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Abstract

The computational simulation of shallow stratified fluids is a very active research topic because these types
of systems are very common in a variety of natural environments. The simulation of such systems can
be modelled using multilayer shallow-water equations but do impose important computational requisites
especially when applied to large domains.

General Purpose Computing on Graphics Processing Units (GPGPU) has become a vivid research field
due to the arrival of massively parallel hardware platforms (based on graphics cards) and adequate pro-
gramming frameworks which have allowed important speed-up factors with respect to not only sequential
but also parallel CPU based simulation systems.

In this work we present a proposal for the simulation of shallow stratified fluids with an arbitrary number
of layers using GPUs. The designed system does fully adapt to the many-core architecture of modern GPUs
and several experiments have been carried out to illustrate its scalability and behavior on different GPU
models. We propose a new elaborated 3D computational scheme for an underlying 2D mathematical model.
This scheme allowed implementing a system capable of handling an arbitrary number of layers. The system
adds no overhead when used for two-layer scenarios, compared to an existing 2D system specifically designed
for just two layers.

Our proposal is aimed at creating a GPU-based computational scheme suitable for the simulation of
multilayer large-scale real-world scenarios.
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1. Introduction

The simulation of free surface or internal waves in shallow stratified fluids are commonly modelled by
the multilayer shallow-water equations formulated as a conservation law with non-conservative products and
source terms. Stratified fluids are ubiquitous in nature: they appear in atmospheric flows, ocean currents, es-
tuarine systems,... This is the situation, for instance, in the Strait of Gibraltar, where surface water from the
Atlantic inflows over saltier westwards-flowing Mediterranean water. Simulating those phenomena requires
very long lasting simulations in big computational domains which is why very efficient implementations are
needed to be able to analyze those problems in affordable computational times.

A 2D multilayer shallow-water system can be discretized by the natural extension to 2D domains of a
first order PVM path-conservative type finite volume scheme introduced in [8]. PVM schemes have been
introduced in [8] in the framework of balance laws and non-conservative hyperbolic systems. They are
defined in terms of viscosity matrices computed by a suitable polynomial evaluation of a Roe Matrix. These
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methods have the advantage that they only need some information about the eigenvalues of the system and
no spectral decomposition of the Roe Matrix is required. As consequence, they are much faster than Roe
schemes for systems with an increasing number of unknowns. In this work the PVM-2U method has been
chosen among the PVM schemes introduced in [8] as it provides the best results, concerning computational
time and accuracy. This method can be seen as a the natural extension of the scheme introduced by Degond
et al. in [7] for non-conservative systems.

Since the appearance of computing frameworks like Cuda [14] and openCL [12] the huge computational
capabilities of modern Graphics Processing Units (GPUs) have been unveiled for computationally intensive
physically based simulations. Nevertheless, elaborated software designs are required to take full advance of
the processing power offered by GPUs.

The Cuda computational model, provided by Nvidia [15], requires the computational tasks to be mapped
to a set of threads that will be run in parallel. Each of these threads will run the same program (kernel)
where the number of threads running at a point in time will depend on the hardware requirements of each
thread. At the lower level, threads are run in groups of 32 threads called warps and it is necessary to avoid
code divergences inside a warp to avoid serialization. On the other hand, coalesced memory accesses are
also essential to allow several threads access the required data stored in memory by only issuing one physical
memory access for a group of threads. When a warp requires a memory access operation, the whole warp is
stopped until that memory operation has finished and another warp is run. Modern GPUs provide a large
amount of registers to avoid costly context switches by keeping a large amount of threads in a ready to run
state. Taking into account GPUs currently provide in the order of thousands of computing cores, a large
amount of threads is required to avoid computing cores not receiving enough workload and idling. This
means any simulation scheme must be designed to provide a high degree of thread level parallelism. The
higher the number of threads that can be kept active, the higher the value of a metric called occupancy.

On the other hand, as in many architectures, computing cores have pipelines which should be kept as
full as possible to maximize the performance. This requires an adequate level of instruction level parallelism
which means having certain degree of independence between the instructions run by each thread. This fact
requires that each thread must also receive an adequate level of workload and as much independence as
possible from memory accesses (arithmetic intensity).

The computing cores in Nvidia branded hardware are grouped into multiprocessors (SMXs) and threads
are also grouped into thread blocks. Each thread block is run on the same SMX and this allows using an
intra-block synchronization mechanism and also intra-block collaboration through the use of a high-speed
shared memory (shared among the threads of each block).

Dividing the computations that make up the simulation program into independent threads and grouping
them into blocks requires also to consider the resources required by each thread and several hardware level
limits like the maximum resident threads and blocks per SMX to keep the occupancy level high (although
a higher occupancy does not automatically translate into a higher performance).

There are many examples in literature of successfully using GPUs for shallow-water simulation [5, 4, 2,
10, 3], even before frameworks like Cuda were available, or widely used, and physical simulations were run
using the standard graphics pipeline [11, 13]. In this work we concentrate on multilayer environments with
an arbitrary number of layers simulated using Cuda on Nvidia GPUs.

This paper is organized as follows: in Section 2 the mathematical model that has been used is described,
Section 3 describes de numerical model, Section 4 addresses the multilayer computational model proposed
in this work and Section 5 presents the set of experiments that have been performed. Finally, Section 6
presents the conclusions that were reached.
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2. Mathematical model

Let us consider the system of equations governing the 2D flow of m superposed immiscible layers of
shallow homogeneous fluids with constant densities in a subdomain D ⊂ R2:

∂thl + ∂xqx,l + ∂yqy,l = 0,

∂tqx,l + ∂x

(
q2x,l
hl

+
1

2
gh2

l

)
+ ∂y

(
qx,lqy,l
hl

)
+ ghl∂x

(∑
k>l

hk +
∑
k<l

ρk
ρl

hk −H

)
= 0.

∂tqy,l + ∂x

(
qx,lqy,l
hl

)
+ ∂y

(
q2y,l
hl

+
1

2
gh2

l

)
+ ghl∂y

(∑
k>l

hk +
∑
k<l

ρk
ρl

hk −H

)
= 0

(1)

where l = 1, · · · ,m being m is the number of layers, hl(x, t) and ql(x, t) = (qx,l(x, t), qy,l(x, t)) are, respec-
tively, the thickness and the mass-flow of the l-th layer at point x at time t, and they are related to the
mean velocities ul(x, t) = (ux,l(x, t), uy,l(x, t)), by the equalities: ql(x, t) = ul(x, t)hl(x, t); H(x) is the
basin depth measured from a fixed reference level, g is the gravity constant and ρj the densities of each layer
verifying

0 < ρ1 < · · · < ρm.

Notice that h1 is the height of the layer of fluid on the top and hm is the height of the layer of fluid over
the bottom (See Figure 1).

Figure 1: Multilayer stratified flow

This system can be written under the structure of a system of balance laws with non-conservative
products

∂tw + ∂xFx(w) + ∂yFy(w) +Bx(w)∂xw +By(w)∂yw = Gx(w)∂xH +Gy(w)∂yH (2)

where

w =

 w1

...
wm

 , wl =

 hl

qx,l
qy,l

 =

 hl

ux,lhl

uy,lhl

 ,
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Fx(w) =

 Fx,1

...
Fx,m

 , Fx,l =


ux,lhl

u2
x,lhl +

1

2
gh2

l

ux,luy,lhl

 ,

Fy(w) =

 Fy,1

...
Fy,m

 , Fy,l =


uy,lhl

ux,luy,lhl

u2
y,lhl +

1

2
gh2

l



Gx(w) =

 Gx,1

...
Gx,m

 , Gx,l =

 0
ghl

0

 , Gy(w) =

 Gy,m

...
Gy,m

 , Gy,l =

 0
0
ghl

 .

Bx(w) is the 3m× 3m matrix defined by

Bx(w) =


0 B1,2

x B1,3
x · · · B1,m

x

B2,1
x 0 B2,3

x · · · B2,m
x

...
... 0 · · ·

...
Bm,1

x Bm,2
x Bm,3

x · · · 0


where Bl,k

x , k, l = 1, · · · ,m, k ̸= l are 3× 3 matrices defined by

Bl,k
x =



 0 0 0
ρk/ρlhl 0 0

0 0 0

 if k < l 0 0 0
hl 0 0
0 0 0

 otherwise.

By(w) is the 3m× 3m matrix defined by

By(w) =


0 B1,2

y B1,3
y · · · B1,m

y

B2,1
y 0 B2,3

y · · · B2,m
y

...
... 0 · · ·

...
Bm,1

y Bm,2
y Bm,3

y · · · 0


where Bl,k

y , k, l = 1, · · · ,m, k ̸= l are 3× 3 matrices defined by

Bl,k
y =



 0 0 0
0 0 0

ρk/ρlhl 0 0

 if k < l 0 0 0
0 0 0
hl 0 0

 otherwise.

Let us define the matrices Aα(w) = Jα(w) + Bα(w), α = x, y where Jα(w) =
∂Fα

∂w (w) are the Jacobians
of the fluxes Fα, and we assume that w ∈ Ω ⊂ R3m, so that (1) is strictly hyperbolic.
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Let us also remark that the system (1) verifies the property of invariance by rotations. Effectively, given
η ∈ R2 with ∥η∥ = 1, let us define

Tη =


R1,1

η 0 · · · 0
0 R2,2

η · · · 0
...

...
...

...
0 0 · · · Rm,m

η

 , Rl,l
η =

 1 0 0
0 ηx ηy
0 −ηy ηx

 , l = 1, · · · ,m

and let us denote Fη(w) = Fx(w)ηx+Fy(w)ηy, B(w) = (Bx(w), By(w)), and G(w) = (Gx(w), Gy(w)) then

Fη(w) = T−1
η Fx(Tηw), TηB(w) · η = Bx(Tηw), TηG(w) · η = Gx(Tηw). (3)

Moreover, it is easy to check that Tηw verifies the system

∂t(Tηw) + ∂ηFx(Tηw) +Bx(Tηw)∂ηw = Gx(Tηw)∂ηH −Rη⊥ , (4)

where Rη⊥ = Tη

(
∂η⊥Fη⊥(w) +B(w) · η⊥∂η⊥w −G(w) · η⊥∂η⊥H

)
.

Finally, let us remark that there is no explicit formula for the eigenvalues and eigenvectors of matrix
Aη(w) = Ax(w)ηx +Ay(w)ηy, but it is well known in oceanography that the fastest and the slowest wave of
system (1) could be approximated by the expressions

λη
L = ūη −

√√√√g

m∑
l=1

hl, λη
R = ūη +

√√√√g

m∑
l=1

hl (5)

where ūη is defined by

ūη =

∑m
l=1 ul · η hl∑m

l=1 hl
. (6)

3. Numerical Scheme

To discretize (1) the computational domain D is decomposed into subsets with a simple geometry, called
cells or finite volumes: Vi ⊂ R2. Here, it is assumed that the cells are rectangular with edges parallel to the
Cartesian axes. Let us denote by T the mesh and by NV the number of cells.

Given a finite volume Vi, |Vi| will represent its area; Ni ∈ R2 its center; Ni the set of indexes j such that
Vj is a neighbor of Vi; Eij the common edge of two neighboring cells Vi and Vj , and |Eij | its length (∆x
(respectively ∆y) the length of the horizontal (respectively vertical) edges); ηij = (ηij,x, ηij,y) the normal
unit vector at edge Eij pointing towards the cell Vj and wn

i the approximation to the average of the solution
in the cell Vi at time tn provided by the numerical scheme:

wn
i
∼=

1

|Vi|

∫
Vi

w(x, tn) dx.

Let us now briefly describe the numerical scheme that we use to approximate the solution of the system
(1). Here, we use the natural extension to 2D problems of the PVM-2U scheme introduced in [8] :

wn+1
i = wn

i − ∆t

|Vi|
∑
j∈Ni

|Eij |F−
ij (7)

where F−
ij is defined taking into account the property of invariance by rotations of system (1). The following

steps are performed to define F−
ij :
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1. We define

wηij =
(
h1, q

ηij

1 , h2, q
ηij

2 , · · · , hm, qηij
m,

)T
= Tηij (w)[1,2,4,5··· ,3m−2,3m−1]

,

and

wη⊥
ij =

(
q
η⊥
ij

1 , q
η⊥
ij

2 , · · · , q
η⊥
ij

m

)T

= Tηij
(w)

[3,6,··· ,3m]
,

where w[i1,··· ,is] is the vector defined from vector w, using its i1-th, . . . , is-th components, q
ηij

l = ql ·ηij
and q

η⊥
ij

l = ql · η⊥ij , l = 1, · · · ,m.

2. Let Φ−
ηij

be the 1D numerical PVM-2U flux associated to the 1D multilayer shallow-water system
defined using the 1-st, 2-nd, 4-th and 5-th, · · · , (3m− 2)-th and (3m− 1)-th equations of system (4)
where the term Rη⊥

ij
has been neglected:

Φ−
ηij

=
1

2
(F(w

ηij

j )−F(w
ηij

i ) + Bij(w
ηij

j − w
ηij

i )− Gij(Hj −Hi) (8)

−Qij((w
ηij

j − w
ηij

i )− (A∗
ij)

−1Gij(Hj −Hi)) + FC(w
ηij

i )

(9)

where

F(wηij ) =



u
ηij

1 h1

(u
ηij

1 )2h1 +
g

2
h2
1

u
ηij

2 h2

(u
ηij

2 )2h2 +
g

2
h2
2

...

u
ηij
m hm

(uηij
m )2hm +

g

2
h2
m


, Gij =



0

ghij
1

0

ghij
2

...

0

ghij
m


, FC(wηij

) =



u
ηij

1 h1

(u
ηij

1 )2h1

u
ηij

2 h2

(u
ηij

2 )2h2

...

u
ηij
m hm

(uηij
m )2hm


,

Bij(w
ηij

j − w
ηij

i ) =



0

ghij
1

(
m∑

k=2

(hk,j − hk,i)

)
0

ghij
2

(
m∑

k=3

(hk,j − hk,i) +

1∑
k=1

ρk
ρ2

(hk,j − hk,i)

)
...
0

ghij
m

(
m−1∑
k=1

ρk
ρm

(hk,j − hk,i)

)


and

hij
l =

hl,j + hl,i

2
, l = 1, · · · ,m.

Matrix Qij is defined by

Qij = αij
0 Id+ αij

1 Aij + αij
2 A2

ij (10)
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with

αij
0 =

(SM )2Sm(sign(Sm)− sign(SM ))

(Sm − SM )2
,

αij
1 =

SM (|SM | − |Sm|) + Sm(sign(SM )Sm − SM sign(Sm))

(Sm − SM )2
,

αij
2 =

Sm(sign(Sm)− sign(SM ))

(Sm − SM )2
,

(11)

where

SM =

 Sij
L if |Sij

L | ≥ |Sij
R |,

Sij
R otherwise

(12)

and

Sm =

 Sij
R if |Sij

L | ≥ |Sij
R |,

Sij
L otherwise.

(13)

Sij
R and Sij

L are two estimations of the fastest and slowest waves, respectively, related to the Riemann
problem associated to edge Eij . Here, the following estimations are used:

Sij
R = max

(
λ
ηij

R,j , λij
R

)
, Sij

L = min
(
λ
ηij

L,i , λij
L

)
,

being

λ
ηij

R,j = u
ηij

j +

√√√√g

m∑
l=1

hl,j , λij
R = u

ηij

ij +

√√√√g

m∑
l=1

hij
l

λ
ηij

L,i = u
ηij

i −

√√√√g

m∑
l=1

hl,i, λij
L = u

ηij

ij −

√√√√g

m∑
l=1

hij
l

where

u
ηij

k =

∑m
l=1 hl,k ul,k · ηij∑m

l=1 hl,k
, k = i, j

and

u
ηij

ij =

∑m
l=1 u

ij
l h

ij
l∑m

l=1 h
ij
l

,

with

uij
l =

√
hl,ju

ηij

l,j +
√
hl,iu

ηij

l,i√
hl,j +

√
hl,i

, l = 1, · · · ,m and u
ηij

l,k = ul,k · ηij , k = i, j.
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Aij is the 2m× 2m matrix defined by

Aij =



0 1 0 0 · · · 0 0

ghij
1 − (uij

1 )
2 2uij

1 ghij
1 0 · · · ghij

1 0

0 0 0 1 · · · 0 0

ρ1
ρ2

ghij
2 0 ghij

2 − (uij
2 )

2 2uij
2 · · · ghij

2 0

...
...

...
... · · ·

...
...

0 0 0 0 · · · 0 1

ρ1
ρm

ghij
m 0

ρ2
ρm

ghij
m 0 · · · ghij

m − (uij
m)2 2uij

m


(14)

and A∗
ij is defined from Aij by setting uij

l = 0, l = 1, · · · ,m.
Taking into account the expression of Qij (10) and A∗

ij , Φ
−
ηij

can be written as

Φ−
ηij

=
1

2
(Eij − (αij

0 Ĩij + αij
1 Eij + αij

2 AijEij)) + FC(w
ηij

i ) (15)

where

Eij = F(w
ηij

j )−F(w
ηij

i ) + Bij(w
ηij

j − w
ηij

i )− Gij(Hj −Hi)

and

Ĩij =



f1
j − f1

i − (f2
j − f2

i )

q
ηij

1,j − q
ηij

1,i

f2
j − f2

i − (f3
j − f3

i )

q
ηij

2,j − q
ηij

2,i

...

fm
j − fm

i

q
ηij

m,j − q
ηij

m,i


with

f l
α =

m∑
k=l

hk,α −Hα, α = i, j.

Finally, let us remark that Eij can be written in an equivalent way as

Eij = FC(w
ηij

j )−FC(w
ηij

i ) + Pij

8



where Pij is a discretization of the pressure terms given by

Pij =



0

ghij
1

(
f1
j − f1

i

)
0

ghij
2

(
ρ1
ρ2

(
(f1

j − f1
i )− (f2

j − f2
i )
)
+ (f2

j − f2
i )

)
...

0

ghij
m

(
m−1∑
k=1

ρk
ρm

(
(fk

j − fk
i )− (fk+1

j − fk+1
i )

)
+ (fm

j − fm
i )

)



.

Equivalently the flux corresponding to cell wj can be defined as:

Φ+
ηij

=
1

2
(Eij + (αij

0 Ĩij + αij
1 Eij + αij

2 AijEij))−FC(w
ηij

j ). (16)

3. Let us define

Φ−
η⊥
ij

=



(Φ−
ηij

)[1] u
η⊥
ij ,∗

1

(Φ−
ηij

)[3] u
η⊥
ij ,∗

2

...

(Φ−
ηij

)[2m−1] u
η⊥
ij ,∗

m


, (17)

where u
η⊥
ij ,∗

l is defined as follows

u
η⊥
ij ,∗

l =


q
η⊥
ij

l,i

hl,i
if (Φ−

ηij
)[2l−1] > 0

q
η⊥
ij

l,j

hl,j
otherwise

l = 1, · · · ,m.

Let us remark that Φ−
η⊥
ij

is the numerical flux associated to the 1-st, 6-th, · · · , 3m-th equations of

system (4) where, again, the term Rη⊥
ij

has been neglected. Its derivation has been done following the

main ideas of the HLLC method for the shallow-water system introduced in [9] as q
η⊥
ij

l , l = 1, · · · ,m
can be seen as a passive scalar that is convected by the flow. Equivalently, the flux corresponding to
cell wj can be defined as

Φ+
η⊥
ij

= −Φ−
η⊥
ij

.
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4. Finally, the global numerical flux is defined by F−
ij = T−1

ηij
F−
ij , where

F−
ij =



(Φ−
ηij

)[1]
(Φ−

ηij
)[2]

(Φ−
η⊥
ij

)[1]

(Φ−
ηij

)[3]
(Φ−

ηij
)[4]

(Φ−
η⊥
ij

)[2]

...
(Φ−

ηij
)[2m−1]

(Φ−
ηij

)[2m]

(Φ−
η⊥
ij

)[m]



.

Equivalently, F+
ij = T−1

ηij
F+
ij .

A CFL condition must be imposed to ensure stability of the scheme:

∆t = min
i=1...NV


[∑

j∈Ni
|Eij |λij

max

2γ |Vi|

]−1
 (18)

with 0 < δ ≤ 1 and λij
max = max

(
|λij

R |, |λ
ij
L |
)
.

Let us remark that this scheme is path-conservative in the sense introduced by Pares in [17] and extended
to 2D by Castro et al. in [6]. Moreover, it is exactly well-balanced for stationary solutions corresponding
to water at rest. More general results concerning the consistency and well-balanced properties have been
studied in [6] and [18].

4. Computational scheme

At the computational level, the domain will be treated as a 3D domain in the sense that for each volume
Vi the state data related to each layer will be used and stored independently. This means that each volume
Vi will be decomposed in a set of sub-volumes {Vl,i | l = 1, · · · ,m} where m is the number of layers. The
same logic is applied to the edges so that El,ij is defined as the common edge of two neighboring volumes
Vl,i and Vl,j . This scheme is graphically shown in Figure 2. This software design decision adds a third
dimension to the sources of parallelism as an important subset of the computations associated to cells and
edges can be performed independently across layers.

The storage of each mathematical volume is also spread over the computational volumes. The state

associated to Vl,i is wl,i and the rotated state: Tηij
(w)

[3l−2,3l−1]
=
(
hl, q

ηij

l

)T
and Tηij

(w)
[3l]

= q
η⊥
ij

l .

As shown in equation (7), the computational cost of the simulation process is mainly associated to the
computation of F−

ij . This computation is split over the existing layers and F−
ij is obtained by composing

F−
l,ij l = 1, · · · ,m

F−
ij = (Rl,l

ηij
)−1F−

l,ij =

 (Φ−
ηij

)[2l−1]

(Φ−
ηij

)[2l]
(Φ−

η⊥
ij

)[l]


which allows the further parallelization of this computational step.

The whole set of operations to compute F−
l,ij l = 1, · · · ,m has been divided into several steps with two

precomputation steps (Figure 3, steps 1 and 2) that are run before the effective F−
l,ij computation. The

10



Figure 2: Finite volumes scheme

first precomputation step is associated to each volume as the computation of data is not dependent on the
neighboring volume. The second and third steps are associated to each edge.

The precomputation steps increase the parallelism level of the computation of F−
l,ij (Figure 3, step 3 )

because it moves dependencies between the layers to the precomputation steps. This allows achieving the
maximum level of parallelism for the most computationally intensive part of the simulation process.

After the computation of F−
l,ij and λij

max, there is another kernel, associated to each volume, used to
compute the next state of each volume, but this is a lightweight computation (Figure 3, step 4).

In the following sections each computational phase is explained in detail.

4.1. Volume Precomputations

The first kernel that is run at each simulation step performs the computation of f l
i for each volume Vl,i.

f l
i =

m∑
k=l

hk,i −Hi

This computation is carried out layer-wise starting from the deepest layer m because this allows to reuse
the computations of layer l + 1 for layer l (f l

i = f l+1
i + hl,i). The values f l

i are stored in a float array and
are used for the pressure terms matrix Pij computation in the next precomputation step. The f l

i values are

also required to compute matrix Ĩij .
In the same kernel the local contribution of the volume to the following expressions

m∑
l=1

hl

and
m∑
l=1

ul · η hl

is computed and accumulated in a float2 array. These values are used for the computation of u
ηij

i which is

required for the computation of Sij
R , Sij

L , λ
ηij

L,i and λ
ηij

R,j (and λij
max in the third step).

4.2. Edge Precomputations

In this stage, for each edge El,ij data related to the 1D Roe state is precomputed. For each edge:

hij
l =

hl,j + hl,i

2

11



Figure 3: Block diagram

uij
l =

√
hl,j u

ηij

l,j +
√

hl,i u
ηij

l,i√
hl,j +

√
hl,i

are computed. The hij
l , u

ij
l , u

ηij

l,i and u
ηij

l,j values are stored in a float4 array for the later computation of

matrix Aij and FC(w
ηij

i ).
In the same kernel, the local contribution of the edge to the following expressions:

m∑
l=1

hij
l

and
m∑
l=1

uij
l h

ij
l

are computed and accumulated in a float2 array. These values are required for the computation of u
ηij

ij

12



which is required for the computation of Sij
R , Sij

L λij
L , λ

ij
R (and λij

max in the third step).
Finally, the pressure terms Pij are also computed in this kernel using the f l

i values precomputed for each
volume in the previous step. Pressure terms are stored in a float2 array. Each kernel instance performs only
the computation involving row l of Pij (rows 2l − 1 and 2l), which means the computation of the matrix is
split over the kernels instances associated to the edge set.

4.3. F−
ij computation

In the third step, the kernel instance associated to each edge El,ij produces a partial result of the
term

∑
j∈Ni

|Eij |F−
ij required to compute the next state of each volume. Each partial result is stored in

an accumulator. The reason for using only one accumulator Mi is to be able to control the positivity of
the partial result as the computations of the final result are carried out and also to reduce the storage
requirements of the simulation process. In order to avoid race conditions when accessing each accumulator,
edges are processed in sets:

• even vertical edges

• odd vertical edges

• even horizontal edges

• odd horizontal edges

As shown in Figure 4, the computation associated to four edges contributes to the computation of∑
j∈Ni

|Eij |F−
ij = |Eia|F−

ia + |Eid|F−
id + |Ebi|F+

bi + |Eci|F+
ci

where each edge belongs to a different edge set of the before mentioned edge classification scheme.

Figure 4: Edges that contribute to the state computation of a volume

The computation of F−
ij , and therefore Φ−

ηij
requires the computation of several matrices: FC(w

ηij

i ),

FC(w
ηij

j ), Ĩij , Eij and Aij .
It is important to note that each kernel instance performs only the computations related to layer l which

are two rows of each of the before mentioned matrices. This way the whole computation is distributed across
the kernel instances of the edges of all layers. The kernel instance associated to edge El,ij computes only 3
components of F−

ij .

The same kernel also computes λij
max (stores the partial results in Zi) to allow the computation of ∆tn

which requires values already precomputed in the two precomputation kernels.
Finally, F+

ij is computed at the same time at each edge. This way the same kernel instance contributes to

the computation of wl,n+1
i and wl,n+1

j , and the new states of two volumes can be obtained requiring almost
the same computational effort as for one of them.

All the computation steps of this phase can be performed in parallel as there are no dependencies between
layers. Edge related kernels are therefore organized in 3D thread blocks where the z coordinate of the thread
block dimension is used to represent the layer of the kernel instance.
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4.4. Next state computation

After F−
ij and λij

max have been computed, a reduction operation is required to compute the minimum of

the local result of λij
max to obtain ∆tn+1. This minimum is computed with a dedicated kernel.

Finally, using the accumulator associated to each volume (Mi), the next state can obtained using ∆tn

(value of the previous simulation step). A dedicated kernel per volume Vl,i, using the previous state wn
i

computes the next state wn+1
i layer-wise.

Both the reduction and state update kernels are very lightweight and account only for a small portion
of the total computing time of each simulation step.

The next state computations could be integrated in the kernel that processes each edge, after processing
the odd horizontal edges. This would make the last kernel unnecessary but would increase the number of
GPU registers required by the edge processing kernel (from 42 to 52 registers). This effect reduces occupancy
and increases the simulation time. Therefore, this option was discarded.

4.5. Volume reordering

The restriction imposed of alternatively processing even and odd edges creates non fully coalesced mem-
ory access patterns when vertical edges are processed. An example of this fact in shown in Figure 5A.
Considering, for instance, the processing step of even vertical edges, and taking into account the left and
right volume data of each edge has to be accessed, first memory read instructions for volumes 1, 3, 5 . . . will
be issued and then memory read instructions for volumes 0, 2, 4, . . .. As volumes are stored in consecutive
memory positions, these access patterns have gaps between each element pair. Figure 5 uses horizontal
arrows to mark the volumes accessed by the kernel associated to each edge and a number indicating in
which sequence these accesses are issued.

By reordering the volumes in a such a way that all even volumes are stored consecutively and then all
odd volumes are also stored consecutively, volumes 1, 3, 5 . . . can be accessed in a fully coalesced way and
also volumes 0, 2, 4, . . .. (see Figure 5B). This Figure shows that the first memory access instruction will
fetch all the volume data of the right part of the grid and the second memory access instruction the left one.

This volume reordering scheme does also make memory writes coalesced. Each kernel associated to each
edge writes to the accumulator of each volume using the same pattern as the read operations which means
writes do benefit from the reordering scheme in the same way.

Figure 5: Volume reordering scheme

When horizontal edges are processed, as each type of edge is in the same row, no gaps are generated when
accessing the upper and the lower volumes associated to each edge. This means volumes are not reordered
vertically but only horizontally.

5. Numerical Experiments

Several experiments have been carried out in order to test the efficiency of the proposed simulation
software design. First, a comparison with an existing two-layer simulation software was performed with
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Figure 6: Horizontal edges

both its GPU and its CPU version. Additionally, the multilayer simulation software was run using different
mesh sizes and different number of layers. The GPU used for the experiments was an Nvidia GTX680 which
uses the Kepler [16] architecture.

5.1. Comparison with a two-layer system

In order to study the efficiency of the multilayer system design, a comparison with the two-layer GPU
system [1, 3] was performed, but using the PVM-2U scheme instead of the Roe scheme, a structured regular
mesh and a single GPU . Three experiments were carried out using different mesh sizes. Each experiment
simulates a dam break on the internal layer during 10 seconds of simulation time.

The test scenario is similar to the one shown in Figure 7 but with only two layers. The domain consisted
in a 10× 10 square and a flat basin, H(x) = 1,∀x. The initial conditions where defined by

• The dam height is 4.5 and the distance to the top neighboring layer is 0.5. The region of the second
layer not affected by the presence of the simulated dam has a thickness value of 1.

• ql(x, 0) = 0, l = 1, 2

Therefore, the function that sets the thickness of each layer has the following analytical expression:

hl(x) =

{
(0.5DA(x)) + 5 (1−DA(x)) if l = 1

(5.5DA(x)) + (1−DA(x)) if l = 2
(19)

where DA(x) is a function with the following expression:

DA(x) =

{
1 if distance(x, c) < 1.5

0 otherwise
(20)

where c = (5, 5) is the 2D position of the center of the circular dam.
The CFL value used was 0.9 and ρ2 = 2 ρ1. Wall boundary conditions were imposed.
As the two-layer code was specifically designed to handle two layers, it was expected to perform better

than the general multilayer version, but this was not the case as it can be seen in Table 1.

#Volumes Two-layer code Multilayer code
256× 256 7.2s 5.8s
512× 512 53.1s 40.8s

1024× 1024 417.2s 311.5s

Table 1: Two-layer and multilayer comparison. Time expressed in seconds

The two-layer code does also split the computations using the aforementioned edge groups, but requires no
precomputation steps as each kernel instance processes both layers when processing volume and edges. This
fact makes the design more monolithic and the kernel associated to the computations for each edge requires
a higher amount of registers (63) than in the multilayer code. This reduces the occupancy and explains
why the multilayer system offers a better performance despite the overhead produced by the adaptation
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to an arbitrary number of layers. In the multilayer system the bigger kernel is the one associated to the
computation of F−

l,ij and λij
max which requires 42 registers. It can therefore be concluded that the strategy

of a finer-grained design of the multilayer system offers a better performance for this type of problem as
it increases the thread level parallelism while achieving a sufficient instruction level parallelism for each
kernel instance. This increased performance comes at the cost of a larger memory footprint because of the
intermediate data storage requirements.

5.1.1. Comparison with a CPU two-layer system

The multilayer code was also compared to a native CPU two-layer implementation. The same 10 seconds
of simulation of the dam break mentioned in the previous section with 256 × 256 volumes, requires 1489
seconds on the CPU (Intel Core i7-2600 CPU @ 3.40GHz). Using four OpenMP threads, the run time is 412
seconds. This results in a speed-up of over 250× with respect to the single-threaded CPU version and over
70× with respect to the multithreaded CPU version. This CPU version includes no special optimizations
apart from the OpenMP parallelization and the compiler optimizations produced by the -O3 compiler flag.

5.2. Multilayer experiments

Two experiments were performed to test the performance of our work. The first experiment used a domain
consisting in a 10×10 square. The basin depth is defined by the function: H(x) = 1−0.5 exp (−10 (x− 5)2)
and all layers have a thickness value of 1, except for three layers:

• The two layers affected by the presence of the simulated dam. The dam height is 4.5 and the distance
to the top neighboring layer is 0.5.

• The height of layer m is defined by H(x).

The function that defines the thickness of each layer is shown in equation 21.

hl(x) =


H(x) if l = m

1 if l = 1, . . . , (d− 2), (d+ 1), . . . , (m− 1)

(5.5DA(x)) + (1−DA(x)) if l = d

(0.5DA(x)) + 5 (1−DA(x)) if l = (d− 1)

(21)

where d = m
2 is the layer on which the dam is defined. In this experiment the center of the circular dam is

located at c = (2, 5).
Regarding the initial conditions, ql(x, 0) = 0, l = 1, . . .m. The CFL value used was 0.9 and ρl = 2 ρl−1.

Wall boundary conditions were imposed.
The test scenario scheme with six layers and basin is shown in Figure 7. There are also video captures of

different simulation scenarios available on the complementary material website: http://dicits.ugr.es/

software/MultiLayerSW/

In Table 2 the results for different number of layers and 2D sizes are shown. The number of volumes
(millions of) processed per second is also shown considering the number of simulation iterations performed,
and the total number of computational volumes.

In the first test, the total thickness of the water increases as layers are added, and so does the density
difference between the first and the last layer. This results in a decreasing ∆t value and therefore an
increasing number of iterations as the number of layers increases.

For the second experiment, the total thickness of the water was set to 10. This means that as layers are
added, the thickness of each layer decreases. Additionally the density values were set so that ρ1 = 0.1 and
ρm = 1.0 and all the intermediate ρi values are interpolated lineally. The rest of the experiment parameters
are the same as for the previous one. This test scenario produces a fixed ∆t value at each iteration step and
a constant number of iterations. In this case, as layers as added, the simulation scenario remains fixed but
more resolution is added to the dimension represented by the number of layers.

The simulation times for the second experiment are shown for a 512 × 512 domain together with the
results of the previous experiment in Figure 8. This plot shows that when keeping the number of iterations
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#Volumes per layer #Layers Time #Vols/s (millions)
256× 256 4 12.7s 110
256× 256 8 34.1s 100
256× 256 16 112.7s 79
512× 512 4 93.7s 121
512× 512 8 254.5s 109
512× 512 16 865.6s 84

1024× 1024 4 732.7s 125
1024× 1024 8 1981.6s 113
1024× 1024 16 6848.1s 86

Table 2: GTX680 - Multilayer experiments. Time expressed in seconds

Figure 7: Test scenario with six layers

constant, doubling the number of layers does only increase the run time by a factor between 2 and 3. This is
a very good result taking into account the inter-layer dependencies become more important as the number
of layers increases.

A comparison using a Tesla K20 GPU (2495 Cuda cores @ 706Mhz) was also performed. This GPU
offers a greater amount of Cuda cores (60% more) than the GTX 680 (1536 Cuda cores @ 1058Mhz) but
at a lower clock speed (33% less). Table 3 shows the results obtained. Finally, a single experiment was
performed using a GTX Titan GPU (2688 Cuda cores @ 876Mhz). This GPU provides 75% more cores than
the GTX680 at a 15% lower clock rate and the results obtained are shown in table 4

#Volumes per layer #Layers GTX 680 time Tesla K20 time
256× 256 8 34,1s 29s
512× 512 16 865.6s 802s

Table 3: GTX 680-Tesla K20 multilayer experiment. Time expressed in seconds

Taking into account the 1.5× speed-up factor obtained using the GTX Titan and the up to 1.11× factor
obtained with the Tesla K20 with respect to the results of the GTX 680 model, we believe the system shows
a good scalability with respect to the number of available Cuda cores. The important clock rate difference
of the K20 model explains that the results obtained with this GPU are worse than the ones that could be
expected by only considering its number of Cuda cores.
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Figure 8: 512× 512 simulation times

#Volumes per layer #Layers GTX 680 time GTX Titan time
256× 256 6 23s 15,2s

Table 4: GTX 680-GTX Titan multilayer experiments. Time expressed in seconds

5.3. Volume reordering

We have also analyzed the benefits of the volume reordering scheme with respect to the ad-hoc vol-
ume/data structure mapping using the first of the two test scenarios introduced in section 5.2.

#Layers Reordered volumes Ad-hoc order
2 6.1s 5.8s
6 25.3s 26.1s
12 75.6s 82.37s

Table 5: Volume reordering benefits. 65 535 (256× 256) volumes per layer. Time expressed in seconds

Table 5 shows that the reordering scheme does produce some overhead because it requires a higher
amount of operations to compute volume and edge indices and this fact produces a slightly higher run time
for a low number of layers. As the number of edges increases, which also increases the number of memory
accesses, the benefit of the reordering is clear.

6. Conclusions

An efficient GPU based multilayer simulation scheme has been presented which allows an arbitrary
number of layers as it is fully parameterized. The fact that it is based on a 2D mathematical model that
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has been implemented by using a 3D approach, a higher level of thread level parallelism is achieved which
offers a good scalability as the number of layers increases.

The efficiency of the proposed simulation scheme has been shown in terms of the number of volumes
which are processed per second and the speed-up values with respect to previous two-layer systems, using
both their GPU and their single and multi-threaded CPU version. The proposed general scheme introduces
no overhead when compared to existing GPU-based systems which were specifically designed for two layers.
Moreover, it achieves a run time reduction from one to two orders of magnitude when compared to multi
and single-threaded CPU implementations. Our simulation software processes around 100 million of 3D
volumes per second for scenarios with between 4 and 16 layers on a single GPU.

The results show that the simulation scheme that has been presented can be applied to large-scale
problems to simulate real-world phenomena like lake or oceanic currents.
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two-dimensional nonconservative hyperbolic systems, Journal of Scientific Computing 39 (2009) 67–114.

[7] P. Degond, P.F. Peyrard, G. Russo, P. Villedieu, Polynomial upwind schemes for hyperbolic systems, Comptes Rendus de
l’Académie des Sciences - Series I - Mathematics 328 (1999) 479 – 483. doi:http://dx.doi.org/10.1016/S0764-4442(99)
80194-3.

[8] M.J.C. Dı́az, E.D. Fernández-Nieto, A class of computationally fast first order finite volume solvers: PVM methods.,
SIAM J. Scientific Computing 34 (2012).

[9] E.D. Fernández-Nieto, D. Bresch, J. Monnier, A consistent intermediate wave speed for a well-balanced HLLC solver,
Comptes Rendus Mathematique 346 (2008) 795 – 800. doi:http://dx.doi.org/10.1016/j.crma.2008.05.012.

[10] M. Geveler, D. Ribbrock, S. Mallach, D. Göddeke, A simulation suite for Lattice-Boltzmann based real-time CFD applica-
tions exploiting multi-level parallelism on modern multi- and many-core architectures, Journal of Computational Science
2 (2011) 113–123.

[11] T.R. Hagen, J.M. Hjelmervik, K.A. Lie, J.R. Natvig, M.O. Henriksen, Visual simulations of shallow-water waves, Simula-
tion Modelling Practice and Theory 13 (2005) 716–726.

[12] Khronos OpenCL Working Group, The OpenCL Specification, Accessed November 2012.
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