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Abstract

We consider the Lifshitz–Slyozov model with in�ow boundary conditions of nu-
cleation type. We show that for a collection of representative rate functions the size
distributions approach degenerate states concentrated at zero size for su�ciently large
times. The proof relies on monotonicity properties of some quantities associated to an
entropy functional. Moreover, we give numerical evidence on the fact that the conver-
gence rate to the goal state is algebraic in time. Besides their mathematical interest,
these results can be relevant for the interpretation of experimental data.
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1 Introduction

In this work we study the long time behavior of the Lifshitz–Slyozov (LS) model with
nucleation boundary conditions. The model reads:

)f(t, x)
)t

+
){(a(x)u(t) − b(x))f(t, x)}

)x
= 0 , t > 0 , x ∈ (0,∞) , (1)

with
u(t) + ∫

∞

0
xf(t, x)dx = � , t > 0 , (2)
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for some given � > 0, subject to the boundary condition

((a(x)u(t) − b(x))f(t, x))|x=0 = n(u(t)) , t ∈ {s > 0 ∶ u(s) > Φ0} , (3)

where Φ0 = limx→0+
b(x)

a(x)
, and the initial condition

f(0, x) = fin(x) , x ∈ (0,∞) . (4)

The LS model describes the temporal evolution of a mixture of monomers and aggregates
that undergo the following interactions: a monomer can join an existing aggregate of size x,
with an attachment rate a(x), and amonomer can detach from an existing aggregate of size x,
with a detachment rate b(x). The variable x describes the size of the aggregates, so thatf(t, x)
is the number density of aggregates at time t, whereas u(t) stands formonomer concentration
at time t. Equation (2) simply encodes the fact that the total mass � is preserved.

Depending on the speci�c rates a(x) and b(x), themodelmay ormay not need a boundary
condition. No boundary condition is needed for the original Lifshitz–Slyozov version of the
model [19], and this is also the case for the various instances of “Ostwald ripening” that have
been analyzed in the literature, e.g. [6, 7, 9, 15, 22–24]. In this article we are interested in
situations where the kinetic rates are such that a boundary condition is needed tomake sense
of the model. Classical examples are power-law rates like a(x) ∝ x� and b(x) ∝ x� with
0 ≤ � ≤ � ≤ 1. To our knowledge, only the special power-law case with equal power (� = �)
has been considered in the literature, see [6] with zero Dirichlet boundary conditions. For
the main applications we have in mind the nucleation rate n in equation (3) follows a mass
action kinetics, that is n(u) ∝ ui0 with i0 ∈ ℕ∗.

The boundary condition (3) encodes the creation of new aggregates from the available
pool of monomers. We understand this as an e�ective description of a nucleation process,
that may be described by a more detailed discrete model. Connections between the discrete-
size Becker–Döring model and the continuous-size Lifshitz–Slyozov model are indeed well
known [8, 16, 30]. A boundary condition of the form (3) has been deduced from appropriate
scaling limits of the Becker–Döring model in the case of a second order nucleation kinetics,
see [8, 12] for details. Higher order mass action kinetics can also be used to describe the
nucleation process in a phenomenological way [1, 27, 33]; such boundary conditions arise
as scaling limits of modi�ed versions of the Becker–Döring model. It is also interesting
to note that some nucleation boundary conditions were derived in [12] that do not follow
mass action kinetics. This can be relevant for the description of protein polymerization
phenomena. All in all, this is a �rst step towards a number of important applications in the
science of materials and in the �eld of neurodegenerative diseases [27–29,31].

We prove below that under generic conditions, when the function b

a
is strictly increasing,

solutions will concentrate at vanishing aggregate sizes, while the concentration of available
monomers drops down to the activation threshold Φ0 in equation (3). Under more speci�c
hypotheses we can get more precise information about the temporal rates at which this
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dynamics takes place. We complement this with a numerical investigation. The general
picture that emerges points to the fact that the concentration dynamics is quite slow, actually
taking place with algebraic rates (that depend on �, � and n). These results are in line
with previously known results for the case of outgoing characteristics, which indicate that
degenerate steady states are approached at an algebraic rate, see [5, 9].

Since the transient behavior for equations (1)–(3) spans a wide temporal scale, this
model is thus suitable for comparison with experimental data, e.g. those originating in
protein polymerization experiments in vitro. It would be interesting to investigate whether
potential asymptotic pro�les, after suitable normalisation, could be universal or not, in
comparison to the outgoing case [5, 9]. Note also that transient oscillatory behavior, for
speci�c initial conditions, cannot be ruled out by our results, see e.g. [18]. However, if we
are interested in very long time scales the concentration behavior will take over and then
it seems advisable to introduce corrections to the model (e.g. size-di�usion corrections,
coagulation-fragmentation operators...) in order to get a more realistic goal state, see for
instance [3, 8, 10,11,14, 20,21, 30,32]. Similarly, if persistent oscillations are required, one
should consider extra mechanisms, see e.g. [13, 25, 26].

2 Statement of the problem and results

Here below ℝ+ = (0,+∞) and (1 + x)dx denotes the measure with density x ↦→ (1 + x)
with respect to the Lebesgue measure onℝ+. The space L1(ℝ+, (1 + x)dx) denotes the space
of integrable function w.r.t. the former measure. This space might be endowed with the
weak topology denoted by w whose convergence is characterized against bounded functions.
Finally, C([0,∞), w − L1(ℝ+, (1 + x)dx)) is the set of continuous functions from [0,+∞)
into L1(ℝ+, (1 + x)dx) equipped with its weak topology that is, for such f,

t ↦→ ∫
∞

0
f(t, x)'(x)(1 + x)dx ,

is continuous on [0,∞) for all ' ∈ L∞(0,∞). Here and in the sequel Lp refers to the standard
Lebesgue spaces andW1,p refers to the standard Sobolev spaces. We may add a subscript
to it, so that the integration variable is made clear. Ck is the space of continuous function
whose ktℎ derivatives are continuous, and Ckc stands for its subspace consisting of compactly
supported functions.

In the remainder the rates a, b and n are assumed nonnegative and continuous functions
on [0,∞) and such that

∀x > 0 , a(x) > 0 and Φ(x) ∶=
b(x)
a(x)

→x→0+ Φ0 . (H0)

We deal with global solutions for which the boundary condition is de�ned for all time,
namely solutions de�ned in the following sense:
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De�nition 2.1. Let 0 ≤ fin ∈ L1(ℝ+, (1 + x)dx) and � > 0. We say that 0 ≤ f ∈
C([0,∞), w − L1(ℝ+, (1 + x)dx)) is a (global) solution to the LS equation with nucleation
(1)-(4) provided that:

1. For all t ≥ 0 and for every ' ∈ C0([0,∞)) such that '′ ∈ L∞(0,∞), we have

∫
∞

0
'(x)f(t, x)dx = ∫

∞

0
'(x)fin(x)dx+∫

t

0
∫

∞

0
(a(x)u(s)−b(x))'′(x)f(s, x)dx ds

+ ∫
t

0
'(0)n(u(s))dt . (5)

2. For all t ≥ 0,

u(t) ∶= � − ∫
∞

0
xf(t, x)dx > Φ0.

Note that for any smooth test function', a solution as de�ned above satis�es the following
moment equation:

d
dt

∫
∞

0
'(x)f(t, x) = '(0)n(u(t)) + ∫

∞

0
(a(x)u(t) − b(x))'′(x)f(t, x) . (6)

Our main hypothesis relies on the monotonicity of Φ. Namely, we suppose that

Φ is strictly increasing . (H1)

We shall assume some technical hypotheses as well: First, for any " > 0,

a′ , b′ ∈ L∞(",∞) , (H2)

which entails the existence of a constant C > 0 such that, for all x ≥ 0,

a(x) + b(x) ≤ C(1 + x) . (7)

Next, we suppose
inf

x∈(1,∞)
a(x) > 0 , and 1

a ∈ L1(0, 1) , (H3)

and that there exists a constant C > 0 such that, for all x ≥ 0,

b(x)Φ(x) ≥ 1

C
min(1, x2) . (H4)

Concerning the nucleation rate, we assume that there exist two constants c > 0 and k0 ≥ 1
such that for all z ≥ 0

n(z) ≥ czk0 . (H5)

Finally, we will assume that the initial condition fin belongs to L1(ℝ+, (1 + x)dx), is non-
negative and moreover

∫
∞

0
(∫

x

0
Φ(z)dz + x2)fin(x)dx <∞ . (H6)
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The well-posedness of equations (1)-(4) was studied in [4] under some additional con-
ditions of a technical nature -which are probably non-optimal. At any rate, taking (H1)
for granted we know for sure that solutions (should they exist) will be global in time with
u(t) > Φ0 for all times. Therefore, during the rest of the document we will only concentrate
on the set of assumptions needed for our analysis of the long time behavior.

Some comments are in order concerning our set of hypotheses. Besides ensuring well-
posedness, hypothesis (H1) is the natural counterpart to the typical Ostwald Ripening
phenomena where, Φ(x) = x−1∕3 for which the long-time asymptotics have been studied
e.g. [9]. Note that hypothesis (H2) is not that demanding; actually, blow-up phenomena
may take place for strictly superlinear rates [6]. Hypothesis (H3), has been required in
connection with the well-posedness of the problem, so that characteristics go back to x = 0
in �nite time and render the boundary condition relevant. Condition (H4) is purely technical
and does not imply a strong restriction, recall the power law rates introduced in Section 1,
namely a(x) ∝ x� and b(x) ∝ x� with 0 ≤ � ≤ � ≤ 1. Indeed, such rates satisfy all our
hypotheses. Concerning the nucleation rate, any mass action kinetics can be considered
under hypothesis (H5). Finally, hypothesis (H6) imposes just a mild technical requirement
on the initial condition.

In order to ascertain the temporal evolution of the system, the number of aggregates
constitutes an important quantity that is de�ned as

M0(t) ∶= ∫
∞

0
f(t, x)dx .

According to the boundary condition (3), this evolves in time via

dM0

dt
= n(u) .

To discuss concentration phenomena, we de�neℳ+
� ([0,+∞)) the set of nonnegative

Radonmeasures on [0,+∞)with total variation less or equal to �. This space can be equipped
with the weak topology whose convergence corresponds to the convergence against any
continuous and bounded function.

Our main results in this document describe concentration phenomena for the long-time
evolution of the LS equation with nucleation boundary conditions:

Theorem 2.2. Under hypotheses (H0-H6), any global solution in the sense of De�nition 2.1
satis�es

• limt→+∞M0(t) = +∞,

• limt→+∞ u(t) = Φ0,

• limt→+∞ xf(t, x)dx = (� − Φ0)�0, weakly inℳ+
� ([0,∞)).
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The proof relies on a Lyapunov functional, which we introduce in Section 3. Right after
that we proceed with the proof of Theorem 2.2 in Section 4.

Note that Theorem 2.2 is a generalisation of an earlier result proved in [3] for a(x) = 1
and b(x) such that 0 < c1 ≤ b′(x) ≤ c2 for some constants c1 and c2. In that particular case,
the rates can be computed explicitly. Those are algebraic and depend on the speci�c form
of the nucleation rate, but are nevertheless quite slow. For more general coe�cients, our
method of proof cannot provide speci�c estimates and therefore we cannot ascertain the
timescales over which the average aggregate size tends to zero. However, we performed
numerical simulations, whose results suggest that this algebraic trend is actually what we
should expect generically. This is discussed in Section 5. Our results are complemented
with an analysis of the case of constant Φ, which requires a separate treatment. Its long time
behavior is analyzed in Section 6 and expands on the results given in [6, 7].

One of the main points underlying the previous results is to discriminate whether the
system will be able to fuel nucleation reactions to the extent that the number of fragments
grows without control. We actually show that this is the case for a representative number of
situations. Since the total mass is preserved, this suggests that the average aggregate size
becomes smaller and smaller, which is an instance of dust formation.

3 Lyapunov functional

We shall introduce a Lyapunov functional in the vein of [3,9]. For k a continuous and positive
function on [0,+∞) with continuous derivative and f a solution of equations (1)–(4), we
de�ne for all t ≥ 0,

Hk(t) = ∫
∞

0
k(x)f(t, x)dx + K(u(t)) , (8)

with K(v) = ∫ v
0 k

′◦Φ−1(z)dz. This makes sense since Φ is monotonous. The functionalHk

is a Lyapunov functional and its time derivative Dk is called its dissipation, as the following
result makes clear.

Proposition 3.1. Assume 0 ≤ k ∈ C1([0,+∞)) is convex with k(0) = 0 and f is a solution in
the sense of De�nition 2.1. IfHk(0) <∞, then t ↦→ H(t) is non-increasing, non-negative and
for all t ≥ 0

Hk(t) + ∫
t

s
Dk(s)ds ≤ Hk(s) , ∀ 0 ≤ s < t , (9)

where

0 ≤ Dk(t) = ∫
∞

0
(K′(u(t)) − K′(Φ(x)))) (u(t) − Φ(x)) a(x)f(t, x)dx ,

belongs to L1t (0,∞).

Proof. Let R > 0, kR(x) = k(x) for x < R and kR(x) = k′(R)(x−R) + k(R) for x ≥ R. Notice
that kR can be used as a test function in (5). Moreover, kR is convex. We constructHkR via
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formula (8) and we compute the dissipative part, which is nonnegative becauseK′ = k′R◦Φ
−1

is increasing. Then we conclude by Fatou’s lemma.

As a straightforward consequence with k(x) = 1

2
x2 we get the following result:

Corollary 3.2. Assume hypothesis (H6) and let f be a solution in the sense of De�nition 2.1.
We de�ne

H(t) = 1
2 ∫

∞

0
x2f(t, x)dx + Ψ(u(t)) , (10)

with Ψ(v) = ∫ v
0 Φ

−1(z)dz. We have that H(0) < ∞ and t ↦→ H(t) is non-increasing, non-
negative and the dissipation part is given, for all t ≥ 0, by

D(t) = ∫
∞

0

(
Φ−1(u(t)) − Φ−1(Φ(x))

)
(u(t) − Φ(x)) a(x)f(t, x)dx .

Remark 3.3. There are other useful choices of the function k. We will make use of k(x) =
∫ x
0 Φ(y)dy which leads to k′◦Φ−1 = Id and then

d
dt
Hk ≤ − ∫

∞

0
(u(t) − Φ(x))2a(x)f(t, x)dx ∈ L1t (0,∞). (11)

We may also take k(x) = x� with � ≥ 1 to control moments of the form

M�(t) ∶= ∫
∞

0
x�f(t, x)dx .

Indeed, for any moment greater than 1 which is initially �nite, we have a uniform bound for
every positive time.

4 Proof of the main result

4.1 The number of fragments diverges

We prove �rst a generic result showing that a shattering phenomenon takes place on long
time intervals: the number of fragments diverges.

Proposition 4.1. Assume hypotheses (H0, H2,H4-H6). Then, for every solution in the sense of
De�nition 2.1, there holds that limt→+∞M0(t) = +∞.

Proof. Taking 1 as a test function in (5) we have

M0(t) = M0(0) + ∫
t

0
n(u(s))ds ,

thus M0 is monotonically increasing. The result follows directly in the case Φ0 > 0 by
hypothesis (H5). Therefore, we provide a proof for Φ0 = 0. We argue by contradiction.
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SupposeM0 is bounded above independently of time. By equation (5) with '(x) = x and
noticing inequality (7) and 0 ≤ u(t) ≤ �, we deduce

u′(t) = −u(t) ∫
∞

0
a(x)f(t, x) + ∫

∞

0
b(x)f(t, x)dx ∈ L∞t (0,∞) .

This entails u ∈W1,∞(0,∞). Moreover, using Cauchy-Schwarz’s inequality,

|u′(t)| ≤ (∫
∞

0
a(x)f(t, x)dx)

1

2
(∫

∞

0
a(x)(u(t) − Φ(x))2f(t, x)dx)

1

2
.

By (H6) and Proposition 3.1 with k(x) = ∫ x
0 Φ(y)dy -see also Remark 3.3, we have

Dk(t) = ∫
∞

0
a(x)(u(t) − Φ(x))2f(t, x)dx ∈ L1t (0,∞) . (12)

Thus, with inequality (7), we deduce that u′ ∈ L2(0,∞).

Next, we notice that uk0 ∈ L1(0,∞); this is due to hypothesis (H5) and

c ∫
∞

0
uk0(t)dt ≤ ∫

∞

0
n(u(t))dt ≤ lim sup

t→∞
M0(t) −M0(0),

together with the supposed bound on the 0tℎ-order moment. Let p > max(2, k0), we have

∫
∞

0
up(t)dt = ∫

∞

0
up−k0(t)uk0(t) ≤ �p−k0‖uk0‖L1(0,∞) ,

thus up ∈ L1(0,∞). Moreover (up)′ = pu′up−1 belongs to L1(0,∞) because

∫
∞

0
|u′up−1|dt ≤ (∫

∞

0
|u′|2)

1

2
∫

∞

0
u2(p−1)dt ≤ ‖u′‖L2 ∫

∞

0
u2(p−1)−k0+k0dt .

But 2p − 2 − k0 > 0, thus u2(p−1)−k0 ≤ �2(p−1)−k0 and therefore (up)′ belongs to L1(0,∞)
because uk0 does. This implies that up ∈W1,1(0,∞) and hence u(t)p → 0 as t → +∞.

We now turn to the dissipation part, equation (12). There exists a sequence of times
tn → +∞ such that Dk(tn)→ 0 by integrability. Actually the dissipation reads

Dk(t) = u2(t) ∫
∞

0
a(x)f(t, x)dx + ∫

∞

0
b(x)Φ(x)f(t, x)dx − 2u(t) ∫

∞

0
b(x)f(t, x)dx .

Using inequality (7) and the de�nition of solution, the �rst and last integrals are continuous
and bounded in time. Together with the fact that u(t)→ 0 as t →∞ we have that

lim
n→+∞

∫
∞

0
b(x)Φ(x)f(tn, x)dx = 0.

Thanks to hypothesis (H4) and Cauchy–Swartz’s inequality we get

∫
∞

0
xf(t, x)dx ≤ (∫

∞

0
b(x)Φ(x)f(t, x)dx)

1

2
(∫

∞

0
C(1 + x2)f(t, x)dx)

1

2
.
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Since the 0tℎ-order moment is bounded and the second order moment as well by Corollary
3.2, we obtain

lim
n→+∞

∫
∞

0
xf(tn, x)dx = 0.

This contradicts the fact that u(tn) = � − ∫ ∞
0 xf(tn, x)dx → 0.

Since mass is preserved, the divergence ofM0 implies that the average aggregate size
tends to zero.

4.2 Concentration behavior for the mass density

We can use the dissipation to extract some information on the long-time asymptotic. We
proceed by standard Lasalle’s invariance principle arguments, proving that the orbits are
relatively compact and we identify trajectories in the !-limit set to be time independent. In
fact we shall work out the argument from scratch because we lack the continuity of our
Lyapunov functional.

In this section we assume that our hypotheses (H0-H5) hold true and we take f a solution
in the sense of De�nition 2.1 with initial data fin satisfying hypothesis (H6). We let {tn}
an arbitrary increasing sequence of times with limn→+∞ tn = +∞. Let T > 0 arbitrary, we
de�ne for t ∈ [0, T]

fn(t, x) = f(t + tn, x) and �nt (dx) = xfn(t, x)dx .

The measures �nt are bounded nonnegative Radon measures on (0,+∞) with �nt ((0,+∞)) =
�. LetH be given by (10) andHn(t) = H(t + tn).

Letℳ+
� (0,+∞) the set of nonnegative Radon measures on (0,+∞) with mass less or

equal to �. The topology induced by the dual of C0c(0,∞) on ℳ+
� (0,∞) is called vague

topology. We denote this space with such topology by v−ℳ+
� (0,∞). This space is metrizable

and compact [2], with metric

d(�, �) =
∑

k≥0

2−kmin(1, |⟨�, 'k⟩ − ⟨�, 'k⟩|) ,

for all �, � inℳ+
� (0,∞) where ('k)k≥0 ∈ C∞c (0,∞) is dense in C0c(0,∞) and ⟨�, '⟩ = ∫ ' d�

denotes the duality pairing.

Lemma 4.2. {�n} is relatively sequentially compact in C0([0, T]), v −ℳ+
� (0,∞)).

Proof. Let ' ∈ C∞c (0,∞), we have by (5) that

d
dt

∫
∞

0
'(x)xf(t, x)dx = ∫

∞

0
(x')′a(x)(u(t) − Φ(x))f(t, x)dx .
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As ' is compactly supported and u is bounded by �, there exists a constant C' > 0, such that
|(x')′a(x)(u(t) − Φ(x))| ≤ C'x, thus for all t ≥ 0,

||||||||

d
dt

∫
∞

0
'(x)xf(t, x)dx

||||||||
≤ C'� .

Hence, for any t0 ∈ [0, T],

lim sup
t→t0

sup
n
d(�nt , �

n
t0) ≤ lim sup

t→t0

∑

k≥0

2−kmin(1, C'k�|t − t0|) = 0 ,

and thus the sequence is equicontinuous on [0, T]. We conclude by the Arzelà-Ascoli
theorem.

Lemma 4.3. There exist u ∈ C0([0, T]) with 0 ≤ u ≤ � and a subsequence of {un} which
converges to u pointwise on [0, T].

Proof. Notice that by standard truncation arguments with equations (5), (7) and hypothesis
(H6),

||||||||

d
dt

∫
∞

0
x2f(t, x)dx

||||||||
≤ K(� + 1) ∫

∞

0
x(1 + x)f(t, x)dx .

The latter is uniformly bounded in time. By Arzelà-Ascoli we may extract a subsequence of
t ↦→ ∫ ∞

0 x2fn(t, x)dx which converges uniformly on [0, T]. Moreover, by the monotonicity
and nonegativity ofH(t) it has a limitH∞ as t →∞ andHn converges uniformly on [0, T] to
H∞. This proves thatΨ(un(t)) = Hn(t)− ∫ ∞

0 x2fn(t, x)dx converges uniformly to a function
Ψ(t) on [0, T]. Note that Ψ = ∫ x

0 Φ
−1(y)dy is continuous and strictly increasing (because

Φ−1 > 0), thus un(t) converges to u(t) ∶= Ψ−1(Ψ(t)) pointwise.

Remark 4.4. We might replace x2 above by x1+�, provided that (a(x) + b(x))x� ≤ Cx for
some � ≥ 0 and C > 0.

Proposition 4.5. The measure xf(t, x)dx converges to 0 in v −ℳ+
� (0,+∞) as t → +∞.

Proof. By the previous two Lemmas we can extract a subsequence such that �n converges
to some � in C0([0, T]), v −ℳ+

� (0,∞)) and un converges poinwise to some u ∈ C0([0, T]).
Given that Hn(t) converges toH∞ for all t ∈ [0, T], we use Corollary 3.2 and equation (9) to
deduce that

lim
n→+∞

∫
T

0
∫

∞

0

(
Φ−1(un(t)) − Φ−1(Φ(x))

)
(un(t) − Φ(x)) a(x)fn(t, x)dxdt = 0 .

Let m ≥ 1 and Km = [ 1
m
, m] and de�ne �m a nonnegative continuous function with

compact support in (0,∞), equal to a positive constant onKm and such that �m(x) ≤ a(x)∕x
for all x > 0. This is possible by the continuity and positivity of a. Hence,

lim
n→+∞

∫
T

0
∫

∞

0

(
Φ−1(un(t)) − Φ−1(Φ(x)))

)
(un(t) − Φ(x))�m(x)�nt (dx)dt = 0 . (13)
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Expanding the product, we easily see that space integrals converge uniformly in time on
[0, T]. Moreover, un converges pointwise and is bounded, hence the above limit can be
interchanged with the time integrals and we conclude that

∫
T

0
∫
Km

(
Φ−1(u(t)) − Φ−1(Φ(x)))

)
(u(t) − Φ(x))�m(x)�t(dx)dt = 0 ,

for allm ≥ 1. Thus, a.e. t ∈ [0, T] we have the following measure equality
(
Φ−1(u(t)) − Φ−1(Φ(x)))

)
(u(t) − Φ(x))�t(dx) = 0 .

As u is continuous, the above equality is achieved for all t ∈ [0, T]. Noticing that Φ−1 is
increasing, for all t ∈ [0, T], either �t = 0 or both u(t) > Φ0 and there existsmt ∶ [0, T]→
(0, �] such that �t = mt�Φ−1(u(t)).

We should prove the second alternative could not occur. Indeed, let t0 such that �t0 =
mt0�x0 with x0 = Φ−1(u(t0)) > 0 -because u(t0) > Φ0. For all ' ∈ C0c(0,∞),

lim
x→+∞

∫
∞

0
'(x)fn(t0, x)dx = mt0

'(x0)
x0

,

which proves that fn(t0, x)dx converges inℳ+
� (0,∞) and contradicts that the 0tℎ-moment

M0(t0 + tn) goes to∞ as n →∞, by Prop. 4.1.

Hence, we have shown that limn→∞ �nt = 0. Note that we have �nt = xf(t + tn, x)dx.
Taking t = 0 we deduce that

lim
n→∞

xf(tn, x)dx = lim
n→∞

�n0 = 0 , vaguely inℳ+
� ((0,+∞)) ,

and this holds true for any sequence tn → ∞. Therefore, we have proved that xf(t, x)dx
has a limit as t →∞ and this limit is 0.

We conclude that the limit measure concentrates at the origin.

Lemma 4.6. There existsm > 0 and a subsequence (not relabelled) such that

lim
n→∞

xf(tn, x)dx = m�0 , weakly inℳ+
� ([0,+∞)) .

Proof. Note that �n = xf(tn, x)dx de�nes a sequence of measures on [0,+∞), such that
�n|(0,+∞) = �n. The sequence {�n} is bounded and thus admits a subsequence which converges
v−ℳ+

� ([0,+∞)); recall that this is the dual of C0c([0,∞)). By the previous results, the limit �
veri�es that �|(0,+∞) = 0 as measures. Thus � = m�0 for somem ≥ 0. We recall that ⟨�n, x⟩ is
uniformly bounded in n; this control allows to improve the convergence to ⟨�n, '⟩ → ⟨�, '⟩
for all ' ∈ Cb([0,+∞)), the set of continuous and bounded functions.

It remains to identifym which will be the result of the next section.
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4.3 Identi�cation of the concentrated mass

This paragraph is devoted to the proof that u(t) approaches the critical value Φ0; by mass
conservation, the concentrated massm in Lemma 4.6 is therefore �−Φ0. This will conclude
the proof of Theorem 2.2. In this section we still assume that our Hypotheses (H0-H5) hold
true and we take f a solution in the sense of De�nition 2.1 with initial datum fin satisfying
hypothesis (H6).

Lemma 4.7. We have that lim
t→+∞

∫
∞

0
x2f(t, x)dx = 0.

Proof. By hypothesis (H6) and a (re�ned) de La Vallé Poussin’s lemma [17] there exists
� ∈ C1([0,∞)), nonegative, increasing, convex, such that limx→∞ �(x)∕x = +∞ and

∫
∞

0
�(x)xfin(x)dx <∞ .

According to Remark 3.3 we may use the Lyapunov functional (8) with k(x) = �(x)x, which
is convex too, to deduce that

sup
t>0

∫
∞

0
�(x)xf(t, x)dx <∞.

Let a sequence of times tn ↗ ∞; Lemma 4.6 ensures that there exists a subsequence (not
relabelled) such that xf(tn, x)dx → m�0 weakly. Thus, we let �R = min(x, R), so that

∫
∞

0
x2f(tn, x)dx ≤ ∫

∞

0
�R(x)xf(tn, x)dx + ∫

∞

R
x2f(tn, x)dx

≤ ∫
∞

0
�R(x)xf(tn, x)dx + sup

z>R
(

z
�(z)

) sup
t>0

∫
∞

0
�(x)xf(t, x)dx . (14)

We take the limit n → +∞; the �rst term on the right hand side goes to 0 since xf(tn, x)dx →
m�0 and �R(0) = 0. Finally we take the limit R → +∞ and the remaining term goes to 0.
Since this is true for all sequences, we get the full limit.

Remark 4.8. Here again we might deal with x1+� instead of x2 as in Remark 4.4.

Lemma 4.9. There holds that limt→+∞ u(t) = Φ0.

Proof. The convergence of H(t) as t → ∞ together with the previous lemma entails that
Ψ(u(t)) converges to some constant c. By the (strict) monotonicity of Ψ and its continuity,
Ψ−1 is also continuous and thus u(t) converges to � ∶= Ψ−1(c). Assume that � > Φ0. We
will prove a contradiction. We introduce the function A(x) = ∫ x

0
1

a
, well-de�ned thanks to

hypotheses (H0) and (H3). Letting An(x) = ∫ x
1∕n

1

a
for x > 1∕n and An(x) = 0 otherwise,

we get that An is continuous and An′ ∈ L∞. Thus we can use An as a test function in the
moment equation (5) and pass to the limit (An ≤ A) to get

d
dt

∫
∞

0
A(x)f(t, x)dx = u(t)M0(t) − ∫

∞

0
Φ(x)f(t, x)dx .

12



This is justi�ed since the function Φ is continuous on [0, "], thus bounded, and there exists
K" > 0 such that Φ(x) = b(x)∕a(x) ≤ K"x for all x > " thanks to hypothesis (H0) and
inequality (7).

As � > Φ0, we may �nd �, t0 > 0 such that u(t) > Φ0 + 2� for all t > t0. Next, we may
�nd � > 0 such that supx∈[0,"]Φ(x) < � + Φ0. Then

∫
∞

0
Φ(x)f(t, x)dx ≤ (� + Φ0)M0(t) + K"� ,

and collecting both estimates we arrive to

d
dt

∫
∞

0
A(x)f(t, x)dx ≥ �M0(t) − K"� for all t > t0.

SinceM0(t)→ +∞ we derive that

lim
t→+∞

1
t ∫

∞

0
A(x)f(t, x)dx = +∞.

But, with hypothesis (H3), there exists KA such that A(x) ≤ KA(1 + x) for all x > 0, thus

∫
∞

0
A(x)f(t, x)dx ≤ KA ∫

∞

0
(1 + x)f(t, x)dx ≤ KAM0(t) + KA� .

Given thatM0(t)∕t is bounded we have a contradiction. Hence u(t)→ Φ0 as t →∞.

As a consequence of the previous result and mass conservation, we havem = � − Φ0 in
the representation of the limit measure � = m�0. This concludes the proof of Theorem 2.2.

Corollary 4.10. Under the same hypotheses of the theorem, we have that all momentsM�(t)
with � ∈ [0, 1) diverge as t →∞.

This follows from Lemma 4.7, by interpolating the �rst moment between moments of
order � and two.

5 Long time behavior for power-law rates and numerics

5.1 Rate of convergence for special cases

The purpose of this section is to provide more detailed information of the long time behavior
in speci�c power-law cases. Here we assume a(x) = ax� and b(x) = bx� with a, b > 0 and
0 ≤ � < � ≤ 1. Then Φ(x) = b

a
x�−� veri�es Φ0 = 0 and is monotonically increasing.

We may de�ne the classical moments of f as

Mk(t) ∶= ∫
∞

0
xkf(t, x)dx, k ∈ ℝ+.

13



In the case of power-law kinetic rates, the time derivative of the classical moments reads

dMk

dt
= kau(t)Mk+�−1(t) − kbMk+�−1(t) .

In what follows we consider some particular choices of the exponents � and � for which
more speci�c information can be given (this works also as a guide to numerical conjectures
for the general case, see Section 5.2 below).

Lemma 5.1 (Case � = 0). Assume that n(u) = ui0 -a bound from above by a power law works
the same way. Then there exists some C > 0 such that, for advanced t

M0(t) ≤ Ct
1

1+i0� , u(t) ≤ Ct−
�

1+i0� .

Proof. First we prove that u(t)M�
0 (t) ≤ C for every t ≥ 0. For that aim, let y(t) = u(t)M�

0 (t).
We readily compute

y′ = (bM� − uaM0)M
�
0 + �un(u)M�−1

0 .

Here we can use that moment interpolation yields the estimate

M�(t) ≤ M�
1 (t)M

1−�
0 (t) ≤ ��M1−�

0 (t).

Therefore,
y′ ≤ '(t) + b��M0 − auM0M

�
0 = M0(b�� − ay) + '(t) ,

with '(t)→ 0 as t →∞. This implies that y(t) belongs to [0, ��b∕a] for advanced times.

Thanks to our assumption on n we have

M′
0 =

ui0M�i0
0

M�i0
0

≤
��i0(b∕a)i0

M�i0
0

,

and therefore
d
dt
M1+i0�

0 ≤ (1 + i0�)�i0�(b∕a)i0 .

Our statements follow easily from here.

We expect to have equality in the previous estimates. Actually, in the general case � < �
we conjecture that:

M0(t) ∼ t
1

1+i0(�−�) , u(t) ∼ t−
�−�

1+i0(�−�) . (15)

for advanced t. Likewise, we expect that u(t)M�−�
0 (t) will have a �nite limit. Compare with

the numerical simulations below.

We prove another partial result along the same lines.

Lemma 5.2 (case � = 1). There holds that

lim
t→∞

u(t)M�(t) = b�∕a.
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Proof. In this speci�c case we have

dM1

dt
= auM� − bM1.

This is integrated as

M1(t) = M1(0)e−bt + ae−bt ∫
t

0
u(�)M�(�)eb� d� .

Since u(t)→ 0 as t →∞, we have thatM1 → � as t →∞. Now we argue by contradiction.
Assume that lim inf t→∞ uM� > b�∕a. Then, given � > 0 there exists some T > 0 such that
uM� > b�∕a + � for t ≥ T. Therefore, for each t > T,

M1(t) ≥ M1(0)e−bt + ae−bt ∫
T

0
u(�)M�(�)eb� d� + a(b�∕a + �)e−bt ∫

t

T
eb� d�

= e−bt (M1(0) + a ∫
T

0
u(�)M�(�)eb� d�) + e−bta(b�∕a + �)e

bt − ebT

b
.

Taking the limit t →∞ we obtain limt→∞M1(t) ≥ � + a�∕b, which is a contradiction. We
can prove in a similar way that lim supt→∞ uM� < b�∕a leads to a a contradiction. Thus our
statement follows.

5.2 Numerical experiments and discussions

To approach numerically the Lifshitz-Slyozov equation we use a standard �nite volume
scheme with an upwind approximation of the �uxes. The behaviour of the solutions is
depicted in Figures 1 to 3.

Figure 1 shows time evolution of the distribution for two distinct initial conditions with
rates given by � = 1∕3 and � = 2∕3, see details in the �gure’s legend. Note that we have no
explicit solution at hand and the rate of convergence is unknown in this case. It seems that,
roughly speaking, the particular details of the initial condition are lost as time advances and
the concentration behaviour that ensues seems to follow a universal pro�le. Figure 2 shows
the rates of convergence of u, and divergence ofM0, to be polynomial. We compare with
the conjecture (15) and the results agree. In fact, this is robust according to various set of
coe�cients (results not shown). To further capture the limiting pro�le, we plot in Figure 3
the tail distribution F(t, x) = ∫ ∞

x f(t, x)dx, while normalising the mass and the front speed.
Speci�cally, choosing x ↦→ 1∕(1 +M0(t))F(t, x∕(1 +M0(t)), we observe that several initial
conditions lead to a similar asymptotic pro�le. However, we emphasize that our numerical
scheme is not speci�cally designed to robustly capture a potential asymptotic pro�le, as it
has been shown in [5] in the outgoing case. Using a su�ciently re�ned mesh, we hope that
at least we capture correctly the rates of convergence.
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6 Long-time behavior for proportional attachment and
detachment rates

In this section we discuss the special case of b(x) = Φ0a(x) for some givenΦ0 > 0. Particular
instances of this situation for power-law rates (with out�ow behavior or zero boundary
conditions) have been studied in [6, 7]. Here we investigate the case of nucleation boundary
conditions (3). For this section we still assume hypotheses (H0), (H2) and (H3). Note that
hypothesis (H1) is replaced by Φ being constant. Here hypothesis (H4) is not required and
hypothesis (H5) is replaced by

n is Lipschitz continuous on [Φ0, �] and n(z) ≥ n(Φ0) = 0 , for all z ∈ [0, �] , (H5’)

that is, nucleation cannot fuel anymore at the critical value. Finally, (H6) reduces to just

fin ∈ L1(ℝ+, (1 + x)dx) . (H6’)

We shall assume morevover that a ∈ C1(0,∞), which entails that the characteristic curves
are well-de�ned. Therefore, in this case of constant Φ, existence and uniqueness of global
solutions is ensured, see [4].

Further, we let

A(x) = ∫
x

0

1
a(y)

dy ,

for all x ≥ 0, which is an increasing C1-di�eomorphism fromℝ+ intoℝ+ with A(0) = 0. We
denote

Ma(t) = ∫
∞

0
a(x)f(t, x)dx ,

which is �nite for all t ≥ 0 by (7).

The main result of this section rules out concentration phenomena for the density and
provides an explicit rate of convergence for u:

Theorem 6.1. Assume a ∈ C1(0,∞) and b(x) = Φ0a(x). Under hypotheses (H0), (H2), (H3),
(H5’), (H6’), any global solution in the sense of De�nition 2.1 satis�es:

• limt→∞ u(t) = Φ0,

• There exists f ∈ L1(ℝ+, (1 + x)dx) such that

lim
t→+∞

f(t, ⋅) = f , w − L1(ℝ+) .

Indeed, the limit f has a representation formula, given at end of the proof of Theorem
6.1, see (22). This representation depends noticeably on the chosen initial condition. Fur-
thermore, if a is non-decreasing in x thenMa is increasing in t and our proof shows that the
trend to equilibrium is exponential:

0 < u(t) − Φ0 ≤ (u(0) − Φ0)e−Ma(0)t .
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Proof. We proceed in a number of separate steps. During the proof we assume fin ≠ 0. There
is no loss of generality in so doing, as the given boundary conditions ensure that starting
with fin = 0 produces some nonvanising f(t0) for some t0 > 0 small, which we may take as
a new initial condition.

Step 1: Mild formulation. We will represent the solution in terms of characteristics. For
that aim we will use several results from [4]. The equation determining the characteristics
reads

d
ds
X(s; t, x) = (u(s) − Φ0)a(X(s; t, x)) ; X(t; t, x) = x . (16)

For any given x > 0 we can ensure existence and uniqueness of a maximal solution
X(⋅; t, x) on (�t(x),∞). Note the following: either �t(x) = 0 and lims→0X(s, t, x) > 0, or
�t(x) > 0 and lims→�t(x)X(s, t, x) = 0.

Therefore, for any s ∈ (�t(x),+∞) we can integrate (16) as follows:

X(s; t, x) = A−1 (A(x) + ∫
s

t
(u(�) − Φ0)d�) .

We de�ne (t) for all t ≥ 0 through

(t) ∶= ∫
t

0
(u(�) − Φ0)d� , and xc(t) = A−1((t)) . (17)

The curve xc(t) corresponds to X(t; 0, 0). In [4], it is proved for all t > 0, �t is a C1-
di�eomorphism form (0, xc(t)) into (0, t) andX(0; t, ⋅) is also a di�eomorphism from (xc(t),∞)
into (0,∞). These facts provide the following mild formulation, for any bounded ' ∈
C0([0,∞)):

∫
∞

0
f(t, x)'(x)dx = ∫

t

0
n(u(s))'(�−1t (s))ds + ∫

∞

0
fin(x)'(X(t; 0, x))dx . (18)

Step 2: (t) is bounded. Note that

X(t; 0, x) = A−1 (A(x) + (t)) ≥ A−1((t)).

Hence, by equation (18) with '(x) = x,

� ≥ ∫
∞

0
xf(t, x)dx ≥ ∫

∞

0
fin(x)X(t; 0, x)dx ≥ A−1((t)) ∫

∞

0
fin(x)dx ,

which proves our claim.

Step 3: u(t)→ Φ0 as t →∞. Note that ′(t) = u(t) − Φ0 and

u′(t) = −(u(t) − Φ0)Ma(t) .

It follows that Φ0 is a steady state for u(t). Since u(0) > Φ0 andMa(t) is continuous and
non-negative (with Ma(t) = 0 if and only if f(t) = 0, that is, if and only if u(t) = �), we
obtain that u(t) decreases and u(t) > Φ0 for all t ≥ 0. Thus u has a limit, which is Φ0.
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Step 4: (t) is strictly increasing and has a limit as t →∞. The previous steps ensure that
 is (strictly) increasing, because ′(t) = u(t) − Φ0 > 0, and  is bounded, so  has a limit

 = lim
t→∞

(t) . (19)

Step 5: xc(t) has a limit as t → ∞. Combining the de�nition of xc(t) = A−1((t)), the
continuity of A−1 and the limit of , we obtain that xc(t) has a limit,

xc = lim
t→∞

xc(t) = A−1() . (20)

Step 6: X(t; 0, ⋅) has a limit as t →∞. We remark that X(t; 0, x) = A−1(A(x) + (t)) for
x > 0 which entails that X(t; 0, x) has a limit too, since A is C1-di�eomorphism, and

X(x) = lim
t→∞

X(t; 0, x) = A−1(A(x) + ) . (21)

This makes clear that X is a C1-di�eomorphism from (0,∞) into (xc,∞).

Step 7: �−1t has a limit as t →∞. Recall from Step 1 that lims→�t(x)X(s, t, x) = 0. Using
the fact that limx→�−1t (s)X(s; t, x) = 0 -see [4]- we deduce that

�−1t (s) = A−1 (∫
t

s
(u(�) − Φ0)d�) = A−1((t) − (s)) .

and thus we have the limit

�
−1
(s) = lim

t→∞
�−1t (s) = A−1( − (s)) .

We conclude that �(x) = −1( − A(x)) is a C1-di�eomorphism from (0, xc) into (0, t), with
reciprocal �−1.

Step 8: The limit density. Let ' ∈ C0([0,∞)) be bounded; we insert it in equation (18).
By the limit in Step 7 and the dominated convergence theorem, we conclude that

lim
t→∞

∫
∞

0
f(t, x)'(x)dx = ∫

∞

0
n(u(s))'(�

−1
(s))ds + ∫

∞

0
fin(x)'(X(x))dx

= ∫
xc

0
n(u(�(x)))|�

′
(x)|'(x)dx + ∫

∞

xc

fin(X
−1
(x))|X

−1
′|'(x)dx (22)

which proves the desired result.

The result of Theorem 6.1, and in particular formula (22), is in line with [6] in the case
n = 0 and a and b power-law functions, where semi-explicit expressions are available for
xc,  and X.
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Figure 1. Distribution f(t, x) with respect to x at di�erent times t. The rates are given by
a(x) = x1∕3, b(x) = x2∕3 and n(z) = z2. The total mass is � = 1. Simulations were performed with a
�nite volume scheme (upwind), with ∆t = 5 ⋅ 10−5 and ∆x = 10−4. Left column: initial condition is
fin = 0; Right column: fin(x) = (−2000(x − 0.2)(x − 0.3))+.
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Figure 2. Up: u(t) versus time t in abscissa (straight line) and t−1∕5 (dashed line). Down: M0(t)
versus time t in abscissa (straight line) and t3∕5 (dashed line). Graphics are shown in log-log scale.
Parameters are the same as Fig. 1 with fin = 0.
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Figure 3. Normalised distribution x ↦→ 1∕(1 +M0(t))F(t, x∕(1 +M0(t)) with
F(t, x) = ∫ ∞x f(t, x)dx, with respect to x at di�erent times t. Parameters and simulations are
performed as Fig. 1. Left column: initial condition is fin = 0; Right column:
fin(x) = (−2000(x − 0.2)(x − 0.3))+.
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