
OpenCV and Python application
 for automotive

spotlight image processing

Degree in Computer Engineering

C
O

M
P
U

T
E
R

E
N

G
IN

E
E
R
IN

G
Ja

v
ie

r
E

xp
ó

st
io

 M
ar

tí
n

ez

2022/2023

Javier Expósito Martínez

Tutor: Andrés María Roldán Aranda

B
A
C
H

E
L
O

R

T
H

E
S
IS

Andrés María Roldán Aranda is the academic head of the
present project, and the student's tutor. He is a professor in the
Departament of Electronics and Computers Technologies at
University of Granada

Javier Expósito Martínez is the student in charge of the
implementation and configuration of the project, and with this
work he finishes his degree in Computer Engineering with a
specialisation in Information Technologies.

U
n
iv

ersityofGr
a

n

a
d
a

A
e
r
o
s

p

a c
e

G r o u p
G
r a

n
a
S
A
T

UNIVERSITY OF GRANADA

O
p

e
n

C
V

 a
n

d
 P

y
th

o
n

 a
p

p
li

ca
ti

o
n

 f
o

r
a

u
to

m
o

ti
v

e

sp
o

tl
ig

h
t

im
a

g
e

 p
ro

ce
ss

in
g

This document presents the work carried out for the installation,
configuration and use of the application developed in this final degree work,
whose objective is detect fluctuations in the perceived lighting of a spotlight
(either through a live recording camera or through video) following profiles
in different ROIs generating HTML reports.

Throughout this work, different phases of the software development are
presented: analysis and planning, listing of requirements, reverse
engineering, design, implementation, testing and evaluation of the
software and hardware to achieve the objective of the project. In addition
to a conclusion on my opinion about this project, future improvements
and the knowledge learned.

Printed in Granada, July 2023.

“OpenCV and Python application for automotive
spotlight image processing.”

BACHELOR’S DEGREE IN
COMPUTER ENGINEERING

Bachelor’s Thesis

“OpenCV and Python application for automotive
spotlight image processing.”

ACADEMIC COURSE: 2023/2024

Javier Expósito Martínez

BACHELOR’S DEGREE IN
COMPUTER ENGINEERING

“OpenCV and Python application for automotive
spotlight image processing.”

AUTHOR:

Javier Expósito Martínez

SUPERVISED BY:

Prof. Andrés Roldán Aranda

DEPARTMENT:

Electronics and Computer Technologies

Javier Expósito Martínez, 2023/2024

« 2023/2024 by Javier Expósito Martínez and Andrés M. Roldán Aranda:
“OpenCV and Python application for automotive spotlight image processing.”.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA
4.0) license.

This is a human-readable summary of (and not a substitute for) the license:

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you
or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict
others from doing anything the license permits.

To view a complete copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

“OpenCV and Python application for automotive spotlight image
processing.”

Javier Expósito Martínez

KEYWORDS:

Python, PyQt5,QtDesigner, DUT, EMC,ROI, GranaSAT, UGR, Functional Requirements, Non Functional
Requirements, Reverse engineering, Arduino, Thread, Framerate, Keyframe, jinja2, OpenCV, PyArmor,
CX-freeze, PyInstaller.

ABSTRACT:

The main objective of this Bachelor’s thesis is the development of an application that aims to detect
fluctuations in the perceived lighting of a spotlight (either through a live recording camera or through video)
following profiles in different ROIs generating HTML reports in base64 during the process. To achieve this,
the application consists of three main functionalities:

The first one consists of controlling the on and off of car lights using one or two Arduinos that are
configured to perform the task correctly.

The second one consists of performing a DUT test, through which we define the aforementioned ROIs.
The third one performs the test that controls the luminosity fluctuation and generates the report, called

EMC

This Bachelor’s thesis is part of one of the TFGs offered by the Aerospace Electronics group, GranaSAT.

The final goal of this project is to develop a functional, complete, and commercial application that
demonstrates the author’s knowledge and capabilities in analysis, design, and development.

“Aplicación OpenCV y Python para el procesado de imágenes de
focos de automoción”

Javier Expósito Martínez

PALABRAS CLAVE:

Python, PyQt5, PyQt5,QtDesigner, DUT, EMC,ROI, GranaSAT, UGR, Functional Requirements, Non
Functional Requirements, Reverse engineering, Arduino, Thread, Framerate, Keyframe, jinja2, OpenCV,
PyArmor, CX-freeze, PyInstaller.

RESUMEN:

El objetivo principal de este Trabajo de Fin de grado es el desarrollo de una apliación que pretende
detectar fluctuaciones en la iluminación percibida del foco(ya sea mediante una cámara que graba en vivo
al foco o mediante vídeo) siguiendo unos perfiles en las diferentes ROIs generando en el proceso informes
HTML en base64. Para cumplir esto, la aplicación consta de tres funcionalidades principales:

La primera consiste en el control del encendido y apagado de las luces de los atomóviles mediante uno o
dos arduinos que están configurados para llevar a cabo correctamente dicha tarea.

La segunda consiste el realizar un test DUT mediante el cual definimos las ROIs mencionadas
anteriormente.

La tercera realiza ahora si el test que controla la fluctición de luminosidad y genera el reporte,
denomicado EMC

Este Trabajo de fin de Grado forma parte de uno de los TFGs ofertados por el grupo de Electrónica
Aeroespacial,GranaSAT.

Este proyecto tiene como objetivo final el desarrollo de una aplicación funcional, completa y comercial
que demuestre los conocimientos y capacidades de análisis, diseño y desarrollo del autor.

“Not giving up is my best weapon”

Asta
Black clover, 2017.

Acknowledgements

When I was a child my mother always told me the saying "it is well-born to be grateful". [1], and
although we rarely stop to be thankful for things, today is a good day to do so:

Thank you to my family, because even though you can’t choose, I wouldn’t have chosen another. Thank
you for the patience, advice, support and love you have given me. I am proud to be your son and brother,
thank you for everything.

Thank you, Marina, because you are the nicest person I have ever met and I hope you will never fail me.
Thank you for understanding me and supporting me every day, because the good times, with you, are better
and the bad times are not so bad by your side. You are the best person, girlfriend and friend I could have.

Ivan, being neighbors was the best thing that happened to me in a long time, I wish I had had a last
summer to enjoy it as I would have liked.

Enrique and company, thanks for all the plans, it’s incredible to have so many aches and pains when we
only played videogames, but that’s the bad thing about laughing so much.

Thanks to all my friends, for making the classes so incredible, because giving technical drawing class at
home for the exam the next day was the best, I wish I could do it again. So many plans, so many crazy
adventures, you are the best, no doubt.

To my roommates throughout the years, Dani, Fred, Carmen and Felipe, without a doubt, you are not
only roommates, but also great friends that I will never forget. Because playing fornite or The Lost Vikings
are unique experiences with you.

Inés, I met you doing a job for FR, and what a joy to see that you are not only the most responsible to
work with, but you are also one of the best people I have ever met, grateful to be able to call you friend, my
only regret, not being able to see each other more.

Finally, although I could be thanking for days, I want to thank GranaSAT for all the help and for giving
me the opportunity to work on this project. And of course thanks to Andrés Roldán, for his attention,
direction and dedication, as well as his treatment towards me.

Thank you all for being part of my life.

Agradecimientos

De pequeño mi madre siempre me decía el refrán "es de bien nacidos, ser agradecidos" [1], y aunque
pocas veces nos paramos a agreder las cosas, hoy es un buen día para hacerlo:

Gracias a mi familia, porque aunque no se puede elegir, yo no habría escogido a otra. Gracias por la
paciencia, consejos, apoyo y amor que me habeis dado. Estoy orgulloso de ser vuestro hijo y hermano, gracias
por todo.

Gracias, Marina, porque eres la persona más buena que he conocido y espero que nunca me faltes. Gracias
por comprenderme y apoyarme todos los dias, porque los momentos buenos, contigo, son mejores y los malos,
no lo son tanto a tu lado. Eres la mejor persona, novia y amiga que podría tener.

Ivan, ser vecinos fue lo mejor que me pasó en mucho tiempo, ojala haber tenido un último verano para
disfrutarlo como me hubiese gustado.

Enrique y compañía, gracias por todos los planes, es increible tener tantas agujetas cuando solo hemos
jugado videojuegos, pero es lo malo de reir tanto.

Gracias a todos mis amigos, por hacer las clases tan increibles, porque dar clase de dibujo técnico en mi
casa para el examen del día siguiente era lo mejor, ojala poder repertirlo. Tantos planes, tantas aventuras
alocadas, sois los mejores, sin duda.

A mis compañeros de piso a lo largo de los años, Dani, Fred, Carmen y Felipe, sin duda alguna, no sois
solo compañeros, sino tambien grandes amigos que jamás olvidaré. Porque jugar a fornite o The Lost Vikings
son experiencias únicas con vosotros.

Inés, te conocí haciendo un trabajo para FR, y que alegría ver que no solo eres la más responsable para
trabajar, sino que tambíen eres de las mejores personas que he conocido, agradecido de poder llamarte amiga,
mi unico arrepentimiento, no poder vernos mas.

Por último, aunque podría estar agradeciendo durante días, dar las gracias a GranaSAT por toda la
ayuda y por darme la oportunidad de trabajar en este proyecto. Y por supuesto gracias a Andrés Roldán,
por su atención, dirección y dedicación, además de su trato hacia mi.

Muchas gracias a todos por formar parte de mi vida.

Contents

License vi

Defense authorization vii

Library deposit authorization ix

Abstract (English) xi

Abstract (Spanish) xiii

Dedication xv

Acknowledgements (English) xvii

Acknowledgements (Spanish) xix

Contents xxi

List of Figures xxvi

List of Tables xxxi

Glossary xxxiii

Acronyms xxxvi

1 Introduction 1

1.1 Motivation . 1

1.2 Project goals and objectives . 2

1.3 Project structure . 2

OpenCV and Python application for automotive spotlight image processing. xxi

0
xxii Contents

2 Analysis 4

2.1 Functional Requirements . 4

2.2 Non Functional Requirements . 5

2.3 Analysis . 6

2.4 Project tasks and organization . 6

3 Reverse engineering 9

3.1 What is reverse engineering? . 9

3.2 Original software’s analysis . 9

3.3 Main and secondary functions’ analysis . 12

3.4 How the application should be works? . 12

3.5 How did the application work? . 16

3.6 Conclusion . 16

4 System design 18

4.1 Applications’ directories hierarchy . 18

4.2 Applications’ structure . 20

4.3 Class diagram . 21

4.3.1 Application’s class diagram . 21

5 Implementation and configuration 23

5.1 Application’s upgrades . 23

5.1.1 Responsives interfaces . 23

5.1.2 Valeo Relay Shield detection and source code improvement 27

5.1.3 The application works without Valeo Relay Shields . 27

5.1.4 Source code upgrades . 27

5.1.5 New functionality: open a DUT test . 27

5.1.6 New functionality: open and clone a EMC test . 27

5.1.7 Data storage . 27

5.1.8 DUT test and EMC test forms’ improvement . 28

5.1.9 New languages in application . 28

5.1.10 Initial configuration file . 29

5.1.11 Create executable file . 29

Javier Expósito Martínez

Contents xxiii

0
5.1.12 Statusbar . 31

5.1.13 New functionality: Check updates . 31

5.1.14 Improvements of the classes SELECT ROI, DUT_ROI and EMCLightAnalysis 32

5.1.14.1 Improved graphical interface . 32

5.1.14.2 Higher video readout speed (frame rate) . 34

5.1.14.3 Generated reports’ improvement . 35

5.1.15 New function: open recent file . 39

5.1.16 Organize the code application’s code . 39

5.1.17 New toolbar . 40

5.1.18 Security . 40

6 Testing and validation. 41

6.1 Functional Requirements . 41

6.1.1 RF.1 . 41

6.1.2 RF.2 . 45

6.1.3 RF.3 . 48

6.1.4 RF.4 . 49

6.1.5 RF.5 . 50

6.1.6 RF.6 . 51

6.1.7 RF.7 . 52

6.1.8 RF.8 . 54

6.1.9 RF.9 . 55

6.1.10 RF.10 . 56

6.1.11 RF.11 . 57

6.1.12 RF.12 . 58

6.1.13 RF.13 . 62

6.1.14 RF.14 . 64

6.2 Non-Functional Requirements . 66

6.2.1 NRF.1 . 66

6.2.2 NRF.2 . 66

6.2.3 NRF.3 . 67

OpenCV and Python application for automotive spotlight image processing.

0
xxiv Contents

6.2.4 NRF.4 . 69

6.2.5 NRF.5 . 69

6.2.6 NRF.6 . 69

6.2.7 NRF.7 . 70

6.2.8 NRF.8 . 70

6.2.9 NRF.9 . 70

6.2.10 NRF.10 . 72

6.2.11 NRF.11 . 72

6.2.12 NRF.12 . 73

6.2.13 NRF.13 . 74

6.2.14 NRF.14 . 74

6.2.15 NRF.15 . 75

6.2.16 NRF.16 . 76

6.2.17 NRF.17 . 77

7 Conclusions and future lines 78

7.1 Conclusions . 78

7.2 Proposed future upgrades . 79

7.2.1 Improve source code . 79

7.2.2 Complete the application . 79

7.2.3 Improvement in the structure and control of the application. 79

7.3 Lessons learned . 81

Addenda 83

A How to install application 84

A.1 Developers’ installation . 84

A.2 Clients’ installation . 84

B Hardware Configuration: How to install and configure Valeo Relay Shields 85

C How to install and configure a Local Server 88

D Detailed application structure 89

Javier Expósito Martínez

Contents xxv

0
D.0.1 Valeo Relay Shield Detection Class Diagram . 89

D.0.2 MainWindow Class Diagram . 91

D.0.3 Functionalities’ Class Diagrams . 92

E Graphical visualization of upgrades 98

E.1 Interface Resposive . 99

E.2 Valeo Relay Shield Detection’s Upgrade . 100

E.3 Works without Valeo Relay Shields’ upgrade . 102

E.4 Source code upgrade . 104

E.5 Open DUT ’s upgrade . 105

E.6 Saved datas’ upgrade . 106

E.7 DUT and EMC Tests’ upgrade . 107

E.8 Languages’ upgrade . 108

E.9 Configuration file’s upgrade . 110

E.10 Status Bar’s upgrade . 112

E.11 Check Updates’s upgrade . 113

E.12 Upgrades of the classes Select_ROI and DUT_ROI. 115

E.13 Upgrades of the classes Select_ROI and DUT_ROI. 117

E.14 Toolbar’s upgrade . 118

Bibliography 121

OpenCV and Python application for automotive spotlight image processing.

List of Figures

1.1 The GranaSat logo. 2

2.1 Work Breakdown Structure of the project. 7

2.2 Gantt chart of the project. 8

3.1 Class map . 10

3.2 Class map 2 . 11

3.3 Light process . 13

3.4 DUT process . 14

3.5 EMC process . 15

3.6 Reverse engineering process . 17

4.1 Directories hierarchy . 19

4.2 Application structure . 20

4.3 Structure class . 21

4.4 Language structure . 22

5.1 DUT test interface before upgrade . 24

5.2 DUT test interface after upgrade . 25

5.3 EMC test interface before upgrade . 26

5.4 EMC test interface after upgrade . 26

5.5 XML Syntax . 28

5.6 Read XML document . 28

5.7 Executable file code . 30

5.8 Check updates function . 32

xxvi OpenCV and Python application for automotive spotlight image processing.

List of Figures xxvii

0
5.9 DUT interface before upgrade . 33

5.10 DUT interface after upgrade . 33

5.11 EMC analysis . 34

5.12 FrameRate . 35

5.13 Report DUT info . 36

5.14 Report BCI . 37

5.15 Report alerts . 38

5.16 Report KeyDiff . 39

5.17 Open recent file example . 39

5.18 Toolbar example . 40

6.1 New DUT: step1 . 41

6.2 New DUT: step2 . 42

6.3 New DUT: step3 . 43

6.4 New DUT: step4 . 43

6.5 New DUT: step5 . 44

6.6 New DUT: step6 . 44

6.7 New EMC: step1 . 45

6.8 New EMC: step2 . 45

6.9 New EMC: step3 . 46

6.10 New EMC: step4 . 46

6.11 New EMC: step5 . 47

6.12 New EMC: step6 . 47

6.13 Open DUT: step1 . 48

6.14 Open DUT: step2 . 48

6.15 Open EMC: step1 . 49

6.16 Open EMC: step2 . 49

6.17 Clone EMC: step1 . 50

6.18 Clone EMC: step2 . 50

6.19 Clone EMC: step3 . 51

6.20 Open recent DUT . 51

OpenCV and Python application for automotive spotlight image processing.

0
xxviii List of Figures

6.21 Open recent EMC . 52

6.22 Open light: step1 . 52

6.23 Open light: step1 . 53

6.24 Open light: step3 . 53

6.25 Open light: step4 . 54

6.26 White theme . 55

6.27 Dark theme . 55

6.28 Check about . 56

6.29 check updates . 56

6.30 Select languages: step1 . 57

6.31 Select languages: step2 . 57

6.32 new DUT from EMC: step1 . 58

6.33 new DUT from EMC: step2 . 59

6.34 new DUT from EMC: step3 . 60

6.35 new DUT from EMC: step4 . 60

6.36 new DUT from EMC: step5 . 61

6.37 new DUT from EMC: step6 . 61

6.38 New light configuration from EMC: step1 . 62

6.39 New light configuration from EMC: step2 . 63

6.40 New light configuration from EMC: step3 . 64

6.41 Generate report: step1 . 64

6.42 Generate report: step2 . 65

6.43 Arduino disconection . 66

6.44 Arduino disconection after its disconection . 67

6.45 Application without valeo Relay Shields . 68

6.46 Application without valeo Relay Shields 2 . 68

6.47 Statusbar: No arduino detect . 69

6.48 Statusbar: New DUT . 69

6.49 Statusbar: Error opening video . 69

6.50 Statusbar: No arduino detect . 70

6.51 Spotlights highlights . 71

Javier Expósito Martínez

List of Figures xxix

0
6.52 Video path . 72

6.53 Crop points in camera view . 73

6.54 ROIs in crop view . 73

6.55 Separate windows in DUT and EMC Tests . 74

6.56 show ROI in EMC . 75

6.57 show alert in EMC . 76

6.58 KeyframeDifference diagram . 77

7.1 Diagram class: Future Upgrade Structure . 80

B.1 How to set up valeo relay shields: step 1 . 85

B.2 How to set up valeo relay shields: step 2 . 86

B.3 How to set up valeo relay shields: step 3 . 86

B.4 How to set up valeo relay shields: step 4 . 87

D.1 Class diagram: valeo relay shield . 90

D.2 Diagram class: main window . 91

D.3 Diagram class: check and help . 92

D.4 Diagram class: Open light controller . 93

D.5 Class diagram: forms and video source . 94

D.6 Class diagram: SelectROI . 95

D.7 Class diagram: DUTROI . 96

D.8 Class diagram: EMC light analysis . 97

E.1 Class diagram: responsive interfaces . 99

E.2 Class diagram: arduino detection . 100

E.3 Class diagram: Works without Valeo relay shields . 102

E.4 Class diagram: source code . 104

E.5 Class diagram: open DUT . 105

E.6 Class diagram: saved datas . 106

E.7 Class diagram: forms . 107

E.8 Class diagram: languages . 109

E.9 Class diagram: configuration file . 110

OpenCV and Python application for automotive spotlight image processing.

0
xxx List of Figures

E.10 Class diagram: status bar . 112

E.11 Class diagram: check updates . 113

E.12 Class diagram: Select DUT and DUT ROI . 115

E.13 Class diagram: EMC light analysis . 117

E.14 Class diagram: toolbar . 118

Javier Expósito Martínez

List of Tables

1.1 Top-level objectives of this Bachelor Thesis. 2

2.1 Functional Requirements . 4

2.2 Non Functional Requirements . 5

6.1 RF.1 . 41

6.2 RF.2 . 45

6.3 RF.3 . 48

6.4 RF.4 . 49

6.5 RF.5 . 50

6.6 RF.6 . 51

6.7 RF.7 . 52

6.8 RF.8 . 54

6.9 RF.9 . 55

6.10 RF.10 . 56

6.11 RF.11 . 57

6.12 RF.12 . 58

6.13 RF.13 . 62

6.14 RF.14 . 64

6.15 NRF.1 . 66

6.16 NRF.2 . 66

6.17 NRF.3 . 67

6.18 NRF.4 . 69

6.19 NRF.5 . 69

OpenCV and Python application for automotive spotlight image processing. xxxi

0
xxxii List of Tables

6.20 NRF.6 . 69

6.21 NRF.7 . 70

6.22 NRF.8 . 70

6.23 NRF.9 . 70

6.24 NRF.10 . 72

6.25 NRF.11 . 72

6.26 NRF.12 . 73

6.27 NRF.13 . 74

6.28 NRF.14 . 74

6.29 NRF.15 . 75

6.30 NRF.16 . 76

6.31 NRF.17 . 77

Javier Expósito Martínez

Glossary

A | C | D | E | F | G | J | K | N | O | P | Q | R | T | V

A

Apache is a widely used open-source web server software. It is one of the most popular web servers in the
world and is known for its stability, security, and flexibility.

Arduino Is an open-source hardware and software platform designed for creating interactive projects and
prototypes. It consists of a microcontroller board that can be programmed to control various electronic
components and sensors. Arduino boards are widely used by hobbyists, students, and professionals for
a wide range of applications, including robotics, home automation, art installations, and more..

C

CX-freeze is a library to creates standalone executables from Python scripts, with the same performance,
is cross-platform and should work on any platform that Python itself works on.

D

DUT Refers to the device or component that is being tested in an experiment or evaluation.In our context,
is a test performed on the spotlight or lighting system being evaluated in the application..

E

EMC Refers to the ability of electronic devices or systems to function properly in their electromagnetic
environment without causing electromagnetic interference to other devices or systems. In our context
, the EMC test is a test performed to assess the ability of the spotlight or lighting system to function
properly in its electromagnetic environment .

F

Framerate number of individual frames or images displayed per second (fps). .

Functional Requirements refer to the specific tasks, actions, or behaviors that a software system or
application must perform to fulfill its intended purpose. .

G

Gantt chart is a management tool in which a list of tasks is outlined in a timeline. Color bars represent
working on tasks. The balloons indicate milestones, and dependencies between tasks are denoted with
arrows. .

OpenCV and Python application for automotive spotlight image processing. xxxiii

0
xxxiv Glossary

GranaSAT Electronics Aerospace Group. An academic project from the UGR. This organization has an
electronics laboratory where students from different degrees and education levels develop
multidisciplinary projects [2] .

J

jinja2 is a popular templating engine for Python. It is used for generating dynamic content and rendering
templates in web applications, but can also be used for other text-based generation tasks. .

K

Keyframe frame that defines a significant point in a sequence of frames. .

N

Non Functional Requirements refer to the qualities or attributes that define how a software system
should behave or perform. .

O

OpenCV OpenCV (Open Source Computer Vision) is an open-source library of computer vision and
image processing functions. It provides a comprehensive set of tools and algorithms for analyzing,
manipulating, and understanding visual data, including images and videos. .

P

PowerShell is a command-line shell and scripting language developed by Microsoft for automating
administrative tasks and managing system configurations. .

PyArmor is a tool and library used for protecting Python applications by obfuscating and encrypting
the source code. It is designed to add an additional layer of security to Python programs to prevent
unauthorized access and Reverse engineering. .

PyInstaller bundles a Python application and all its dependencies into a single package. The user can run
the packaged app without installing a Python interpreter or any modules. .

PyQt5 Python binding for the Qt framework, which is a powerful cross-platform application development
framework widely used for developing graphical user interfaces (GUIs). PyQt5 allows developers to
create desktop applications with a rich set of features and functionality. .

Python Is a high-level programming language known for its simplicity, readability, and versatility. .

Q

QtDesigner is a graphical user interface (GUI) design tool that is part of the Qt framework. It allows
developers to create and design user interfaces for Qt-based applications visually, without the need to
write code manually.. .

R

Reverse engineering Process through which it is attempted to understand through deductive reasoning
how an already designed device, process or system works or was designed .

T

Javier Expósito Martínez

Glossary xxxv

0
Thread Refers to a sequence of instructions that can be executed independently within a program. It is

a lightweight unit of execution that allows concurrent or parallel processing of tasks within a single
program. .

V

Valeo Relay Shield box composed of an Arduino map and relays..

Virtual Box is a virtualization software that allows you to create and run Virtual Machines on your
computer. .

Virtual Environment A virtual environment is a Python environment such that the Python interpreter,
libraries and scripts installed into it are isolated from those installed in other virtual environments,
and (by default) any libraries installed. .

OpenCV and Python application for automotive spotlight image processing.

Acronyms

P | R | U | V | W

P

PHP Hypertext Preprocessor.

R

ROI Region Of Interest.

U

UGR University of Granada.

V

VM Virtual Machine.

W

WBS Work Breakdown Structure.

WSL Windows Subsystem for Linux.

xxxvi OpenCV and Python application for automotive spotlight image processing.

Chapter 1

Introduction

This Bachelor Thesis shows the result of knowledge and skills acquired by the student in the Bachelor’s
Degree in Computer Engineering which has been tested during the development process of this project.

This document aims to reflect the engineering process behind the updating application development:
since reverse engineering to know how it works until the creation development of new functionalities and
improvements. The project’s main goal is to update and improve an already created application which
measures the fluctuations of automobile’s spotlights Through the performance of an EMC test.

This Final Degree Project is carried out in collaboration with the academic project GranaSAT. This is an
aerospace development group of the University of Granada (UGR), formed only by students from different
fields of Engineering, such as Aerospace Engineering, Electronic Engineering, Computer Engineering or
Telecommunications Engineering among others, under the supervision of Professor Dr. Andrés María Roldán
Aranda.

1.1 Motivation

The main reason for choosing this project was my growing interest in the field of image treatment and
processing arose as a result of taking electives subjects in my career which deal with this subject. Learning
about the process of creating and developing an application also sparked my interest, as I consider that
programming applications is one of the most important tasks expected of a programmer. However, I believe
that the career does not realistically prepare us to carry out this work.

Another reason for my interest was the Python programming language. Not only is it comfortable to
program with, but it is also a widely used language that is not outdated or obsolete, unlike other languages
I have had to learn.

Therefore, I thought that my bachelor’s thesis would not only help me to expand my current knowledge,
but also to give it realistic functionality in the professional world. I am pleased to think that the development
of this software has a practical application, since it is an application requested from a company. Thanks to
this project, I will finish my degree knowing that I can develop applications.

OpenCV and Python application for automotive spotlight image processing. 1

https://granasat.ugr.es/
https://directorio.ugr.es/static/PersonalUGR/*/show/5a2970babdfe69c2ebe79aa8c0d15e81
https://directorio.ugr.es/static/PersonalUGR/*/show/5a2970babdfe69c2ebe79aa8c0d15e81

1

2 Chapter 1. Introduction

U
n
iversityofGra

n

a
d
a

A
e
r
o
s p

a c
e

G r o u p
G r a n

a
S
A

T

Figure 1.1 – The GranaSAT logo.

1.2 Project goals and objectives

In this section outlines the main top-level non-technical goals of the project. Objectives listed in Table
1.1 must be understood as the author’s expected results in academic and professional terms of the execution
of this project.

Obj. Nº Description

Obj. 1
Successfully migrate and upgrade the application given to the learner: from
migrating libraries, to adding new functionalities, to essential functionality and
performance improvements.

Obj. 2 Acquire familiarity, skill and confidence with the professional software for the logic
and design of this application.

Obj. 3 To prove the capabilities of organizing and carrying out an engineering project.

Obj. 4 To document the entire process, which may be necessary during the development
itself or useful for the future of the project.

Obj. 5
To demonstrate the knowledge acquired during the Bachelor studies in Computer
Engineering, as well as the multidisciplinary abilities gathered during the
development of this Thesis.

Obj. 6 To participate into the GranaSAT laboratory work environment to consolidate the
training of the Bachelor’s Degree.

Obj. 7 To successfully conclude the Bachelor’s Degree with this Thesis.

Table 1.1 – Top-level objectives of this Bachelor Thesis.

1.3 Project structure

This document is divided into seven chapters and eight addenda. The chapters progressively expound all
the stages of the development of the proposed device, including the analysis of signals and of the competing
products, tackle specification, design, fabrication and validation tasks; and finalizes with the successful
completion of the product.

The chapters included in this report are:

1. Chapter 1: Introduction. This first chapter is intended as groundwork to the subject at hand, and
to show the objectives and motivations of this project. It includes some definitions, the state of the
art and an introduction to the engineering methodology followed throughout this project.

Javier Expósito Martínez

1.3. Project structure 3

1

2. Chapter 2:Analysis. Section presenting the different requirements necessary to achieve the project’s
purpose, the analysis and organization of the project.

3. Chapter 3: Reverse Engineering.

This chapter offers a process of Reverse Engineering in order to gain understanding of the advantages
and limitations of its technology so we can synthesize our own and superior product.

4. Chapter 4: System design. This chapter describes all the aspects of the system design.

5. Chapter 5: Implementation and configuration.

Section showing what aplication is,how it works, its installation and configuration along with the chosen
devices.

6. Chapter 6: Testing and validation. This sixth chapter details the process and testing of the
application and verification of the systems’ correct operation.

7. Chapter 7: Conclusion and future lines. Lastly, the final chapter brings to an end the main
contents of this Bachelor’s Thesis, and establishes some future lines of work that have emerged naturally
during this long development process.

On the other hand, the addenda is divided in:

A. Appendix A: How to install application.

B. Appendix B: How to install and configure Valeo Relay Shields.

C. Appendix C: How to install and configure a Local Server.

D. Appendix D: Detailed application structure.

E. Appendix E: Graphical visualization of improvements

OpenCV and Python application for automotive spotlight image processing.

Chapter 2

Analysis

The aim of this section is to present in its entirety the list of requirements that has been elaborated during
the numerous interviews with the client. The main purpose of this list is to define what updates and
improvements needs our application.
The client explained his ideas in mind which he wanted, to improve the application.This is followed by the
analysis and organization of the project as shown below.

2.1 Functional Requirements

Ref. Description

RF. 1 The software must allow the user to create a new DUT Test.

RF. 2 The software must allow the user to create a new EMC Test.

RF. 3 The software must allow the user to open a DUT file.

RF. 4 The software must allow the user to open an EMC file.

RF. 5 The software must allow the user to clone an EMC file.

RF. 6 The software must allow the user to open a recent DUT or EMC file.

RF. 7 The software must allow the user to configure car’s spotlights using one or two
Valeo Relay Shields, and save this light’s configuration.

RF. 8 The software must allow the user to change between white and black theme.

RF. 9 The software must allow the user check about additional information.

RF. 10 The software must allow the user check updates and update the application if it is
necessary.

RF. 11 The software must allow the user to select one of several languages: english, spanish
and french

RF. 12 The software must allow the user to create a DUT file since EMC test

RF. 13 The software must allow the user to create a light configuration file since EMC test

RF. 14 The software must allow the user to generate a report.

Table 2.1 – Functional Requirements

4 OpenCV and Python application for automotive spotlight image processing.

2.2. Non Functional Requirements 5

2

2.2 Non Functional Requirements

Ref. Description

NFR. 1 The software must be able to detect when an Valeo Relay Shield is disconnected,
at any time.

NFR. 2 The software must be able to reconnect an Valeo Relay Shield for a short period of
time since it was disconnected.

NFR. 3 The software must be able to work correctly without an Valeo Relay Shield
connected.

NFR. 4 The software must be able to save the last configuration which it had when it was
closed and starts with this.

NFR. 5 All software’s interfaces must be responsives.

NFR. 6 The software must has a status bar which reports user’s operations and application’s
status.

NFR. 7 The software must be save datas in xml files, unlike before, it was done in txt
format.

NFR. 8
In DUT and EMC tests’ forms, done’s bottoms must be disable when user delete
any required field. Done’s bottoms only must be enabled when all required fields
are filled.

NFR. 9 In DUT test’s forms, when the user selects a car spotlight, it should highlights.

NFR. 10 When the user open DUT of EMC file, in DUT and EMC tests’ forms, must appear
a new field which contains the video’s path what was used in test.

NFR. 11 When the user open DUT file,crop points must be show in window where the user
crop the image.

NFR. 12 When the user open DUT file, ROIs must be show in crop window and create the
ROIs.

NFR. 13
In DUT Test, in windows where the user crop the image and create the ROIs, the
software must be able to separate the camera view and zoom view, allowing to work
with two or even three screens.

NFR. 14 In EMC Test,when the analysis starts, if the user select a ROI, this must be highlight
in Keyframe view.

NFR. 15 In EMC Test,when the analysis starts, if the user select an alert, this must be
shown.

NFR. 16 The software must be able to add a graph which shows the lumination’s difference
between Keyframe and video for each ROI in the generated report.

NFR. 17 The software must read and process the videos efficiently and quickly.

Table 2.2 – Non Functional Requirements

OpenCV and Python application for automotive spotlight image processing.

2

6 Chapter 2. Analysis

2.3 Analysis

The first thought was about the programming language, continue with Python or look for a better
alternative. And after analyzing several programming languages such as C++ or Java, which are more
resource efficient than Python, it was decided to continue with this language because of the many advantages
it had. Not only its ease of use and ease of programming, in addition to a very high number of useful libraries,
but also because it already had very interesting tools from the previous version as PyQt5 for the interface
or CX-freeze to create the executable, which meant a shorter development time of the application and cost
savings (the latter to give maximum realism to the project).

Knowing what language to use, some useful tools and the client’s requirements, it is time to proceed to
organize the work throughout the course, as shown in the next section.(Project tasks and organization)

2.4 Project tasks and organization

A Work Breakdown Structure is a hierarchical decomposition of the tasks of a project in order to
accomplish the desired objectives. In figure 2.1 the Work Breakdown Structure of the project is presented.
This schema is product of the definition of system requirements in Chapter 2: Analysis and iteration with
the design process elaborated on Chapter 5: System design.

On the other hand, the figure 2.2 shows the Gantt chart of the project’s development process. A Gantt
chart is a management tool in which a list of tasks is outlined in a timeline. Color bars represent working
on tasks. The balloons indicate milestones, and dependencies between tasks are denoted with arrows.

It is important to point out that besides the tasks, meetings are also included since they were a
fundamental part of the development process. These meetings not only served as a form of reviewing
results and controlling the development, but they were essential to define the project requirements
(elaborated in chapter 2).

Javier Expósito Martínez

2.4.
P
roject

tasks
and

organization
7

2

EMC AUTOMOTIVE LIGHTING VALIDATION PLATFORM

TESTING AND
VALIDATIONREVERSE

ENGINEERING

Instalation

How the software
works

SOFTWARE DEVELOPMENT
PROJECT

REPORT AND
DEFENSE

Testing, verification
and debugging

Writing of this
Bachelor's Thesis

Defense
preparation

White/Dark Theme

Responsive
interfaces' creation

Improved Arduino
detection

The application
works without

Arduinos.

Open DUT Test

Open EMC Test

 Clone EMC Test

Improved data
storage

DUT Test Form 's
improvement

New languages
added

Initial configuration
file

Security

Improvement of the
class

EMCLightAnalysis

Generated reports'
improvement

Improved graphical
interface

Working on
separate screens

Higher video
readout speed

(frame rate)

Improved graphical
interface

Create executable
file

Status Bar's
improvement

 Check updates

Open recent files

Organize the code
application's code

New Tool Bar

Working on
separate screens

Higher video
readout speed

(frame rate)

Other upgrades

Source code's
improvement

White/Dark Theme

Responsive
interfaces' creation

Improved Arduino
detection

The application
works without

Arduinos.

Documentation
and Formation

GROUNDWORK

Documenting
interfaces

Documenting
source code

How the software
works

Instalation

REVERSE
ENGINEERING

TESTING AND
VALIDATION

Testing, verification
and debugging

PROJECT
REPORT AND

DEFENSE

Writing of this
Bachelor's Thesis

Defense
preparation

SOFTWARE DEVELOPMENT

New main
functions:

Improvement of the
class SELECT ROI

and DUT ROI
Other upgrades

Open DUT Test

Open EMC Test

 Clone EMC Test

 Check updates

Open recent files

Improved graphical
interface

Working on
separate screens

Higher video
readout speed

(frame rate)

Improvement of the
class

EMCLightAnalysis

Improved graphical
interface

Working on
separate screens

Higher video
readout speed

(frame rate)

Generated reports'
improvement

Source code's
improvement

White/Dark Theme

Responsive
interfaces' creation

Improved Arduino
detection

The application
works without

Arduinos.

Create executable
file

Status Bar's
improvement

Improved data
storage

DUT Test Form 's
improvement

New languages
added

Initial configuration
file

Security

New Tool Bar

Organize the code
application's code

Figure 2.1

O
penC

V
and

P
ython

application
for

autom
otive

spotlight
im

age
processing.

2

8
C
hapter

2.
A
nalysis

Task Name
October November January February March April May June

2

2022

MEETINGS AND PROJECT CONTROL
Meetings in GranaSAT's laboratory

SOFTWARE DEVELOPMENT

REVERSE ENGINEERING

GROUNDWORK
Documentation and Formation

TESTING AND VALIDATION

PROJECT REPORT AND DEFENSE
Writing of this Bachelor's Thesis

Defense preparation

Instalation
How the software works

Documenting interfaces
Documenting source code

Responsive interfaces' creation

Source code's improvement

Improved data storage

New languages added

Open recent files

Create executable file

Security

New main function: Check updates

New main function: Open DUT Test
New main function: Open EMC Test
New main function: Clone EMC Test

Initial configuration file

DUT Test Form 's improvement

Status Bar's improvement

Higher video readout speed (frame rate)
Working on separate screens

Organize the code application's code

Improved Arduino detection
The application works without Arduinos.

Generated reports' improvement

New Tool Bar

Testing, verification and debugging

December July

2023

1 2 3 4 2 3 41 2 3 41 2 41 3 1 1 1 1 1 1 3 4222 2 2 3 44444 3333

White/Dark Theme

Improved graphical interface

Improvement of the class DUT ROI
Improvement of the class SELECT ROI

Improvement of the class EMCLightAnalysis

Figure 2.2 – Gantt chart of the project.

Javier
E
xpósito

M
artínez

Chapter 3

Reverse engineering

3.1 What is reverse engineering?

Reverse engineering: Process through which it is attempted to understand through deductive reasoning
how an already designed device, process or system works or was designed.

The limited usefulness of the comments in the source code of the application and the non-existent
documentation about its operation has made Reverse engineering plays a fundamental role in the
development of this application. It must be remembered that the development of this application is based
on an older version of the same and I had not previously worked on the application.

3.2 Original software’s analysis

The first step was understand how to install the application, because the software was a .zip file which
contained a huge files. Some of them showed errors, empty folders, junk files, etc.

The only useful file for figuring out how to install the software was the requirements.txt file. This file
contains the libraries and the version of these libraries that are used by the application. So after finding this
file, I created a Virtual Environment and installed the libraries.

The installation process also gave error due to the incompatibility of versions of some libraries, but after
updating them the software started.

After starting the software, I started by analyzing the files and the source code. To begin with there
were three main.py files, which was not logical since there should be only one because this file (main.py) is
the one that starts the whole application.

After some analysis, one of the main.py files was discarded and I proceeded to analyze the other two
more deeply. For this, I created two simple diagrams that show the software’s flow, put another way, classes’
calls to others.

OpenCV and Python application for automotive spotlight image processing. 9

3

10 Chapter 3. Reverse engineering

MAIN

LightSelectionData_Widget

AutoDetection

DefineEMCTest

AutoDetectionWindow

About_Help_Window

NewEMCData_Widget

MainWindow ConnectionError

valeoRelayShield_enterName1/2

LightControl

AddNameWindow
LightConfigIncompatibility

Video_Source_Widget

SelectROI

ErrorOpeningVideo AboutDefineROI

DUT_ROI_window

ModifyROINameAddROIGroupModifyThresholdValue

Figure 3.1 – The class map of first main.py

Javier Expósito Martínez

3.2. Original software’s analysis 11

3

MAIN
AutoDetectionWindow AutoDetection

MainWindow ConnectionError

About_Help_Window

LightSelectionData_Widget

DefineEMCTest valeoRelayShield_enterName1/2

Video_Source_Widget

LightControlLightConfigIncompatibility

AddNameWindow

EMCLightAnalysisSelectROI

ErrorOpeningVideo AboutDefineROI

DUT_ROI_window

ModifyROINameAddROIGroupModifyThresholdValue

Figure 3.2 – The class map of second main.py

OpenCV and Python application for automotive spotlight image processing.

3

12 Chapter 3. Reverse engineering

After seeing both diagrams and from my point of view, I considered that the main.py more suitable was
the one whose diagram is more organized, the one in the second diagram to be exact.

3.3 Main and secondary functions’ analysis

Through the exhaustive analysis of the source code and test the application, I identified several functions,
which I will divide into :

• Primary:

– Open Light Controller: To perform the configuration of the lights by means of the Valeo Relay
Shields.

– Create new DUT Test: To create a new DUT Test.

– Create new EMC test: To create a new EMC Test.

– Open new DUT Test: To open a saved DUT file.

– Open new EMC Test: To open a saved EMC file.

• Secondary:

– Clone EMC Test: To clone EMC Test saved file.

– Select Theme:To select theme (light or dark).

– Help about: To show contact window.

– Check Updates: To check if there is a new version and if so, to update the software.

3.4 How the application should be works?

After identifying the main and secondary functions, I proceeded to relate the different classes to the
previously mentioned functionalities, and show how the whole application works.

The first class is Main, which simply starts the application. Then we have the classes
AutoDetectionWindow that shows the detected Valeo Relay Shields and AutoDetection that is in
charge of the detection of these.

The next classes to be called are: connectionError, to show an error window if there are no Valeo
Relay Shields connected or if they are disconnected at any time and the mainWindow class that shows the
main window of the application.

In the main window, there are three main functions that call other classes:

Javier Expósito Martínez

3.4. How the application should be works? 13

3

• Open Light Controller: To set up a save file with the status (on or off) of the car headlights. The
process is as follows: The class ValeoRelayShieldName1 or ValeoRelayShieldName2 is called
depending on the number of connected Valeo Relay Shields. These classes only show a window to
name the tabs of the next window that will appear, namely the lights configuration window, the
LightControl class. In addition this class calls the AddNameWindow class, which displays a
window to add another type of headlight that the user wants.

MAIN
AutoDetectionWindow AutoDetection

MainWindow ConnectionError

About_Help_Window

LightSelectionData_Widget

DefineEMCTest valeoRelayShield_enterName1/2

Video_Source_Widget

LightControlLightConfigIncompatibility

AddNameWindow

EMCLightAnalysisSelectROI

ErrorOpeningVideo AboutDefineROI

DUT_ROI_window

ModifyROINameAddROIGroupModifyThresholdValue

Figure 3.3 – Create Light Configuration Process

OpenCV and Python application for automotive spotlight image processing.

3

14 Chapter 3. Reverse engineering

• Create/Open DUT Test: Subjects a car headlight to a DUT test. To do this, the
LightSelectionDataWinget class is called, which displays a window with a form about the car
headlight data and the test.

After filling out the form completely, VideoSourceWidget displays a window to choose between
using a camera to test it or an already recorded video.

SelectROI then displays a window that allows you to crop the video using a view of the video, and
an auxiliary view of the video but with a zoom factor applied. Then after doing this, DutROI is in
charge of drawing the ROIS showing a window similar to SelectROI, being able to change its color,
threshold value, color, add custom ROI groups... by means of the classes ModifyThresholdValue,
AddROIGroup and ModifyROIName. Additionally ErrorOpeningVideo will show if there has
been any error when opening the video and AboutDefineROI will show a help window on how to
define an ROI.

MAIN
AutoDetectionWindow AutoDetection

MainWindow ConnectionError

About_Help_Window

LightSelectionData_Widget

DefineEMCTest valeoRelayShield_enterName1/2

Video_Source_Widget

LightControlLightConfigIncompatibility

AddNameWindow

EMCLightAnalysisSelectROI

ErrorOpeningVideo AboutDefineROI

DUT_ROI_window

ModifyROINameAddROIGroupModifyThresholdValue

Figure 3.4 – Create DUT Test Process

Javier Expósito Martínez

3.4. How the application should be works? 15

3

• Create/Open EMC Test: Subjects a car headlight to a EMC test. This task is performed by the
following classes: DefineEMCTest displays a window with a form to be filled in with all necessary
data. It also allows to create/open a DUT Test, and to create/open an automotive light
configuration. The class lightConfigIncompatibility will show an error if we have only one Valeo
Relay Shield connected and we try to open a light configuration file that uses two Valeo Relay
Shields.Similarly, in DUT Test, the VideoSourceWidget class is called, and after selecting an
option, the EMCLightAnalysis class will perform the EMC test and generate the report.

MAIN
AutoDetectionWindow AutoDetection

MainWindow ConnectionError

About_Help_Window

LightSelectionData_Widget

DefineEMCTest valeoRelayShield_enterName1/2

Video_Source_Widget

LightControlLightConfigIncompatibility

AddNameWindow

EMCLightAnalysisSelectROI

ErrorOpeningVideo AboutDefineROI

DUT_ROI_window

ModifyROINameAddROIGroupModifyThresholdValue

Figure 3.5 – Create EMC Test Process

OpenCV and Python application for automotive spotlight image processing.

3

16 Chapter 3. Reverse engineering

In addition the AboutHelpWindow class displays a contact window and information about GranaSAT
and the application developer.

3.5 How did the application work?

After explaining how the application should work, I will now describe how the original application
functioned before working on it.

• Select Window > WhiteTheme caused the application to abort.
• Help > check updates did not work as it was not implemented.
• Tools > OpenLightController and File > New EMC test did not work without the Valeo Relay
Shield connected, resulting in the application aborting.

• File > Open > Dut, File > Open > EMC, and File > Clone > EMC did not work as they
were not implemented.

Upon connecting the Valeo Relay Shield, the functionalities Tools > OpenLightController and File
> New EMC test did work. However, the latter, File > New EMC test had issues such as opening an
EMC file causing the application to abort, and "create new Light Configuration" did not work as it was
not implemented. Additionally, some interfaces, due to their non-responsive nature, had display problems.

3.6 Conclusion

To summarize, I will show the whole process graphically:

Javier Expósito Martínez

3.6. Conclusion 17

3

REVERSE ENGINEERING

Organize and analyze all files

Find requirements.txt

Installing a virtual environment with the requirement.txt
libraries Delete errors

Activate the virtual environment and run the application

Analyze source code Test application

Obtaining application's functions and
how application works

Figure 3.6 – Reverse engineering Process

OpenCV and Python application for automotive spotlight image processing.

Chapter 4

System design

In the following section, once all the comparisons and decisions from the analysis phase have been made, I’m
going to explain in more detail the design of the application, as well as its directories hierarchy.

4.1 Applications’ directories hierarchy

Starting with the directories’ hierarchy of the application, it is organized into different folders and files.
To summarize, the application is divided into the following:

• Files:

– main.py, which starts the application.

– configuration.xml, which contains the initial configuration of the application.

• Secondary:

– reports, which contains the HTML template for generating reports.

– images, which contains various images related to the application and others.

– languages, which contains different language files.

– datas, which stores saved files and videos.

– gui, which contains all files related to the graphical user interface.

– src, which holds all the application code that is used by main.py (this folder is not present in the
client-installed application for security reasons).

To display the structure more clearly, here it is shown graphically:

18 OpenCV and Python application for automotive spotlight image processing.

4.1.
A
pplications’directories

hierarchy
19

4

Application

Reports Images Languages Datas gui src main.py configuration.xml

template_v2.html Car

granaSat

Image Files

Icons

Languages

Logo

Logos

Valeo

spanish.xml

french.xml

readme.txt

english.xml

Image Files

Image Files

Image Files

Image Files

Image Files

Image Files

dut

dut_images

DUT saved
files

emc_test

lights

reports

videos

DUT images

EMC saved files

Light
configuration
saved files

Report files

Video files

dut

DUT_roisV2.ui

select_dut_roiV2.ui

Others .ui files

connection_error_2.ui

error

emc

light_analysis_window_v1.ui

help
about_help_v1.ui
check_updates.ui

light_settings_v1.ui
light_selection_data_widget_v3.ui

languages.ui

Main
MainWindow.ui

serial port

ArduinoShield_AutoDetection_Window.ui

autodetection_window.ui

Others .ui files

video

video_source_widget_v1.ui

connection_error_v7.0.ui

newEMC_data_widget_v4.ui

define_roi_help.ui

Other .ui files

help
about_help_v1.ui
check_updates.ui
define_roi_help.ui

light_selection

Languages

CheckUpdates
 checkUpdates.py

DownloadThread.py

auto_detection.py

auto_detection_window.py

DetectionWindow

select_roi.py

dut_roi.py

DUT

Others .py files

define_emc_test.py

emc_light_analysis.py

EMC

generateReport.py

Others .py files

connection_error.py

error_opening_video.py

Errors

light_configuration_incompatibility.py
Help

about_define_roi_help.py

about_help_window.py

Errors
connection_error.py

error_opening_video.py

OpenLightController
add_name_window.py

light_control_V4.py

enter_valeoRelayShield_name.py

OpenLightController

GUI.py files
GUIGUI

CSS files
styleSheets

languages.py

mainWindow.py

video_source_widget.py

Figure 4.1 – Application’s Directorieshierarchy

O
penC

V
and

P
ython

application
for

autom
otive

spotlight
im

age
processing.

4

20 Chapter 4. System design

4.2 Applications’ structure

For the development of the project, figure 4.2 has been followed, where on the right side, the connection of
the application with the GranaSAT server is shown, to update the application version if necessary (whenever
there is an internet connection). On the left side, the execution of DUT and EMC tests is shown, either
through a video file or by using a camera connected to the application. At the same time, the Valeo Relay
Shield hardware is connected to the computer to control the lighting of the spotlights.

Actor

Internet

Open Light Controller Check Updates

Performing DUT/EMC testing using the
camera.

Performing DUT/EMC testing using a
video file

Figure 4.2 – Application’s Structure

Javier Expósito Martínez

4.3. Class diagram 21

4

4.3 Class diagram

To conclude this chapter, it proceeds to show the complete class diagram of the application divided into
parts due to its extension and high complexity, thus showing the final structure of the application. Below I
only put the main diagram showing the connection between classes. The class diagrams detailing each part
of the application are in the appendix(Appendix D: Detailed application structure.).

4.3.1 Application’s class diagram

It proceeds to show two diagrams where all the classes are shown, joined by arrows to show the class
calls and the communication of some classes with others.

OpenAutomotiveLightingValidationPlatform

AutoDetectionWindowAutoDetection

mainWindow

languages

ConnectionError ConnectionError_NoRelays

About_Help_Window

CheckUpdates

DownloadThread

valeoRelayShield_enterName_1/2

LightControl

AddNameWindow

DefineEMCTest

Video_Source_Widget

LightSelectionData_Widget

OpenHelpWindow_LightSelection

ErrorOpeningVideo

EMCVideoViewThread GenerateReport

SelectROI

AboutDefineROI DUT_ROI_Window CameraViewThreadZoomViewThread

ZoomViewThread CameraViewThreadAddROIGroup ModifyThresholdValue ModifyROIName

IllegalValue

EMCLightAnalysisEMCLightAnalysis

GenerateReport

Figure 4.3 – Application’s diagram class

OpenCV and Python application for automotive spotlight image processing.

4

22 Chapter 4. System design

AutoDetection

mainWindow

languages

languages

doc

__init__

loadLanguage

english

spanish

french

CheckUpdates

valeoRelayShield_enterName_1/2

LightControl

AddNameWindow

DefineEMCTest

LightSelectionData_Widget

Video_Source_Widget

SelectROI

AboutDefineROI

DUT_ROI_Window

AddROIGroup

ModifyThresholdValue

IllegalValue

ModifyROIName

EMCLightAnalysis

ErrorOpeningVideo

Figure 4.4 – Application’s diagram class2

Javier Expósito Martínez

Chapter 5

Implementation and configuration

In this chapter, I will talk in detail about the entire configuration of the application, as well as the
modifications and upgrades made to the project assigned to me in September.

5.1 Application’s upgrades

Once the Valeo Relay Shield was configured and connected, after the Reverse engineering process, It
started to fix the bugs in the application and to make the upgrades requested by the customer. In this
section, therefore, the upgrades made to the application will be explained, and these changes will be visually
displayed in the section Appendix E: Graphical visualization of upgrades

5.1.1 Responsives interfaces

The application used interfaces that could not be resized, causing problems when the monitor size was
not large enough to display the entire window. Therefore, the first improvement to be implemented was
the creation of responsive interfaces and in some of them, even the possibility of scrolling to display them
completely.There were also some other changes, especially in the main window.

On the main window interface, the buttons that contained the main actions performed by the application
were removed, as well as some other unusable elements. An error in the AutoDetection Window class was
also eliminated., which consisted in creating a second mainWindow just before displaying it, thus avoiding
the display of messages such as whether the Valeo Relay Shield were connected or not.

For the rest of the interfaces as well as for the main window, the resizeWindow() method that set a fixed
window size was eliminated.

To create the responsive interfaces, we used QtDesigner, a tool that comes with the installation of the
application in developer mode. To make an interface responsive, the grid layout, horizontal layout and
vertical layout elements are used, in addition to giving a minimum and maximum size to each element.

In addition, as mentioned above, scrolling capability has also been added to some interfaces, specifically
the two interfaces that are the forms for the DUT and EMC tests. This possibility is done by adding the
scroll area element, and inside the rest of the elements so that if the size of the elements is bigger than the
size of the window, the scroll bars appear. A new field was also added to show in case of opening a file,
which video file was used to make the video.

The images below are examples of the difference between before and after this improvement.

OpenCV and Python application for automotive spotlight image processing. 23

5

24 Chapter 5. Implementation and configuration

Figure 5.1 – Before

Javier Expósito Martínez

5.1. Application’s upgrades 25

5

Figure 5.2 – After

OpenCV and Python application for automotive spotlight image processing.

5

26 Chapter 5. Implementation and configuration

Figure 5.3 – Before

Figure 5.4 – After

Javier Expósito Martínez

5.1. Application’s upgrades 27

5

5.1.2 Valeo Relay Shield detection and source code improvement

The next step was to improve the detection of the Valeo Relay Shields. All the code was restructured
and separated into methods, easier to understand and control. In addition, errors such as the same name of
two different variables or hidden windows were corrected.

In addition, an improvement was implemented so that the Valeo Relay Shield can be detected a few
seconds after the application starts or when it is disconnected, unlike before, when the Valeo Relay Shield
had to be connected before the application started.

5.1.3 The application works without Valeo Relay Shields

The Valeo Relay Shields in the application are used to control the lights of the car headlights, and thus
record a video testing these. However, if we already have the video recorded, there is no need to have the
Valeo Relay Shields connected and they are completely useless. So why do they always have to be connected
if in most situations they are not even used?

After this improvement, the application works with or without connected Valeo Relay Shields. Although
it warns you with alerts that the Valeo Relay Shields have not been connected, you can still work perfectly
with the application.

5.1.4 Source code upgrades

In the same way that the code was improved in Valeo Relay Shields detection, other important classes
were redesigned by adding and removing attributes, adding new methods to simplify and control the code,
etc.

5.1.5 New functionality: open a DUT test

The possibility to open a DUT test, store the data, and perform the test without any issues has been
added to the application. Changes were made to resolve crashes and forced closures in Select ROI and DUT
ROI. Code was added to ensure that the camera does not remain open when closing the window unexpectedly
after selecting the camera option. Additionally, a new menu with actions such as tools, zoom, help, etc. has
been added.

5.1.6 New functionality: open and clone a EMC test

The possibility to open a EMC test, store the data, and perform the test without any issues has been
added to the application. The entire logic behind an EMC analysis has been developed because the class was
empty with no functionality apart from displaying the window. Therefore, not only has the entire class been
programmed to perform the necessary calculations, but also a completely new class called "generateReport"
has been created to generate a report based on the results.In addition, a menu with actions such as "revert
alerts," "generate report," etc., has been added.

5.1.7 Data storage

The old version of the application stored data in files with a .txt format. This format, besides being very
primitive, presents a problem: it is not scalable and can easily lead to errors. For example, if you change
a line by pressing enter, it could cause a failure. This makes it tedious to modify the file in the future if
additional data needs to be stored at the beginning, and it can generate errors. Therefore, the data is now

OpenCV and Python application for automotive spotlight image processing.

5

28 Chapter 5. Implementation and configuration

stored in files with the .xml format, where we access the content using tags. This is a simple, easy, and
scalable solution.

The syntax of an XML file is simple:

Figure 5.5 – XML syntax

To read these files, it use "from xml.dom import minidom," which allows read the data like the following
picture:

Figure 5.6 – Read XML document

5.1.8 DUT test and EMC test forms’ improvement

Both for the DUT test form and the EMC test, in order to press the "Done" button, all fields must be
filled out completely. If any field is deleted, the "Done" button becomes disabled (previously this was not
the case, allowing empty fields to be submitted).

Additionally, for the DUT test, now when you select a focus, it turns a light red color, making it easier
for the client to know which headlamp or rearlamp is being selected. There is also a help menu that displays
two images, where the focuses are connected to their names with arrows.

5.1.9 New languages in application

A new menu has been added, with a new action, "Languages -> Select languages," which displays a
window where we can select the language of the application: English, French, and Spanish.

Javier Expósito Martínez

5.1. Application’s upgrades 29

5

For this enhancement, three options were considered:

1. Using .txt files to store words in different languages and reading the appropriate file based on the
selected language. However, this solution was quickly dismissed because it is not scalable and prone
to many errors, as mentioned in the section discussing upgrades in file saving.

2. Use an existing library, which functions as a translator. It had clear advantages, such as not
requiring language files and being much more flexible. However, it significantly decreased the
application’s performance, leading to a state of unresponsiveness. Additionally, it required an
internet connection. Further research led to the discovery of the "argostranslate" library, which
resolved the internet connection issue, but its performance was even worse.

3. Using XML language files.This solution sacrificed some adaptability compared to the second option
but greatly improved performance, almost on par with the first option. Use XML language files, allows
access through tags instead of positions in the code. This allows for future changes in language files
without affecting the existing code.

To provide a more visual analysis, we created a table:

Option Scalability Flexibility Performance Internet Conection

Use .txt language files Poor No Good Not required

Use a translator library Excellent Yes Poor Required

Use .xml language files Sí Good Excellent Not required

5.1.10 Initial configuration file

A file (.xml) has been created that stores the configuration (theme, size of the main window and language
currently used) set in the application at the moment we close the main window and that is used to, the next
time we start the application, have the same as when it was closed.

5.1.11 Create executable file

To create the executable file and installer, a search for alternatives to CX-freeze, the library used to
generate the executable in the previous version of the application, was undertaken. So after searching it
found the PyInstaller library where an executable was created in a very simple way with the command:
pyinstaller –onefile –windowed –name=ValeoApp main.py
where:

• –onefile: generates only an executable that includes everything needed to run it, and not a folder of
files.

• –windowed: windowed not console application.
• –name:name of the app.
• main.py:code to get the executable from

However, there were many problems about how to import the libraries and dependencies of the
application, being that the idea that this library was simpler than CX-freeze discarded and therefore
discarded.

So after this, I investigated about the CX-freeze library, library that is better in terms of speed and its
use is more extended than PyInstaller.

To create the installer of an application with CX-freeze two things are needed, once the library has been
installed: the file containing all the configuration to create the installer (setup3.py) and execute the Python

OpenCV and Python application for automotive spotlight image processing.

5

30 Chapter 5. Implementation and configuration

command Python setup3.py bdist_msi. Running this command will create both the installer and the
application executable.

As for the setup3.py file, an image with its contents is shown below:

Figure 5.7 – Setup3.py’s content

where:

• import sys: Imports the sys module, which provides access to Python interpreter-specific variables
and functions.

• from cx_Freeze import setup, Executable: Imports the setup and Executable functions of the
cx_Freeze module. These functions are used to configure and create executables of the installation
package.

• import os:Imports the os module, which provides functions to interact with the operating system.
• import tkinter:Imports the tkinter module, which is used to create graphical user interfaces.
• data_options="Shortcut": [...]: Defines the options for creating desktop shortcuts.
• bdist_msi_options=...:Defines options for the creation of the installation package in MSI
(Microsoft Installer) format. These options include the configuration of directories, update codes,
initial destination directory and more.

• base = None:Initializes the base variable as None.
• if sys.platform == "win32": base = "Win32GUI":Checks if the operating system on which the
script is running is Windows. If so, set the value of ‘base‘ to "Win32GUI". This indicates that the
GUI should be used when running the program.

Javier Expósito Martínez

5.1. Application’s upgrades 31

5

• executables = [...]:Defines the program executables to be included in the installation package. In this
case, a file named "main.py" is specified as the main executable, along with some additional options
such as the icon, copyright and trademarks.

• include_files = [...]:Defines the files and directories to be included in the installation
package.Include in this section the .dll files are important because without them the executable
cannot make use of the libraries it needs.

These .dll files were obtained by searching for them in the local files of the computer, namely:

– tcl86t.dll and tk86t.dll were found in ’C:\Users\javie\anaconda3\envs\TFG\Library\bin’.

– zlib.dll was located at ’C:\Users\javie\anaconda3\envsTFG’

– PyQt5 .dll can be found in ’C:\Users\javie\anaconda3\envs\TFG\Lib\site-packages\PyQt5
\Qt5\bin

– _pytransform.dll is in the folder generated by obfuscating the code (to be explained later,
specifically in the section on security enhancement)

These files and directories will be copied to the installation directory during installation.
• build_exe_options = ...: Defines the build options for the run package. These options include the

required Python packages (libraries), the files and directories to be included, among others.
• setup(...): Calls the setup function of cx_Freeze to configure the installation package. The project

name, version, description and author are specified, along with build options and installation options
in MSI format.

• executables=executables:Specifies the executables to include in the installation package.

5.1.12 Statusbar

A status bar has been created for the mainWindow class as well as for SelectROI, DUT_ROI_window
and EMCLightAnalysis. It displays messages about the status of the application, the selected action and
more information. In addition, depending on the type of message it will change color, that is, if it is an error
message, the status bar changes to red, if it is an action it changes to white, etc.

In addition the status bar of the main window, not only shows the above, but also the current date, which
is updated every second thanks to a timer and also shows a progress bar about the process being carried out
(Test DUT or Test EMC).

5.1.13 New functionality: Check updates

In this version, the new functionality "Check Updates" has been added, which shows whether the version
of the application installed by the client is the current version or an older one. Whether there is no connection
available, the application is already installed, or an update is required, the corresponding window and text
informing the client are displayed. If an update is necessary, pressing the download button will download the
installer with the latest version of the browser, and the download process can be observed with a progress
bar in the status bar of the mainWindow class.

To develop this functionality, we need to make changes in two parts: the client and the server.

Regarding the server part, the "version.php" file had to be edited and re-uploaded to the server. Editing
it is straightforward; you just need to change the last line that prints the version to the current version of
the application. After that, it was re-uploaded to the server.

However, to perform all the necessary tests, a local server was created to function as the real server. How

OpenCV and Python application for automotive spotlight image processing.

5

32 Chapter 5. Implementation and configuration

to install a local server is explained in Appendix: How to install a Local Server .

Regarding the client part, the code changes are shown in more detail in the corresponding section.
However, it’s worth mentioning the use of a Thread to perform the installer download process. This is
because when the download is done in the main Thread, only the progress bar gets updated, but the rest of
the application remains blocked until the process finishes. By using a Thread, when the download button
is pressed, the Thread takes care of downloading the installer and updating the download progress bar,
allowing the client to continue performing other actions in the application. Therefore, this is the graphical
representation of the "Check Updates" functionality:

CheckUpdates DownloadThreadmainWindow

Main thread Download thread

Figure 5.8 – Check updates functionality

5.1.14 Improvements of the classes SELECT ROI, DUT_ROI and EMCLightAnalysis

5.1.14.1 Improved graphical interface

The interfaces of the Select_ROI, DUT_ROI and EMCLightAnalysis classes have been improved so that
now the camera and zoom view, or the Keyframe and video view can be decoupled and coupled allowing
to work on one, two or even three screens, allowing also the resizing of each of the windows without any
problem (ROIs are drawn by joining the points whose coordinates are calculated taking into account the
image resolution, and recalculated in case the resolution changes). Unlike the previous version, the camera
and zoom windows have a very small and fixed size, generating low quality images, problems with the
visualization of the views, etc.

To undock the windows, it is as simple as right clicking with the mouse and dragging, while to dock the
windows just close them.

In addition the mouse pointer changes showing graphically when you can paint an ROI, when you can
undock a window or when you can do nothing. Now I proceed to show the difference between the previous
interface and the current one:

Javier Expósito Martínez

5.1. Application’s upgrades 33

5
Figure 5.9 – Before

Figure 5.10 – After

OpenCV and Python application for automotive spotlight image processing.

5

34 Chapter 5. Implementation and configuration

Also now, if you open a file, the crop points and ROIs that were drawn when the test we have opened is
performed are displayed in the interface.

In EMC Analysis, when you select an ROI, it is now displayed in the Keyframe view. Additionally, when
you select an alert, a pop-up window appears showing which alert it is as shown below:

Figure 5.11 – show ROIs and alerts in EMC analysis

5.1.14.2 Higher video readout speed (frame rate)

Another important aspect was optimizing performance and improving efficiency, as the customer’s
recorded videos have a high Framerate (one hundred frames/s). This fact was extremely important because
if the customer wants to analyze a complete video, this analysis should take as little time as possible. For
example, before implementing this improvement, a video with a duration of approximately six seconds took
about sixty seconds to process the entire video, ten times slower. After this improvement, the same video
takes between ten and thirteen seconds to be fully analyzed, representing an 83.33% improvement.

To achieve this goal, the first step has been to optimize the entire code by deleting unnecessary parts
and simplifying it, avoiding the use of nested loops as much as possible.

However, the main change that has had the greatest impact on performance is the utilization of Threads,
allowing certain parts of the code to be executed simultaneously. In summary, we have the main Thread,
which carries out the overall functioning of the application, and two additional Threads, one responsible for
the logic behind the camera view and the other for the zoom view. This way, all the processing is done by
the Threads in a synchronized manner, using a queue, similar to the producer-consumer problem. Now, we
proceed to graphically illustrate the process of reading and processing the video:

Javier Expósito Martínez

5.1. Application’s upgrades 35

5

Main thread Camera thread Zoom thread

Start

Read a frame

draw crop_points/ROIs

Send frame
update cam view

Send frame(produce)

Start

zoom in frame
Send frame

update zoom view
repeat

repeat

read frame (consume)Wait to consume the frame.

Wait to receive the frame.

Figure 5.12 – Creation of views using Threads

5.1.14.3 Generated reports’ improvement

In EMC analysis,a new class, generateReport, has been created for the creation of reports after EMC
analysis and a new template used by jinja2 to generate a report has been created. Additionally the report
now has a section where the graphs containing the brightness values corresponding to each ROI during the
whole test are displayed. You can visualize at what moment the brightness value triggered the alert or, in
case it did not trigger the alert, how close it came to triggering it. An example of a current report is shown
below in the following pictures:

OpenCV and Python application for automotive spotlight image processing.

5

36 Chapter 5. Implementation and configuration

Figure 5.13 – Report: DUT information

Javier Expósito Martínez

5.1. Application’s upgrades 37

5

Figure 5.14 – Report: BCI information

OpenCV and Python application for automotive spotlight image processing.

5

38 Chapter 5. Implementation and configuration

Figure 5.15 – Report: Alerts

Javier Expósito Martínez

5.1. Application’s upgrades 39

5

Figure 5.16 – Report: Diagram of difference of ilumination

5.1.15 New function: open recent file

Now, when the user is browsing the menu and presses open file, not only the option to open a new file
but also the last file that was opened by the application will appear.

Figure 5.17 – Open Recent File

5.1.16 Organize the code application’s code

The code has been organized in folders according to the functionality to which they belong in the
application. So the directory containing the code (the src folder) is now much easier to understand.

OpenCV and Python application for automotive spotlight image processing.

5

40 Chapter 5. Implementation and configuration

The changes that were made in the code, were modifications in the imports, using now relative path to
include a class.

5.1.17 New toolbar

A toolbar has been created in the main application window to perform the same actions as the menu in
a simple and visual way. This way, the application has a more modern and updated visual aspect, and not
obsolete and belonging to old applications.

Figure 5.18 – Toolbar

5.1.18 Security

This section addresses the issue of security with respect to obtaining the source code from the executable.
After a thorough investigation, it was concluded that it is not possible to obtain the source code from the
executable but from files that are generated along with it, using tools such as decompyle3 or decompyle6.
This fact shows the urgency and necessity of using security methods to avoid this.

The security method to avoid this is obfuscation, which converts the code of a software or project into a
type of code that is more difficult for humans to understand. It achieves this goal by applying encryption
mechanics and patterns to prevent access to critical sections of the code. And to achieve this, the PyArmor
library is used.

Although obfuscation can be reversed with Reverse engineering, it is a very slow and complex process
that only an expert could perform. The PyArmor documentation itself states the following: "PyArmor
focus on protecting Python scripts, by several irreversible obfuscation methods, now PyArmor make sure
the obfuscated scripts can’t be restored by any way." [3]

On the other hand, a license has been created for the application, depending on the expiration date and
the serial number of the hard disk, the client will be able to use the application or an error window will
appear saying that the license has expired or is incompatible on the device that is running the application.

For the process of creating the license, at first, it was thought to use the PyArmor library itself, whose
main advantage was the security it provided, and the simplicity to create it. However, it was discarded due
to incompatibility problems with the CX-freeze library, causing problems in the executable.Therefore, only
Python libraries are used to access the hard disk serial number and check the expiration date. The license
logic is programmed in the code itself.

Javier Expósito Martínez

Chapter 6

Testing and validation.

In this chapter, all the requirements imposed by the customer, both functional and non-functional, are
validated. Therefore, it will be analyzed requirement by requirement, verifying that everything works
correctly.

6.1 Functional Requirements

6.1.1 RF.1

Description RF. 1 The software must allow the user to create a new DUT Test.

Analysis Requirement satisfied by correcting and redesigning the classes involved in the
process.

Evaluation Validated

Table 6.1 – RF.1

Figure 6.1 – New DUT: step one

OpenCV and Python application for automotive spotlight image processing. 41

6

42 Chapter 6. Testing and validation.

Figure 6.2 – New DUT: step two

Javier Expósito Martínez

6.1. Functional Requirements 43

6

Figure 6.3 – New DUT: step three

Figure 6.4 – New DUT: step four

OpenCV and Python application for automotive spotlight image processing.

6

44 Chapter 6. Testing and validation.

Figure 6.5 – New DUT: step five

Figure 6.6 – New DUT: step six

Javier Expósito Martínez

6.1. Functional Requirements 45

6

6.1.2 RF.2

Description RF. 2 The software must allow the user to create a new EMC Test.

Analysis Requirement satisfied by correcting,redesigning and creation of the classes involved
in the process.

Evaluation Validated

Table 6.2 – RF.2

Figure 6.7 – New EMC: step one

Figure 6.8 – New EMC: step two

OpenCV and Python application for automotive spotlight image processing.

6

46 Chapter 6. Testing and validation.

Figure 6.9 – New EMC: step three

Figure 6.10 – New EMC: step four

Javier Expósito Martínez

6.1. Functional Requirements 47

6

Figure 6.11 – New EMC: step five

Figure 6.12 – New EMC: step six

OpenCV and Python application for automotive spotlight image processing.

6

48 Chapter 6. Testing and validation.

6.1.3 RF.3

Description RF. 3 The software must allow the user to open a DUT file.

Analysis Requirement satisfied by creating a new action in the menu that allows to open a
file, and then perform the whole process similar to RF.1

Evaluation Validated

Table 6.3 – RF.3

Figure 6.13 – Open DUT: step one

Figure 6.14 – Open DUT: step two

Javier Expósito Martínez

6.1. Functional Requirements 49

6

6.1.4 RF.4

Description RF. 4 The software must allow the user to open an EMC file

Analysis Requirement satisfied by creating a new action in the menu that allows to open a
file, and then perform the whole process similar to RF.2

Evaluation Validated

Table 6.4 – RF.4

Figure 6.15 – Open EMC: step one

Figure 6.16 – Open EMC: step two

OpenCV and Python application for automotive spotlight image processing.

6

50 Chapter 6. Testing and validation.

6.1.5 RF.5

Description RF. 5 The software must allow the user to clone an EMC file

Analysis Requirement satisfied by creating a new action in the menu that allows to clone a
file, and then perform the whole process similar to RF.2

Evaluation Validated

Table 6.5 – RF.5

Figure 6.17 – Clone EMC: step one

Figure 6.18 – Clone EMC: step two

Javier Expósito Martínez

6.1. Functional Requirements 51

6

Figure 6.19 – Clone EMC: step three

6.1.6 RF.6

Description RF. 6 The software must allow the user to open a recent DUT or EMC file.

Analysis Requirement satisfied by creating a new action in the menu that allows to open a
recent file, and then perform the whole process similar to RF.1 or RF.2

Evaluation Validated

Table 6.6 – RF.6

Figure 6.20 – Open recent DUT

OpenCV and Python application for automotive spotlight image processing.

6

52 Chapter 6. Testing and validation.

Figure 6.21 – Open Recent EMC

6.1.7 RF.7

Description RF.7 The software must allow the user to configure car’s spotlights using one or
two Arduinos, and save this light’s configuration.

Analysis Requirement satisfied by correcting and redesigning the classes involved in the
process.

Evaluation Validated

Table 6.7 – RF.7

Figure 6.22 – Open light controller: step one

Javier Expósito Martínez

6.1. Functional Requirements 53

6

Figure 6.23 – Open light controller: step two

Figure 6.24 – Open light controller: step three

OpenCV and Python application for automotive spotlight image processing.

6

54 Chapter 6. Testing and validation.

Figure 6.25 – Open light controller: step four

6.1.8 RF.8

Description RF.8 The software must allow the user to change between white and black theme

Analysis Requirement satisfied by redesigning the corresponding methods, where we now
have the incorporation of css files that give appearance and style to the interfaces.

Evaluation Validated

Table 6.8 – RF.8

Javier Expósito Martínez

6.1. Functional Requirements 55

6

Figure 6.26 – White theme

Figure 6.27 – Dark theme

6.1.9 RF.9

Description RF.9 The software must allow the user check about additional information.

Analysis Requirement satisfied by redesigning the corresponding window, which shows
contact information.

Evaluation Validated

Table 6.9 – RF.9

OpenCV and Python application for automotive spotlight image processing.

6

56 Chapter 6. Testing and validation.

Figure 6.28 – Check about

6.1.10 RF.10

Description RF.10 The software must allow the user check updates and update the application
if it is necessary

Analysis
Requirement satisfied by creating methods and classes that manage the entire
process of querying and updating application versions. Additionally, the file stored
in the server has been updated with the current version of the application.

Evaluation Validated

Table 6.10 – RF.10

Figure 6.29 – Check updates

Javier Expósito Martínez

6.1. Functional Requirements 57

6

6.1.11 RF.11

Description RF.11 The software must allow the user to select one of several languages: english,
spanish, and french

Analysis
Requirement satisfied by creating an action in the menu, a new class, modifying
and creating some methods and creating a new window. In addition to the creation
of .xml files, one per language.

Evaluation Validated

Table 6.11 – RF.11

Figure 6.30 – Select Languages: step one

Figure 6.31 – Select Languages: Step two

OpenCV and Python application for automotive spotlight image processing.

6

58 Chapter 6. Testing and validation.

6.1.12 RF.12

Description RF.12 The software must allow the user to create a DUT file since EMC test

Analysis Requirement satisfied by creating the method which manages the creation of the
DUT process from the DefineEMCTest class.

Evaluation Validated

Table 6.12 – RF.12

Figure 6.32 – new DUT from EMC: step one

Javier Expósito Martínez

6.1. Functional Requirements 59

6

Figure 6.33 – new DUT from EMC: step two

OpenCV and Python application for automotive spotlight image processing.

6

60 Chapter 6. Testing and validation.

Figure 6.34 – new DUT from EMC: step three

Figure 6.35 – new DUT from EMC: step four

Javier Expósito Martínez

6.1. Functional Requirements 61

6

Figure 6.36 – new DUT from EMC: step five

Figure 6.37 – new DUT from EMC: step six

OpenCV and Python application for automotive spotlight image processing.

6

62 Chapter 6. Testing and validation.

6.1.13 RF.13

Description RF.13 The software must allow the user to create a light configuration file since
EMC test

Analysis Requirement satisfied by creating the method which manages the creation of the
light configuration file from the DefineEMCTest class.

Evaluation Validated

Table 6.13 – RF.13

Figure 6.38 – new Light configuration from EMC: step one

Javier Expósito Martínez

6.1. Functional Requirements 63

6

Figure 6.39 – new Light configuration from EMC: step two

OpenCV and Python application for automotive spotlight image processing.

6

64 Chapter 6. Testing and validation.

Figure 6.40 – new Light configuration from EMC: step three

6.1.14 RF.14

Description RF.14 The software must allow the user to generate a report.

Analysis
Requirement satisfied by creating a new action in the menu, a class that manages
the whole process to create the report, as well as creating a new template for the
report.

Evaluation Validated

Table 6.14 – RF.14

Figure 6.41 – Generate report: step one

Javier Expósito Martínez

6.1. Functional Requirements 65

6

Figure 6.42 – Generate report: step two

OpenCV and Python application for automotive spotlight image processing.

6

66 Chapter 6. Testing and validation.

6.2 Non-Functional Requirements

6.2.1 NRF.1

Description NRF.1 The software must be able to detect when an Arduino is disconnected, at
any time.

Analysis Requirement satisfied by creating a timer that calls every second a method that
checks the disconnection of the Arduinos.

Evaluation Validated

Table 6.15 – NRF.1

Figure 6.43 – Arduino disconection

6.2.2 NRF.2

Description NRF.2 The software must be able to reconnect an Arduino for a short period of
time since it was disconnected.

Analysis
Requirement satisfied by creating a timer that is triggered when an arduino is
disconnected, calling every second a method that reconnects the arduinos and checks
if they have been reconnected correctly.

Evaluation Validated

Table 6.16 – NRF.2

Javier Expósito Martínez

6.2. Non-Functional Requirements 67

6

Figure 6.44 – Arduino connection after its disconection

6.2.3 NRF.3

Description NRF.3 The software must be able to work correctly without an Arduino connected.

Analysis Requirement satisfied by modifying variables and methods to prevent the
application from aborting.

Evaluation Validated

Table 6.17 – NRF.3

OpenCV and Python application for automotive spotlight image processing.

6

68 Chapter 6. Testing and validation.

Figure 6.45 – Application without Valeo Relay Shields

Figure 6.46 – Application without Valeo Relay Shields 2

Javier Expósito Martínez

6.2. Non-Functional Requirements 69

6

6.2.4 NRF.4

Description NRF.4 The software must be able to save the last configuration which it had when
it was closed and starts with this.

Analysis
Requirement satisfied by creating write and read methods from an xml file, called
configuration file. As well as the creation of variables that store the data we want
to save.

Evaluation Validated

Table 6.18 – NRF.4

6.2.5 NRF.5

Description NRF.5 All software’s interfaces must be responsives.

Analysis Requirement satisfied by modifying some interfaces, and creating new ones using
QtDesigner.

Evaluation Validated

Table 6.19 – NRF.5

6.2.6 NRF.6

Description NRF.6 The software must has a status bar which reports user’s operations and
application’s status.

Analysis
Requirement satisfied by adding new actions and statuses to the status bar,
changing its color depending on the action/status and creating new status bars in
other windows. In addition, each action has the text with its respective languages.

Evaluation Validated

Table 6.20 – NRF.6

Figure 6.47 – Statusbar - No arduino detect

Figure 6.48 – Statusbar - New DUT

Figure 6.49 – Statusbar - Error opening video

OpenCV and Python application for automotive spotlight image processing.

6

70 Chapter 6. Testing and validation.

Figure 6.50 – Statusbar - No arduino detect

6.2.7 NRF.7

Description NRF.7 The software must be save datas in xml files, unlike before, it was done in
txt format.

Analysis Requirement satisfied by creating new save files in .xml format and using a library
to write to and read tags from these files.

Evaluation Validated

Table 6.21 – NRF.7

6.2.8 NRF.8

Description
NRF.8 In DUT and EMC tests’ forms, done’s bottoms must be disable when user
delete any required field. Done’s bottoms only must be enabled when all required
fields are filled.

Analysis Requirement satisfied by creating and modifying attributes and methods belonging
to these classes.

Evaluation Validated

Table 6.22 – NRF.8

6.2.9 NRF.9

Description NRF.9 In DUT test’s forms, when the user selects a car spotlight, it should
highlights.

Analysis Requirement satisfied by creating and modifying attributes and methods belonging
to these classes. Qt objects such as Qpen or QPainterPath are used.

Evaluation Validated

Table 6.23 – NRF.9

Javier Expósito Martínez

6.2. Non-Functional Requirements 71

6

Figure 6.51 – Select a car spotlight

OpenCV and Python application for automotive spotlight image processing.

6

72 Chapter 6. Testing and validation.

6.2.10 NRF.10

Description NRF.10 When the user open DUT of EMC file, in DUT and EMC tests’ forms,
must appear a new field which contains the video’s path what was used in test.

Analysis

Requirement satisfied by modifying the interfaces that show the forms, added to
the creation and modification of the methods and attributes in charge of storing
and showing the label with the video path. In addition, the video path is now saved
in the saving files.

Evaluation Validated

Table 6.24 – NRF.10

Figure 6.52 – Video path in DUT and EMC Test

6.2.11 NRF.11

Description NRF.11 When the user open DUT file,crop points must be show in window where
the user crop the image.

Analysis Requirement satisfied by the creation and modification of methods that read the
data and store it in the attributes that are used to draw and store the crop points.

Evaluation Validated

Table 6.25 – NRF.11

Javier Expósito Martínez

6.2. Non-Functional Requirements 73

6

Figure 6.53 – Crop points in camera view

6.2.12 NRF.12

Description NRF.12 When the user open DUT file, ROIs must be show in crop window and
create the ROIs.

Analysis Requirement satisfied by the creation and modification of methods that read the
data and store it in the attributes that are used to draw and store the ROIs

Evaluation Validated

Table 6.26 – NRF.12

Figure 6.54 – ROIs points in crop view

OpenCV and Python application for automotive spotlight image processing.

6

74 Chapter 6. Testing and validation.

6.2.13 NRF.13

Description

NRF.13 In DUT Test, in windows where the user crop the image and create the
ROIs, the software must be able to separate the camera view and zoom view,
allowing to work with two or even three screens.Also in EMC Test, for the class in
charge of performing the EMC analysis.

Analysis Requirement satisfied by the creation of methods and variables that allow this
requirement to be met.

Evaluation Validated

Table 6.27 – NRF.13

Figure 6.55 – Separate views

6.2.14 NRF.14

Description NRF.14 In EMC Test,when the analysis starts, if the user select a ROI, this must
be highlight in Keyframe view.

Analysis Requirement satisfied by creation and modification of methods and variables that
allow this requirement to be met.

Evaluation Validated

Table 6.28 – NRF.14

Javier Expósito Martínez

6.2. Non-Functional Requirements 75

6

Figure 6.56 – Show a selected ROI in EMC analysis

6.2.15 NRF.15

Description NRF.15 In EMC Test,when the analysis starts, if the user select an alert, this must
be shown.

Analysis
Requirement satisfied by creation and modification of methods and variables that
allow this requirement to be met.A timer is created whose functionality is to show
the alert in the form of a "gif"

Evaluation Validated

Table 6.29 – NRF.15

OpenCV and Python application for automotive spotlight image processing.

6

76 Chapter 6. Testing and validation.

Figure 6.57 – Show a selected alert in EMC analysis

6.2.16 NRF.16

Description NRF.16 The software must be able to add a graph which shows the lumination’s
difference between Keyframe and video for each ROI in the generated report.

Analysis
Requirement satisfied by creation and modification of methods and variables that
allow this requirement to be met.In addition, the template that is used to generate
the report must also be modified.

Evaluation Validated

Table 6.30 – NRF.16

Javier Expósito Martínez

6.2. Non-Functional Requirements 77

6

Figure 6.58 – Diagram of difference of ilumination

6.2.17 NRF.17

Description NRF.17 The software must read and process the videos efficiently and quickly.

Analysis Requirement satisfied by by simplifying code and using Threads that allow code
concurrency.

Evaluation Validated

Table 6.31 – NRF.17

OpenCV and Python application for automotive spotlight image processing.

Chapter 7

Conclusions and future lines

7.1 Conclusions

In this document it has tried to explain in detail the installation, operation of the application, as well as
all the evolution and differences with respect to its previous version.

The beginnings, above all, were very hard, not only because of the lack of documentation and file
organization, or because the libraries used by the application as PyQt5 were totally unknown to me at the
beginning, but also because during the degree in Computer Engineering does not teach to create large
projects that resemble real projects developed in a company.

From the beginning and throughout the development of the application, it has been a challenge, as
everything except the programming language (Python) was new and unfamiliar.

For example, learning how to create the application using the interfaces created by QtDesigner and
understanding the code that managed the interface with the operation of the application, while understanding
how the application worked, was one of the most complicated and problematic things I had to solve. Another
challenge was to ensure the correct migration from Python 2.7 to version 3.10 and higher, as part of the
application became unusable due to method calls that did not work. There were also problems with reading
and opening saved files, understanding and resolving window resizing and resolution for video display during
testing, learning to use Threads, etc.

Today, I can conclude that the application is not only 100% functional, but includes a number of
enhancements that take it to the next level, meeting all of the client’s requirements in the process.

This project has not only been a demonstration of the knowledge and skills acquired in the computer
engineering degree but also a continuous and practical learning on how to develop an application in Python.

As a final comment, I am proud of the work done and the outcome of this project, despite the difficulties
and frustrations encountered during its development. I think it is a very good final product, and I was up
to the challenges that were presented to me. I am proud of all the skills and knowledge acquired, which I
am sure will be very useful for the future.

78 OpenCV and Python application for automotive spotlight image processing.

7.2. Proposed future upgrades 79

7

7.2 Proposed future upgrades

Although this project has met the requirements proposed by the client, there is a list of upgrades that
could be made to the application:

7.2.1 Improve source code

Although the main classes were simplified, reducing in some cases to half the number of lines of code
and separated into methods, the code is chaotic, the names of some methods and variables are in English
and others in Spanish. Some methods do not have a clear function, other methods could simply avoid being
created with a better programming approach. More classes should be created with functions or methods
common to many classes, instead of writing the same method in all classes.

Classes should be better organized, being clear about the tributes and methods needed and their visibility
(private, public minimum). For example, I have had to remove many attributes of classes that were not used
or were really local variables of a particular method but not an attribute. In addition, the visibility of all
attributes and methods of the classes is public, which to summarize, is a mistake that can lead to problems
of design, maintenance and security of the application.

7.2.2 Complete the application

Although new functionalities have been implemented, there are certain incomplete actions in the
application. For instance, enhancing the status bar by adding messages about the application’s state or
indicating missing actions. Another example is programming the behavior when performing a DUT test
and selecting "Other" in the "Device Position" field.

7.2.3 Improvement in the structure and control of the application.

The main improvement is a change in the application’s structure. Currently, the structure is fine; it has
been updated (Application’s Structure) to fix errors and incorporate the newly created classes. However, I
don’t consider it to be optimal. For example, since the application can function without Valeo Relay Shield
devices initially, it doesn’t make sense for the application to go through the Valeo Relay Shield detection
process, causing the client to wait for a few seconds when launching the application.

It would also be more suitable to have the ability to connect Valeo Relay Shield devices whenever desired,
using an action such as "Connect Valeo Relay Shields," rather than having only a few seconds to connect
them, and requiring a restart of the application if not connected in time. The calls to the language class can
be managed in a better way, etc. To provide a better illustration of all these points, let’s proceed to show it
graphically:

OpenCV and Python application for automotive spotlight image processing.

7

80 Chapter 7. Conclusions and future lines

OpenAutomotiveLightingValidationPlatform

AutoDetectionWindowAutoDetection

mainWindowlanguages

ConnectionError ConnectionError_NoRelays

About_Help_Window CheckUpdates

DownloadThread

valeoRelayShield_enterName_1/2

LightControl

AddNameWindow

DefineEMCTest

Video_Source_Widget

LightSelectionData_Widget

ErrorOpeningVideo

EMCVideoViewThread GenerateReport

SelectROI

AboutDefineROI DUT_ROI_Window CameraViewThreadZoomViewThread

ZoomViewThread CameraViewThreadAddROIGroup ModifyThresholdValue ModifyROIName

IllegalValue

EMCLightAnalysisEMCLightAnalysis

GenerateReport

Connect-arduinos

Figure 7.1 – Future Upgrade Structure’s Class Diagram

Javier Expósito Martínez

7.3. Lessons learned 81

7

7.3 Lessons learned

I wanted to conclude this project with a list of the lessons which I have learned during the development
of this thesis:

• Migrate an application.

• Installing and configuring an Valeo Relay Shield board at a basic level.

• Use QtDesigner and the PyQt5 library to create the interfaces of an application.

• How to create, open and write to an .xml file.

• My knowledge about the OpenCV library has increased.

• To use the PyArmor and pytransform libraries to obfuscate, encrypt the code and create a license.

• To create an executable (.exe) of the application, as well as its installer.

• Learn about timers and Threads.

• Creation of an .html file with the template designer: jinja2 and how to integrate a photo and/or gif in
this file.

• Learn by Reverse engineering how the application and libraries work and know how to apply it to the
new version of the application.

• Study the different methods for implementation and choose the one which I think is the best for the
incorporation of the device in the system.

OpenCV and Python application for automotive spotlight image processing.

7

82 Chapter 7. Conclusions and future lines

Javier Expósito Martínez

Addenda

OpenCV and Python application for automotive spotlight image processing. 83

Appendix A

How to install application

A.1 Developers’ installation

For developers, the installation process is as follows:

1. Create a virtual environment with Python version 3.10 or higher. In my case, I use the Anaconda
environment, so to create the virtual environment, I use the command conda create -n
VirtualEnvironmentName python=3.10.

2. Next, install the required dependencies by running pip install -r requirements.txt.

3. Once the dependencies are installed, the application can be launched smoothly. Open the terminal,
navigate to the working directory using the command cd workingpath, and execute python
main.py.

A.2 Clients’ installation

For clients, the application installation process is as simple as opening the application installer and
clicking on "Install."

84 OpenCV and Python application for automotive spotlight image processing.

Appendix B

Hardware Configuration: How to install
and configure Valeo Relay Shields

The first thing to do is to download the application that we will use to configure it: https://www.
arduino.cc/en/software. Next, We install it, open it (the necessary packages will be installed).Then
we click on yes, to everything and connect the Valeo Relay Shield.

When connecting the Valeo Relay Shield to the computer, in the tools menu bar appears a section called
ports (before connecting the Valeo Relay Shield did not appear). Select tools > ports > port: COM 3 (in
my case), which is the only one that appears.

Figure B.1 – How to set up Valeo Relay Shield: step One

We also need to select a board, so we go to: tools > board > Arduino AVR boards > Arduino Uno.

OpenCV and Python application for automotive spotlight image processing. 85

https://www.arduino.cc/en/software
https://www.arduino.cc/en/software

B

86 Appendix B. Hardware Configuration: How to install and configure Valeo Relay Shields

Figure B.2 – How to set up Valeo Relay Shield: step Two

Now we create a basic program to check if it works correctly or not, before configuring it for our
application:

Figure B.3 – How to set up Valeo Relay Shield: step Three

The program turns on and off a led through port 13, every second.

Now we click on verify, located at the top, which has a tick/check symbol, which compiles and displays
any syntactic errors in the code, as well as additional data that appears in the terminal:

Javier Expósito Martínez

87

B

Figure B.4 – How to set up Valeo Relay Shield: step four

And finally, to run it, save the file and click on the small arrow located just to the right of the check
mark symbol that we pressed earlier. Then, we can observe how the Valeo Relay Shield board’s amber LED
turns on and off.

(This basic program can be found within the application in the Valeo Relay Shield folder, along with the
final version of the Valeo Relay Shield configuration).

Now, let’s navigate to our application’s Valeo Relay Shield folder and open the
"relay_shield_automated_serial_V0_3.ino" file with the program. Press the tick/check symbol
to verify that there are no errors and then execute it. This way, the Valeo Relay Shield will be configured
for our application.

To reset this configuration, simply run the program with an empty setup and loop, as they come by
default.

OpenCV and Python application for automotive spotlight image processing.

Appendix C

How to install and configure a Local
Server

To install a local server, it can be done using a VM or WSL (installation is done by executing the following
command in PowerShell: wsl –install). Then, follow the tutorial from these links, one for VM and
another in case of using Virtual Box:
- VM: Install Apache in WSL.
- Virtual Box:Install Apache in virtual box.

After that, run the following commands to update libraries and install PHP:

sudo apt-get update and sudo apt-get php8.1

Move the "version.php" file to the local server (www/var/html).

88 OpenCV and Python application for automotive spotlight image processing.

https://www.how2shout.com/how-to/install-apache-on-windows-10-wsl-http-server.html
https://ubunlog.com/servidor-web-apache-instalacion-conceptos-basicos-ubuntu-20-04/

Appendix D

Detailed application structure

D.0.1 Valeo Relay Shield Detection Class Diagram

Now it proceeds to show the class diagram, related to the Valeo Relay Shield’s detection process.

OpenCV and Python application for automotive spotlight image processing. 89

D

90 Appendix D. Detailed application structure

OpenAutomotiveLightingValidationPlatform

AutoDetectionWindow

animation_states

timer
listMessage
avPorts

animation

sendMessage

stop_timer

 start_timer

AutoDetection

ConnectionErrorNoRelays

ConnectionError
tries
timer
timerUpdate
arduinoSerial
arduinoPorts
doc
hardwareVersionList
softwareVersionList
list_mesagge
show_error_window
controller
ser
mainWindow
msgArConnected

__init__

changeLanguage

detect_Ports

initializeAutoDetectValeoShield

initializeAutoDetectValeoShield2

openPort

messageGenerator

addInfoPorts

communicatePort

update

generateMainWindow

autoDetectValeoShield

tryOpenPort

showError

tryToCommunicate

detectionDisconnection

updateDetectValeoShield

Figure D.1 – Valeo Relay Shields’ diagram class

Javier Expósito Martínez

91

D

D.0.2 MainWindow Class Diagram

Next, it proceeds to show the mainWindow class which is used to access the various functionalities of the
application.

OpenAutomotiveLightingValidationPlatform AutoDetectionWindowAutoDetection

mainWindow

autodetectionwindow

AboutHelp
LightSelWidget
DefineEMCTest,checkUpdates
valeoRelayShield_enterName_1/2
doc
languages
progress
Noconnected
tags
recentDUT/EMCFile
EMC/dut_file_name
timer
msg
frequency,level,modulation
theme
arduinoSerial,arduinoPorts
configurationFile, ribbon

__init__

changeLanguage

createMenuBar/ToolBar

init_ribbon

noShieldsConnected

changeStatusBar

DateStatusBar

sendSerial

Create/deleteProgressBar

progress_update

resetImageDUT

newDUT_buttonPressed,EMCTest_buttonPressed

fileOpen

openRecentEMC/DUT

open[EMC/DUT]_ButtonPressed

openEMCFile,openDUTFile

CloneEMC_ButtonPressed

writeConfiguration

writeConfigurationFile

exit_menuItemPressed

closeEvent

action_openLightController

about_menuItemPressed

changeCheckUpdateImage

checkUpdates_menuItemPressed

selectLanguages

connections_language

english,french,spanish

changeMainLanguage

changeMenuFile/Tools/Window/Menu/LanguageMenu

changeLightSelWidgetLanguage/EMCTestLanguage

whiteTheme_action/blackTheme_action

ConnectionError_NoRelays

__init__

ConnectionError

__init__

sendError

Figure D.2 – MainWindow diagram class

OpenCV and Python application for automotive spotlight image processing.

D

92 Appendix D. Detailed application structure

D.0.3 Functionalities’ Class Diagrams

The following diagrams show the different functionalities that the application has, starting with a window
to contact the application developer and GranaSAT and the functionality to check for new software updates.

OpenAutomotiveLightingValidationPlatform

AutoDetectionWindowAutoDetection

mainWindowConnectionError ConnectionError_NoRelays

About_Help_Window

__init__

CheckUpdates

mainWindow

doc
download_thread

__init__

changeLanguage

progress_update_download

pushButton_Download_pressed

pushButton_OK_pressed

DownloadThread

url

download_progress

__init__

run

Figure D.3 – CheckUpdate and AboutHelp diagram class

Javier Expósito Martínez

93

D

The next diagram will show the openLightController functionality.

valeoRelayShield_enterName_1/2

mainWindow
LightControl
doc
arduinoSerial
arduinoPorts

__init__

 changeLanguageLabels

sendSerial

pushButton_OK_pressed

keyPressEvent

LightControl

mainWindow
flag1/2
doc
valeoShield_pins
comboBoxListAr1/2Rear
comboBoxListAr1/2Front
ButtonsListAr1/2
arduinoShield1/2
valeoShield1/2_name
valeoShield_file
AddNameWindow

__init__

 changeLanguage

sendSerial

sendValeoRelayShield/sName

pushbutton_add_name_window/_2_pressed

sendRearLightData

sendFrontLightData

writeDatas

writeDatasLight

pushbutton_OK_pressed

pushButton_pressedOperation

pushButton_pressed

pushbutton_D[2...9]_/2_pressed

pushbutton_A[1...3]_/2_pressed

AddNameWindow

controller
doc
rearLightData
frontLightData

__init__

 changeLanguage

rearLights_pushButton_add_pressed

frontLights_pushButton_add_pressed

Figure D.4 – Open light controller diagram class

The last two main functionalities are divided into several diagrams. The first diagram (D.5) shows the
classes that are in charge of displaying the forms to fill in the test fields and the VideoSourceWidget class is
in charge of selecting whether a video or the camera will be used to perform the test (DUT or EMC).

The second diagram (D.6) shows the structure of the SelectRoi class, which is in charge of trimming the
video to later create the ROIs in the DUTROI class (D.7) thus finalizing the process of performing a DUT
test.

The last diagram(D.8) shows the EMClightAnalysis class that performs the EMC test and generates the
report finalizing the process of performing an EMC test.

OpenCV and Python application for automotive spotlight image processing.

D

94 Appendix D. Detailed application structure

mainWindow

DefineEMCTest

mainWindow
Video_Source_Widget
arduinoSerial,arduinoPorts
doc
EMC_datas_dict

EMC_datas_isEmpty
clientImage_datas_isEmpty
[DUT_datas/Light_datas]_isEmpty
flag1/2
[label/state]nameListAr1/2
labelsLineEditTextChangedList
labelsLabelTextChangedList
arduinoShield1/2
client_logo
dut_file_name,lightConfig_file_name
deviceName,devicePosition
valeoRelayShield1/2_name
valeoRelayShield_enterName_1/2
EMC_datas_file
name

__init__

changelanguages

update_dict

connections

sendSerial

EMC_datas_dict_analysis

insertClientImage

selectClientImageMain

fileOpen

selectClientImage_buttonPressed

dutExistMain

dutExist_buttonPressed

newDUT_buttonPressed

lightConfigExistMain

lightConfigExist_buttonPressed

update_DUT_data

manageTitle

createListLightNameStatePin

turnLights

setTextNameStateLabels

manageFileOne/TwoArduino

update_lightConfig_data

newLightConfig_buttonPress

buttonOK_setEnabled

writeDatas

writeEMCTest_file

OK_buttonPressed

textChangedLabelsMain

textChangedLabels

lineEdit_[formfields]_textChanged

closeEvent

Video_Source_Widget

mainWindow
errorOpenVideo

doc
callingFromEMCtest
projectName
deviceName
devicePosition
engName
DUT_from_EMC
callingFromEMCtest
EMC_datas_file_name
dut_file_name

__init__

changeLanguage

windowTitleDatas

send_from_EMC_datas_settings

send_from_EMC_test

send_EMC_file_name

send_DUT_file_name

createSelectROI

createEMCLightAnalysis

Camera_pressed

Video_pressed

closeEvent

LightSelectionData_Widget

mainWindow
VideoSource
OpenHelpWindow
Light_datas_isEmpty
Light_datas_isEmptyOther
radioButtonOther_isClicked
radioButton_isClicked
doc
dut_file_name
Light_datas_dict

labelsLineEditTextChangedList
labelsLabelTextChangedList
radioButtons
DUT_from_EMC
arduinoShield1/2
client_logo
lightConfig_file_name
deviceName
devicePosition
valeoRelayShield1/2_name
valeoRelayShield_enterName_1/2
EMC_datas_file
name

__init__

changelanguages

update_dict

connections

OpenHelpWindowLightSelection

send_DUT_file_name

send_from_EMC_datas_settings

setVideo

textChangedLabelsMain

textChangedLabels

lineEdit[label]_textChanged

radioButtonsPressed

textChangedDevicePosition

setPen

draw_[car headlamp]

UpdateImage

UpdateImagePressed

[car headlamp]_pressed

other_pressed

Labels_Empty

Labels_empty_other

newDUTInfo

buttonOK_pressed

buttonCancel_pressed

clear

closeEvent

disableButtons

ErrorOpeningVideo

doc

__init__

changeLanguage

 pushButton_OK_pressed

SelectROI

EMCLightAnalysis

OpenHelpWindow_LightSelection

__init__

Figure D.5 – Forms and Video source widget diagram class

Javier Expósito Martínez

95

D

SelectROI

mainWindow,CameraViewthread,ZoomViewthread
AboutDefineROI,DUT_ROI_Window
doc
punto_original_x/y,x/yMouse
original_x/y[Camera/Zoom]Window
clickPoints,videoCropPoints
curr_time,timer_chrono
zoom
separate[Camera/Zoom]Window
msg
video_fileName
projectName,deviceName,devicePosition,engName
DUT_from_EMC
dut_file_name
cap
width_o,height_o

__init__

changeLanguage

connections

changeStatusBar

selectROI_sendDatas

init_play

windowTitle

send_from_EMC_datas_settings

getClickPoints

send_DUT_file_name

createCameraView

createZoomView

viewCam

createDUT_ROI_WINDOW

getMousePosition

getMouseClickEvent

play

pause

action_exit

action_RevertImageCrop

zoom_x3/6/12/20_buttonPressed

about_define_ROI

chronoConfiguration

moveCameraWindow

enterCameraViewLabel

enterCameraViewGroup

acoplarCameraWindow

enterZoomViewGroup

moveZoomView

acoplarZoomWindow

closeEvent

AboutDefineROI

doc

__init__

changeLanguage

DUT_ROI_Window

CameraViewThread

ROIwindow
cameraViewUpdate
is_paused

running
cap
clickPoints
num_frames
width_o,height_o
punto_original_x/y
queue

__init__

drawPointsLines

createCameraView

run

setClickPoints

setOriginalPoints

pause

resume

stop

ZoomViewThread

ROIwindow
zoomViewUpdate
CameraViewthread
running
clickPoints
punto_original_x/y
zoomVal
height_o

__init__

createZoomView

run

setClickPoints

setOriginalPoints

setZoom

stop

Figure D.6 – Select ROI diagram class

OpenCV and Python application for automotive spotlight image processing.

D

96 Appendix D. Detailed application structure

AboutDefineROI

doc

__init__

changeLanguage

DUT_ROI_Window

mainWindow,CameraViewthread,ZoomViewthread
AboutDefineROI,AddROIGroup,ModifyROIName
controller
doc,DUTdoc
curr_time,timer_chrono
x/yMouse,punto_original_x/y
zoom
list_of_lists
clickPoints
frontLights,rearLights
item,itemIsClicked
numberROI
separate[Camera/Zoom]Window
original_[x/y][Crop/Zoom]Window
screenShot_[cropView/done]
msg
videoCropPoints
cap
groupROI,ROI
video_fileName
projectName,deviceName,devicePosition,engName
width_o,height_o
roiDatas_file

__init__

changeLanguage

connections

changeStatusBar

createLightTypes

send_videoCropPoints

setROIdictionaries

send_[DUT_file_name,videoFileName]

send_[from_EMC_datas_settings,windowTitleDatas]

create[Crop/Zoom]View

saveCropImage

viewCam

getMouse[Position/ClickEvent]

int_play,play,pause

enterCropViewLabel

enter[Crop/Zoom]ViewGroup

move[Crop/Zoom]Window

acoplar[Crop/Zoom]Window

createTree,updateTree

item_is_clicked

menuROIParent,menuROIChild

addROIGroup,sendROIGroupName,removeROIGroup

remove,removeAll,modifyName,modifyThreshold

sendNewThresholdValue,modifyColor

zoom_x[3/6/12/20]_buttonPressed

action_revert_image_crop

action_exit,closeWindow,closeEvent

done_buttonPressed

about_define_ROI

chronoConfiguration

ZoomViewThread

DUTwindow
zoomViewUpdate
CameraViewthread
running
clickPoints
punto_original_x/y
zoomVal
height_o

__init__

createZoomView

run

setClickPoints

setOriginalPoints

setZoom

stop

CameraViewThread

DUTwindow
cameraViewUpdate
is_paused

running
cap
videoCropPoints
ROIs
clickPoints
num_frames
punto_original_x/y
width_crop
height_crop
updateROIs
queue

__init__

drawPointsLines

createCropView

run

setClickPoints

setOriginalPoints

setROIs

getCropImage

pause

resume

stop

AddROIGroup

doc
controller
nameROIGroup

__init__

changeLanguage

pushButton_OK_pressed

pushButton_Cancel_pressed

keyPressEvent

ModifyThresholdValue

doc
controller
IllegalValue

__init__

changeLanguage

sendThresholdValue

pushButton_OK_pressed

pushButton_Cancel_pressed

keyPressEvent

ModifyROIName

doc
controller
newNameROI

__init__

changeLanguage

sendROINameData

pushButton_OK_pressed

pushButton_Cancel_pressed

keyPressEvent

IllegalValue

doc

__init__

changeLanguage

pushButton_OK_pressed

Figure D.7 – DUT ROI diagram class

Javier Expósito Martínez

97

D

EMCVideoViewThread

cameraViewUpdate
UpdateROItree
AddAlarm

EMCwindow
is_paused
running
cap
videoCropPoints
width_crop
height_crop
dimensions
step
TotalLum
KeyFrameDiff
KeyFrameDiffArray
alarms
groupROI_dict
ROI_dict
frequency
level
modulation

__init__

CalculateTotalDiffLuminosity

generateAlarm

addAlarm

createCropView

run

resume

pause

stop

getTotalLum

getKeyframeDiff

getAlarms

getkeyDiffArray

EMCLightAnalysis

mainWindow,VideoViewthread
frequency,modulation,level

doc
original_[x/y][Keyframe/VideoSource]
separate[Keyframe/VideoSource]
alarmCount
SetKeyframePressed
Keyframe,Keyframe[Original/ROIs]
[DUT/EMC]Datas
curr_time,timer_chrono,timer_gif
imgAlert
msg
groupROI_dict,ROI_dict
[DUT/EMC]doc
videoCropPoints
imageROIAlert
segundos
report

__init__

changeLanguage

connections

changeStatusBar

chronoConfiguration

init_play,play,pause

send_video_file_name

initializeAlarmCount

setDUT_EMCsaveFiles

setROIdictionaries

getCropPoints

send_EMC_file_name

fileOpen

setROIAlarmTree

definedROIs_treeConfiguration

generatedAlerts_treeConfiguration

updateROIAlarmTree,update[ROI/Alarm]Tree

create[Crop/Keyframe]View

viewCam

addAlarm

updateROIselected,updateAlarmCount

show_[ROIselected/alarmROI]

animationGIF

CloseAlert

setDUTEMCdatas

generateReport

crearGraficakeyDiff

revertAlerts,revertKeyframe

drawROIs

setKeyframe_buttonPressed

enter[Keyframe/VideoGroup]

move[KeyFrame/CameraView}

acoplar[Keyframe/VideoSource]Window

action_exit,closeEvent

GenerateReport

file
filename
keyFrame

DUTdatas
EMCdatas
alerts
indexROI
graphic_list
lista_threshold

__init__

createIndexROI

saveImage

generateReport

Figure D.8 – EMCLightAnalysis diagram class

OpenCV and Python application for automotive spotlight image processing.

Appendix E

Graphical visualization of upgrades

The classes which have been altered by this upgrades are shown in the following chart:

98 OpenCV and Python application for automotive spotlight image processing.

E.1. Interface Resposive 99

E

E.1 Interface Resposive

OpenAutomotiveLightingValidationPlatform

AutoDetectionWindowAutoDetection

mainWindow

languages

ConnectionError ConnectionError_NoRelays

About_Help_Window

CheckUpdates

DownloadThread

valeoRelayShield_enterName_1/2

LightControl

AddNameWindow

DefineEMCTest

Video_Source_Widget

LightSelectionData_Widget

OpenHelpWindow_LightSelection

ErrorOpeningVideo

EMCVideoViewThread GenerateReport

SelectROI

AboutDefineROI DUT_ROI_Window CameraViewThreadZoomViewThread

ZoomViewThread CameraViewThreadAddROIGroup ModifyThresholdValue ModifyROIName

IllegalValue

EMCLightAnalysisEMCLightAnalysis

GenerateReport

Figure E.1 – Responsive Interfaces’ Upgrade

OpenCV and Python application for automotive spotlight image processing.

E

100 Appendix E. Graphical visualization of upgrades

E.2 Valeo Relay Shield Detection’s Upgrade

OpenAutomotiveLightingValidationPlatform

AutoDetectionWindow

animation_states

timer
listMessage
avPorts

animation

sendMessage

stop_timer

 start_timer

AutoDetection

ConnectionErrorNoRelays

ConnectionError
tries
timer
timerUpdate
arduinoSerial
arduinoPorts
doc
hardwareVersionList
softwareVersionList
list_mesagge
show_error_window
controller
ser
mainWindow
msgArConnected

__init__

changeLanguage

detect_Ports

initializeAutoDetectValeoShield

initializeAutoDetectValeoShield2

openPort

messageGenerator

addInfoPorts

communicatePort

update

generateMainWindow

autoDetectValeoShield

tryOpenPort

showError

tryToCommunicate

detectionDisconnection

updateDetectValeoShield

Figure E.2 – Valeo Relay Shield Detection’s upgrade

Javier Expósito Martínez

E.2. Valeo Relay Shield Detection’s Upgrade 101

E

OpenCV and Python application for automotive spotlight image processing.

E

102 Appendix E. Graphical visualization of upgrades

E.3 Works without Valeo Relay Shields’ upgrade

DefineEMCTest

mainWindow
Video_Source_Widget
arduinoSerial,arduinoPorts
doc
EMC_datas_dict

EMC_datas_isEmpty
clientImage_datas_isEmpty
[DUT_datas/Light_datas]_isEmpty_isEmpty
flag1/2
[label/state]nameListAr1/2
labelsLineEditTextChangedList
labelsLabelTextChangedList
arduinoShield1/2
client_logo
dut_file_name,lightConfig_file_name
deviceName,devicePosition
valeoRelayShield1/2_name
valeoRelayShield_enterName_1/2
EMC_datas_file
name

__init__

changelanguages

update_dict

connections

sendSerial

EMC_datas_dict_analysis

insertClientImage

selectClientImageMain

fileOpen

selectClientImage_buttonPressed

dutExistMain

dutExist_buttonPressed

newDUT_buttonPressed

lightConfigExistMain

lightConfigExist_buttonPressed

update_DUT_data

manageTitle

createListLightNameStatePin

turnLights

setTextNameStateLabels

manageFileOne/TwoArduino

update_lightConfig_data

newLightConfig_buttonPress

buttonOK_setEnabled

writeDatas

writeEMCTest_file

OK_buttonPressed

textChangedLabelsMain

textChangedLabels

lineEdit_[formfields]_textChanged

closeEvent

mainWindow

autodetectionwindow

AboutHelp
LightSelWidget
DefineEMCTest
valeoRelayShield_enterName_1/2
doc
languages
progress
Noconnected
tags
recentDUT/EMCFile
EMC/dut_file_name
timer
msg
frequency,level,modulation
theme
arduinoSerial,arduinoPorts
configurationFile

__init__

changeLanguage

createMenuBar/ToolBar

init_ribbon

noShieldsConnected

changeStatusBar

DateStatusBar

sendSerial

Create/deleteProgressBar

progress_update

resetImageDUT

newDUT_buttonPressed,EMCTest_buttonPressed

fileOpen

openRecentEMC/DUT

openEMC_ButtonPressed

openEMCFile,openDUTFile

CloneEMC_ButtonPressed

writeConfiguration

writeConfigurationFile

exit_menuItemPressed

closeEvent

action_openLightController

about_menuItemPressed

changeCheckUpdateImage

checkUpdates_menuItemPressed

selectLanguages

connections_language

english,french,spanish

changeMainLanguage

changeMenuFile/Tools/Window/Menu/LanguageMenu

changeLightSelWidgetLanguage/EMCTestLanguage

whiteTheme_action/blackTheme_action

Figure E.3 – Works without Valeo Relay Shield’ upgrade Javier Expósito Martínez

E.3. Works without Valeo Relay Shields’ upgrade 103

E

OpenCV and Python application for automotive spotlight image processing.

E

104 Appendix E. Graphical visualization of upgrades

E.4 Source code upgrade

mainWindow

DefineEMCTest

mainWindow
Video_Source_Widget
arduinoSerial,arduinoPorts
doc
EMC_datas_dict

EMC_datas_isEmpty
clientImage_datas_isEmpty
[DUT_datas/Light_datas]_isEmpty
flag1/2
[label/state]nameListAr1/2
labelsLineEditTextChangedList
labelsLabelTextChangedList
arduinoShield1/2
client_logo
dut_file_name,lightConfig_file_name
deviceName,devicePosition
valeoRelayShield1/2_name
valeoRelayShield_enterName_1/2
EMC_datas_file
name

__init__

changelanguages

update_dict

connections

sendSerial

EMC_datas_dict_analysis

insertClientImage

selectClientImageMain

fileOpen

selectClientImage_buttonPressed

dutExistMain

dutExist_buttonPressed

newDUT_buttonPressed

lightConfigExistMain

lightConfigExist_buttonPressed

update_DUT_data
manageTitle

createListLightNameStatePin

turnLights

setTextNameStateLabels

manageFileOne/TwoArduino

update_lightConfig_data

newLightConfig_buttonPress

buttonOK_setEnabled

writeDatas

writeEMCTest_file

OK_buttonPressed

textChangedLabelsMain

textChangedLabels

lineEdit_[formfields]_textChanged

closeEvent

Video_Source_Widget

mainWindow
errorOpenVideo

doc
callingFromEMCtest
projectName,deviceName
devicePosition,engName
DUT_from_EMC,callingFromEMCtest
EMC_datas_file_name
dut_file_name

__init__

changeLanguage

windowTitleDatas

send_from_EMC_[test/datas_settings]

send_[DUT/EMC]_file_name

createSelectROI

createEMCLightAnalysis

Camera_pressed

Video_pressed

closeEvent

LightSelectionData_Widget

mainWindow
VideoSource
OpenHelpWindow
Light_datas_isEmpty
Light_datas_isEmptyOther
radioButtonOther_isClicked
radioButton_isClicked
doc
dut_file_name
Light_datas_dict

labelsLineEditTextChangedList
labelsLabelTextChangedList
radioButtons
DUT_from_EMC
arduinoShield1/2
client_logo
lightConfig_file_name
deviceName
devicePosition
valeoRelayShield1/2_name
valeoRelayShield_enterName_1/2
EMC_datas_file
name

__init__

changelanguages

update_dict

connections

OpenHelpWindowLightSelection

send_DUT_file_name

send_from_EMC_datas_settings

setVideo

textChangedLabelsMain

textChangedLabels

lineEdit[label]_textChanged

radioButtonsPressed

textChangedDevicePosition

setPen

draw_[car headlamp]

UpdateImage

UpdateImagePressed

[car headlamp]_pressed

other_pressed

Labels_Empty

Labels_empty_other

newDUTInfo

buttonOK_pressed

buttonCancel_pressed

clear

closeEvent

disableButtons

valeoRelayShield_enterN...

mainWindow
LightControl
doc
arduinoSerial
arduinoPorts

__init__

 changeLanguageLabels

sendSerial

pushButton_OK_pressed

keyPressEvent

LightControl

mainWindow
flag1/2
doc
valeoShield_pins
comboBoxListAr1/2Rear
comboBoxListAr1/2Front
ButtonsListAr1/2
arduinoShield1/2
valeoShield1/2_name
valeoShield_file
AddNameWindow

__init__

 changeLanguage

sendSerial

sendValeoRelayShield/sName

pushb...name_window/_2_pressed

sendRearLightData

sendFrontLightData

writeDatas,writeDatasLight

pushbutton_OK_pressed

pushButton_pressedOperation

pushButton_pressed

pushbutton_D[2...9]_/2_pressed

pushbutton_A[1...3]_/2_pressed

OpenHelpWindow_LightSelection

Figure E.4 – Source Code’s upgrade

Javier Expósito Martínez

E.5. Open DUT ’s upgrade 105

E

E.5 Open DUT ’s upgrade

mainWindow

...

__init__

...

fileOpen

openDUT_ButtonPressed

openDUTFile

...

SelectROI

AboutDefineROI
...

__init__

changeLanguage

connections

changeStatusBar

selectROI_sendDatas

init_play

windowTitle

send_from_EMC_datas_settings

getClickPoints

send_DUT_file_name

createCameraView

createZoomView

viewCam

createDUT_ROI_WINDOW

getMousePosition

getMouseClickEvent

play

pause

action_exit

action_RevertImageCrop

zoom_x3/6/12/20_buttonPressed

about_define_ROI

chronoConfiguration

moveCameraWindow

enterCameraViewLabel

enterCameraViewGroup

acoplarCameraWindow

enterZoomViewGroup

moveZoomView

acoplarZoomWindow

closeEvent

AboutDefineROI

DUT_ROI_Window

AboutDefineROI
frontLights,rearLights
...

__init__

changeLanguage

connections

changeStatusBar

createLightTypes

send_videoCropPoints

setROIdictionaries

send_[DUT_file_name,videoFileName]

send_[from_EMC_datas_settings,windowTitleDatas]

create[Crop/Zoom]View

saveCropImage

viewCam

getMouseClickEvent

getMousePosition

int_play,play,pause

enterCropViewLabel

enter[Crop/Zoom]ViewGroup

move[Crop/Zoom]Window

acoplar[Crop/Zoom]Window

createTree,updateTree

item_is_clicked

menuROIParent,menuROIChild

addROIGroup,sendROIGroupName,removeROIGroup

remove,removeAll,modifyName,modifyThreshold

sendNewThresholdValue,modifyColor

zoom_x[3/6/12/20]_buttonPressed

action_revert_image_crop

action_exit,closeWindow,closeEvent

done_buttonPressed

about_define_ROI

chronoConfiguration

LightSelectionData_Widget

Figure E.5 – Open DUT’s upgrade

OpenCV and Python application for automotive spotlight image processing.

E

106 Appendix E. Graphical visualization of upgrades

E.6 Saved datas’ upgrade

mainWindow

...

tags
EMC/dut_file_name

__init__

...

openEMCFile,openDUTFile

CloneEMC_ButtonPressed

writeConfiguration

writeConfigurationFile

...

LightSelectionData_Widget

Video_Source_Widget

DefineEMCTest

...

...

insertClientImage

...

update_DUT_data

manageTitle

createListLightNameStatePin

turnLights

setTextNameStateLabels

manageFileOne/TwoArduino

update_lightConfig_data

newLightConfig_buttonPress

buttonOK_setEnabled

writeDatas

writeEMCTest_file

...

SelectROI

...

...

getClickPoints

send_DUT_file_name

...

DUT_ROI_Window

DUTdoc
...

...

setROIdictionaries

done_buttonPressed

...

valeoRelayShield_enterName_1/2

LightControl

valeoShield_pins
...

writeDatas

writeDatasLight

...

Figure E.6 – Saved datas’ upgrade

Javier Expósito Martínez

E.7. DUT and EMC Tests’ upgrade 107

E

E.7 DUT and EMC Tests’ upgrade

LightSelectionData_Widget

OpenHelpWindow
Light_datas_isEmpty
Light_datas_isEmptyOther
radioButtonOther_isClicked
radioButton_isClicked
Light_datas_dict

labelsLineEditTextChangedList
labelsLabelTextChangedList
radioButtons
...

__init__

OpenHelpWindowLightSelection

...

radioButtonsPressed

textChangedDevicePosition

setPen

draw_[car headlamp]

UpdateImage

UpdateImagePressed

[car headlamp]_pressed

other_pressed

Labels_Empty

Labels_empty_other

...

disableButtons

mainWindow

...

resetImageDUT

...

DefineEMCTest

EMC_datas_dict

EMC_datas_isEmpty
clientImage_datas_isEmpty
[DUT_datas/Light_datas]_isEmpty
labelsLineEditTextChangedList
labelsLabelTextChangedList
...

__init__

update_dict

connections

EMC_datas_dict_analysis

insertClientImage

...

update_DUT_data

...

manageFileOne/TwoArduino

buttonOK_setEnabled

...

Figure E.7 – DUT and EMC Tests’ upgrade

OpenCV and Python application for automotive spotlight image processing.

E

108 Appendix E. Graphical visualization of upgrades

E.8 Languages’ upgrade

Javier Expósito Martínez

E
.8.

L
anguages’upgrade

109

E

AutoDetection

doc
...

changeLanguage

generateMainWindow

showError

...

mainWindow

doc
languages
...

__init__

sendSerial

changeLanguage

noShieldsConnected

newDUT_buttonPressed

EMCTest_buttonPressed

openEMCFile

openDUTFile

CloneEMC_ButtonPressed

action_openLightController

about_menuItemPressed

checkUpdates_menuItemPressed

selectLanguages

connections_language

english

french

spanish

changeMainLanguage

changeMenuFile

changeMenuTools

changeMenuWindow

changeHelpMenu

changeLanguageMenu

changeLightSelWidgetLanguage

changeEMCTestLanguage

whiteTheme_action

blackTheme_action

...

languages

languages

doc

__init__

loadLanguage

english

spanish

french

CheckUpdates

doc
...

__init__

changeLanguage

progress_update_download

pushButton_Download_pressed

pushButton_OK_pressed

valeoRelayShield_enterName_1/2

doc
...

__init__

 changeLanguageLabels

sendSerial

pushButton_OK_pressed

keyPressEvent

LightControl

doc
...

__init__

 changeLanguage

pushbutton_add_name_window/_2_pressed

pushbutton_OK_pressed

...

AddNameWindow

doc
...

 changeLanguage

...

DefineEMCTest

doc
...

__init__

changelanguages

insertClientImage

update_DUT_data

newLightConfig_buttonPress

OK_buttonPressed

textChangedLabels

...

Video_Source_Widget

doc
...

__init__

changeLanguage

createSelectROI

createEMCLightAnalysis

Camera_pressed

Video_pressed

...

SelectROI

doc
...

__init__

changeLanguage

init_play

createDUT_ROI_WINDOW

getMouseClickEvent

pause

action_exit

action_RevertImageCrop

zoom_x3/6/12/20_buttonPressed

about_define_ROI

...

AboutDefineROI

doc

__init__

changeLanguage

DUT_ROI_Window

doc
...

__init__

changeLanguage

createLightTypes

getMouseClickEvent

init_play

pause

menuROIParent

menuROIChild

addROIGroup

modifyName

modifyThreshold

about_define_ROI

...

AddROIGroup

doc
...

__init__

changeLanguage

...

IllegalValue

doc

__init__

changeLanguage

pushButton_OK_pressed

EMCLightAnalysis

doc
...

__init__

changeLanguage

pause

generateReport

revertKeyframe

setKeyframe_buttonPresse

...

ErrorOpeningVideo

doc

__init__

changeLanguage

 pushButton_OK_pressed

LightSelectionData_Widget

doc
...

__init__

changelanguages

textChangedLabelsMain

textChangedLabels

textChangedDevicePosition

buttonOK_pressed

...

ModifyROIName

doc

__init__

changeLanguage

sendROINameData

...

ModifyThresholdValue

doc
...

__init__

changeLanguage

sendThresholdValue

pushButton_OK_pressed

...

Figure E.8 – Languages’ upgrade

O
penC

V
and

P
ython

application
for

autom
otive

spotlight
im

age
processing.

E

110 Appendix E. Graphical visualization of upgrades

E.9 Configuration file’s upgrade

mainWindow

theme
configurationFile
...

__init__

writeConfiguration

writeConfigurationFile

exit_menuItemPressed

closeEvent

whiteTheme_action/blackTheme_action

...

languages

languages

doc

__init__

loadLanguage

english

spanish

french

Figure E.9 – Configuration file’s upgrade

Javier Expósito Martínez

E.9. Configuration file’s upgrade 111

E

OpenCV and Python application for automotive spotlight image processing.

E

112 Appendix E. Graphical visualization of upgrades

E.10 Status Bar’s upgrade

mainWindow

msg
...

changeStatusBar

DateStatusBar

Create/deleteProgressBar

progress_update

newDUT_buttonPressed,EMCTest_buttonPressed

openEMCFile,openDUTFile

CloneEMC_ButtonPressed

action_openLightController

about_menuItemPressed

checkUpdates_menuItemPressed

selectLanguages

english,french,spanish

whiteTheme_action/blackTheme_action

...

AutoDetection

mainWindow
...

generateMainWindow

...

CheckUpdates

mainWindow

...

progress_update_download

pushButton_Download_pressed

...

valeoRelayShield_enterName_1/2

mainWindow
...

pushButton_OK_pressed

...

LightControl

mainWindow
...

pushbutton_add_name_window/_2_pressed

pushbutton_OK_pressed

...

DefineEMCTest

mainWindow
...

OK_buttonPressed

closeEvent

...

Video_Source_Widget

mainWindow
...

Camera_pressed

Video_pressed

closeEvent

...

LightSelectionData_Widget

mainWindow
...

buttonOK_pressed

buttonCancel_pressed

closeEvent

...

EMCLightAnalysis

mainWindow
msg
...

changeStatusBar

generateReport

setKeyframe_buttonPressed

closeEvent

...

SelectROI

mainWindow
msg
...

changeStatusBar

init_play

getMouseClickEvent

pause

action_exit

action_RevertImageCrop

zoom_x3/6/12/20_buttonPressed

about_define_ROI

createDUT_ROI_WINDOW

...

DUT_ROI_Window

mainWindow
msg
...

changeStatusBar

getMouseClickEvent

int_play,pause

menuROIParent,menuROIChild

zoom_x[3/6/12/20]_buttonPressed

action_exit

done_buttonPressed

....

Figure E.10 – Status Bar’s upgrade Javier Expósito Martínez

E.11. Check Updates’s upgrade 113

E

E.11 Check Updates’s upgrade

OpenAutomotiveLightingValidationPlatform

AutoDetectionWindowAutoDetection

ConnectionError ConnectionError_NoRelays

About_Help_Window CheckUpdates

mainWindow

doc
download_thread

__init__

changeLanguage

progress_update_download

pushButton_Download_pressed

pushButton_OK_pressed

DownloadThread

url

download_progress

__init__

run

mainWindow

checkUpdates

progress
...

Create/deleteProgressBar

progress_update

changeCheckUpdateImage

checkUpdates_menuItemPressed

...

Figure E.11 – Check Updates’s upgrade

OpenCV and Python application for automotive spotlight image processing.

E

114 Appendix E. Graphical visualization of upgrades

Javier Expósito Martínez

E.12. Upgrades of the classes Select_ROI and DUT_ROI. 115

E

E.12 Upgrades of the classes Select_ROI and DUT_ROI.

SelectROI

CameraViewthread,ZoomViewthread
punto_original_x/y,x/yMouse
original_x/y[Camera/Zoom]Window
separate[Camera/Zoom]Window
width_o,height_o
...

__init__

getClickPoints

createCameraView

createZoomView

viewCam

createDUT_ROI_WINDOW

getMousePosition

getMouseClickEvent

action_RevertImageCrop

moveCameraWindow

enterCameraViewLabel

enterCameraViewGroup

acoplarCameraWindow

enterZoomViewGroup

moveZoomView

acoplarZoomWindow

...

CameraViewThread

ROIwindow
cameraViewUpdate
is_paused

running
cap
clickPoints
num_frames
width_o,height_o
punto_original_x/y
queue

__init__

drawPointsLines

createCameraView

run

setClickPoints

setOriginalPoints

pause

resume

stop

ZoomViewThread

ROIwindow
zoomViewUpdate
CameraViewthread
running
clickPoints
punto_original_x/y
zoomVal
height_o

__init__

createZoomView

run

setClickPoints

setOriginalPoints

setZoom

stop

DUT_ROI_Window

CameraViewthread,ZoomViewthread
x/yMouse,punto_original_x/y
separate[Camera/Zoom]Window
original_[x/y][Crop/Zoom]Window
screenShot_[cropView/done]
width_o,height_o
...

__init__

create[Crop/Zoom]View

viewCam

getMouse[Position/ClickEvent]

enterCropViewLabel

enter[Crop/Zoom]ViewGroup

move[Crop/Zoom]Window

acoplar[Crop/Zoom]Window

...

ZoomViewThread

DUTwindow
zoomViewUpdate
CameraViewthread
running
clickPoints
punto_original_x/y
zoomVal
height_o

__init__

createZoomView

run

setClickPoints

setOriginalPoints

setZoom

stop

CameraViewThread

DUTwindow
cameraViewUpdate
is_paused

running
cap
videoCropPoints
ROIs
clickPoints
num_frames
punto_original_x/y
width_crop
height_crop
updateROIs
queue

__init__

drawPointsLines

createCropView

run

setClickPoints

setOriginalPoints

setROIs

getCropImage

pause

resume

stop

Figure E.12 – Upgrades of the classes Select_ROI and DUT_ROI.

OpenCV and Python application for automotive spotlight image processing.

E

116 Appendix E. Graphical visualization of upgrades

Javier Expósito Martínez

E.13. Upgrades of the classes Select_ROI and DUT_ROI. 117

E

E.13 Upgrades of the classes Select_ROI and DUT_ROI.

EMCVideoViewThread

cameraViewUpdate
UpdateROItree
AddAlarm

EMCwindow
is_paused
running
cap
videoCropPoints
width_crop
height_crop
dimensions
step
TotalLum
KeyFrameDiff
KeyFrameDiffArray
alarms
groupROI_dict
ROI_dict
frequency
level
modulation

__init__

CalculateTotalDiffLuminosity

generateAlarm

addAlarm

createCropView

run

resume

pause

stop

getTotalLum

getKeyframeDiff

getAlarms

getkeyDiffArray

EMCLightAnalysis

VideoViewthread
original_[x/y][Keyframe/VideoSource]
separate[Keyframe/VideoSource]
SetKeyframePressed
Keyframe,Keyframe[Original/ROIs]
timer_gif
imgAlert
imageROIAlert
report
...

__init__

getCropPoints

create[Crop/Keyframe]View

viewCam

animationGIF

CloseAlert

generateReport

crearGraficakeyDiff

drawROIs

enter[Keyframe/VideoGroup]

move[KeyFrame/CameraView}

acoplar[Keyframe/VideoSource]Window

action_exit,closeEvent

...

GenerateReport

file
filename
keyFrame

DUTdatas
EMCdatas
alerts
indexROI
graphic_list
lista_threshold

__init__

createIndexROI

saveImage

generateReport

Figure E.13 – Upgrades of the class EMCLightAnalysis
OpenCV and Python application for automotive spotlight image processing.

7

118 Appendix E. Graphical visualization of upgrades

E.14 Toolbar’s upgrade

mainWindow

ribbon
...

__init__

createToolBar

init_ribbon

...

Figure E.14 – Toolbar’s upgrade

Javier Expósito Martínez

Thank you for reading this Bachelor’s Thesis.

Appendix E. Graphical visualization of upgrades

Javier Expósito Martínez

Bibliography

[1] “Es de bien nacidos ser agradecidos.” Refrán popular.

[2] GranaSat webpage. https://granasat.ugr.es Accessed: October 2023.

[3] “Pyarmor focus on protecting python scripts, by several irreversible obfuscation methods, now pyarmor
make sure the obfuscated scripts can’t be restored by any way.” PyArmor.

[4] PyQt5 Documentation. https://doc.qt.io/qtforpython-5/.

[5] xml.dom.minidom Documentation. https://docs.python.org/es/3/library/xml.dom.minidom.html.

[6] Argos translate Documentation. https://github.com/argosopentech/argos-translate.

[7] Argos translate Documentation. https://pypi.org/project/argostranslate/1.4.0/.

[8] CX-Freeze documentation https://cx-freeze.readthedocs.io/en/stable/.

[9] PyInstaller documentation https://pyinstaller.org/en/stable/operating-mode.html.

[10] cxfreeze vs pyinstaller. https://coderslegacy.com/cx_freeze-vs-pyinstaller-comparison/.

[11] cxfreeze vs pyinstaller. https://www.slant.co/versus/9252/9256/~cx_freeze_vs_pyinstaller.

[12] Pyarmor documentation. https://pyarmor.readthedocs.io/en/stable/part-1.html.

[13] Pyarmor documentation. https : / / pyarmor.readthedocs.io / en / stable / questions.html?highlight =
reverse#how-easy-is-to-recover-obfuscated-code.

[14] Pyarmor documentation. https : / / pyarmor.readthedocs.io / en / stable / topic /
performance.html?highlight=obfuscation.

[15] Can EXE generated by cxfreeze be completely decompiled. https://stackoverflow.com/questions/
5497399/can-exe-generated-by-cx-freeze-be-completely-decompiled-back-to-readable-python.

[16] Obfuscation process information. https://resources.infosecinstitute.com/topic/encrypted-code-
reverse-engineering-bypassing-obfuscation/.

[17] How to install apache with WSL. https://www.how2shout.com/how-to/install-apache-on-windows-10-
wsl-http-server.html.

[18] How to install apache in Ubuntu. https://ubunlog.com/servidor-web-apache-instalacion-conceptos-
basicos-ubuntu-20-04/.

OpenCV and Python application for automotive spotlight image processing. 121

https://granasat.ugr.es
https://doc.qt.io/qtforpython-5/
https://docs.python.org/es/3/library/xml.dom.minidom.html
https://github.com/argosopentech/argos-translate
https://pypi.org/project/argostranslate/1.4.0/
https://cx-freeze.readthedocs.io/en/stable/
https://pyinstaller.org/en/stable/operating-mode.html
https://coderslegacy.com/cx_freeze-vs-pyinstaller-comparison/
https://www.slant.co/versus/9252/9256/~cx_freeze_vs_pyinstaller
https://pyarmor.readthedocs.io/en/stable/part-1.html
https://pyarmor.readthedocs.io/en/stable/questions.html?highlight=reverse#how-easy-is-to-recover-obfuscated-code
https://pyarmor.readthedocs.io/en/stable/questions.html?highlight=reverse#how-easy-is-to-recover-obfuscated-code
https://pyarmor.readthedocs.io/en/stable/topic/performance.html?highlight=obfuscation
https://pyarmor.readthedocs.io/en/stable/topic/performance.html?highlight=obfuscation
https://stackoverflow.com/questions/5497399/can-exe-generated-by-cx-freeze-be-completely-decompiled-back-to-readable-python
https://stackoverflow.com/questions/5497399/can-exe-generated-by-cx-freeze-be-completely-decompiled-back-to-readable-python
https://resources.infosecinstitute.com/topic/encrypted-code-reverse-engineering-bypassing-obfuscation/
https://resources.infosecinstitute.com/topic/encrypted-code-reverse-engineering-bypassing-obfuscation/
https://www.how2shout.com/how-to/install-apache-on-windows-10-wsl-http-server.html
https://www.how2shout.com/how-to/install-apache-on-windows-10-wsl-http-server.html
https://ubunlog.com/servidor-web-apache-instalacion-conceptos-basicos-ubuntu-20-04/
https://ubunlog.com/servidor-web-apache-instalacion-conceptos-basicos-ubuntu-20-04/

	License
	Defense authorization
	Library deposit authorization
	Abstract (English)
	Abstract (Spanish)
	Dedication
	Acknowledgements (English)
	Acknowledgements (Spanish)
	Contents
	List of Figures
	List of Tables
	Glossary
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Project goals and objectives
	1.3 Project structure

	2 Analysis
	2.1 Functional Requirements
	2.2 Non Functional Requirements
	2.3 Analysis
	2.4 Project tasks and organization

	3 Reverse engineering
	3.1 What is reverse engineering?
	3.2 Original software's analysis
	3.3 Main and secondary functions' analysis
	3.4 How the application should be works?
	3.5 How did the application work?
	3.6 Conclusion

	4 System design
	4.1 Applications' directories hierarchy
	4.2 Applications' structure
	4.3 Class diagram
	4.3.1 Application's class diagram

	5 Implementation and configuration
	5.1 Application's upgrades
	5.1.1 Responsives interfaces
	5.1.2 Valeo Relay Shield detection and source code improvement
	5.1.3 The application works without Valeo Relay Shields
	5.1.4 Source code upgrades
	5.1.5 New functionality: open a DUT test
	5.1.6 New functionality: open and clone a EMC test
	5.1.7 Data storage
	5.1.8 DUT test and EMC test forms' improvement
	5.1.9 New languages in application
	5.1.10 Initial configuration file
	5.1.11 Create executable file
	5.1.12 Statusbar
	5.1.13 New functionality: Check updates
	5.1.14 Improvements of the classes SELECT ROI, DUT_ROI and EMCLightAnalysis
	5.1.14.1 Improved graphical interface
	5.1.14.2 Higher video readout speed (frame rate)
	5.1.14.3 Generated reports' improvement

	5.1.15 New function: open recent file
	5.1.16 Organize the code application's code
	5.1.17 New toolbar
	5.1.18 Security

	6 Testing and validation.
	6.1 Functional Requirements
	6.1.1 RF.1
	6.1.2 RF.2
	6.1.3 RF.3
	6.1.4 RF.4
	6.1.5 RF.5
	6.1.6 RF.6
	6.1.7 RF.7
	6.1.8 RF.8
	6.1.9 RF.9
	6.1.10 RF.10
	6.1.11 RF.11
	6.1.12 RF.12
	6.1.13 RF.13
	6.1.14 RF.14

	6.2 Non-Functional Requirements
	6.2.1 NRF.1
	6.2.2 NRF.2
	6.2.3 NRF.3
	6.2.4 NRF.4
	6.2.5 NRF.5
	6.2.6 NRF.6
	6.2.7 NRF.7
	6.2.8 NRF.8
	6.2.9 NRF.9
	6.2.10 NRF.10
	6.2.11 NRF.11
	6.2.12 NRF.12
	6.2.13 NRF.13
	6.2.14 NRF.14
	6.2.15 NRF.15
	6.2.16 NRF.16
	6.2.17 NRF.17

	7 Conclusions and future lines
	7.1 Conclusions
	7.2 Proposed future upgrades
	7.2.1 Improve source code
	7.2.2 Complete the application
	7.2.3 Improvement in the structure and control of the application.

	7.3 Lessons learned

	Addenda
	A How to install application
	A.1 Developers' installation
	A.2 Clients' installation

	B Hardware Configuration: How to install and configure Valeo Relay Shields
	C How to install and configure a Local Server
	D Detailed application structure
	D.0.1 Valeo Relay Shield Detection Class Diagram
	D.0.2 MainWindow Class Diagram
	D.0.3 Functionalities' Class Diagrams

	E Graphical visualization of upgrades
	E.1 Interface Resposive
	E.2 Valeo Relay Shield Detection's Upgrade
	E.3 Works without Valeo Relay Shields' upgrade
	E.4 Source code upgrade
	E.5 Open DUT 's upgrade
	E.6 Saved datas' upgrade
	E.7 DUT and EMC Tests' upgrade
	E.8 Languages' upgrade
	E.9 Configuration file's upgrade
	E.10 Status Bar's upgrade
	E.11 Check Updates's upgrade
	E.12 Upgrades of the classes Select_ROI and DUT_ROI.
	E.13 Upgrades of the classes Select_ROI and DUT_ROI.
	E.14 Toolbar's upgrade

	Bibliography

