 

expert in the SNGDM 

problem 

Individual  

SC-FPRs 

Compute the SCD  

of each expert 

Obtain the weights  

of experts 

Experts (DMs) 

discussion 

Collective SC-FPR 

Selection process GCI≥θ? 

Modify fuzzy 

preferences and adjust 

self-confidence 

Yes 

No 

Identify the MTP of 

each expert 

Identify the 

preferences that need 

to be adjusted of each 

expert 
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(0) (0) (0)

, , 4 4( , )c ij c ij cP p l   is: 

8 3 4 2

3 8 4 3(0)

4 4 8 2

2 3 2 8

(0.5, ) (0.36, ) (0.46, ) (0.42, )

(0.64, ) (0.5, ) (0.56, ) (0.55, )

(0.54, ) (0.44, ) (0.5, ) (0.52, )

(0.58, ) (0.45, ) (0.48, ) (0.5, )

c

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

. 

Step 2. Compute the (0)( )kICI P  (k=1,2,3,4,5) utilizing Eq. (12): 

(0)

1( ) 0.5375ICI P  , (0)

2( ) 0.5325ICI P  , (0)

3( ) 0.5175ICI P  , 

(0)

4( ) 0.5475ICI P  , (0)

5( ) 0.5560ICI P  . 

Then, 
(0)

0.5361 0.7GCI   , the iteration is continued. 

Step 3. Identify the MTP of each expert using Eq. (15). For example, for 1e , the MTP 

of 1e  is 2e  since 1 2 12 1( ) { | max{ }=0.7}hMTP e e a a   (h=1,2,3,4,5). Similarly, the 

MTPs of ke  (k=2,3,4,5) are 

2 4( )MTP e e , 3 5( )MTP e e , 4 1( )MTP e e , 5 4( )MTP e e . 

Additionally, Table 4 shows the detailed results. 

Table 4. The MTP of each expert ek in the SNGDM (k=1,2,3,4,5). 

k MTP(ek)
  

Trust value 

1 e2
 

0.7 

2 e4
 

0.9 

3 e5
 

0.7 

4 e1
 

0.6 

5 e4
 

0.8 

Step 4. Using Eq. (16) to find the position i  and j  of the ( )

,

t

i j kl
 

, for each ke  

(k=1,2,3,4,5). For (0)

1P , since 
(0) (0)

24,1 , ,1 4min { }i j ijl l s  , replacing the element with the 

corresponding element in (0)

2P : 
(0) (0)

24,1 24,2 0.7p p  , 
(0) (0)

24,1 24,2 6l l s   by Eqs. (17) and 

(18). The same program is applied to update the other experts’ assessment 

information: 

(0) (0)

14,2 14,4 0.1p p  , 
(0) (0)

14,2 14,4 5l l s  , 

(0) (0)

34,3 34,5 0.7p p  , 
(0) (0)

34,3 34,5 7l l s  , 
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(0) (0)

24,4 24,1 0.7p p  , (0) (0)

24,4 24,1 6l l s  , 

(0) (0)

13,5 13,4 0.2p p  , 
(0) (0)

13,5 13,5 4l l s  . 

Let 1   , then go to Step 1. After four iterations, the CRPs terminate. Table 5 

shows the detailed results. The final collective SC-FPR (4) (4) (4)

, , 4 4( , )c ij c ij cP p l   is: 

8 5 5 5

5 8 6 6(4)

5 6 8 7

5 6 7 8

(0.5, ) (0.42, ) (0.6, ) (0.48, )

(0.58, ) (0.5, ) (0.37, ) (0.7, )

(0.4, ) (0.63, ) (0.5, ) (0.3, )

(0.52, ) (0.3, ) (0.7, ) (0.5, )

c

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

. 

Meanwhile, the (4)( )kICI P  (k=1,2,3,4,5) of the ultimate modified individual 

SC-FPRs are: 

(4)

1( ) 0.7300ICI P  , (4)

2( ) 0.7135ICI P  , (4)

3( ) 0.7600ICI P  , 

(4)

4( ) 0.7585ICI P  , (4)

5( ) 0.7665ICI P  . 

From Table 5, we find that after four iterations 
(4)

0.7468 0.7GCI   . Thus, a soft 

consensus has been reached. Then, utilize Eq. (21) to compute the scores of 

alternatives in collective SC-FPR (4) (4) (4)

, , 4 4( , )c ij c ij cP p l   are: 

1( ) 2.8631s x  , 2( ) 3.3326s x  , 3( ) 2.9775s x  , 4( ) 3.3288s x  . 

Thus, the alternative ranking is 2 4 3 1x x x x , and 2x  is the best alternative. 

Table 5. The detailed iterative process of the proposed method. 

η
 ( )

kw 
 

( )

cP 
 GCI

(η) ( ) ( )

, ,( , )ij k ij kp l   

0 

0.24

0.18

0.22

0.28

0.08

 

8 3 4 2

3 8 4 3(0)

4 4 8 2

2 3 2 8

(0.5, ) (0.36, ) (0.46, ) (0.42, )

(0.64, ) (0.5, ) (0.56, ) (0.55, )

(0.54, ) (0.44, ) (0.5, ) (0.52, )

(0.58, ) (0.45, ) (0.48, ) (0.5, )

c

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

 0.5361 

(0) (0)

24,1 24,1 6

(0) (0)

14,2 14,2 5

(0) (0)

34,3 34,3 7

(0) (0)

24,4 24,4 6

(0) (0)

13,5 13,5 4

( 0.7, )

( 0.1, )

( 0.3, )

( 0.7, )

( 0.2, )

p l s

p l s

p l s

p l s

p l s

 

 

 

 

 

 

1 

0.21

0.17

0.20

0.24

0.18

 

8 3 4 4

3 8 4 3(1)

4 4 8 3

4 3 3 8

(0.5, ) (0.39, ) (0.43, ) (0.4, )

(0.61, ) (0.5, ) (0.57, ) (0.64, )

(0.58, ) (0.44, ) (0.5, ) (0.38, )

(0.6, ) (0.36, ) (0.62, ) (0.5, )

c

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

 0.6133 

(1) (1)

12,1 12,1 5

(1) (1)

12,2 12,2 5

(1) (1)

24,3 24,3 4

(1) (1)

13,4 13,4 7

(1) (1)

13,5 13,5 7

( 0.4, )

( 0.4, )

( 0.7, )

( 0.6, )

( 0.6, )

p l s

p l s

p l s

p l s

p l s

 

 

 

 

 
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2 

0.20

0.17

0.20

0.24

0.19

 

8 5 5 4

5 8 4 4(2)

5 4 8 3

4 4 3 8

(0.5, ) (0.42, ) (0.59, ) (0.4, )

(0.58, ) (0.5, ) (0.56, ) (0.7, )

(0.41, ) (0.44, ) (0.5, ) (0.37, )

(0.6, ) (0.3, ) (0.63, ) (0.5, )

c

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

 0.6190 

(2) (2)

34,1 34,1 7

(2) (2)

34,2 34,2 7

(2) (2)

14,3 14,3 6

(2) (2)

14,4 14,4 8

(2) (2)

24,5 24,5 5

( 0.3, )

( 0.3, )

( 0.4, )

( 0.7, )

( 0.7, )

p l s

p l s

p l s

p l s

p l s

 

 

 

 

 

 

3 

0.20

0.17

0.20

0.24

0.19

 

8 5 5 5

5 8 4 4(3)

5 4 8 7

5 4 7 8

(0.5, ) (0.42, ) (0.59, ) (0.48, )

(0.58, ) (0.5, ) (0.56, ) (0.7, )

(0.41, ) (0.44, ) (0.5, ) (0.3, )

(0.52, ) (0.3, ) (0.7, ) (0.5, )

c

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

 0.6876 

(3) (3)

23,1 23,1 6

(3) (3)

23,2 23,2 6

(3) (3)

24,3 24,3 6

(3) (3)

12,4 12,4 5

(3) (3)

23,5 23,5 6

( 0.2, )

( 0.2, )

( 0.7, )

( 0.4, )

( 0.6, )

p l s

p l s

p l s

p l s

p l s

 

 

 

 

 

 

4 

0.20

0.18

0.20

0.24

0.18

 

8 5 5 5

5 8 6 6(4)

5 6 8 7

5 6 7 8

(0.5, ) (0.42, ) (0.6, ) (0.48, )

(0.58, ) (0.5, ) (0.37, ) (0.7, )

(0.4, ) (0.63, ) (0.5, ) (0.3, )

(0.52, ) (0.3, ) (0.7, ) (0.5, )

c

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

 0.7468  

5. Comparative analyses and discussions 

In this section, the comparative analyses are conducted to show the reasonableness 

and reliableness of the proposed approach. It includes the advantages of the presented 

consensus model, the discussion of experts’ self-confidence effect on the alternative 

ranking, and the analysis of the influence of SC-FPRs and FPRs on consensus 

efficiency. 

(1) The advantages of the presented consensus model 

In real SNGDM cases, if an expert owns absolute self-confidence in her/his 

judgment, then a compete preference relation can be obtained. As a result, an FPR is 

actually a particular case for SC-FPR. That is, experts’ self-confidence levels are 

ij gl s  for ,i j N   [20]. Here, we compare the consensus improvements provided 

in Wu and Xu [52] with the proposed consensus model in this paper. To do this, Step 

2 and Step 5 in Algorithm 1 are replaced by Step 2A and Step 5A, respectively. 

Step 2A. Let 0  . Weights generation without considering the values of 

self-confidence degrees of experts are computed by: 

1

( )

( )

k
k m

kk

TD e
w

TD e





,                                             (22) 

Step 5A. Construct a new SC-FPR ( 1) ( 1) ( 1)

, ,( , )k ij k ij kP p l      of expert ke  by using the 
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Eq. (17) in [52], then 

( ) ( )

, ,( 1)

, ( )

,

(1 ) , if ,

, otherwise

ij k ij c

ij k

ij k

p p i i j j
p

p

 

 



 


      
 



,                           (23) 

and 
( 1) ( )

, ,ij k ij kl l   , for ,i j N  , and k M  . 

Generally, in the CRPs, the experts’ original information should be distorted as 

little as possible while an acceptable consensus is reached. In order to measure the 

information distortion, the adjustment degree (AD) and adjustment ratio (AR) are 

adopted. To do that, let (0) (0) (0)

, ,( , )k ij k ij kP p l  and 
, ,( , )k ij k ij kP p l    ( ,i j N ) be the 

original SC-FPR and the final adjusted SC-FPR of ke  ( k M ) respectively. Then, 

the AD and AR for the kP  are: 

(0) 1 (0) 1

, , , ,, 1 , 1

(0) 1 (0)

, ,, 1 , 1

| | | ( ) ( ) |
(1 )

( )

n n

ij k ij k ij k ij ki j i j

k n n

ij k ij ki j i j

p p l l
AD

p l
 

   

 



 

  
  



 

 
       

(24) 

, ,, 1 , 1

2 2
(1 )

n n

ij k ij ki j i j

k

f f
AR

n n
 

 
  
 

,  (25) 

where 

(0)

, ,

,

0,

1, otherwise

ij k ij k

ij k

p p
f

 
 


, 

(0)

, ,

,

0,

1, otherwise

ij k ij k

ij k

l l
f

 
 


, and [0,1] . 

Remark 3. The AD denotes the difference degree between the initial and the revised 

SC-FPR. The smaller the value of the AD, the more the initial information is reserved. 

The AR means the elements adjustment ratio in the expert’s initial information. The 

smaller the value of the AR, the fewer the elements in the initial information of expert 

are adjusted. In addition, this paper supposes that the preference values and the 

self-confidence are of equal importance, thus the 0.5  . 

If using Step 2A to generate the weights, we have 

1 0.18w  , 2 0.17w  , 3 0.21w  , 4 0.28w  , 5 0.16w  . 

Afterwards, utilize Step 5A to adjust the SC-FPRs, we can obtain the GCIs in 

Table 6 ( 0.5  ). 
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Table 6. The GCIs of Wu and Xu [52]’s method (ξ=0.5) 

η
 

GCI
(η)   η

 
GCI

(η)  

0 0.5313  4 0.6075 

1 0.5723  5 0.6099 

2 0.5925  6 0.6116 

3 0.6025    

In Table 6, it is clear that the 
(6) 0.7GCI   . It denotes a soft consensus is not 

achieved using Eq. (17) provided by Wu and Xu [52]’s method when 6  . 

Suppose the acceptable consensus threshold 0.6116  , that is, the acceptable 

consensus level is achieved by Wu and Xu [52]’s method. The AD and AR are 

depicted in Table 7. 

Table 7. The AD and AR for Wu and Xu [52]’s method 

 e1
 

e2
 

e3
 

e4
 

e5
 

AD 0.14 0.13 0.16 0.10 0.09 

AR 0.38 0.38 0.38 0.38 0.38 

From Table 5, if the proposed method is performed, the consensus is reached in 

the first iteration ( 1  ) when 0.6116  . Moreover, Table 8 shows the 

corresponding AD and AR of the proposed method. 

Table 8. The AD and AR for the proposed consensus model 

 e1
 

e2
 

e3
 

e4
 

e5
 

AD 0.03 0.05 0.13 0.06 0.01 

AR 0.13 0.13 0.13 0.13 0.06 

Comparing the values in Tables 7 and 8, it is obviously that all the values kAD  

and kAR  in Table 8 are smaller than that are Table 7, denoting that a smaller 

information distortion than that by Wu and Xu [52]’s method. It shows that the 

proposed method has better performance than Wu and Xu [52]’s method in the above 

two criteria. 

Additionally, different from the existing method of importance degrees 

determination of experts in SNGDM problems, we present a dynamic weight updating 

based on the changing of experts’ self-confidence in the CRPs for SNGDM with 

SC-FPRs. Fig. 5 shows the trends of the GCIs with the changing of experts’ weights. 
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Fig. 5. The GCIs of SNGDM in SC-FPRs with the changing of experts’ weights. 

Clearly, Fig. 5 shows that the GCI is improved by the changing of expert’s 

weights. Therefore, it signifies that the proposed dynamic importance degree 

generation in the CRPs is effective for SNGDM with SC-FPRs. 

(2) The discussion of experts’ self-confidence effect on the alternative ranking 

Suppose the consensus threshold 0.6116  , the final alternative ranking for Wu 

and Xu [52]’s method is depicted in Table 9. 

Table 9. The results of alternative ranking for Wu and Xu [52]’s method (i=1,2,3,4; δ=0.6116) 

Collective SC-FPR SCS(xi) Alternative ranking 

8 3 4 2

3 8 4 3(6)

4 4 8 2

2 3 2 8

(0.5, ) (0.39, ) (0.43, ) (0.4, )

(0.61, ) (0.5, ) (0.55, ) (0.56, )

(0.57, ) (0.45, ) (0.5, ) (0.5, )

(0.6, ) (0.44, ) (0.51, ) (0.5, )

c

s s s s

s s s s
P

s s s s

s s s s

 
 
 
 
 
 

 

1.925

2.435

2.261

1.881

 
2 3 1 4x x x x  

Similarly, Table 10 shows the alternative ranking of the proposed method in our 

research. 

Table 10. Alternative ranking of the proposed method in this research (i=1,2,3,4; δ=0.6116) 

Collective SC-FPR SCS(xi) Alternative ranking of collective 

8 3 4 4

3 8 4 3(1)

4 4 8 3

4 3 3 8

(0.5, ) (0.39, ) (0.43, ) (0.4, )

(0.61, ) (0.5, ) (0.57, ) (0.64, )

(0.58, ) (0.44, ) (0.5, ) (0.38, )

(0.6, ) (0.36, ) (0.62, ) (0.5, )

c

s s s s

s s s s
P

s s s s
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Obviously, the alternative rankings in Tables 9 and 10 are different. It denotes 

that the experts’ self-confidence levels will influence the alternative ranking in 

SNGDM, and then will lead to different rankings. 
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(3) Analysis of the influence of SC-FPRs and FPRs on consensus efficiency 

To further verify the effectiveness and necessity of considering multiple 

self-confidences of experts in SNGDM scenarios, an analysis of the influence of 

SC-FPRs and FPRs on consensus efficiency is provided. As aforementioned, an FPR 

is actually a particular case of the SC-FPR. From the above analysis, we have 

obtained the consensus iterations under the conditions of SC-FPRs and FPRs 

respectively. Based on the detailed results which are shown in Tables 5 and 6, the 

gradient changes of the GCIs for SC-FPRs and FPRs in Section 4 are depicted in 

Fig.6. 

 

Fig. 6. The gradient changes of the GCI for SC-FPRs and FPRs 

From Fig.6, it is obviously that the consensus variation gradient for SC-FPRs is 

significantly larger than that for FPRs. Moreover, the GCI of SC-FPRs will reach to a 

higher degree than that of FPRs. It means that in real SNGDM cases, considering the 

multiple self-confidence of experts is more conducive to the reaching of soft 

consensus. In other words, compared with the FPRs, allowing experts using SC-FPRs 

to express their assessment information is closer to real SNGDM situations. As a 

result, the quality and efficiency of the decision-making is effectively improved. This 

is also consistent with the conclusions in [24]. Additionally, Fig. 6 also can reflect that 

in real SNGDM cases, considering both the external trust and internal self-confidence 

of experts can effectively mobilize their enthusiasm in consensus negotiation, and 

then improve the consensus efficiency. Similarly, compared with incomplete fuzzy 

preference relations, we should draw the same conclusions as in [24]. That is, the 
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SC-FPRs is more conducive to the improvement of the quality and efficiency of 

SNGDM in most cases. 

6. Concluding remarks 

In this research, we focus on the self-confidence-based CRPs with dynamic 

importance degree of experts and trust-based feedback mechanism for SNGDM with 

SC-FPRs. All experts are allowed to use SC-FPRs to express their preference 

information. In the CRPs, experts are suggested to dynamically adjust their 

self-confidence levels while revising preference values. And then all experts reached 

an acceptable consensus level. With the changing of experts’ self-confidence, a 

dynamic importance degree determination is utilized to assign their weights in the 

CRPs. Some comparisons with the existing methods are offered to demonstrate the 

effectiveness of the proposed method. 

In some real SNGDM cases, the experts may have complex decision behaviors, 

such as non-cooperative, overconfidence or self-concern [27, 53, 54]. It is very 

interesting in any future research to explore the proposed consensus model 

considering these complex behaviors in SNGDM problems. 
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