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Abstract

This paper develops detailed mathematical statistical theory of a new class of
cross-validation techniques of local linear kernel hazards and their multiplicative bias
corrections. The new class of cross-validation combines principles of local information
and recent advances in indirect cross-validation. A few applications of cross-validating
multiplicative kernel hazard estimation do exist in the literature. However, detailed
mathematical statistical theory and small sample performance are introduced via
this paper and further upgraded to our new class of best one-sided cross-validation.
Best one-sided cross-validation turns out to have excellent performance in its practi-
cal illustrations, in its small sample performance and in its mathematical statistical
theoretical performance.

Keywords: Aalen’s multiplicative model; Multiplicative bias correction; Bandwidth; Indi-
rect cross-validation.

∗The authors gratefully acknowledge the support from the Spanish Ministry of Economy and Compet-
itiveness, through grant number MTM2016-76969P, which includes support from the European Regional
Development Fund (ERDF), and thank the Centro de Servicios de Informática y Redes de Comunicaciones
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1 Introduction

There is a growing interest in validation techniques. While validation was always a crucial

element of mathematical statistics, the use of validation techniques are growing rapidly at

the moment under labels such as big data, machine learning or artificial intelligence. Many

of these developments seem less patient with laborious mathematical statistical model

formulation and estimation theory than what has been the trademark of the field of math-

ematical statistics. Instead inspiration seem to be taken from neighbouring fields such as

engineering, computer science, public health or actuarial science where specific knowledge

is present on the problem at hand allowing the development of clever and perhaps compu-

tationally challenging algorithms often replacing more labour intensive procedures of the

past. These algorithms are often defined in such a way that they can change and learn over

time via some optimization criteria and an efficient validation procedure. One example

of such work relevant to the work of this paper is the paper of Muñoz and van der Laan

(2012), where an impressive algorithm is developed to solve a complicated survival prob-

lem. The introduced methodology is inspired by machine learning calling its validation

procedure for a Super Learner. However, while the Super Learner is optimal in some

sense, see van der Laan et al. (2007), then it is not optimal in the more detailed math-

ematical statistical sense that we consider in this paper. And this is not only because

Muñoz and van der Laan (2012) consider piecewise constant hazard models that are less

efficient than kernel smoothers. It is also because the validation theory presented in the

paper does not provide the mathematical detail promoted in this paper and therefore cru-

cial insight of noisy second order components is not included in the theory. The approach

of Muñoz and van der Laan (2012) is just one among many machine learning inspired sur-

vival analyses approaches. This paper will consider one dimension only. Multidimensional
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cross-validation and one-dimensional cross-validation are closely related and mathematical

definitions are similar. However, even in the one-dimensional case we face challenging the-

oretical as well as practical issues with cross-validation being too noisy and unstable and

to such an extend that we cannot any longer recommend cross-validation in one dimension

without some amendment for the noise involved. Our intention is that multidimensional

big data type of problems, with further issues with data sparsity and noisy cross-validation,

should benefit in the future from the insight on cross-validation analyses as provided in

this paper. The mathematical point of view of this paper was perhaps initiated via the

early contribution of Hall and Marron (1987) that provided a decision theoretical frame-

work to distinguish between plug-in estimators, aiming at minimizing a mean integrated

square error, and cross-validation aiming at minimizing the infeasible stochastic integrated

square error. They concluded that plug-in did better from an asymptotic perspective

even when the aim was the explicit aim of cross-validation: to get as close as possible to

the infeasible minimization of the integrated squared error. One could view this as the

foundation of a new decision theoretical framework to understand the quality of kernel

bandwidth selection; a tractable place to start when understanding the complicated world

of model selection. Hall and Johnstone (1992) pointed out that for any bandwidth selector

there are two sources of noise for kernel density estimation, one that one can never get

rid of and another one that seems to differ for different methods. The second source of

noise could theoretically go as low as to zero such that one was left with the first noise

component as a lower bound on noise. The plug-in type of methods had considerable

lower second-component-noise than cross-validation and plug-in was very popular in prac-

tice in the nineties with Sheather and Jones (1991) being the perhaps most popular single

method. However, plug-in methods depend on complicated underlying mathematical detail

and it does not easily generalise to new problems in the same straightforward way as cross-
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validation does. This is perhaps the single most important reason why cross-validation has

regained its importance and is used for a wide variety of complicated problems in mathe-

matical statistics, big data, machine learning and artificial intelligence. Hart and Yi (1998)

introduced the concept of indirect cross-validation - formulated in nonparametric kernel re-

gression - that simply meant that cross-validation was performed on an alternative kernel

and the bandwidth was scaled back to the original kernel used for estimation. Hart and Yi

(1998) suggested to use one-sided kernels as the alternative kernels because of their good

practical performance and simple rescaling. In density estimation Savchuk et al. (2010)

suggested a clever combination of a normal-bandwidth kernel and an oversmoothed kernel

as alternative kernel to achieve the same mathematical statistical asymptotic performance

as the plug-in estimator without the need of a pilot. However, there was one catch with the

elegant approach of Savchuk et al. (2010). Their approach needed to estimate some tuning

parameters to decide the relative weight of the oversmoothed kernel that was contribut-

ing to the asymptotic noise via some term of lower order. So, even though Savchuk et al.

(2010) in principle did pilot free estimation then there was still some tuning going on and

some extra terms of just slightly lower order. And that was perhaps exactly the problem of

the original plug-in methods as in Sheather and Jones (1991): that something with lower

order noise had to be estimated - the pilot - and terms of slightly lower order had to be ig-

nored in the asymptotic results. In this paper we define three dogmas for a cross-validation

estimator:

1. It should be a direct estimation based on principles without complicated mathemat-

ical adjustments.

2. Extra terms of slightly lower order are not allowed in the expansions.

3. Further smoothing than those necessary for the original estimator is not allowed to
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be assumed while analysing the quality of the bandwidth selector.

The original cross-validation estimator and the approach of Hart and Yi (1998) lives up

to all three dogma rules while the plug-in type estimators of e.g. Sheather and Jones

(1991) and Savchuk et al. (2010) violate all three. We believe this to be the reason

why Savchuk et al. (2010) could not make their new pilot-free bandwidth selector con-

vince in practice, and why Mammen et al. (2011), Mammen et al. (2014) concluded that

their double one-sided kernel density bandwidth selector - directly inspired by Hart and Yi

(1998) - worked better in practice than the estimators of Sheather and Jones (1991) and

Savchuk et al. (2010). The fundamental principles of this paper is therefore the three

dogmas above and the decision theoretical framework of Hall and Marron (1987) and this

has let us to explore double one-sided cross-validation and one-sided cross-validation even

further because of their apparent practical superiority on the market of current kernel

bandwidth selectors. A detailed investigation of both sides of local one-sided bandwidth

selection showed us a perhaps surprising fact. While the left-side and the right-side cross-

validation procedures have the same mathematical statistical behaviour, they do perform

very differently in practice. Often one of the two sides breaks down completely. There-

fore one-sided cross-validation does not really work in practice, it breaks down too often.

Double one-sided cross-validation works better than one-sided cross-validation in a wide

variety of kernel smoothing problems, see for example Mammen et al. (2011,2014), Gámiz

et al. (2013a,b, 2016). A closer investigation going through local features of individual

simulation samples reveals that behind a good double-one-sided cross-validation result of-

ten hides an average of a good one-sided estimator and a somehow random result from

the other side. Partly because of some prior knowledge keeping the bandwidth search

in a reasonable interval and partly because of pure luck, the simulation results of dou-

ble one-sided cross-validation are often very good indeed. The suggestion of this paper
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is to improve the stability of one-sided cross-validation via a local information principle

inspecting at every single local point whether to use the right-side or the left-side for cross-

validation. This approach is indeed very stable in its practical performance, it obeys the

three above dogmas and it provides the exact same asymptotic performance as its less

stable one-sided and double-sided competitors mentioned above. We call the new approach

best one-sided cross-validation. This paper furthermore introduces the mathematical sta-

tistical approach of Hall and Marron (1987) to multiplicatively bias corrected local linear

kernel hazard estimators and it introduces asymptotic theory and practical implementation

of best-one-sided-cross-validation for these multiplicatively bias corrected hazard estima-

tors. Multiplicative bias correction is known to improve the practical implementation of

kernel hazard estimation, see Nielsen (1998) and Nielsen and Tanggaard (2001). This par-

allels insights from the more researched world of kernel density estimation, see for example

Jones, Linton and Nielsen (1995) and Jones and Signorini (1997). The latter went through

a series of small sample studies of kernel density estimation procedures to conclude that

multiplicative bias correction seemed to be the best. The contribution of this paper is

therefore also to update mathematical statistical theory and practice to the perhaps best

practically performing kernel hazard estimator we have: the local linear multiplicatively

bias corrected kernel hazard estimator.

The rest of the paper is organized as follows. In Section 2 we describe the link between

our proposal and methods in machine learning. In Section Section 3 we formulate the

model we assume in the paper and present two hazard estimators namely the local linear

estimator and its multiplicative bias correction. Bandwidth selection for these estimators

through cross-validation and the double one-sided cross-validation of Gámiz et al. (2016)

method is described in Section 4, and our new best one-sided cross-validation method is

suggested. The asymptotic properties of all presented validated bandwidths are analysed
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in Section 5. Assumptions and proofs are provided in the supplementary material. Two

case studies show the applicability of our proposals, which are described in Section 6. In

Section 7 we describe simulation experiments to evaluate the finite sample properties of

our proposal. All numerical calculations have been performed with R. Best one-sided cross-

validation is implemented in the DOvalidation package (Gámiz et al. (2017)), along with

double one-sided cross-validation and cross-validation, for the local linear hazard estimator

and its multiplicative bias correction.

2 Training and learning versus cross-validation and

adjusted cross-validation

To motivate our research beyond a wider crowd than experts in nonparametric hazard

estimation, our point of view is formulated below via standard vocabulary from machine

learning and artificial intelligence. Let us assume we observe n individuals over some time

that could potentially be filtered via truncation and censoring and let A be a training set and

B be a learning set such that the two sets united equals the set {1, ..., n}. Let for the purpose

of a discussion the number of elements of A be 80% of n and the number of elements in B

be 20% of n. Then a standard approach to validation, see again Muñoz and van der Laan

(2012), would be to estimate the hazard on the training set and evaluate it via the learning

set. Under some standard independence assumptions this will lead to a decrease in efficiency

of estimation itself corresponding to ignoring 20% of the data set and it will decrease the

efficiency on the validation approach – compared to cross-validation and the theoretical

approach considered in this paper – corresponding to ignoring 80% of the data set. One

could of course consider all possible combinations of training and learning sets and average

all these validations into one single validation principle or learning principle. This would

7



correspond to a computationally inefficient cross-validation. In conclusion: even if all

possible combinations of trainers and learners are calculated, we end up with standard

cross-validation with the well known problems of data sparsity and noise. With the help of

the theory originally developed by Hall and Marron (1987) in the kernel density context,

we will in this paper – in the kernel hazard context – consider more efficient use of data

when estimators are validated or when trainers are learning. It turns out that this is indeed

possible via relatively straightforward adjustments of standard cross-validation.

3 The counting process model and kernel hazard es-

timators

In this section we formulate events via counting processes. Counting processes are well

designed when event data are filtered for example via truncation or censoring. An individual

zero-one valued exposure process simply keeps tracks on whether an individual is under risk

or not at any particular point in time. We assume that individuals are independent and that

data filtering is non-informative. Formally, we observe n individuals, i = 1, . . . , n. Let Ni

count observed failures for the ith individual in the time interval [0, T ], Ni can take values 0

or 1. We assume thatNi is a one-dimensional counting process with respect to an increasing,

right continuous, complete filtration Ft, t ∈ [0, T ], i.e., it obeys less conditions habituelles,

see Andersen et al. (1993, pp. 60). We assume Aalen’s multiplicative model (Aalen

(1978)) where the random intensity is written as, λi(t) = α(t)Yi(t), with no restriction on

the functional form of the hazard function α(·). Here Yi is a predictable process taking

values 0 or 1, indicating (by the value 1) when the ith individual is at risk and under

observation. We assume that (N1, Y1) , . . . , (Nn, Yn) are i.i.d. for the n individuals. With

these definitions λi is predictable and the processes Mi(t) = Ni(t) − Λi(t), i = 1, . . . , n,
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with Λi(t) =
∫ t

0
λi(s) ds, are squared integrable local martingales.

As an example we illustrate how the above stochastic processes look like in the case

of independent and non-informative left truncation and right censoring, where n tuples

(Li, Zi, δi), i = 1, .., n, are observed. Here Li is the time the ith individual enters the study;

Zi is the time ith individual leaves the study either because an event has happened or

because of right censoring; and δi is binary and equal to 1 if an event – for example death

or an onset of a disease – is the reason for the i’th individual to leave the study and the

value is zero when the reason for the ith individual to leave the study was uninformative

right censoring. In this case, the process Yi above would be Yi(t) = I(Li ≤ t < Zi) and

Ni(t) = I(Zi ≤ t)δi, where I(·) is the indicator function. Hereafter we will work in the

convenient and general stochastic process formulation only.

The local linear kernel hazard estimator in our general stochastic process formulation

was introduced by Nielsen and Tanggaard (2001) and it is defined as

α̂LL
b,K(t) =

n∑

i=1

∫ T

0

K̄t,b(t− s)dNi(s), (1)

with the stochastic local linear kernel

K̄t,b(t− s) =
a2,K(t)− a1,K(t)(t− s)

a0,K(t)a2,K(t)− {a1,K(t)}2
Kb (t− s) , (2)

where Kb(u) = b−1K(u/b) and aj,K(t) =
∫ T

0
Kb (t− s) (t− s)jY (s)ds, for j = 0, 1, 2. Here

K is a kernel function with support [−1, 1] and b > 0 is the bandwidth parameter.

The local linear kernel K̄t,b satisfies the properties:
∫ T

0
K̄t,b(t−s)Y (s)ds = 1,

∫ T

0
K̄t,b(t−

s)(t− s)Y (s)ds = 0 and
∫ T

0
K̄t,b(t− s)(t− s)2Y (s)ds > 0. Thus, K̄t,b can be interpreted as

a second order kernel with respect to the stochastic measure µ, where dµ(s) = Y (s)ds, and

Y (t) =
∑n

i=1 Yi(t) is the aggregated risk process. Defining the aggregated failure process,

N(t) =
∑n

i=1Ni(t), we can write α̂LL
b,K(t) =

∫ T

0
K̄t,b(t− s)dN(s).
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The multiplicative bias corrected (MBC) estimator constructed from the local linear

hazard estimator is defined as

α̂MBC
b,K (t) =

n∑

i=1

∫
K̄MBC

t,b (t− s)α̂LL
b,K(t){α̂

LL
b,K(s)}

−1dNi(s), (3)

where the MBC kernel is

K̄MBC
t,b (t− s) =

aMBC
2,K (t)− aMBC

1,K (t)(t− s)

aMBC
0,K (t)aMBC

2,K (t)− {aMBC
1,K (t)}2

{
α̂LL
b,K(s)

}2
Kb (t− s) , (4)

with aMBC
j,K (t) =

∫ T

0
Kb (t− s) (t− s)j

{
α̂LL
b,K(s)

}2
Y (s)ds, for j = 0, 1, 2.

4 Cross-validation and best one-sided cross-validation

of our two estimators

The two kernel hazards estimators considered in this paper depend on a bandwidth pa-

rameter that determines the smoothness degree of the resulting estimates. Choosing the

bandwidth parameter is a crucial problem that starts by defining what the optimal band-

width would be, so it can be estimated from data.

Let α̂b,K denote a kernel hazard estimator with bandwidth b and kernel K, which can

be any of the two defined in (1) or (3). Ideally we would like a bandwidth parameter b that

minimizes the integrated squared error (ISE) given by

∆K(b) = n−1

n∑

i=1

∫ T

0

{α̂b,K(s)− α(s)}2 Yi(s)w(s)ds,

where w(·) is some weight function. However, the minimizer of the ISE, b̂ISE,K , depends

on the unknown hazard function and it is infeasible in practice. In this paper we consider

b̂ISE,K as the optimal bandwidth and in this section we present estimates based on the
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cross-validation method. We refer the reader to Gámiz et al. (2016) for the history of

cross-validation in kernel hazard estimation based on counting processes.

First notice that minimizing ∆K(b) is equivalent to minimizing

n−1

[
n∑

i=1

∫ T

0

{α̂b,K(s)}
2 Yi(s)w(s)ds− 2

n∑

i=1

∫ T

0

α̂b,K(s)α(s)Yi(s)w(s)ds

]
,

and only the second term depends on the unknown hazard. The cross-validation approach

estimates this second term from the data replacing α(s)ds by its empirical counterpart

dNi(s). The cross-validated bandwidth, denoted by b̂CV,K , is therefore the minimizer of

Q̂K(b) = n−1

[
n∑

i=1

∫ T

0

{α̂b,K(s)}
2 Yi(s)w(s)ds− 2

n∑

i=1

∫ T

0

α̂
[i]
b,K(s)w(s)dNi(s)

]
, (5)

where α̂
[i]
b,K(s) is the estimator arising when the data set is changed by setting the stochastic

process Ni(s) equal to 0 for all s ∈ [0, T ].

A practical and theoretical improvement of cross-validation was given in Gámiz et al.

(2016) that developed double one-sided cross-validation (DO-validation), as a simple av-

erage of two indirect cross-validated bandwidths. Indirect cross-validation makes use of

the fact that, under mild regularity conditions, asymptotically optimal bandwidths for two

kernel estimators with different kernels K and L differ by a factor that only depends on the

two kernels K and L. In indirect cross-validation one applies cross-validation to a kernel

estimator with kernel L and afterwards one multiplies the cross-validation bandwidth by

the factor (depending on K and L) to get a bandwidth for the kernel estimator with kernel

K. Such a construction makes sense if cross-validation for a kernel estimator with kernel L

works better than cross-validation for a kernel estimator with kernel K. Double one-sided

cross-validation averages the two indirect cross-validation bandwidths based on one-sided

kernels: the left-sided KL(u) = 2K(u)I(u < 0), or the right-sided KR(u) = 2K(u)I(u > 0).
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More specifically, two one-sided cross-validation criteria, Q̂KL
(b) and Q̂KR

(b), are defined as

in (5) but replacing K with KL and KR, respectively. Denoting by b̂CV,KL
and b̂CV,KR

their

minimizers, the double one-sided cross-validation bandwidth estimate is the (conveniently)

weighted average of these:

b̂DO,K =
1

2
ρ
(
b̂CV,KL

+ b̂CV,KR

)
.

For the local linear hazard estimator defined in (1), the factor ρ is given by

ρLL =

(
R(K)

R(K̄∗

L)

µ2(K̄
∗

L)
2

µ2(K)2

)1/5

. (6)

Here, for a general kernel L, L̄∗ denotes the equivalent local linear kernel defined as

L̄∗(u) =
µ2 (L)− µ1 (L) u

µ2 (L)− µ1 (L)
2 L(u), (7)

where µ2(L) =
∫
u2L(u)du and R(L) =

∫
L2(u)du. Notice that L̄∗ = L if L is symmetric.

For the MBC estimator, α̂MBC
b , defined in (3), the factor ρ becomes

ρMBC =

(
R(ΓK)

R(ΓK̄∗

L

)

µ2(K̄
∗

L)
4

µ2(K)4

)1/9

. (8)

The asymptotic theory developed in Gámiz et al. (2016) for the local linear hazard es-

timator showed that left- and right-sided cross-validation have the same asymptotic prop-

erties, but different finite sample performance. There are situations where one of the two

one-sided cross-validation methods breaks down so the averaging strategy of double one-

sided cross-validation becomes inappropriate. The natural reaction in these cases would be

to take the side which is working fine. One common reason for one of the two one-sided

cross-validated bandwidths to break down is the lack of occurrences (or exposures) in one

of the two directions. Perhaps because of a boundary. Best one-sided cross-validation
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(BO-validation) introduced in this paper simply uses the one-sided version that, via local

information, is predicted to work best at every single point t. There can therefore be both

left-sided and right-sided kernels involved in best one-sided cross-validation. Imagine for

example that the estimation interval is (0, 1) such that two boundaries are present then

one would expect to use different sided kernels for a t close to the left boundary 0 and for

a t close to the right boundary 1.

For the local linear hazard estimator we define the kernel estimator needed for best

one-sided cross-validation as

α̂BO,LL
b,K (t) =

∫ T

0

{
K̄t,b;L(t− s)ξb(t) + K̄t,b;R(t− s) (1− ξb(t))

}
dN(s) (9)

where K̄t,b;L and K̄t,b;R are respectively the left and right versions of the local linear kernel

K̄t,b in (2), and ξb(t) is a stochastic function, depending on the estimation time t and the

bandwidth b, which takes the value 1 when the “best” side to consider is the indicated

by the kernel KL, and the value 0 otherwise. The combination of one-sided kernels that

appears in the integrand of expression (9) is a kernel function which we denote as

K̄BO,LL
b,K (t− s) = K̄t,b;L(t− s)ξb(t) + K̄t,b;R(t− s) (1− ξb(t)) . (10)

Thus we write the estimator as α̂BO,LL
b,K (t) =

∫ T

0
K̄BO,LL

b,K (t− s)dN(s).

For each time t, to designate which side is “best”, ξb(t) can be defined in terms of the

occurrence process by

ξOb (t) = I

(∫ t

t−b

dN(s) >

∫ t+b

t

dN(s)

)
,

or the exposure process by

ξEb (t) = I

(∫ t

t−b

Y (s)ds >

∫ t+b

t

Y (s)ds

)
. (11)
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With any of these ξOb or ξEb , the best one-sided cross-validation bandwidth estimate is

defined as

b̂LLBO,K = ρLL argmin
b

Q̂BO,LL
K (b), (12)

where Q̂BO,LL
K is the cross-validation score in (5) calculated with the kernel estimator

α̂BO,LL
b,K (t), defined in (9). In a similar way we define the best one-sided cross-validation

bandwidth estimate for the MBC hazard estimator, b̂MBC
BO,K , as in (12) but replacing the

factor ρLL with ρMBC, given in (8), and defining the best one-sided cross-validation score,

Q̂BO,MBC
K , with the hazard estimator

α̂BO,MBC
b,K (t) =

∫ T

0

{
K̄MBC

t,b;L (t− s)
α̂LL
b,KL

(t)

α̂LL
b,KL

(s)
ξb(t) + K̄MBC

t,b;R (t− s)
α̂LL
b,KR

(t)

α̂LL
b,KR

(s)
(1− ξb(t))

}
dN(s).

(13)

5 Asymptotic theory

In this section we develop theory for the asymptotic behaviour of bandwidth selectors

for the local linear hazard estimator and its multiplicatively bias correction. For each

estimator we prove the asymptotic normality for bandwidths selectors based on indirect

cross-validation, the double one-sided cross-validation estimate by Gámiz et al. (2016) and

the new best one-sided cross-validation. Our theoretical results thus extend the results

given in Gámiz et al. (2016), by including the new best one-sided cross-validation for local-

linear hazard estimator and considering the MBC estimator.

Recall that the ISE of a kernel hazard estimator, α̂b,L, with bandwidth b and general

kernel L, was defined as above as

∆L(b) = n−1

∫ T

0

(α̂b,L(t)− α(t))2w(t)Y (t)dt, (14)
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and its minimizer denoted as b̂ISE,L. Using a convenient expansion of the ISE and martin-

gale theory we derive the asymptotic normality of the bandwidth estimates derived for a

kernel hazard estimator, α̂b,K , such as the local linear in (1) and the MBC estimator in

(3). Hereafter we will make explicit reference to the considered hazard estimator on the

bandwidth estimate, using superscripts (LL or MBC). Besides a kernel denoted by K is

assumed to be symmetric (see Assumption A1 in supplementary material), while we use the

notation L for a general kernel that can be asymmetric, as the one-sided kernels involved

in double one-sided cross-validation and best one-sided cross-validation.

5.1 A general theorem for indirect cross-validation with a local

linear estimator

Let consider the local linear hazard estimator, α̂LL
b,L, given in (1), with bandwidth b and

kernel L. Following the same arguments described in Nielsen and Tanggaard (2001), the

error α̂LL
b,L(t)− α(t), can be decomposed as α̂LL

b,L(t)− α(t) = V LL
b,L (t) +BLL

b,L(t), where BLL
b,L is

a stable part converging in probability to zero, given by

BLL
b,L =

∫ T

0

L̄t,b(t− s) (α(s)− α(t))Y (s)ds; (15)

and V LL
b,L is a variable part converging to a Normal distribution, given by

V LL
b,L (t) =

∫ T

0

L̄t,b(t− s)dM(s). (16)

Using the above decomposition we can expand the ISE for the local linear estimator, using

standard martingale theory along with the approach of Mammen and Nielsen (2007). In

Lemma 4 in the supplementary material we show that, under some regularity assumptions,

∆LL
L (b) in (14) is asymptotically equivalent to

MLL
L (b) = b4

µ2
2

(
L̄∗
)

4

∫
{α′′(t)}

2
γ(t)w(t)dt+ (nb)−1R

(
L̄∗
) ∫

α(t)w(t)dt,
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where γ(t) = n−1E [Y (t)] is the expected exposure function. From this approximation a

deterministic optimal bandwidth for the local linear estimator with kernel L is defined as

bLLMISE,L = CLL
0,Ln

−1/5 with CLL
0,L =

[
R
(
L̄∗
) ∫

α(t)w(t)dt

µ2
2

(
L̄∗

) ∫
(α′′(t))2 γ(t)w(t)dt

]1/5
. (17)

Our main result in this section provides the asymptotic normality of the three bandwidth

estimates for the local linear hazard estimator, b̂LLCV,K, b̂
LL
DO,K , and b̂LLBO,K, as well as the

optimal infeasible bandwidth b̂LLMISE,K . Note that the later is the optimal bandwidth aimed

by plug-in bandwidth selection rules. The result is stated in the following theorem and the

proof provided in the supplementary material.

Theorem 1 Under assumptions A1–A3, the bandwidth selectors, b̂LLBO,K, b̂
LL
DO,K ,̂b

LL
CV,K, and

b̂LLMISE,K, for the local linear estimator with kernel K satisfy

n3/10
(
b̂LLBO,K − b̂LLISE,K

)
−→ N

(
0, SLL

2 + SLL
1 ΨLL

BO,K

)

n3/10
(
b̂LLDO,K − b̂LLISE,K

)
−→ N

(
0, SLL

2 + SLL
1 ΨLL

DO,K

)

n3/10
(
b̂LLCV,K − b̂LLISE,K

)
−→ N

(
0, SLL

2 + SLL
1 ΨLL

CV,K

)

n3/10
(
b̂LLMISE,K − b̂LLISE,K

)
−→ N

(
0, SLL

2 + SLL
1 ΨLL

MISE,K

)

where

SLL
1 =

1

25

R (K)−7/5 (∫ α2(t)w2(t) dt
)

µ2(K)6/5
(∫

α′′(t)2γ(t)w(t) dt
) 3

5

(∫
α(t)w(t) dt

)
−7/5

,

SLL
2 =

4

25

R (K)−2/5 (∫ α′′(t)2γ(t)w2(t)α(t) dt
)

µ2(K)6/5
(∫

α(t)w(t) dt
)2/5 (∫

α′′(t)2γ(t)w(t) dt
)8/5 ,
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and

ΨLL
BO,K = ΨLL

DO,K =

∫ {
R (K)

R
(
L̄∗

) (HK̄L
−GK̄L

) (
ρLLu

)
−HK(u)

}2

du,

ΨLL
CV,K =

∫
{GK(u)}

2 du,

ΨLL
MISE,K =

∫
{HK(u)}

2 du,

defining the functions GL(·) and HL(·) as

GL(w) = I (w 6= 0) 2L̄∗

1(w),

HL(w) = I (w 6= 0)

∫
L̄∗(u)

{
L̄∗

1(u+ w) + L̄∗

1(u− w)
}
du,

with L̄∗

1(u) = −L̄∗(u)− uL̄∗
′

(u).

Remark 1 Gámiz et al. (2016) pointed out that all bandwidth estimates have similar asymp-

totics with the only difference of the factor ΨLL
·,K. These authors considered three common

choices of the kernel K (Epanechninov, quartic and sextic kernels) and calculated the nu-

merical value of this factor. It allows the comparison of the asymptotic performance of

bandwidth selectors. These numerical values are reported in the first rows of Table 1. Note

that these values were multiplied by 2 for convenience in the former paper.

5.2 A general theorem for indirect cross-validation with a mul-

tiplicatively bias corrected estimator

Consider now the MBC estimator defined in (3), α̂MBC
b,L , with bandwidth b and kernel L. As

for the local linear estimator above, we define the corresponding ISE for the MBC estimator

as in (14) and denote it as ∆MBC
L (b). Its minimizer is the ISE-optimal bandwidth for the

MBC estimator with kernel L, which we denote as b̂MBC
ISE,L.
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Table 1: Comparison of asymptotic variances among bandwidth selection methods. Factors

Ψ•

•,K defined in Theorems 1 and 2, are shown for the local linear and the MBC estimators,

and three common symmetric kernels K: Epanechninov, quartic and sextic.

Local linear estimator MBC estimator

Method Epanechnikov Quartic Sextic Epanechnikov Quartic Sextic

BO-validation 1.09 0.95 1.18 4.41 2.44 2.05

DO-validation 1.09 0.95 1.18 4.41 2.44 2.05

Cross-validation 3.6 2.86 3.49 9.87 6.10 6.50

Plug-in 0.36 0.46 0.59 0.84 0.95 1.31

We consider the decomposition α̂MBC
b,L (t)−α(t) = BMBC

b,L (t)+V MBC
b,L (t), where BMBC

b,L (t) is

a stable term converging in probability to zero, and V MBC
b,L (t) is a variable term converging

to a Normal distribution. These two terms are defined as follows:

V MBC
b,L (t) =

∫
fMBC
t,b (s)dM(s)

where

fMBC
t,b (s) = L̄MBC

t,b (t− s)
α̂LL
b,L(t)

α̂LL
b,L(s)

+ L̄t,b(t− s)−

∫ T

0

L̄MBC
t,b (t− u)

α̂LL
b,L(t)

α̂LL
b,L(u)

L̄u,b(u− s)Y (u)du

with L̄MBC
t,b (t− s) defined as in (4) for the kernel L, and

BMBC
b,L (t) = BLL

b,L(t) +

∫
L̄MBC
t,b (t− s)α̂LL

b,L(t)(α̂
LL
b,L(s))

−1BLL
b,L(s)Y (s)ds

=

∫
L̄MBC
t,b (t− s)α̂LL

b,L(t) (βb,L(t)− βb,L(s)) Y (s)ds,
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with βb,L(s) = {α̂LL
b,L(s)}

−1BLL
b,L(s), where BLL

b,L and V LL
b,L are the stable and variable terms

for the local linear estimator given in (15) and (16), respectively.

Using the above decomposition and standard martingale theory along with the approach

of Mammen and Nielsen (2007) we can expand the ISE for the MBC estimator. The

derivations are close to the local linear case. In Lemma 7 in the supplementary material

we show that, under some regularity assumptions, ∆MBC
L (b) is asymptotically equivalent to

MMBC
L (b) = b8

µ4
2(L̄

∗)

16

∫
{h(t)}2 γ(t)w(t)dt+ (nb)−1R (ΓL̄∗)

∫
α(t)w(t)dt,

with h(t) = α(t) (α′′(t)/α(t))′′. From this approximation a deterministic optimal bandwidth

for the MBC estimator with kernel L is defined as

bMBC
MISE,L = CMBC

0,L n−1/9; CMBC
0,L =

[
R (ΓL̄∗)

∫
α(t)w(t)dt

µ4

2
(L̄∗)

2

∫
{h(t)}2 γ(t)w(t)dt

]1/9
, (18)

where ΓL̄∗(u) = 2L̄∗(u) − L̄∗(u) ∗ L̄∗(u) is the kernel obtained by twicing the equivalent

kernel, L̄∗, given in (7).

The following theorem states the asymptotic normality of the three bandwidth estimates

as well as the infeasible MISE-optimal bandwidth, for the MBC estimator defined with a

kernel K. The proof is provided in the supplementary material.

Theorem 2 Under assumptions A1, A2’ and A3’, the bandwidth selectors b̂MBC
BO,K, b̂

MBC
DO,K,

b̂MBC
CV,K, and b̂MBC

MISE,K, for the MBC estimator with kernel K satisfy
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n3/18
(
b̂MBC
BO,K − b̂MBC

ISE,K

)
−→ N

(
0, SMBC

2 + SMBC
1 ΨMBC

BO,K

)

n3/18
(
b̂MBC
DO,K − b̂MBC

ISE,K

)
−→ N

(
0, SMBC

2 + SMBC
1 ΨMBC

DO,K

)

n3/18
(
b̂MBC
CV,K − b̂MBC

ISE,K

)
−→ N

(
0, SMBC

2 + SMBC
1 ΨMBC

CV,K

)

n3/18
(
b̂MBC
MISE,K − b̂MBC

ISE,K

)
−→ N

(
0, SMBC

2 + SMBC
1 ΨMBC

MISE,K

)

where

SMBC
1 =

21/3

92
R (ΓK)

−15/18 (∫ α2(t)w2(t) dt
)

µ2(K))12/9
(∫

h(t)2γ(t)w(t) dt
) 3

9

(∫
α(t)w(t) dt

)
−15/9

,

SMBC
2 =

230/9

92
R (ΓK)

−6/9 (∫ h(t)2γ(t)w2(t)α(t) dt
)

(µ2(K))12/9
(∫

α(t)w(t) dt
)6/9 (∫

h(t)2γ(t)w(t) dt
)12/9 ,

with h(t) =
{

α′′(t)
α(t)

}
′′

α(t), and

ΨMBC
BO,K = ΨMBC

DO,K =

∫ 


R (ΓK)

R
(
ΓK̄∗

L

)
(
HΓ

K̄
∗

L

−GΓ
K̄

∗

L

)
(ρMBCu)−HΓK

(u)





2

du,

ΨMBC
CV,K =

∫
{GΓK

(u)}2 du,

ΨMBC
MISE,K =

∫
{HΓK

(u)}2 du.

where GL and HL are defined as in Theorem 1, taking L = ΓK and L = ΓK̄∗

L

.

Remark 2 The result above shows that all bandwidth selectors have similar asymptotics

with the only difference of the factor ΨMBC
·,K . A similar conclusion was derived for the local

linear estimator. The three last columns of Table 1 show the value of this factor for three

common choices of K.
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6 Two case studies

In this section the methods proposed in this paper are illustrated with two real data appli-

cations. The first application is on fitting hazard mortality curves for old-age population,

and the second one is a non-standard forecasting problem that arises in non-life insurance.

6.1 Old-age mortality

We consider mortality data of women in Iceland in the calendar year 2006, with ages from

40 to 110. The same data were considered by Gámiz et al. (2016) and are available in

the DOvalidation R-package (Gámiz et al. (2017)). The data were obtained from the

Human Mortality Database and consist of aggregated yearly occurrences and exposures.

Gámiz et al. (2016) showed that estimating the hazard from these data is challenge at the

oldest ages. The lack of exposure at the right end and the few observed deaths induce a

marked boundary effect precisely in the area of interest, the old ages. For these data we

have calculated the two hazard estimators described in this paper, local linear and MBC,

using three bandwidth selectors: cross-validation, double one-sided cross-validation and the

new best one-sided cross-validation. The cross-validation scores involved in these methods

have been defined using a weighting function such that w(s)Yi(s) ≡ 1, so all points in the

time interval where the hazard function is estimated are evaluated with the same weight.

This is different from Gámiz et al. (2016) where the weighting function was chosen so only

areas where the exposure is significant contribute to the criteria. Notice that this makes an

important difference in this data set where the end of the time interval comprises almost

no exposure.

Before looking at the resulting hazard estimates we shall look at the cross-validation

scores to be minimized for each bandwidth selection method. Figure 1 shows the cross-
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validated scores for each method considering the MBC estimator. The local linear case looks

quite similar and can be found in the supplementary material. From these plots we can

see that the left one-sided score is not well behaved for both hazard estimators. Therefore

the average DO-validated bandwidth becomes unreliable, even though the obtained values

seem to be sensible (̂bDO = 27.3 for the local linear estimator and b̂DO = 40 for the MBC

estimator). On the other hand the best one-sided cross-validation method shows a clear

minimum in both cases and, as expected, it moves close to the one-sided cross-validated

bandwidth that is working fine (the right side in this case). Best one-sided cross-validation

in this case has been calculated using the exposure process, that is, for each time t we use

the function ξEb (t) given in (11). However the results are quite similar using the occurrence

process instead. Figure 2 shows the resulting hazard estimates from each method and type

of hazard estimate. Note from these plots that the MBC hazard estimator is more robust

to the bandwidth choice than the local linear estimator. Also the new best one-sided cross-

validation method seems to provide a reasonable estimate for old-age mortality in both

cases.

6.2 Outstanding liabilities forecasting in non-life insurance

The second application arises in non-life insurance and the goal is to forecast the number

of future claims from contracts underwritten in the past, which have not yet been reported.

Typically actuaries are responsible of getting these forecasts, which represent perhaps the

most important number in the accounts of the company (see Mart́ınez-Miranda et al. (2013)

for a detailed background of this problem). Here we analyse a data set of reported and

outstanding claims from a motor business in UK. The same data set was previously con-

sidered by Mart́ınez-Miranda et al. (2013) and consist of n = 1558 large claims reported

between January 1990 and March 2012. From a statistical perspective the data could be
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Figure 1: Mortality data: bandwidth selection scores with MBC hazard estimator.

described as a sample {(X1, Z1), . . . , (Xn, Zn)}, where Xi denotes the underwriting date

of the ith claim, and Zi the corresponding reporting delay, this is, the time between the

underwriting date and the reporting date of the claim. The sample is right truncated since

it can be observed only those claims for which the underwriting time plus the reporting

delay is not greater than the calendar time of data collection. Hence data exist on a trian-

gle with Xi + Zi ≤ 31 March 2012, and Xi + Zi represents the calendar time. The aim is

to forecast the mass of the unobserved, future triangle, where Xi + Zi > 31 March 2012,

which corresponds to the number of claims underwritten in the past which have not been

reported yet. The problem is formulated assuming that the maximum reporting delay is
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Figure 2: Comparison of hazard estimates from female mortality data in Iceland.

267 months, in the actuarial literature this assumption is described as the triangle is fully

run off. Another challenge of the data set for this problem is that the data are only avail-

able in an aggregated way. This is a common feature of this kind of data in the reserving

departments of the insurance companies. This means that the available observations are

counts living in a triangle of dimension 267× 267. Specifically for our data set the triangle

has entries Nx,z =
∑n

i=1 I
(
Xi = x, Zi = z

)
, (x, z) ∈ {1, . . . , 267}2, describing the number

of claims underwritten in the xth month and reported in the zth month.

Mart́ınez-Miranda et al. (2013) showed that a multiplicative structured density model,

f(x, z) = f1(x)f2(z), can be used to forecast the claims where the components f1 and
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f2 are the underwriting time density and the reporting time density, respectively. The

assumption of a multiplicative density means that the reporting delay does not depend on

the underwriting date. Using the counting process formulation considered in this paper,

Hiabu et al. (2016) solved the forecasting problem estimating the two density components

using a time-reversal approach. Data are transformed to the time reversed scale so the

right-truncation problem is replaced by the more tractable left-truncation (see Hiabu et al.

(2016), for more details). Using the same time-reversal approach, we now use the hazard

estimation methods presented in the previous sections to estimate the backward hazard

functions corresponding to the two components, underwriting (α1) and reporting delay (α2).

From these hazard estimates the density component estimates can be derived multiplying

by respective estimators of the survival functions.

From the above description we solve the forecasting problem considering both local

linear and MBC hazard estimators. For each hazard component, the bandwidth parameters

for these estimators have been estimated using cross-validation, double one-sided cross-

validation and best one-sided cross-validation. In the three cases we use weighting functions

for the involved cross-validation scores that are appropriate for the forecasting problem.

Specifically, following the discussion in Hiabu et al. (2016), to estimate α1 we consider

weights w1(t) = Ŝ2
1(t)

(
1− Ŝ2(t)

)2
/Y1(t), where Ŝ1 and Ŝ2 are estimators of the survival

functions of each component (underwriting time and the reporting time delay) on the

reversed time scale; and Y1(t) is the risk process for the first component. In a similar

way we define the weights to estimate α2. As in the mortality study best one-sided cross-

validation has been calculated using the exposure process.

Figure 3 shows the forecasts of the number of claims reported in the future calendar

months. Table 2 shows these forecasts aggregated in years. The forecasts are given for each

hazard estimator and bandwidth estimate. We have also included the forecasts derived from
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the Chain Ladder method, which involves histogram type estimators of the underwriting

and reporting density components. The Chain Ladder method is the classical approach

used in the insurance companies (see Mart́ınez-Miranda et al. (2013) for more details about

this approach). The plot of the forecasts shows that the classical insurance method Chain

Ladder is overestimating the liabilities, while the kernel hazard methods provide lower

forecasts. Previous empirical analyses with these data described in Mart́ınez-Miranda et al.

(2013) agree with this result and recommend multiplicatively bias corrected local linear

estimators for this kind of data. Looking at the results from the kernel estimators we

can see that double one-sided cross-validation and best one-sided cross-validation provide

similar forecasts when the local linear estimator is considered, but the results are quite

different for the MBC estimator. The predicted total number of claims using DO-validated

bandwidth is about 299 compared to 313 using the BO-validated bandwidth. Our concern

is that double one-sided cross-validation might not be behaving properly in this situation.

A close inspection to the cross-validation scores to be minimized in order to derive these

bandwidth estimates reveals what is happening. Figures 4 and 5 show these cross-validation

scores when the MBC hazard estimator is considered for both underwriting and reporting

delay components. From these plots we can see that the right one-sided score completely

breaks down for the underwriting time component, exhibiting several local minima. For

the reporting delay component the score function continues decreasing as the value of the

bandwidth increases, so it reaches the minimum at the upper limit of the search interval

of bandwidths. The left one-sided score behaves more reasonably for the underwriting

component but again breaks down for the reporting delay component. This means that

one shouldn’t trust the double one-sided cross-validation bandwidth derived from these two

one-sided criteria, even though the derived estimates in this case turned to be reasonable

values, ĥDO = 55.8 for the underwriting time, and ĥDO = 31.6 for the delay. On the
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contrary, the new best one-sided cross-validation method provides bandwidth estimates of

ĥBO = 43.4 for the underwriting time and ĥBO = 11.8 for the delay, exhibiting well-behaved

minimization scores as shown in Figure 4. Regarding to the cross-validation method it

exhibits a rather flat score in the underwriting component leading to the large bandwidth

estimate of ĥCV = 63.5, and a value of ĥCV = 11.6 for the delay that is close to the best

one-sided cross-validated bandwidth. The impact of the cross-validated bandwidths on the

forecasts is not significant though, about 309 predicted claims compared to the 313 from

best one-sided cross-validation. We have performed the same inspection with the local

linear estimators. These plots can be seen in the supplementary material. The picture

is again quite similar showing a poor performance of double one-sided cross-validation,

however the impact on the forecasts in this case is not substantial. The total number

predicted from cross-validation is about 293, compared to 295 from double one-sided cross-

validation and 298 for best one-sided cross-validation.

7 Finite sample performance

In this section we evaluate the finite sample performance of the new best one-sided cross-

validation method for the MBC and the local linear estimators. We have considered the

same five hazard models described in Gámiz et al. (2016) (see also supplementary ma-

terial). The first four models consist of mixtures of Beta densities. Model 5 shows an

exponential decay common in hazard mortality rates as those described in the first case

study of Section 6. From each model we have simulated samples with three different sam-

ple sizes and two sampling schemes, right censoring with and without left truncation. For

models 1 to 4 we have considered sample sizes n = 100, 1000, 10000, and for model 5,

n = 50000, 75000, 100000. The number of Monte Carlo replications for each case has been
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Figure 3: Number of outstanding claims forecast using local linear and MBC estimators.

always 500. We use the same mechanism to simulate data as in Gámiz et al. (2016). It

generates data in aggregated form (number of occurrences and exposure) for an equally-

spaced grid of size R defined on the time interval, and always produces right censored

samples. For models 1 to 4 the time interval is (0, 1) and we have defined the grid length

with δR = 1/(R + 1). For model 5 time lies in the interval (40, 110) and we have defined

the grid length with δR = 70/(R + 1). The grid size has been chosen equal to R = 500 in

both cases. We shall denote the grid points by tr (r = 1, . . . , R). In the case of samples

without left truncation, for a sample of n individuals, the number of occurrences at time

tr, denoted as Or, have been generated from the binomial distribution Bi {Yr, α(tr)δR}, for
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Figure 4: Underwriting component: bandwidth selection scores with MBC estimator.

r = 1, . . . , R. Here Yr denotes the size of the risk set at the beginning of the r-th interval

of the grid. The total number of simulated occurrences does not sum to n. Some of the

simulated individuals are finally right censored, because they are still at risk at the end of

the interval. Therefore our simulated sample are right censored and the censoring rates are

around 20–30% for all models. When adding left truncation, independent truncation times

are generated from the uniform distribution.

From the simulated aggregated data we have calculated the local linear and the MBC

hazard estimators using the sextic kernel: K(x) = 3003/2048(1 − x2)6I(−1 < x < 1),

as in the two data analyses above. For each hazard estimator we have compared the
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Figure 5: Reporting delay component: bandwidth selection scores with MBC estimator.

best one-sided cross-validated bandwidth with cross-validation and double one-sided cross-

validation. The performance of the bandwidth estimates have been analysed with respect

to the (Monte Carlo approximated) MISE of the resulting kernel hazard estimator. We

shall refer to this performance measure as empirical MISE, denoted as m1(̂b), for each

bandwidth estimate b̂. As benchmarks in our analysis we have considered two infeasible

optimal bandwidths: the ISE-optimal bandwidth minimizing the ISE criterion, b̂ISE, and

the MISE-optimal bandwidth minimizing the empirical MISE. To compute all bandwidth

estimates we have considered grids of 100 equally spaced bandwidth values chosen around

the ISE-optimal bandwidth, for each model and sample size. All criteria (ISE, MISE and

30



the cross-validation scores) are defined using a weighting function such that w(s)Yi(s) ≡ 1,

so all points in the time interval where the hazard function is estimated are evaluated with

the same weight. As we pointed out in our first case study this is different from Gámiz et al.

(2016), and it makes an important difference in models such as Model 5 where the end of

the time interval comprises almost no exposure.

Table 3 summarizes the simulation results in the case of samples with right censoring

and left truncation. In this table bandwidth estimates are compared according to measure

m1. For convenience we report a relative measure to indicate when best one-sided cross-

validation outperforms cross-validation. The relative measure is defined as:

Rerr(BO) =
[
m1(̂bCV)−m1(̂bISE)

] / [
m1(̂bBO)−m1(̂bISE)

]
.

With this definition values ofRerr(BO) above 1 indicate that best one-sided cross-validation

outperforms cross-validation. An analogous relative measure, Rerr(DO), has been defined

for double one-sided cross-validation. Notice that Rerr(BO) greater than Rerr(DO) in-

dicates that best one-sided cross-validation outperforms double one-sided cross-validation.

An overall view of the numbers in the table confirms that best one-sided cross-validation

for the multiplicative hazard estimator always outperforms cross-validation, exhibiting

Rerr(BO) values above 1, and double one-sided cross-validation for all models except for

few cases where double one-sided cross-validation provides slightly lower empirical MISE

values. The results for the local linear estimator show that double one-sided cross-validation

and best one-sided cross-validation behave quite similarly, both outperforming in general

cross-validation. The case of samples without left truncation is shown in Table 4. It brings

similar conclusions though in this case best one-sided cross-validation is beaten by double

one-sided cross-validation for Model 5. This case deserves a deeper analysis and it is shown

in Table 5. In this table we have included the left and right one-sided cross-validated band-
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widths (denoted by “OSCV-l” and “OSCV-r”, respectively) from which double one-sided

cross-validation is derived. From these results we can clearly see that the left one-sided

bandwidth completely breaks down, for all sample sizes and both hazard estimators, while

the right side behaves well. The average that double one-sided cross-validation performs

just hides the problem of the left side. Recall that we pointed the same issue in the two case

studies described previously. We can see that double one-sided cross-validation was just

“lucky”. On the other hand best one-sided cross-validation is behaving as the best of the

two sides, as we would expect. A similar picture can be seen when analysing the behaviour

of double one-sided cross-validation for Model 4 in the case of truncated samples. The full

simulation results are provided in the supplementary material.

8 Conclusion

We have proposed a new bandwidth selection method for local linear hazard estimation and

its multiplicatively bias correction. Our proposal is called best one-sided cross-validation

and consists of an improvement of the double one-sided cross-validation of Gámiz et al.

(2016). Best one-sided cross-validation solves the lack of stability of double one-sided cross-

validation in practice via a local information principle. Our empirical studies show that best

one-sided cross-validation provides a good strategy for bandwidth selection for both local

linear and multiplicative bias corrected hazard estimators. Best one-sided cross-validation

inherits the good properties of one-sided cross-validation while avoiding the stability prob-

lems that double one-sided cross-validation sometimes faces. Detailed mathematical theory

at the level of Hall and Marron (1987) and Gámiz et al. (2016) is included. This type of

theory is completely novel for the multiplicatively bias corrected hazard estimators. The-
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ory on best-one-sided cross-validation introduced in this paper is of course also new for the

local linear hazard estimator.

SUPPLEMENTARY MATERIAL

SuppPub1: contains more details on the asymptotics, including the proofs, as well as

additional plots and tables for case studies and simulations. (.pdf file)
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Table 2: Forecasts of the number of claims to be reported in the future calendar years.

Year CLM LL-CV LL-DO LL-BO MBC-CV MBC-DO MBC-BO

2012 99.95 76.85 77.98 77.95 80.55 81.75 81.76

2013 97.23 75.06 75.52 76.86 81.18 75.82 81.68

2014 74.32 58.75 59.05 60.04 62.23 58.89 62.88

2015 49.18 38.88 39.06 39.44 40.31 38.81 41.20

2016 24.52 19.42 19.50 19.66 20.01 19.34 20.44

2017 11.61 9.35 9.39 9.44 9.60 9.45 9.76

2018 6.21 5.07 5.06 5.09 5.15 4.99 5.27

2019 3.24 2.54 2.53 2.52 2.52 2.53 2.61

2020 1.36 1.25 1.23 1.23 1.23 1.18 1.22

2021 0.99 1.03 1.02 1.02 0.99 0.95 0.95

2022 1.11 0.85 0.84 0.85 0.87 0.83 0.88

2023 1.06 0.71 0.71 0.73 0.81 0.80 0.85

2024 1.20 0.81 0.81 0.84 0.93 0.90 0.94

2025 1.14 0.91 0.92 0.95 0.97 0.93 0.94

> 2025 1.94 1.59 1.59 1.61 1.51 1.48 1.55

Total 375.07 293.07 295.20 298.23 308.86 298.69 312.92
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Table 3: Simulation results for datasets with right censoring and left truncation. The

relative measure Rerr defined in (7) is shown for BO-validation and DO-validation with

local linear and MBC hazards.

Model n LL-DO LL-BO MBC-DO MBC-BO

1 100 1.55 1.25 1.47 1.79

1000 2.32 2.00 0.97 2.88

10000 1.90 1.71 1.82 3.30

2 100 2.28 2.04 0.46 2.47

1000 2.42 1.99 0.15 3.66

10000 2.18 1.84 0.34 3.81

3 100 1.86 1.74 1.47 1.27

1000 0.96 0.99 0.82 1.19

10000 2.20 2.07 2.12 3.50

4 100 0.08 1.12 2.13 0.92

1000 2.51 1.91 2.30 1.08

10000 2.17 1.83 3.76 2.62

5 50000 1.62 1.70 1.77 2.09

75000 2.04 2.18 1.41 2.31

105 1.68 1.73 1.07 1.90
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Table 4: Simulation results for datasets without left truncation. The relative measure Rerr

defined in (7) is shown for BO-validation and DO-validation with local linear and MBC

hazards.

Model n LL-DO LL-BO MBC-DO MBC-BO

1 100 2.58 2.05 0.89 2.51

1000 2.62 2.27 1.24 4.60

10000 2.75 2.47 1.62 8.57

2 100 2.55 1.81 0.22 2.92

1000 2.70 2.29 0.10 3.51

10000 2.63 2.40 0.26 4.71

3 100 1.50 1.40 0.99 0.70

1000 2.72 2.33 0.74 3.40

10000 1.81 2.10 0.65 3.52

4 100 2.03 1.89 2.19 1.13

1000 2.09 2.03 1.28 0.90

10000 1.24 1.28 1.03 1.65

5 50000 0.80 6.45 5.33 1.60

75000 0.63 5.47 4.63 1.96

105 0.56 4.32 4.16 2.28
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Table 5: DO-validation performance in simulations. The empirical MISE (multiplied by

106) is shown for samples generated from Model 5 without left truncation.

n ISE MISE CV OSCV-l OSCV-r DO BO

Local Linear 50000 1.14 2.16 13.31 13424.45 3.04 16.29 3.03

75000 0.82 1.32 8.82 4835.00 1.92 10.28 1.92

105 0.53 0.86 4.44 1894.00 1.43 7.55 1.43

MBC 50000 0.33 0.72 11.84 203897.80 7.01 2.49 7.54

75000 0.23 0.43 5.74 92670.27 3.01 1.42 3.04

105 0.15 0.27 3.51 16302.04 1.65 0.96 1.63
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