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This document presents the work carried out for the installation, 
configuration and use of the application developed in this final degree work, 
whose objective is detect fluctuations in the perceived lighting of a spotlight 
(either through a live recording camera or through video) following profiles 
in different ROIs generating HTML reports.

Throughout this work, different phases of the software development are 
presented: analysis and planning, listing of requirements, reverse 
engineering, design, implementation, testing and evaluation of the 
software and hardware to achieve the objective of the project. In addition 
to a conclusion on my opinion about this project, future improvements 
and the knowledge learned.



Printed in Granada, July 2023.





“OpenCV and Python application for automotive
spotlight image processing.”





BACHELOR’S DEGREE IN
COMPUTER ENGINEERING

Bachelor’s Thesis

“OpenCV and Python application for automotive
spotlight image processing.”

ACADEMIC COURSE: 2023/2024

Javier Expósito Martínez





BACHELOR’S DEGREE IN
COMPUTER ENGINEERING

“OpenCV and Python application for automotive
spotlight image processing.”

AUTHOR:

Javier Expósito Martínez

SUPERVISED BY:

Prof. Andrés Roldán Aranda

DEPARTMENT:

Electronics and Computer Technologies



Javier Expósito Martínez, 2023/2024

« 2023/2024 by Javier Expósito Martínez and Andrés M. Roldán Aranda:
“OpenCV and Python application for automotive spotlight image processing.”.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA
4.0) license.

This is a human-readable summary of (and not a substitute for) the license:

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you
or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict
others from doing anything the license permits.

To view a complete copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/






“OpenCV and Python application for automotive spotlight image
processing.”

Javier Expósito Martínez

KEYWORDS:

Python, PyQt5,QtDesigner, DUT, EMC,ROI, GranaSAT, UGR, Functional Requirements, Non Functional
Requirements, Reverse engineering, Arduino, Thread, Framerate, Keyframe, jinja2, OpenCV, PyArmor,
CX-freeze, PyInstaller.

ABSTRACT:

The main objective of this Bachelor’s thesis is the development of an application that aims to detect
fluctuations in the perceived lighting of a spotlight (either through a live recording camera or through video)
following profiles in different ROIs generating HTML reports in base64 during the process. To achieve this,
the application consists of three main functionalities:

The first one consists of controlling the on and off of car lights using one or two Arduinos that are
configured to perform the task correctly.

The second one consists of performing a DUT test, through which we define the aforementioned ROIs.
The third one performs the test that controls the luminosity fluctuation and generates the report, called

EMC

This Bachelor’s thesis is part of one of the TFGs offered by the Aerospace Electronics group, GranaSAT.

The final goal of this project is to develop a functional, complete, and commercial application that
demonstrates the author’s knowledge and capabilities in analysis, design, and development.
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RESUMEN:

El objetivo principal de este Trabajo de Fin de grado es el desarrollo de una apliación que pretende
detectar fluctuaciones en la iluminación percibida del foco(ya sea mediante una cámara que graba en vivo
al foco o mediante vídeo) siguiendo unos perfiles en las diferentes ROIs generando en el proceso informes
HTML en base64. Para cumplir esto, la aplicación consta de tres funcionalidades principales:

La primera consiste en el control del encendido y apagado de las luces de los atomóviles mediante uno o
dos arduinos que están configurados para llevar a cabo correctamente dicha tarea.

La segunda consiste el realizar un test DUT mediante el cual definimos las ROIs mencionadas
anteriormente.

La tercera realiza ahora si el test que controla la fluctición de luminosidad y genera el reporte,
denomicado EMC

Este Trabajo de fin de Grado forma parte de uno de los TFGs ofertados por el grupo de Electrónica
Aeroespacial,GranaSAT.

Este proyecto tiene como objetivo final el desarrollo de una aplicación funcional, completa y comercial
que demuestre los conocimientos y capacidades de análisis, diseño y desarrollo del autor.
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Glossary

A | C | D | E | F | G | J | K | N | O | P | Q | R | T | V

A

Apache is a widely used open-source web server software. It is one of the most popular web servers in the
world and is known for its stability, security, and flexibility.

Arduino Is an open-source hardware and software platform designed for creating interactive projects and
prototypes. It consists of a microcontroller board that can be programmed to control various electronic
components and sensors. Arduino boards are widely used by hobbyists, students, and professionals for
a wide range of applications, including robotics, home automation, art installations, and more..

C

CX-freeze is a library to creates standalone executables from Python scripts, with the same performance,
is cross-platform and should work on any platform that Python itself works on.

D

DUT Refers to the device or component that is being tested in an experiment or evaluation.In our context,
is a test performed on the spotlight or lighting system being evaluated in the application..

E

EMC Refers to the ability of electronic devices or systems to function properly in their electromagnetic
environment without causing electromagnetic interference to other devices or systems. In our context
, the EMC test is a test performed to assess the ability of the spotlight or lighting system to function
properly in its electromagnetic environment .

F

Framerate number of individual frames or images displayed per second (fps). .

Functional Requirements refer to the specific tasks, actions, or behaviors that a software system or
application must perform to fulfill its intended purpose. .

G

Gantt chart is a management tool in which a list of tasks is outlined in a timeline. Color bars represent
working on tasks. The balloons indicate milestones, and dependencies between tasks are denoted with
arrows. .
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GranaSAT Electronics Aerospace Group. An academic project from the UGR. This organization has an
electronics laboratory where students from different degrees and education levels develop
multidisciplinary projects [2] .

J

jinja2 is a popular templating engine for Python. It is used for generating dynamic content and rendering
templates in web applications, but can also be used for other text-based generation tasks. .

K

Keyframe frame that defines a significant point in a sequence of frames. .

N

Non Functional Requirements refer to the qualities or attributes that define how a software system
should behave or perform. .

O

OpenCV OpenCV (Open Source Computer Vision) is an open-source library of computer vision and
image processing functions. It provides a comprehensive set of tools and algorithms for analyzing,
manipulating, and understanding visual data, including images and videos. .

P

PowerShell is a command-line shell and scripting language developed by Microsoft for automating
administrative tasks and managing system configurations. .

PyArmor is a tool and library used for protecting Python applications by obfuscating and encrypting
the source code. It is designed to add an additional layer of security to Python programs to prevent
unauthorized access and Reverse engineering. .

PyInstaller bundles a Python application and all its dependencies into a single package. The user can run
the packaged app without installing a Python interpreter or any modules. .

PyQt5 Python binding for the Qt framework, which is a powerful cross-platform application development
framework widely used for developing graphical user interfaces (GUIs). PyQt5 allows developers to
create desktop applications with a rich set of features and functionality. .

Python Is a high-level programming language known for its simplicity, readability, and versatility. .

Q

QtDesigner is a graphical user interface (GUI) design tool that is part of the Qt framework. It allows
developers to create and design user interfaces for Qt-based applications visually, without the need to
write code manually.. .

R

Reverse engineering Process through which it is attempted to understand through deductive reasoning
how an already designed device, process or system works or was designed .

T

Javier Expósito Martínez



Glossary xxxv

0
Thread Refers to a sequence of instructions that can be executed independently within a program. It is

a lightweight unit of execution that allows concurrent or parallel processing of tasks within a single
program. .

V

Valeo Relay Shield box composed of an Arduino map and relays..

Virtual Box is a virtualization software that allows you to create and run Virtual Machines on your
computer. .

Virtual Environment A virtual environment is a Python environment such that the Python interpreter,
libraries and scripts installed into it are isolated from those installed in other virtual environments,
and (by default) any libraries installed. .
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Acronyms

P | R | U | V | W

P

PHP Hypertext Preprocessor.

R

ROI Region Of Interest.

U

UGR University of Granada.

V

VM Virtual Machine.

W

WBS Work Breakdown Structure.

WSL Windows Subsystem for Linux.
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Chapter 1

Introduction

This Bachelor Thesis shows the result of knowledge and skills acquired by the student in the Bachelor’s
Degree in Computer Engineering which has been tested during the development process of this project.

This document aims to reflect the engineering process behind the updating application development:
since reverse engineering to know how it works until the creation development of new functionalities and
improvements. The project’s main goal is to update and improve an already created application which
measures the fluctuations of automobile’s spotlights Through the performance of an EMC test.

This Final Degree Project is carried out in collaboration with the academic project GranaSAT. This is an
aerospace development group of the University of Granada (UGR), formed only by students from different
fields of Engineering, such as Aerospace Engineering, Electronic Engineering, Computer Engineering or
Telecommunications Engineering among others, under the supervision of Professor Dr. Andrés María Roldán
Aranda.

1.1 Motivation

The main reason for choosing this project was my growing interest in the field of image treatment and
processing arose as a result of taking electives subjects in my career which deal with this subject. Learning
about the process of creating and developing an application also sparked my interest, as I consider that
programming applications is one of the most important tasks expected of a programmer. However, I believe
that the career does not realistically prepare us to carry out this work.

Another reason for my interest was the Python programming language. Not only is it comfortable to
program with, but it is also a widely used language that is not outdated or obsolete, unlike other languages
I have had to learn.

Therefore, I thought that my bachelor’s thesis would not only help me to expand my current knowledge,
but also to give it realistic functionality in the professional world. I am pleased to think that the development
of this software has a practical application, since it is an application requested from a company. Thanks to
this project, I will finish my degree knowing that I can develop applications.

OpenCV and Python application for automotive spotlight image processing. 1
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Figure 1.1 – The GranaSAT logo.

1.2 Project goals and objectives

In this section outlines the main top-level non-technical goals of the project. Objectives listed in Table
1.1 must be understood as the author’s expected results in academic and professional terms of the execution
of this project.

Obj. Nº Description

Obj. 1
Successfully migrate and upgrade the application given to the learner: from
migrating libraries, to adding new functionalities, to essential functionality and
performance improvements.

Obj. 2 Acquire familiarity, skill and confidence with the professional software for the logic
and design of this application.

Obj. 3 To prove the capabilities of organizing and carrying out an engineering project.

Obj. 4 To document the entire process, which may be necessary during the development
itself or useful for the future of the project.

Obj. 5
To demonstrate the knowledge acquired during the Bachelor studies in Computer
Engineering, as well as the multidisciplinary abilities gathered during the
development of this Thesis.

Obj. 6 To participate into the GranaSAT laboratory work environment to consolidate the
training of the Bachelor’s Degree.

Obj. 7 To successfully conclude the Bachelor’s Degree with this Thesis.

Table 1.1 – Top-level objectives of this Bachelor Thesis.

1.3 Project structure

This document is divided into seven chapters and eight addenda. The chapters progressively expound all
the stages of the development of the proposed device, including the analysis of signals and of the competing
products, tackle specification, design, fabrication and validation tasks; and finalizes with the successful
completion of the product.

The chapters included in this report are:

1. Chapter 1: Introduction. This first chapter is intended as groundwork to the subject at hand, and
to show the objectives and motivations of this project. It includes some definitions, the state of the
art and an introduction to the engineering methodology followed throughout this project.
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2. Chapter 2:Analysis. Section presenting the different requirements necessary to achieve the project’s
purpose, the analysis and organization of the project.

3. Chapter 3: Reverse Engineering.

This chapter offers a process of Reverse Engineering in order to gain understanding of the advantages
and limitations of its technology so we can synthesize our own and superior product.

4. Chapter 4: System design. This chapter describes all the aspects of the system design.

5. Chapter 5: Implementation and configuration.

Section showing what aplication is,how it works, its installation and configuration along with the chosen
devices.

6. Chapter 6: Testing and validation. This sixth chapter details the process and testing of the
application and verification of the systems’ correct operation.

7. Chapter 7: Conclusion and future lines. Lastly, the final chapter brings to an end the main
contents of this Bachelor’s Thesis, and establishes some future lines of work that have emerged naturally
during this long development process.

On the other hand, the addenda is divided in:

A. Appendix A: How to install application.

B. Appendix B: How to install and configure Valeo Relay Shields.

C. Appendix C: How to install and configure a Local Server.

D. Appendix D: Detailed application structure.

E. Appendix E: Graphical visualization of improvements

OpenCV and Python application for automotive spotlight image processing.



Chapter 2

Analysis

The aim of this section is to present in its entirety the list of requirements that has been elaborated during
the numerous interviews with the client. The main purpose of this list is to define what updates and
improvements needs our application.
The client explained his ideas in mind which he wanted, to improve the application.This is followed by the
analysis and organization of the project as shown below.

2.1 Functional Requirements

Ref. Description

RF. 1 The software must allow the user to create a new DUT Test.

RF. 2 The software must allow the user to create a new EMC Test.

RF. 3 The software must allow the user to open a DUT file.

RF. 4 The software must allow the user to open an EMC file.

RF. 5 The software must allow the user to clone an EMC file.

RF. 6 The software must allow the user to open a recent DUT or EMC file.

RF. 7 The software must allow the user to configure car’s spotlights using one or two
Valeo Relay Shields, and save this light’s configuration.

RF. 8 The software must allow the user to change between white and black theme.

RF. 9 The software must allow the user check about additional information.

RF. 10 The software must allow the user check updates and update the application if it is
necessary.

RF. 11 The software must allow the user to select one of several languages: english, spanish
and french

RF. 12 The software must allow the user to create a DUT file since EMC test

RF. 13 The software must allow the user to create a light configuration file since EMC test

RF. 14 The software must allow the user to generate a report.

Table 2.1 – Functional Requirements

4 OpenCV and Python application for automotive spotlight image processing.
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2.2 Non Functional Requirements

Ref. Description

NFR. 1 The software must be able to detect when an Valeo Relay Shield is disconnected,
at any time.

NFR. 2 The software must be able to reconnect an Valeo Relay Shield for a short period of
time since it was disconnected.

NFR. 3 The software must be able to work correctly without an Valeo Relay Shield
connected.

NFR. 4 The software must be able to save the last configuration which it had when it was
closed and starts with this.

NFR. 5 All software’s interfaces must be responsives.

NFR. 6 The software must has a status bar which reports user’s operations and application’s
status.

NFR. 7 The software must be save datas in xml files, unlike before, it was done in txt
format.

NFR. 8
In DUT and EMC tests’ forms, done’s bottoms must be disable when user delete
any required field. Done’s bottoms only must be enabled when all required fields
are filled.

NFR. 9 In DUT test’s forms, when the user selects a car spotlight, it should highlights.

NFR. 10 When the user open DUT of EMC file, in DUT and EMC tests’ forms, must appear
a new field which contains the video’s path what was used in test.

NFR. 11 When the user open DUT file,crop points must be show in window where the user
crop the image.

NFR. 12 When the user open DUT file, ROIs must be show in crop window and create the
ROIs.

NFR. 13
In DUT Test, in windows where the user crop the image and create the ROIs, the
software must be able to separate the camera view and zoom view, allowing to work
with two or even three screens.

NFR. 14 In EMC Test,when the analysis starts, if the user select a ROI, this must be highlight
in Keyframe view.

NFR. 15 In EMC Test,when the analysis starts, if the user select an alert, this must be
shown.

NFR. 16 The software must be able to add a graph which shows the lumination’s difference
between Keyframe and video for each ROI in the generated report.

NFR. 17 The software must read and process the videos efficiently and quickly.

Table 2.2 – Non Functional Requirements
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2.3 Analysis

The first thought was about the programming language, continue with Python or look for a better
alternative. And after analyzing several programming languages such as C++ or Java, which are more
resource efficient than Python, it was decided to continue with this language because of the many advantages
it had. Not only its ease of use and ease of programming, in addition to a very high number of useful libraries,
but also because it already had very interesting tools from the previous version as PyQt5 for the interface
or CX-freeze to create the executable, which meant a shorter development time of the application and cost
savings (the latter to give maximum realism to the project).

Knowing what language to use, some useful tools and the client’s requirements, it is time to proceed to
organize the work throughout the course, as shown in the next section.(Project tasks and organization)

2.4 Project tasks and organization

A Work Breakdown Structure is a hierarchical decomposition of the tasks of a project in order to
accomplish the desired objectives. In figure 2.1 the Work Breakdown Structure of the project is presented.
This schema is product of the definition of system requirements in Chapter 2: Analysis and iteration with
the design process elaborated on Chapter 5: System design.

On the other hand, the figure 2.2 shows the Gantt chart of the project’s development process. A Gantt
chart is a management tool in which a list of tasks is outlined in a timeline. Color bars represent working
on tasks. The balloons indicate milestones, and dependencies between tasks are denoted with arrows.

It is important to point out that besides the tasks, meetings are also included since they were a
fundamental part of the development process. These meetings not only served as a form of reviewing
results and controlling the development, but they were essential to define the project requirements
(elaborated in chapter 2).
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Chapter 3

Reverse engineering

3.1 What is reverse engineering?

Reverse engineering: Process through which it is attempted to understand through deductive reasoning
how an already designed device, process or system works or was designed.

The limited usefulness of the comments in the source code of the application and the non-existent
documentation about its operation has made Reverse engineering plays a fundamental role in the
development of this application. It must be remembered that the development of this application is based
on an older version of the same and I had not previously worked on the application.

3.2 Original software’s analysis

The first step was understand how to install the application, because the software was a .zip file which
contained a huge files. Some of them showed errors, empty folders, junk files, etc.

The only useful file for figuring out how to install the software was the requirements.txt file. This file
contains the libraries and the version of these libraries that are used by the application. So after finding this
file, I created a Virtual Environment and installed the libraries.

The installation process also gave error due to the incompatibility of versions of some libraries, but after
updating them the software started.

After starting the software, I started by analyzing the files and the source code. To begin with there
were three main.py files, which was not logical since there should be only one because this file (main.py) is
the one that starts the whole application.

After some analysis, one of the main.py files was discarded and I proceeded to analyze the other two
more deeply. For this, I created two simple diagrams that show the software’s flow, put another way, classes’
calls to others.

OpenCV and Python application for automotive spotlight image processing. 9
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MAIN

LightSelectionData_Widget

AutoDetection

DefineEMCTest

AutoDetectionWindow

About_Help_Window

NewEMCData_Widget

MainWindow ConnectionError

valeoRelayShield_enterName1/2

LightControl

AddNameWindow
LightConfigIncompatibility

Video_Source_Widget

SelectROI

ErrorOpeningVideo AboutDefineROI

DUT_ROI_window

ModifyROINameAddROIGroupModifyThresholdValue

Figure 3.1 – The class map of first main.py
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MAIN
AutoDetectionWindow AutoDetection

MainWindow ConnectionError

About_Help_Window

LightSelectionData_Widget

DefineEMCTest valeoRelayShield_enterName1/2

Video_Source_Widget

LightControlLightConfigIncompatibility

AddNameWindow

EMCLightAnalysisSelectROI

ErrorOpeningVideo AboutDefineROI

DUT_ROI_window

ModifyROINameAddROIGroupModifyThresholdValue

Figure 3.2 – The class map of second main.py
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After seeing both diagrams and from my point of view, I considered that the main.py more suitable was
the one whose diagram is more organized, the one in the second diagram to be exact.

3.3 Main and secondary functions’ analysis

Through the exhaustive analysis of the source code and test the application, I identified several functions,
which I will divide into :

• Primary:

– Open Light Controller: To perform the configuration of the lights by means of the Valeo Relay
Shields.

– Create new DUT Test: To create a new DUT Test.

– Create new EMC test: To create a new EMC Test.

– Open new DUT Test: To open a saved DUT file.

– Open new EMC Test: To open a saved EMC file.

• Secondary:

– Clone EMC Test: To clone EMC Test saved file.

– Select Theme:To select theme (light or dark).

– Help about: To show contact window.

– Check Updates: To check if there is a new version and if so, to update the software.

3.4 How the application should be works?

After identifying the main and secondary functions, I proceeded to relate the different classes to the
previously mentioned functionalities, and show how the whole application works.

The first class is Main, which simply starts the application. Then we have the classes
AutoDetectionWindow that shows the detected Valeo Relay Shields and AutoDetection that is in
charge of the detection of these.

The next classes to be called are: connectionError, to show an error window if there are no Valeo
Relay Shields connected or if they are disconnected at any time and the mainWindow class that shows the
main window of the application.

In the main window, there are three main functions that call other classes:
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• Open Light Controller: To set up a save file with the status (on or off) of the car headlights. The
process is as follows: The class ValeoRelayShieldName1 or ValeoRelayShieldName2 is called
depending on the number of connected Valeo Relay Shields. These classes only show a window to
name the tabs of the next window that will appear, namely the lights configuration window, the
LightControl class. In addition this class calls the AddNameWindow class, which displays a
window to add another type of headlight that the user wants.

MAIN
AutoDetectionWindow AutoDetection

MainWindow ConnectionError

About_Help_Window

LightSelectionData_Widget

DefineEMCTest valeoRelayShield_enterName1/2

Video_Source_Widget

LightControlLightConfigIncompatibility

AddNameWindow

EMCLightAnalysisSelectROI

ErrorOpeningVideo AboutDefineROI

DUT_ROI_window

ModifyROINameAddROIGroupModifyThresholdValue

Figure 3.3 – Create Light Configuration Process
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• Create/Open DUT Test: Subjects a car headlight to a DUT test. To do this, the
LightSelectionDataWinget class is called, which displays a window with a form about the car
headlight data and the test.

After filling out the form completely, VideoSourceWidget displays a window to choose between
using a camera to test it or an already recorded video.

SelectROI then displays a window that allows you to crop the video using a view of the video, and
an auxiliary view of the video but with a zoom factor applied. Then after doing this, DutROI is in
charge of drawing the ROIS showing a window similar to SelectROI, being able to change its color,
threshold value, color, add custom ROI groups... by means of the classes ModifyThresholdValue,
AddROIGroup and ModifyROIName. Additionally ErrorOpeningVideo will show if there has
been any error when opening the video and AboutDefineROI will show a help window on how to
define an ROI.

MAIN
AutoDetectionWindow AutoDetection

MainWindow ConnectionError

About_Help_Window

LightSelectionData_Widget

DefineEMCTest valeoRelayShield_enterName1/2

Video_Source_Widget

LightControlLightConfigIncompatibility

AddNameWindow

EMCLightAnalysisSelectROI

ErrorOpeningVideo AboutDefineROI

DUT_ROI_window

ModifyROINameAddROIGroupModifyThresholdValue

Figure 3.4 – Create DUT Test Process

Javier Expósito Martínez



3.4. How the application should be works? 15

3

• Create/Open EMC Test: Subjects a car headlight to a EMC test. This task is performed by the
following classes: DefineEMCTest displays a window with a form to be filled in with all necessary
data. It also allows to create/open a DUT Test, and to create/open an automotive light
configuration. The class lightConfigIncompatibility will show an error if we have only one Valeo
Relay Shield connected and we try to open a light configuration file that uses two Valeo Relay
Shields.Similarly, in DUT Test, the VideoSourceWidget class is called, and after selecting an
option, the EMCLightAnalysis class will perform the EMC test and generate the report.

MAIN
AutoDetectionWindow AutoDetection

MainWindow ConnectionError

About_Help_Window

LightSelectionData_Widget

DefineEMCTest valeoRelayShield_enterName1/2

Video_Source_Widget

LightControlLightConfigIncompatibility

AddNameWindow

EMCLightAnalysisSelectROI

ErrorOpeningVideo AboutDefineROI

DUT_ROI_window

ModifyROINameAddROIGroupModifyThresholdValue

Figure 3.5 – Create EMC Test Process
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In addition the AboutHelpWindow class displays a contact window and information about GranaSAT
and the application developer.

3.5 How did the application work?

After explaining how the application should work, I will now describe how the original application
functioned before working on it.

• Select Window > WhiteTheme caused the application to abort.
• Help > check updates did not work as it was not implemented.
• Tools > OpenLightController and File > New EMC test did not work without the Valeo Relay
Shield connected, resulting in the application aborting.

• File > Open > Dut, File > Open > EMC, and File > Clone > EMC did not work as they
were not implemented.

Upon connecting the Valeo Relay Shield, the functionalities Tools > OpenLightController and File
> New EMC test did work. However, the latter, File > New EMC test had issues such as opening an
EMC file causing the application to abort, and "create new Light Configuration" did not work as it was
not implemented. Additionally, some interfaces, due to their non-responsive nature, had display problems.

3.6 Conclusion

To summarize, I will show the whole process graphically:
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REVERSE ENGINEERING

Organize and analyze all files

Find requirements.txt

Installing a virtual environment with the requirement.txt
libraries Delete errors

Activate the virtual environment and run the application

Analyze source code Test application

Obtaining application's functions and
how application works

Figure 3.6 – Reverse engineering Process
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Chapter 4

System design

In the following section, once all the comparisons and decisions from the analysis phase have been made, I’m
going to explain in more detail the design of the application, as well as its directories hierarchy.

4.1 Applications’ directories hierarchy

Starting with the directories’ hierarchy of the application, it is organized into different folders and files.
To summarize, the application is divided into the following:

• Files:

– main.py, which starts the application.

– configuration.xml, which contains the initial configuration of the application.

• Secondary:

– reports, which contains the HTML template for generating reports.

– images, which contains various images related to the application and others.

– languages, which contains different language files.

– datas, which stores saved files and videos.

– gui, which contains all files related to the graphical user interface.

– src, which holds all the application code that is used by main.py (this folder is not present in the
client-installed application for security reasons).

To display the structure more clearly, here it is shown graphically:

18 OpenCV and Python application for automotive spotlight image processing.
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4.2 Applications’ structure

For the development of the project, figure 4.2 has been followed, where on the right side, the connection of
the application with the GranaSAT server is shown, to update the application version if necessary (whenever
there is an internet connection). On the left side, the execution of DUT and EMC tests is shown, either
through a video file or by using a camera connected to the application. At the same time, the Valeo Relay
Shield hardware is connected to the computer to control the lighting of the spotlights.

Actor

Internet

Open Light Controller Check Updates

Performing DUT/EMC testing using the
camera.

Performing DUT/EMC testing using a
video file

Figure 4.2 – Application’s Structure
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4.3 Class diagram

To conclude this chapter, it proceeds to show the complete class diagram of the application divided into
parts due to its extension and high complexity, thus showing the final structure of the application. Below I
only put the main diagram showing the connection between classes. The class diagrams detailing each part
of the application are in the appendix(Appendix D: Detailed application structure.).

4.3.1 Application’s class diagram

It proceeds to show two diagrams where all the classes are shown, joined by arrows to show the class
calls and the communication of some classes with others.

OpenAutomotiveLightingValidationPlatform

AutoDetectionWindowAutoDetection

mainWindow

languages

ConnectionError ConnectionError_NoRelays

About_Help_Window

CheckUpdates

DownloadThread

valeoRelayShield_enterName_1/2
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DefineEMCTest

Video_Source_Widget

LightSelectionData_Widget

OpenHelpWindow_LightSelection

ErrorOpeningVideo

EMCVideoViewThread GenerateReport

SelectROI

AboutDefineROI DUT_ROI_Window CameraViewThreadZoomViewThread

ZoomViewThread CameraViewThreadAddROIGroup ModifyThresholdValue ModifyROIName

IllegalValue

EMCLightAnalysisEMCLightAnalysis

GenerateReport

Figure 4.3 – Application’s diagram class
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Figure 4.4 – Application’s diagram class2
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Chapter 5

Implementation and configuration

In this chapter, I will talk in detail about the entire configuration of the application, as well as the
modifications and upgrades made to the project assigned to me in September.

5.1 Application’s upgrades

Once the Valeo Relay Shield was configured and connected, after the Reverse engineering process, It
started to fix the bugs in the application and to make the upgrades requested by the customer. In this
section, therefore, the upgrades made to the application will be explained, and these changes will be visually
displayed in the section Appendix E: Graphical visualization of upgrades

5.1.1 Responsives interfaces

The application used interfaces that could not be resized, causing problems when the monitor size was
not large enough to display the entire window. Therefore, the first improvement to be implemented was
the creation of responsive interfaces and in some of them, even the possibility of scrolling to display them
completely.There were also some other changes, especially in the main window.

On the main window interface, the buttons that contained the main actions performed by the application
were removed, as well as some other unusable elements. An error in the AutoDetection Window class was
also eliminated., which consisted in creating a second mainWindow just before displaying it, thus avoiding
the display of messages such as whether the Valeo Relay Shield were connected or not.

For the rest of the interfaces as well as for the main window, the resizeWindow() method that set a fixed
window size was eliminated.

To create the responsive interfaces, we used QtDesigner, a tool that comes with the installation of the
application in developer mode. To make an interface responsive, the grid layout, horizontal layout and
vertical layout elements are used, in addition to giving a minimum and maximum size to each element.

In addition, as mentioned above, scrolling capability has also been added to some interfaces, specifically
the two interfaces that are the forms for the DUT and EMC tests. This possibility is done by adding the
scroll area element, and inside the rest of the elements so that if the size of the elements is bigger than the
size of the window, the scroll bars appear. A new field was also added to show in case of opening a file,
which video file was used to make the video.

The images below are examples of the difference between before and after this improvement.
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Figure 5.1 – Before
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Figure 5.2 – After
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Figure 5.3 – Before

Figure 5.4 – After
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5.1.2 Valeo Relay Shield detection and source code improvement

The next step was to improve the detection of the Valeo Relay Shields. All the code was restructured
and separated into methods, easier to understand and control. In addition, errors such as the same name of
two different variables or hidden windows were corrected.

In addition, an improvement was implemented so that the Valeo Relay Shield can be detected a few
seconds after the application starts or when it is disconnected, unlike before, when the Valeo Relay Shield
had to be connected before the application started.

5.1.3 The application works without Valeo Relay Shields

The Valeo Relay Shields in the application are used to control the lights of the car headlights, and thus
record a video testing these. However, if we already have the video recorded, there is no need to have the
Valeo Relay Shields connected and they are completely useless. So why do they always have to be connected
if in most situations they are not even used?

After this improvement, the application works with or without connected Valeo Relay Shields. Although
it warns you with alerts that the Valeo Relay Shields have not been connected, you can still work perfectly
with the application.

5.1.4 Source code upgrades

In the same way that the code was improved in Valeo Relay Shields detection, other important classes
were redesigned by adding and removing attributes, adding new methods to simplify and control the code,
etc.

5.1.5 New functionality: open a DUT test

The possibility to open a DUT test, store the data, and perform the test without any issues has been
added to the application. Changes were made to resolve crashes and forced closures in Select ROI and DUT
ROI. Code was added to ensure that the camera does not remain open when closing the window unexpectedly
after selecting the camera option. Additionally, a new menu with actions such as tools, zoom, help, etc. has
been added.

5.1.6 New functionality: open and clone a EMC test

The possibility to open a EMC test, store the data, and perform the test without any issues has been
added to the application. The entire logic behind an EMC analysis has been developed because the class was
empty with no functionality apart from displaying the window. Therefore, not only has the entire class been
programmed to perform the necessary calculations, but also a completely new class called "generateReport"
has been created to generate a report based on the results.In addition, a menu with actions such as "revert
alerts," "generate report," etc., has been added.

5.1.7 Data storage

The old version of the application stored data in files with a .txt format. This format, besides being very
primitive, presents a problem: it is not scalable and can easily lead to errors. For example, if you change
a line by pressing enter, it could cause a failure. This makes it tedious to modify the file in the future if
additional data needs to be stored at the beginning, and it can generate errors. Therefore, the data is now

OpenCV and Python application for automotive spotlight image processing.
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stored in files with the .xml format, where we access the content using tags. This is a simple, easy, and
scalable solution.

The syntax of an XML file is simple:

Figure 5.5 – XML syntax

To read these files, it use "from xml.dom import minidom," which allows read the data like the following
picture:

Figure 5.6 – Read XML document

5.1.8 DUT test and EMC test forms’ improvement

Both for the DUT test form and the EMC test, in order to press the "Done" button, all fields must be
filled out completely. If any field is deleted, the "Done" button becomes disabled (previously this was not
the case, allowing empty fields to be submitted).

Additionally, for the DUT test, now when you select a focus, it turns a light red color, making it easier
for the client to know which headlamp or rearlamp is being selected. There is also a help menu that displays
two images, where the focuses are connected to their names with arrows.

5.1.9 New languages in application

A new menu has been added, with a new action, "Languages -> Select languages," which displays a
window where we can select the language of the application: English, French, and Spanish.
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For this enhancement, three options were considered:

1. Using .txt files to store words in different languages and reading the appropriate file based on the
selected language. However, this solution was quickly dismissed because it is not scalable and prone
to many errors, as mentioned in the section discussing upgrades in file saving.

2. Use an existing library, which functions as a translator. It had clear advantages, such as not
requiring language files and being much more flexible. However, it significantly decreased the
application’s performance, leading to a state of unresponsiveness. Additionally, it required an
internet connection. Further research led to the discovery of the "argostranslate" library, which
resolved the internet connection issue, but its performance was even worse.

3. Using XML language files.This solution sacrificed some adaptability compared to the second option
but greatly improved performance, almost on par with the first option. Use XML language files, allows
access through tags instead of positions in the code. This allows for future changes in language files
without affecting the existing code.

To provide a more visual analysis, we created a table:

Option Scalability Flexibility Performance Internet Conection

Use .txt language files Poor No Good Not required

Use a translator library Excellent Yes Poor Required

Use .xml language files Sí Good Excellent Not required

5.1.10 Initial configuration file

A file (.xml) has been created that stores the configuration (theme, size of the main window and language
currently used) set in the application at the moment we close the main window and that is used to, the next
time we start the application, have the same as when it was closed.

5.1.11 Create executable file

To create the executable file and installer, a search for alternatives to CX-freeze, the library used to
generate the executable in the previous version of the application, was undertaken. So after searching it
found the PyInstaller library where an executable was created in a very simple way with the command:
pyinstaller –onefile –windowed –name=ValeoApp main.py
where:

• –onefile: generates only an executable that includes everything needed to run it, and not a folder of
files.

• –windowed: windowed not console application.
• –name:name of the app.
• main.py:code to get the executable from

However, there were many problems about how to import the libraries and dependencies of the
application, being that the idea that this library was simpler than CX-freeze discarded and therefore
discarded.

So after this, I investigated about the CX-freeze library, library that is better in terms of speed and its
use is more extended than PyInstaller.

To create the installer of an application with CX-freeze two things are needed, once the library has been
installed: the file containing all the configuration to create the installer (setup3.py) and execute the Python
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command Python setup3.py bdist_msi. Running this command will create both the installer and the
application executable.

As for the setup3.py file, an image with its contents is shown below:

Figure 5.7 – Setup3.py’s content

where:

• import sys: Imports the sys module, which provides access to Python interpreter-specific variables
and functions.

• from cx_Freeze import setup, Executable: Imports the setup and Executable functions of the
cx_Freeze module. These functions are used to configure and create executables of the installation
package.

• import os:Imports the os module, which provides functions to interact with the operating system.
• import tkinter:Imports the tkinter module, which is used to create graphical user interfaces.
• data_options="Shortcut": [...]: Defines the options for creating desktop shortcuts.
• bdist_msi_options=...:Defines options for the creation of the installation package in MSI
(Microsoft Installer) format. These options include the configuration of directories, update codes,
initial destination directory and more.

• base = None:Initializes the base variable as None.
• if sys.platform == "win32": base = "Win32GUI":Checks if the operating system on which the
script is running is Windows. If so, set the value of ‘base‘ to "Win32GUI". This indicates that the
GUI should be used when running the program.
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• executables = [...]:Defines the program executables to be included in the installation package. In this
case, a file named "main.py" is specified as the main executable, along with some additional options
such as the icon, copyright and trademarks.

• include_files = [...]:Defines the files and directories to be included in the installation
package.Include in this section the .dll files are important because without them the executable
cannot make use of the libraries it needs.

These .dll files were obtained by searching for them in the local files of the computer, namely:

– tcl86t.dll and tk86t.dll were found in ’C:\Users\javie\anaconda3\envs\TFG\Library\bin’.

– zlib.dll was located at ’C:\Users\javie\anaconda3\envsTFG’

– PyQt5 .dll can be found in ’C:\Users\javie\anaconda3\envs\TFG\Lib\site-packages\PyQt5
\Qt5\bin

– _pytransform.dll is in the folder generated by obfuscating the code (to be explained later,
specifically in the section on security enhancement)

These files and directories will be copied to the installation directory during installation.
• build_exe_options = ...: Defines the build options for the run package. These options include the

required Python packages (libraries), the files and directories to be included, among others.
• setup(...): Calls the setup function of cx_Freeze to configure the installation package. The project

name, version, description and author are specified, along with build options and installation options
in MSI format.

• executables=executables:Specifies the executables to include in the installation package.

5.1.12 Statusbar

A status bar has been created for the mainWindow class as well as for SelectROI, DUT_ROI_window
and EMCLightAnalysis. It displays messages about the status of the application, the selected action and
more information. In addition, depending on the type of message it will change color, that is, if it is an error
message, the status bar changes to red, if it is an action it changes to white, etc.

In addition the status bar of the main window, not only shows the above, but also the current date, which
is updated every second thanks to a timer and also shows a progress bar about the process being carried out
(Test DUT or Test EMC).

5.1.13 New functionality: Check updates

In this version, the new functionality "Check Updates" has been added, which shows whether the version
of the application installed by the client is the current version or an older one. Whether there is no connection
available, the application is already installed, or an update is required, the corresponding window and text
informing the client are displayed. If an update is necessary, pressing the download button will download the
installer with the latest version of the browser, and the download process can be observed with a progress
bar in the status bar of the mainWindow class.

To develop this functionality, we need to make changes in two parts: the client and the server.

Regarding the server part, the "version.php" file had to be edited and re-uploaded to the server. Editing
it is straightforward; you just need to change the last line that prints the version to the current version of
the application. After that, it was re-uploaded to the server.

However, to perform all the necessary tests, a local server was created to function as the real server. How
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to install a local server is explained in Appendix: How to install a Local Server .

Regarding the client part, the code changes are shown in more detail in the corresponding section.
However, it’s worth mentioning the use of a Thread to perform the installer download process. This is
because when the download is done in the main Thread, only the progress bar gets updated, but the rest of
the application remains blocked until the process finishes. By using a Thread, when the download button
is pressed, the Thread takes care of downloading the installer and updating the download progress bar,
allowing the client to continue performing other actions in the application. Therefore, this is the graphical
representation of the "Check Updates" functionality:

CheckUpdates DownloadThreadmainWindow

Main thread Download thread

Figure 5.8 – Check updates functionality

5.1.14 Improvements of the classes SELECT ROI, DUT_ROI and EMCLightAnalysis

5.1.14.1 Improved graphical interface

The interfaces of the Select_ROI, DUT_ROI and EMCLightAnalysis classes have been improved so that
now the camera and zoom view, or the Keyframe and video view can be decoupled and coupled allowing
to work on one, two or even three screens, allowing also the resizing of each of the windows without any
problem (ROIs are drawn by joining the points whose coordinates are calculated taking into account the
image resolution, and recalculated in case the resolution changes). Unlike the previous version, the camera
and zoom windows have a very small and fixed size, generating low quality images, problems with the
visualization of the views, etc.

To undock the windows, it is as simple as right clicking with the mouse and dragging, while to dock the
windows just close them.

In addition the mouse pointer changes showing graphically when you can paint an ROI, when you can
undock a window or when you can do nothing. Now I proceed to show the difference between the previous
interface and the current one:
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Figure 5.9 – Before

Figure 5.10 – After
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Also now, if you open a file, the crop points and ROIs that were drawn when the test we have opened is
performed are displayed in the interface.

In EMC Analysis, when you select an ROI, it is now displayed in the Keyframe view. Additionally, when
you select an alert, a pop-up window appears showing which alert it is as shown below:

Figure 5.11 – show ROIs and alerts in EMC analysis

5.1.14.2 Higher video readout speed (frame rate)

Another important aspect was optimizing performance and improving efficiency, as the customer’s
recorded videos have a high Framerate (one hundred frames/s). This fact was extremely important because
if the customer wants to analyze a complete video, this analysis should take as little time as possible. For
example, before implementing this improvement, a video with a duration of approximately six seconds took
about sixty seconds to process the entire video, ten times slower. After this improvement, the same video
takes between ten and thirteen seconds to be fully analyzed, representing an 83.33% improvement.

To achieve this goal, the first step has been to optimize the entire code by deleting unnecessary parts
and simplifying it, avoiding the use of nested loops as much as possible.

However, the main change that has had the greatest impact on performance is the utilization of Threads,
allowing certain parts of the code to be executed simultaneously. In summary, we have the main Thread,
which carries out the overall functioning of the application, and two additional Threads, one responsible for
the logic behind the camera view and the other for the zoom view. This way, all the processing is done by
the Threads in a synchronized manner, using a queue, similar to the producer-consumer problem. Now, we
proceed to graphically illustrate the process of reading and processing the video:
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Main thread Camera thread Zoom thread

Start

Read a frame

draw crop_points/ROIs

Send frame
update cam view

Send frame(produce)

Start

zoom in frame
Send frame

update zoom view
repeat

repeat

read frame (consume)Wait to consume the frame.

Wait to receive the frame.

Figure 5.12 – Creation of views using Threads

5.1.14.3 Generated reports’ improvement

In EMC analysis,a new class, generateReport, has been created for the creation of reports after EMC
analysis and a new template used by jinja2 to generate a report has been created. Additionally the report
now has a section where the graphs containing the brightness values corresponding to each ROI during the
whole test are displayed. You can visualize at what moment the brightness value triggered the alert or, in
case it did not trigger the alert, how close it came to triggering it. An example of a current report is shown
below in the following pictures:
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Figure 5.13 – Report: DUT information
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Figure 5.14 – Report: BCI information
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Figure 5.15 – Report: Alerts
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Figure 5.16 – Report: Diagram of difference of ilumination

5.1.15 New function: open recent file

Now, when the user is browsing the menu and presses open file, not only the option to open a new file
but also the last file that was opened by the application will appear.

Figure 5.17 – Open Recent File

5.1.16 Organize the code application’s code

The code has been organized in folders according to the functionality to which they belong in the
application. So the directory containing the code (the src folder) is now much easier to understand.
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The changes that were made in the code, were modifications in the imports, using now relative path to
include a class.

5.1.17 New toolbar

A toolbar has been created in the main application window to perform the same actions as the menu in
a simple and visual way. This way, the application has a more modern and updated visual aspect, and not
obsolete and belonging to old applications.

Figure 5.18 – Toolbar

5.1.18 Security

This section addresses the issue of security with respect to obtaining the source code from the executable.
After a thorough investigation, it was concluded that it is not possible to obtain the source code from the
executable but from files that are generated along with it, using tools such as decompyle3 or decompyle6.
This fact shows the urgency and necessity of using security methods to avoid this.

The security method to avoid this is obfuscation, which converts the code of a software or project into a
type of code that is more difficult for humans to understand. It achieves this goal by applying encryption
mechanics and patterns to prevent access to critical sections of the code. And to achieve this, the PyArmor
library is used.

Although obfuscation can be reversed with Reverse engineering, it is a very slow and complex process
that only an expert could perform. The PyArmor documentation itself states the following: "PyArmor
focus on protecting Python scripts, by several irreversible obfuscation methods, now PyArmor make sure
the obfuscated scripts can’t be restored by any way." [3]

On the other hand, a license has been created for the application, depending on the expiration date and
the serial number of the hard disk, the client will be able to use the application or an error window will
appear saying that the license has expired or is incompatible on the device that is running the application.

For the process of creating the license, at first, it was thought to use the PyArmor library itself, whose
main advantage was the security it provided, and the simplicity to create it. However, it was discarded due
to incompatibility problems with the CX-freeze library, causing problems in the executable.Therefore, only
Python libraries are used to access the hard disk serial number and check the expiration date. The license
logic is programmed in the code itself.
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Testing and validation.

In this chapter, all the requirements imposed by the customer, both functional and non-functional, are
validated. Therefore, it will be analyzed requirement by requirement, verifying that everything works
correctly.

6.1 Functional Requirements

6.1.1 RF.1

Description RF. 1 The software must allow the user to create a new DUT Test.

Analysis Requirement satisfied by correcting and redesigning the classes involved in the
process.

Evaluation Validated

Table 6.1 – RF.1

Figure 6.1 – New DUT: step one
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Figure 6.2 – New DUT: step two
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Figure 6.3 – New DUT: step three

Figure 6.4 – New DUT: step four
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Figure 6.5 – New DUT: step five

Figure 6.6 – New DUT: step six
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6.1.2 RF.2

Description RF. 2 The software must allow the user to create a new EMC Test.

Analysis Requirement satisfied by correcting,redesigning and creation of the classes involved
in the process.

Evaluation Validated

Table 6.2 – RF.2

Figure 6.7 – New EMC: step one

Figure 6.8 – New EMC: step two
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Figure 6.9 – New EMC: step three

Figure 6.10 – New EMC: step four
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Figure 6.11 – New EMC: step five

Figure 6.12 – New EMC: step six
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6.1.3 RF.3

Description RF. 3 The software must allow the user to open a DUT file.

Analysis Requirement satisfied by creating a new action in the menu that allows to open a
file, and then perform the whole process similar to RF.1

Evaluation Validated

Table 6.3 – RF.3

Figure 6.13 – Open DUT: step one

Figure 6.14 – Open DUT: step two

Javier Expósito Martínez



6.1. Functional Requirements 49

6

6.1.4 RF.4

Description RF. 4 The software must allow the user to open an EMC file

Analysis Requirement satisfied by creating a new action in the menu that allows to open a
file, and then perform the whole process similar to RF.2

Evaluation Validated

Table 6.4 – RF.4

Figure 6.15 – Open EMC: step one

Figure 6.16 – Open EMC: step two
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6.1.5 RF.5

Description RF. 5 The software must allow the user to clone an EMC file

Analysis Requirement satisfied by creating a new action in the menu that allows to clone a
file, and then perform the whole process similar to RF.2

Evaluation Validated

Table 6.5 – RF.5

Figure 6.17 – Clone EMC: step one

Figure 6.18 – Clone EMC: step two
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Figure 6.19 – Clone EMC: step three

6.1.6 RF.6

Description RF. 6 The software must allow the user to open a recent DUT or EMC file.

Analysis Requirement satisfied by creating a new action in the menu that allows to open a
recent file, and then perform the whole process similar to RF.1 or RF.2

Evaluation Validated

Table 6.6 – RF.6

Figure 6.20 – Open recent DUT
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Figure 6.21 – Open Recent EMC

6.1.7 RF.7

Description RF.7 The software must allow the user to configure car’s spotlights using one or
two Arduinos, and save this light’s configuration.

Analysis Requirement satisfied by correcting and redesigning the classes involved in the
process.

Evaluation Validated

Table 6.7 – RF.7

Figure 6.22 – Open light controller: step one
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Figure 6.23 – Open light controller: step two

Figure 6.24 – Open light controller: step three
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Figure 6.25 – Open light controller: step four

6.1.8 RF.8

Description RF.8 The software must allow the user to change between white and black theme

Analysis Requirement satisfied by redesigning the corresponding methods, where we now
have the incorporation of css files that give appearance and style to the interfaces.

Evaluation Validated

Table 6.8 – RF.8

Javier Expósito Martínez



6.1. Functional Requirements 55

6

Figure 6.26 – White theme

Figure 6.27 – Dark theme

6.1.9 RF.9

Description RF.9 The software must allow the user check about additional information.

Analysis Requirement satisfied by redesigning the corresponding window, which shows
contact information.

Evaluation Validated

Table 6.9 – RF.9

OpenCV and Python application for automotive spotlight image processing.



6

56 Chapter 6. Testing and validation.

Figure 6.28 – Check about

6.1.10 RF.10

Description RF.10 The software must allow the user check updates and update the application
if it is necessary

Analysis
Requirement satisfied by creating methods and classes that manage the entire
process of querying and updating application versions. Additionally, the file stored
in the server has been updated with the current version of the application.

Evaluation Validated

Table 6.10 – RF.10

Figure 6.29 – Check updates
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6.1.11 RF.11

Description RF.11 The software must allow the user to select one of several languages: english,
spanish, and french

Analysis
Requirement satisfied by creating an action in the menu, a new class, modifying
and creating some methods and creating a new window. In addition to the creation
of .xml files, one per language.

Evaluation Validated

Table 6.11 – RF.11

Figure 6.30 – Select Languages: step one

Figure 6.31 – Select Languages: Step two
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6.1.12 RF.12

Description RF.12 The software must allow the user to create a DUT file since EMC test

Analysis Requirement satisfied by creating the method which manages the creation of the
DUT process from the DefineEMCTest class.

Evaluation Validated

Table 6.12 – RF.12

Figure 6.32 – new DUT from EMC: step one
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Figure 6.33 – new DUT from EMC: step two
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Figure 6.34 – new DUT from EMC: step three

Figure 6.35 – new DUT from EMC: step four

Javier Expósito Martínez



6.1. Functional Requirements 61

6

Figure 6.36 – new DUT from EMC: step five

Figure 6.37 – new DUT from EMC: step six
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6.1.13 RF.13

Description RF.13 The software must allow the user to create a light configuration file since
EMC test

Analysis Requirement satisfied by creating the method which manages the creation of the
light configuration file from the DefineEMCTest class.

Evaluation Validated

Table 6.13 – RF.13

Figure 6.38 – new Light configuration from EMC: step one
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Figure 6.39 – new Light configuration from EMC: step two
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Figure 6.40 – new Light configuration from EMC: step three

6.1.14 RF.14

Description RF.14 The software must allow the user to generate a report.

Analysis
Requirement satisfied by creating a new action in the menu, a class that manages
the whole process to create the report, as well as creating a new template for the
report.

Evaluation Validated

Table 6.14 – RF.14

Figure 6.41 – Generate report: step one
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Figure 6.42 – Generate report: step two
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6.2 Non-Functional Requirements

6.2.1 NRF.1

Description NRF.1 The software must be able to detect when an Arduino is disconnected, at
any time.

Analysis Requirement satisfied by creating a timer that calls every second a method that
checks the disconnection of the Arduinos.

Evaluation Validated

Table 6.15 – NRF.1

Figure 6.43 – Arduino disconection

6.2.2 NRF.2

Description NRF.2 The software must be able to reconnect an Arduino for a short period of
time since it was disconnected.

Analysis
Requirement satisfied by creating a timer that is triggered when an arduino is
disconnected, calling every second a method that reconnects the arduinos and checks
if they have been reconnected correctly.

Evaluation Validated

Table 6.16 – NRF.2
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Figure 6.44 – Arduino connection after its disconection

6.2.3 NRF.3

Description NRF.3 The software must be able to work correctly without an Arduino connected.

Analysis Requirement satisfied by modifying variables and methods to prevent the
application from aborting.

Evaluation Validated

Table 6.17 – NRF.3
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Figure 6.45 – Application without Valeo Relay Shields

Figure 6.46 – Application without Valeo Relay Shields 2
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6.2.4 NRF.4

Description NRF.4 The software must be able to save the last configuration which it had when
it was closed and starts with this.

Analysis
Requirement satisfied by creating write and read methods from an xml file, called
configuration file. As well as the creation of variables that store the data we want
to save.

Evaluation Validated

Table 6.18 – NRF.4

6.2.5 NRF.5

Description NRF.5 All software’s interfaces must be responsives.

Analysis Requirement satisfied by modifying some interfaces, and creating new ones using
QtDesigner.

Evaluation Validated

Table 6.19 – NRF.5

6.2.6 NRF.6

Description NRF.6 The software must has a status bar which reports user’s operations and
application’s status.

Analysis
Requirement satisfied by adding new actions and statuses to the status bar,
changing its color depending on the action/status and creating new status bars in
other windows. In addition, each action has the text with its respective languages.

Evaluation Validated

Table 6.20 – NRF.6

Figure 6.47 – Statusbar - No arduino detect

Figure 6.48 – Statusbar - New DUT

Figure 6.49 – Statusbar - Error opening video

OpenCV and Python application for automotive spotlight image processing.



6

70 Chapter 6. Testing and validation.

Figure 6.50 – Statusbar - No arduino detect

6.2.7 NRF.7

Description NRF.7 The software must be save datas in xml files, unlike before, it was done in
txt format.

Analysis Requirement satisfied by creating new save files in .xml format and using a library
to write to and read tags from these files.

Evaluation Validated

Table 6.21 – NRF.7

6.2.8 NRF.8

Description
NRF.8 In DUT and EMC tests’ forms, done’s bottoms must be disable when user
delete any required field. Done’s bottoms only must be enabled when all required
fields are filled.

Analysis Requirement satisfied by creating and modifying attributes and methods belonging
to these classes.

Evaluation Validated

Table 6.22 – NRF.8

6.2.9 NRF.9

Description NRF.9 In DUT test’s forms, when the user selects a car spotlight, it should
highlights.

Analysis Requirement satisfied by creating and modifying attributes and methods belonging
to these classes. Qt objects such as Qpen or QPainterPath are used.

Evaluation Validated

Table 6.23 – NRF.9

Javier Expósito Martínez



6.2. Non-Functional Requirements 71

6

Figure 6.51 – Select a car spotlight
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6.2.10 NRF.10

Description NRF.10 When the user open DUT of EMC file, in DUT and EMC tests’ forms,
must appear a new field which contains the video’s path what was used in test.

Analysis

Requirement satisfied by modifying the interfaces that show the forms, added to
the creation and modification of the methods and attributes in charge of storing
and showing the label with the video path. In addition, the video path is now saved
in the saving files.

Evaluation Validated

Table 6.24 – NRF.10

Figure 6.52 – Video path in DUT and EMC Test

6.2.11 NRF.11

Description NRF.11 When the user open DUT file,crop points must be show in window where
the user crop the image.

Analysis Requirement satisfied by the creation and modification of methods that read the
data and store it in the attributes that are used to draw and store the crop points.

Evaluation Validated

Table 6.25 – NRF.11

Javier Expósito Martínez



6.2. Non-Functional Requirements 73

6

Figure 6.53 – Crop points in camera view

6.2.12 NRF.12

Description NRF.12 When the user open DUT file, ROIs must be show in crop window and
create the ROIs.

Analysis Requirement satisfied by the creation and modification of methods that read the
data and store it in the attributes that are used to draw and store the ROIs

Evaluation Validated

Table 6.26 – NRF.12

Figure 6.54 – ROIs points in crop view
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6.2.13 NRF.13

Description

NRF.13 In DUT Test, in windows where the user crop the image and create the
ROIs, the software must be able to separate the camera view and zoom view,
allowing to work with two or even three screens.Also in EMC Test, for the class in
charge of performing the EMC analysis.

Analysis Requirement satisfied by the creation of methods and variables that allow this
requirement to be met.

Evaluation Validated

Table 6.27 – NRF.13

Figure 6.55 – Separate views

6.2.14 NRF.14

Description NRF.14 In EMC Test,when the analysis starts, if the user select a ROI, this must
be highlight in Keyframe view.

Analysis Requirement satisfied by creation and modification of methods and variables that
allow this requirement to be met.

Evaluation Validated

Table 6.28 – NRF.14
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Figure 6.56 – Show a selected ROI in EMC analysis

6.2.15 NRF.15

Description NRF.15 In EMC Test,when the analysis starts, if the user select an alert, this must
be shown.

Analysis
Requirement satisfied by creation and modification of methods and variables that
allow this requirement to be met.A timer is created whose functionality is to show
the alert in the form of a "gif"

Evaluation Validated

Table 6.29 – NRF.15
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Figure 6.57 – Show a selected alert in EMC analysis

6.2.16 NRF.16

Description NRF.16 The software must be able to add a graph which shows the lumination’s
difference between Keyframe and video for each ROI in the generated report.

Analysis
Requirement satisfied by creation and modification of methods and variables that
allow this requirement to be met.In addition, the template that is used to generate
the report must also be modified.

Evaluation Validated

Table 6.30 – NRF.16
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Figure 6.58 – Diagram of difference of ilumination

6.2.17 NRF.17

Description NRF.17 The software must read and process the videos efficiently and quickly.

Analysis Requirement satisfied by by simplifying code and using Threads that allow code
concurrency.

Evaluation Validated

Table 6.31 – NRF.17
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Chapter 7

Conclusions and future lines

7.1 Conclusions

In this document it has tried to explain in detail the installation, operation of the application, as well as
all the evolution and differences with respect to its previous version.

The beginnings, above all, were very hard, not only because of the lack of documentation and file
organization, or because the libraries used by the application as PyQt5 were totally unknown to me at the
beginning, but also because during the degree in Computer Engineering does not teach to create large
projects that resemble real projects developed in a company.

From the beginning and throughout the development of the application, it has been a challenge, as
everything except the programming language (Python) was new and unfamiliar.

For example, learning how to create the application using the interfaces created by QtDesigner and
understanding the code that managed the interface with the operation of the application, while understanding
how the application worked, was one of the most complicated and problematic things I had to solve. Another
challenge was to ensure the correct migration from Python 2.7 to version 3.10 and higher, as part of the
application became unusable due to method calls that did not work. There were also problems with reading
and opening saved files, understanding and resolving window resizing and resolution for video display during
testing, learning to use Threads, etc.

Today, I can conclude that the application is not only 100% functional, but includes a number of
enhancements that take it to the next level, meeting all of the client’s requirements in the process.

This project has not only been a demonstration of the knowledge and skills acquired in the computer
engineering degree but also a continuous and practical learning on how to develop an application in Python.

As a final comment, I am proud of the work done and the outcome of this project, despite the difficulties
and frustrations encountered during its development. I think it is a very good final product, and I was up
to the challenges that were presented to me. I am proud of all the skills and knowledge acquired, which I
am sure will be very useful for the future.
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7.2 Proposed future upgrades

Although this project has met the requirements proposed by the client, there is a list of upgrades that
could be made to the application:

7.2.1 Improve source code

Although the main classes were simplified, reducing in some cases to half the number of lines of code
and separated into methods, the code is chaotic, the names of some methods and variables are in English
and others in Spanish. Some methods do not have a clear function, other methods could simply avoid being
created with a better programming approach. More classes should be created with functions or methods
common to many classes, instead of writing the same method in all classes.

Classes should be better organized, being clear about the tributes and methods needed and their visibility
(private, public minimum). For example, I have had to remove many attributes of classes that were not used
or were really local variables of a particular method but not an attribute. In addition, the visibility of all
attributes and methods of the classes is public, which to summarize, is a mistake that can lead to problems
of design, maintenance and security of the application.

7.2.2 Complete the application

Although new functionalities have been implemented, there are certain incomplete actions in the
application. For instance, enhancing the status bar by adding messages about the application’s state or
indicating missing actions. Another example is programming the behavior when performing a DUT test
and selecting "Other" in the "Device Position" field.

7.2.3 Improvement in the structure and control of the application.

The main improvement is a change in the application’s structure. Currently, the structure is fine; it has
been updated (Application’s Structure) to fix errors and incorporate the newly created classes. However, I
don’t consider it to be optimal. For example, since the application can function without Valeo Relay Shield
devices initially, it doesn’t make sense for the application to go through the Valeo Relay Shield detection
process, causing the client to wait for a few seconds when launching the application.

It would also be more suitable to have the ability to connect Valeo Relay Shield devices whenever desired,
using an action such as "Connect Valeo Relay Shields," rather than having only a few seconds to connect
them, and requiring a restart of the application if not connected in time. The calls to the language class can
be managed in a better way, etc. To provide a better illustration of all these points, let’s proceed to show it
graphically:
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OpenAutomotiveLightingValidationPlatform

AutoDetectionWindowAutoDetection

mainWindowlanguages

ConnectionError ConnectionError_NoRelays

About_Help_Window CheckUpdates

DownloadThread

valeoRelayShield_enterName_1/2

LightControl

AddNameWindow

DefineEMCTest

Video_Source_Widget

LightSelectionData_Widget

ErrorOpeningVideo

EMCVideoViewThread GenerateReport

SelectROI

AboutDefineROI DUT_ROI_Window CameraViewThreadZoomViewThread

ZoomViewThread CameraViewThreadAddROIGroup ModifyThresholdValue ModifyROIName

IllegalValue

EMCLightAnalysisEMCLightAnalysis

GenerateReport

Connect-arduinos

Figure 7.1 – Future Upgrade Structure’s Class Diagram
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7.3 Lessons learned

I wanted to conclude this project with a list of the lessons which I have learned during the development
of this thesis:

• Migrate an application.

• Installing and configuring an Valeo Relay Shield board at a basic level.

• Use QtDesigner and the PyQt5 library to create the interfaces of an application.

• How to create, open and write to an .xml file.

• My knowledge about the OpenCV library has increased.

• To use the PyArmor and pytransform libraries to obfuscate, encrypt the code and create a license.

• To create an executable (.exe) of the application, as well as its installer.

• Learn about timers and Threads.

• Creation of an .html file with the template designer: jinja2 and how to integrate a photo and/or gif in
this file.

• Learn by Reverse engineering how the application and libraries work and know how to apply it to the
new version of the application.

• Study the different methods for implementation and choose the one which I think is the best for the
incorporation of the device in the system.
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Appendix A

How to install application

A.1 Developers’ installation

For developers, the installation process is as follows:

1. Create a virtual environment with Python version 3.10 or higher. In my case, I use the Anaconda
environment, so to create the virtual environment, I use the command conda create -n
VirtualEnvironmentName python=3.10.

2. Next, install the required dependencies by running pip install -r requirements.txt.

3. Once the dependencies are installed, the application can be launched smoothly. Open the terminal,
navigate to the working directory using the command cd workingpath, and execute python
main.py.

A.2 Clients’ installation

For clients, the application installation process is as simple as opening the application installer and
clicking on "Install."
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Appendix B

Hardware Configuration: How to install
and configure Valeo Relay Shields

The first thing to do is to download the application that we will use to configure it: https://www.
arduino.cc/en/software. Next, We install it, open it (the necessary packages will be installed).Then
we click on yes, to everything and connect the Valeo Relay Shield.

When connecting the Valeo Relay Shield to the computer, in the tools menu bar appears a section called
ports (before connecting the Valeo Relay Shield did not appear). Select tools > ports > port: COM 3 (in
my case), which is the only one that appears.

Figure B.1 – How to set up Valeo Relay Shield: step One

We also need to select a board, so we go to: tools > board > Arduino AVR boards > Arduino Uno.
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Figure B.2 – How to set up Valeo Relay Shield: step Two

Now we create a basic program to check if it works correctly or not, before configuring it for our
application:

Figure B.3 – How to set up Valeo Relay Shield: step Three

The program turns on and off a led through port 13, every second.

Now we click on verify, located at the top, which has a tick/check symbol, which compiles and displays
any syntactic errors in the code, as well as additional data that appears in the terminal:
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Figure B.4 – How to set up Valeo Relay Shield: step four

And finally, to run it, save the file and click on the small arrow located just to the right of the check
mark symbol that we pressed earlier. Then, we can observe how the Valeo Relay Shield board’s amber LED
turns on and off.

(This basic program can be found within the application in the Valeo Relay Shield folder, along with the
final version of the Valeo Relay Shield configuration).

Now, let’s navigate to our application’s Valeo Relay Shield folder and open the
"relay_shield_automated_serial_V0_3.ino" file with the program. Press the tick/check symbol
to verify that there are no errors and then execute it. This way, the Valeo Relay Shield will be configured
for our application.

To reset this configuration, simply run the program with an empty setup and loop, as they come by
default.
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How to install and configure a Local
Server

To install a local server, it can be done using a VM or WSL (installation is done by executing the following
command in PowerShell: wsl –install). Then, follow the tutorial from these links, one for VM and
another in case of using Virtual Box:
- VM: Install Apache in WSL.
- Virtual Box:Install Apache in virtual box.

After that, run the following commands to update libraries and install PHP:

sudo apt-get update and sudo apt-get php8.1

Move the "version.php" file to the local server (www/var/html).
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Appendix D

Detailed application structure

D.0.1 Valeo Relay Shield Detection Class Diagram

Now it proceeds to show the class diagram, related to the Valeo Relay Shield’s detection process.
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OpenAutomotiveLightingValidationPlatform

AutoDetectionWindow

animation_states

timer
listMessage
avPorts

animation

sendMessage

stop_timer

 start_timer

AutoDetection

ConnectionErrorNoRelays

ConnectionError
tries
timer
timerUpdate
arduinoSerial
arduinoPorts
doc
hardwareVersionList
softwareVersionList
list_mesagge
show_error_window
controller
ser
mainWindow
msgArConnected

__init__

changeLanguage

detect_Ports

initializeAutoDetectValeoShield

initializeAutoDetectValeoShield2

openPort

messageGenerator

addInfoPorts

communicatePort

update

generateMainWindow

autoDetectValeoShield

tryOpenPort

showError

tryToCommunicate

detectionDisconnection

updateDetectValeoShield

Figure D.1 – Valeo Relay Shields’ diagram class
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D.0.2 MainWindow Class Diagram

Next, it proceeds to show the mainWindow class which is used to access the various functionalities of the
application.

OpenAutomotiveLightingValidationPlatform AutoDetectionWindowAutoDetection

mainWindow

autodetectionwindow

AboutHelp
LightSelWidget
DefineEMCTest,checkUpdates
valeoRelayShield_enterName_1/2
doc
languages
progress
Noconnected
tags
recentDUT/EMCFile
EMC/dut_file_name
timer
msg
frequency,level,modulation
theme
arduinoSerial,arduinoPorts
configurationFile, ribbon

__init__

changeLanguage

createMenuBar/ToolBar

init_ribbon

noShieldsConnected

changeStatusBar

DateStatusBar

sendSerial

Create/deleteProgressBar

progress_update

resetImageDUT

newDUT_buttonPressed,EMCTest_buttonPressed

fileOpen

openRecentEMC/DUT

open[EMC/DUT]_ButtonPressed

openEMCFile,openDUTFile

CloneEMC_ButtonPressed

writeConfiguration

writeConfigurationFile

exit_menuItemPressed

closeEvent

action_openLightController

about_menuItemPressed

changeCheckUpdateImage

checkUpdates_menuItemPressed

selectLanguages

connections_language

english,french,spanish

changeMainLanguage

changeMenuFile/Tools/Window/Menu/LanguageMenu

changeLightSelWidgetLanguage/EMCTestLanguage

whiteTheme_action/blackTheme_action

ConnectionError_NoRelays

__init__

ConnectionError

__init__

sendError

Figure D.2 – MainWindow diagram class
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D.0.3 Functionalities’ Class Diagrams

The following diagrams show the different functionalities that the application has, starting with a window
to contact the application developer and GranaSAT and the functionality to check for new software updates.

OpenAutomotiveLightingValidationPlatform

AutoDetectionWindowAutoDetection

mainWindowConnectionError ConnectionError_NoRelays

About_Help_Window

__init__

CheckUpdates

mainWindow

doc
download_thread

__init__

changeLanguage

progress_update_download

pushButton_Download_pressed

pushButton_OK_pressed

DownloadThread

url

download_progress

__init__

run

Figure D.3 – CheckUpdate and AboutHelp diagram class
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The next diagram will show the openLightController functionality.

valeoRelayShield_enterName_1/2

mainWindow
LightControl
doc
arduinoSerial
arduinoPorts

__init__

 changeLanguageLabels

sendSerial

pushButton_OK_pressed

keyPressEvent

LightControl

mainWindow
flag1/2
doc
valeoShield_pins
comboBoxListAr1/2Rear
comboBoxListAr1/2Front
ButtonsListAr1/2
arduinoShield1/2
valeoShield1/2_name
valeoShield_file
AddNameWindow

__init__

 changeLanguage

sendSerial

sendValeoRelayShield/sName

pushbutton_add_name_window/_2_pressed

sendRearLightData

sendFrontLightData

writeDatas

writeDatasLight

pushbutton_OK_pressed

pushButton_pressedOperation

pushButton_pressed

pushbutton_D[2...9]_/2_pressed

pushbutton_A[1...3]_/2_pressed

AddNameWindow

controller
doc
rearLightData
frontLightData

__init__

 changeLanguage

rearLights_pushButton_add_pressed

frontLights_pushButton_add_pressed

Figure D.4 – Open light controller diagram class

The last two main functionalities are divided into several diagrams. The first diagram (D.5) shows the
classes that are in charge of displaying the forms to fill in the test fields and the VideoSourceWidget class is
in charge of selecting whether a video or the camera will be used to perform the test (DUT or EMC).

The second diagram (D.6) shows the structure of the SelectRoi class, which is in charge of trimming the
video to later create the ROIs in the DUTROI class (D.7) thus finalizing the process of performing a DUT
test.

The last diagram(D.8) shows the EMClightAnalysis class that performs the EMC test and generates the
report finalizing the process of performing an EMC test.

OpenCV and Python application for automotive spotlight image processing.
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Figure D.5 – Forms and Video source widget diagram class
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Figure D.6 – Select ROI diagram class
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Figure D.7 – DUT ROI diagram class
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Figure D.8 – EMCLightAnalysis diagram class
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Graphical visualization of upgrades

The classes which have been altered by this upgrades are shown in the following chart:
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E.1 Interface Resposive
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Figure E.1 – Responsive Interfaces’ Upgrade
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E.2 Valeo Relay Shield Detection’s Upgrade
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Figure E.2 – Valeo Relay Shield Detection’s upgrade
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E.3 Works without Valeo Relay Shields’ upgrade
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Figure E.3 – Works without Valeo Relay Shield’ upgrade Javier Expósito Martínez
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Figure E.4 – Source Code’s upgrade
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Figure E.5 – Open DUT’s upgrade
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E.6 Saved datas’ upgrade
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Figure E.7 – DUT and EMC Tests’ upgrade

OpenCV and Python application for automotive spotlight image processing.



E

108 Appendix E. Graphical visualization of upgrades

E.8 Languages’ upgrade
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E.9 Configuration file’s upgrade
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Figure E.9 – Configuration file’s upgrade
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E.10 Status Bar’s upgrade
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Figure E.10 – Status Bar’s upgrade Javier Expósito Martínez



E.11. Check Updates’s upgrade 113

E

E.11 Check Updates’s upgrade
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Figure E.11 – Check Updates’s upgrade
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E.12 Upgrades of the classes Select_ROI and DUT_ROI.
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Figure E.12 – Upgrades of the classes Select_ROI and DUT_ROI.
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E.13 Upgrades of the classes Select_ROI and DUT_ROI.

EMCVideoViewThread

cameraViewUpdate
UpdateROItree
AddAlarm

EMCwindow
is_paused
running
cap
videoCropPoints
width_crop
height_crop
dimensions
step
TotalLum
KeyFrameDiff
KeyFrameDiffArray
alarms
groupROI_dict
ROI_dict
frequency
level
modulation

__init__

CalculateTotalDiffLuminosity

generateAlarm

addAlarm

createCropView

run

resume

pause

stop

getTotalLum

getKeyframeDiff

getAlarms

getkeyDiffArray

EMCLightAnalysis

VideoViewthread
original_[x/y][Keyframe/VideoSource]
separate[Keyframe/VideoSource]
SetKeyframePressed
Keyframe,Keyframe[Original/ROIs]
timer_gif
imgAlert
imageROIAlert
report
...

__init__

getCropPoints

create[Crop/Keyframe]View

viewCam

animationGIF

CloseAlert

generateReport

crearGraficakeyDiff

drawROIs

enter[Keyframe/VideoGroup]

move[KeyFrame/CameraView}

acoplar[Keyframe/VideoSource]Window

action_exit,closeEvent

...

GenerateReport

file
filename
keyFrame

DUTdatas
EMCdatas
alerts
indexROI
graphic_list
lista_threshold

__init__

createIndexROI

saveImage

generateReport

Figure E.13 – Upgrades of the class EMCLightAnalysis
OpenCV and Python application for automotive spotlight image processing.
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E.14 Toolbar’s upgrade
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Figure E.14 – Toolbar’s upgrade
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