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Abstract

The addition of compost from sewage sludge to soils represents a sustainable option from an environmental and economic point
of view, which involves the valorisation of these wastes. However, before their use as a soil amendment, compost has to reach the
quality levels according to the normative, including microbial parameters. Viruses are not included in this regulation and they can
produce agricultural problems and human diseases if the compost is not well sanitised. In this study, we carried out the analysis of
the viral populations during a composting process with sewage sludge at an industrial scale, using semipermeable cover
technology. Viral community was characterised by the presence of plant viruses and bacteriophages of enteric bacteria. The
phytopathogen viruses were the group with the highest relative abundance in the sewage sludge sample and at 70 days of the
composting process. The diversity of bacterial viruses and their specificity, with respect to the more abundant bacterial taxa
throughout the process, highlights the importance of the interrelations between viral and bacterial communities in the control of
pathogenic communities. These results suggest the possibility of using them as a tool to predict the effectiveness of the process.
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Introduction

Composting is a sustainable strategy commonly used in the
treatment of sewage sludge, which involves the participation
of different microbial communities. Through this technology,
the valorisation of this waste is possible; obtaining the com-
post that is frequently used as a soil amendment due to its high
content in organic matter and the capability of improving soil
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properties, with a positive effect on crop productivity. Despite
that the majority of studies are focused on physical-chemical
variables, analysing the properties of composted sewage
sludge and the suitability of composted sewage sludge to be
used as organic amendment, in recent decades, the number of
studies related to microbial communities has increased, both
related to culturable techniques [1-4] and no culturable tech-
niques [5, 6]. Formerly, the studies of microbial parameters in
composting have been mainly focused on bacterial communi-
ty and/or enzymatic activities, due to the broad diversity and
the possibility to use enzymes as an indicator of microbial
activity [7-10]. The metagenomic tools have allowed the
study of microbial diversity involved in these processes, pro-
viding new data on the diversity of the main bacterial taxa [5,
6, 11-13]. The interest in fungal communities has also in-
creased, accompanied by the development of fungal data-
bases. These studies have shed light on the role of this com-
munity in the biotransformation of the organic matter during
composting and the involvement of the hydrolytic activity of
these microorganisms by enzyme production [12, 14, 15].

In the last decade, viral metagenomic has achieved great
progress in the field of environmental virology, even in virus
taxonomy [16], saving the limitations of traditional methods
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and allowing the identification of new types of virus.
However, it is considered that more than 50% of the sequences
identified have no similarity in the GenBank and most of the
data come from studies of environmental viral metagenomic
[17]. The viral community has obtained a great interest due to
the lack of normative in Europe, regarding total viral load in
the final compost as well as specific viral groups. With regard
to the composting of sewage sludge, this interest lies in the
possible adverse effects of the final compost on the soil to
which it should be applied. Among viruses, pathogens for
plants and humans are the biggest concern for the further
application of compost as a soil amendment. In addition, there
is little information about the resistance of viral populations to
the treatment processes used for the stabilisation and
sanitisation of sewage sludge [18]. There are few studies on
this community in the composting processes. However, sev-
eral authors have characterised viral communities in biosolids
and the results have revealed that bacteriophages are the most
abundant viruses, with 60% of total predominance, while po-
tential human pathogen viruses were detected in lower per-
centages [19]. On the other hand, the effect and interaction of
viruses on the microbial communities during the composting
process can affect the predominance of different groups of
bacteria and fungi, having a positive effect if they are specific
to bacterial or fungal pathogens [20]. This study was under-
taken to gain knowledge on the changes of the viral popula-
tion from sewage sludge to maturation composting. For this, a
sample corresponding to sewage sludge and a sample corre-
sponding to maturation composting phase were analysed un-
der electron transmission microscopy and the isolated nucleic
acids were used for next-generation sequencing (NGS) with
the Ion PGM platform.

Material and Methods
Sampling

The samples were collected from a full-scale composting pile
performed in the Biosolid Plant called ‘El Salao’ located in
Granada, Spain, as it was previously described by Gonzalez
et al. [21] and Robledo-Mahon et al. [22]. The pile was built
using sewage sludge from a wastewater treatment plant
(WWTP), previously stabilised by anaerobic mesophilic di-
gestion and mixed with a vegetal bulking. Both materials were
used in a volumetric proportion of 1:3 (sewage sludge: vegetal
bulking). A semipermeable film membrane was used to cover
the pile and the pile was connected to an aeration system on
the floor during the first 30 days. Afterwards, the membrane
was removed and the pile was kept under environmental con-
ditions for 90 days. The first phase of the process was
denominated ‘composting phase’ (first 30 days) and the sec-
ond phase was denominated ‘maturation phase’ (from 30 to
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120 days). In this study, sewage sludge samples (SS) and
samples obtained after 70 days of composting, corresponding
to the maturation phase (MP), were analysed. Composting
samples were taken from five different points in the pile and
mixed in one representative sample. The study was performed
with analytical triplicates of each representative sample.

Concentration of Viral Particles from Samples

Purification and concentration of viral particles were performed
from 80 g of each sample. They were suspended in 200 mL of 1x
phosphate buffer saline (PBS, pH 7.4) and homogenised using a
vortex. The mixture was placed into an ultrasound bath
Ultrasons-H 40 kHz (JP Selecta) for 10 min. The samples were
centrifuged for 15 min at 5000 rpm at 4 °C using a centrifuge
Beckman Avanti® J-25. This step was performed three times to
obtain a representative volume of the supernatant. The resultant
supernatant was filtered through a Whatman filter paper no. 2
and through a 0.45-pm membrane filter (Millipore®) [23]. The
viruses were precipitated by adding 8% polyethylene glycol
8000 (PEG) (Thermo Fisher Scientific) and 0.3 M NaCl to the
filtrate volume, homogenised by vortex and incubated for 12 h at
4 °C [24, 25]. After incubation, the samples were centrifuged at
7000 rpm for 20 min at 4 °C. The supernatant was discarded and
the pellet was dissolved in 10 mL of PBS. Final elution contain-
ing virus-like particles (VLPs) was further concentrated using
Amicon® Ultra—15 centrifugal filters (Merck) by centrifugation
at 5000 rpm for 10 min at 4 °C in a centrifuge SL 16 (Thermo
Scientific). The concentrated elution was collected in 1.5-mL
tubes and stored at —20 °C. These steps were performed in
triplicate [17].

Transmission Electronic Microscopy

Each sample was prepared from 1 mL of the concentrated
elution and placed in a carbon rack (300H Cu CF) for 5 min
and negatively stained with 2% uranyl acetate. Samples were
visualised using a Microscopy TEM, from Carl Zeiss Libra
120 Plus, at 120 kV.

Isolation of Nucleic Acids

The DNA isolation was performed using the QlAamp®
UltraSens® de QIAGEN Kit (Qiagen) following the manufac-
turer’s instructions (Protocol: purification of viral RNA and
DNA). The RNA isolation was performed using the Trizol®
Kit (Invitrogen) following the manufacturer’s instructions.
RNA was used to synthetize the cDNA, using dsDNA synthesis
kit (Roche, 11117831001) and primer random hexamers (Roche,
11034731001), in an Eppendorf Mastercycler Pro Thermocycler,
following the protocol described in the cDNA Rapid Library
Preparation Method Manual (Roche). To evaluate the presence
of bacterial DNA, an end point PCR using rRNA 16S gene was
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carried out using Horse-Power™ DNA Polymerase Kit (Canvax
Biotech) according to Canvax Biotech manufacturer’s instruc-
tions previously described in Robledo-Mahon et al. [22].

Next-Generation Sequencing

A pool of DNA and cDNA for each sample in triplicate was
prepared for the NGS library construction, resulting in 6 sam-
ples altogether. The pooled DNA was fragmented with Covaris
M220, targeting peak fragment lengths of 400 bp. The

barcoded libraries were prepared with the GeneRead DNA
Library L Core Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s instructions. Double size selection was per-
formed with Agencourt AMPure XP Beads (Beckman
Coulter). The libraries were quantified with the QIAseq
Library Quant Assay Kit (Qiagen, Hilden, Germany) and with
the Qubit version 3.0 fluorometer (Thermo Fisher Scientific,
USA). Emulsion PCR and enrichment were carried out using
the ITon PGM™ Hi-Q™ View OT2 Kit reagents (ThermoFisher
Scientific—Ion Torrent, Carlsbad, CA, USA), according to the
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represent 200 nm

manufacturer’s instructions. The library was sequenced on the
Ion PGM platform using the Ion PGM™ Hi-Q™ View
Sequencing Kit reagents (ThermoFisher Scientific—Ion
Torrent, Carlsbad, CA, USA). Sequenced reads were quality
checked and trimmed using the Ion Torrent Suite version
5.6.0. Additionally, low-quality bases were trimmed and dupli-
cate reads removed with Geneious version 11.0.5 software suite
(Biomatters Ltd., New Zealand). Reads from triplicates of one
sample were grouped and analysed as one sample. Clean reads
were subjected to a BlastN search. The BlastN results were
analysed with MEGANG6 [26] for the taxonomic assignment
of the reads using the lowest common ancestor (LCA) algo-
rithm with default settings. Krona plot was used to visualised
taxonomic abundances [27].

@ Springer

Results and Discussion
Transmission Electronic Microscopy Studies

In the first part of the study, the presence of virus-like particles
(VLPs) in the SS sample and MP sample were visualised by
TEM. The results obtained demonstrated the presence of VLPs
in both samples, indicating the stability of this biological entity
to both, the anaerobic mesophilic digestion previously applied
to sewage sludge and to the composting treatment.

Figures 1 and 2 shown a wide diversity of viral morphologies,
circular, filamentous and icosahedral, being the last one the most
abundant morphology observed. These kinds of morphologies
are in agreement with the results obtained in other studies, such
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Fig. 3 Percentage of the relative abundance of viral community, a in sewage sludge (SS sample) and b in 70 days of composting (MP sample) obtained by NGS
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Fig. 4 Taxonomic tree of viruses present in sewage sludge by NGS

as the study reported by Cantalupo et al. [28] in which, virus
diversity was analysed in activated sludge. The icosahedral and
circular morphologies were also similar to the morphologies re-
ported by several authors in wastewater and aquatic systems [17,
29, 30]. In both studies, these morphologies have been described
like morphology compatible with bacteriophages (tailed viruses)
and plant viruses (filamentous viruses). Furthermore, the struc-
tures of bacteriophages, which are characterised by a binary
structure, were observed in all the samples analysed.

O Laverivirus UC1

Viral Diversity Analysed by NGS

A total of 1,418,385 (mean length of 293 nt) and 2,624,174
(mean length of 315 nt) reads were obtained for the SS sample
and the MP sample, respectively, after initial quality control trim-
ming. After additional trimming and duplicate reads removal,
there were 527,003 (mean length of 294 nt) and 292,084 (mean
length of 324 nt) reads, obtained for the SS sample and the MP
sample, respectively, which were used for further analysis. The
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Fig. 5 Taxonomic tree of viruses present in 70-day sample of composting by NGS
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BlastN search identified 5015 (0.95%) of virus reads in the SS
sample and 1353 (0.46%) of the virus reads in the MP sample.
Other reads belonged to cellular organisms (371,983 (70.58%)
reads for the SS sample and 193,782 (66.34%) reads for the MP
sample); unclassified and other sequences (60 reads for the SS
sample) and unassigned sequences (73,284 (13.91%) reads for
the SS sample and 19,679 (6.74%) reads for the MP sample).
Additionally, 76,661 (14.55%) reads for the SS sample and
77,270 (26.45%) reads for the MP sample had no hits.

Figure 3 a and b show the relative abundance of viruses ob-
tained by NGS in SS and MP samples. In both samples,
Virgaviridae was the most abundance family, but the trend on
the abundance of this family was decreased during the
composting process from SS to MP (from 89 to 56%). In SS
sample, the second family in abundance was Myoviridae (6%);
meanwhile, in MP sample, Siphoviridae (20%) and Retroviridae
(21%) families were the most representative after Virgaviridae
family. Myoviridae and Siphoviridae are families who included
bacteriophages. The high increase in the abundance of
Siphoviridae suggests the proliferation of bacteriophages during
the composting. Species belonged to Siphoviridae family are
associated with samples of faecal origin, due to the high number
of these phages infecting enteric bacteria. Thus, it has been pro-
posed as a useful bioindicator of faecal pollution [17, 29].
Moreover, these viruses, DNA viruses, have been previously
described as more prevalent than RNA viruses in wastewater
[31]. Viruses belonged to Myoviridae, Siphoviridae and
Podoviridae were detected in both samples and this is in agree-
ment with previous studies in raw sewage performed by
Cantalupo et al. [28] within the most representative families.

A detailed virus characterisation is shown in the taxonomic
assignation of each sample analysed of SS (Fig. 4) and MP
(Fig. 5). The size of the circles indicates the number of se-
quences corresponding to each species. The SS sample had
high virus diversity than MP sample.

As it has been mentioned before, Virgaviridae was the family
more abundant in both samples. Tobamovirus was the genus
more representative of this family, as can be seen in Figs. 4 and
5. In SS sample, the high number of sequences was identified as
Tobamovirus. Particularly, cacumber green mottle mosaic virus-
es (CGMMYV), pepper mild mottle virus (PMMoV), tomato mo-
saic virus (ToMV), tobacco mosaic virus and tobacco mild green
mosaic virus were the most abundant viruses according to circle
sizes (Fig. 4). Tobamovirus are ssSRNA-positive strand viruses
with circular or filamentous morphologies, being mostly phyto-
pathogens. The presence of these viruses was also detected in
MP sample (Fig. 5), but with a reduction in the number of se-
quences of all of them, except for CGMMV. The CGMMYV is
considered a major pathogen in Cucurbitaceae family crops in
the world. The main crops affected by these viruses are cucum-
ber, tomato and pepper, being insects the more common vectors
[32]. The results obtained seem to indicate that the composting
process could favour the removal of plant viruses, with the

exception of CGMMY, as it was maintained in stable levels.
The decrease of this plant viruses could be an indicator of the
effectiveness of the composting, since PMMoV has been pro-
posed as a potential faecal indicator in water, and it is considered
as an abundant virus in human faeces, reaching 10°~10'° copies
g_] [33, 34]. Nonetheless, further studies will be necessary to
validate the presence of this virus as an indicator. Previous studies
by Cantalupo et al. [28] have reported the elimination of these
viruses in the composting process through inactivation by tem-
perature. This is in agreement with the results obtained in this
study, in which a decrease of abundance was detected in MP
samples compared to SS samples.

Bacteriophages were also present in both samples, as have
been mentioned before. Most of them belonged to
Caudovirales order, dsDNA viruses. Caudovirales were repre-
sented by families Myoviridae (6%) and Siphoviridae (0.6%).
The morphology of this family was according to morphologies
observed by TEM, tailed phages with contractile tail morpholo-
gy, compatible with the family Myoviridae and long no contrac-
tile tail phage morphologies, compatible with Siphoviridae fam-
ily (Figs. 1 and 2). The SS sample was represented by phages of
enteric bacteria and bacteriophages which affect the
Acinetobacter and Mycobacterium genus. ssDNA viruses, name-
ly Gokushovirinae, were detected in this sample with low abun-
dance (0.2%). The phage community might have a positive effect
on the control of pathogen bacterial population. However, it
should be also considered the exchange of genes involved in
pathogenicity. For example, it has been demonstrated that the
ability of phages for transforming non-virulent bacterial strains
into virulent strains throughout the exchange of genes involved
in the exotoxins production [29].

The bacterial diversity analysed in this composting process
was governed mainly by Bacillales, Actinomycetales and
Pseudomonadales, as it has been previously reported by
Robledo-Mahon et al. (2018). These data fit well with the
specificity of bacteriophages detected in MP samples. Most
of'them were phages specific of Acinetobacter, Streptococcus,
Geobacillus or Mycobacterium among other species, which
belonged to the abovementioned orders (Fig. 5) and identified
by culture and non-culture techniques. In this sense, it is note-
worthy the great abundance of Saccharomonospora phage in
MP sample.

In consequence, the high temperatures reached in this kind of
process using semipermeable cover film [21] could be an advan-
tage for both bacterial and phages populations aforementioned.
Human or animal viruses, as well as plant viruses belonged to the
Tombusviridae family, were not detected at this phase of the
composting process. Therefore, the results obtained suggest that,
under the experimental conditions of this study, the composting
process using semipermeable membrane could be effective for
the removal of human or animal viruses, and this process
achieves a reduction of the majority of phytopathogen viruses.
In contrast, the abundance of bacteriophages was maintained in
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similar percentages in both SS and MP samples, suggesting that
this community could be useful tools as pollution indicators to
monitoring the effectiveness of the composting process in the
elimination of pathogens [17, 28, 29, 35].

The results of the distribution of viruses in the sequenced
samples are according to the results reported by Bibby et al.
[19], where the contributions of eukaryotic viruses were higher
than bacteriophages in relative abundance. It is interesting to note
that no fungal viruses were detected in the analysed samples.

In summary, the analysis of the viral community showed
high diversity in the samples analysed by TEM, correspond-
ing to the sewage sludge. The representative morphologies are
according to the results obtained in similar studies in biosolids
and in wastewater. The changes in the viral community
showed a predominance of plant viruses and a reduction of
diversity in composting. It was distinguished that human en-
teric viruses involved had lower representation at the end of
composting (MP sample). However, in spite of the obtained
results, further research is required.

Conclusions

Viral community analysis shows a high abundance of phyto-
pathogen viruses and a broad diversity of bacteriophages. The
results obtained suggest the suitability of considering the
study of possible toxic effects of compost for both animals
and plants, including simple toxicity tests of filtrates from
compost material, with the aim to avoid negative effects in
the use of final compost as a soil amendment.
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