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Abstract

The healthcare industry is currently collecting a vast amount of patient data, which due to its volume
and diversity of modalities can be called “big data”. Different machine learning methods have already
been applied in oncology successfully. Deep learning, a sub-field of machine learning, have reached human-
level performance in some tasks such as melanoma classification from dermoscopic images and lymph node
metastases in breast cancers from pathology images. Moreover many methods have already been approved
by the FDA. Although advances are being made for the introduction of artificial intelligence in the workflow
of healthcare practitioners, the lack of interpretability of these methods is still a barrier for their adoption in
clinical practice. The research community has recognized that the lack of interpretability is a problem and
is focusing on developing methods to solve this problem. The aim of this article is to review the methods for
interpreting deep learning models in the specific case of the oncology field. Furthermore, a literature review
is presented to identify current problems and future directions of work on this field.
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1. Introduction

Today, in healthcare scenarios, we are living
a digital era where physical patient records are
mapped to digital formats. This has opened the
possibility to improve the efficiency and quality of5

treatment provided to patients by building decision-
support systems.

Machine Learning (ML) is a sub-field of Artificial
Intelligence (AI) which studies algorithms that are
capable to construct data driven models. The con-10

struction of such models follows two distinct phases
- training and inference. During training, the algo-
rithm builds a model which fits the data received
as input, while in inference, the now trained model
will produced results based on a new set of infor-15

mation that it receives exclusively in this phase and
can be used to test its performance.

Between 2014 and 2019 the Food Drugs Adminis-
tration approved 46 ML algorithms [1] encompass-
ing different areas like mammogram screening and20
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ultrasound image diagnosis, turning the application
of ML in healthcare context a reality.

The majority of these algorithms are supervised
which means that in these scenarios, they need a
help of a physician to label the data before the25

mining process starts. As an example, in overall
survival prediction of breast cancer patients it is
necessary that a physician labels the set of patient
data that will be used in the training process with
the target variable (overall survival – typically mea-30

sured in months). When this target variable is dis-
crete we are present to a classification problem, or
a regression problem in case the variable is contin-
uous.

The Artificial Neural Network (ANN) is a popu-35

lar supervised algorithm inspired by biological neu-
ron, and began to be used in healthcare in the early
90s [2]. The ANN is an analogy used by computer
scientists to emulate the behaviour of the human
brain and are composed by an input, an output40

and intermediate layers, which are also called hid-
den layers. Similarly to biological neurons, each
artificial neuron, or perceptron [3], receives a set of
inputs, either from the input layer or other neurons,
performs a linear combination based on its weights45
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and make a non-linear decision whether to activate
the neuron and fire.

Due to the increasing computational power, the
complexity of these networks has substantially
grown, materialized in the use of dozens of lay-50

ers and millions of neurons. In this context,
Deep Learning (DL) techniques - a subset of ANN
techniques - emerged as the state of the art for
many real world problems, surpassing other ML
techniques, and reaching human-level performance55

in several task such as in the classification of
melanoma from dermoscopic images [4], or the de-
tection of lymph node metastases in breast cancers
from pathology images [5].

Despite its vast potential DL suffers from several60

disadvantages. First is the dependency on large
amounts of data and computational power. Also
the black-box nature of DL make it difficult to in-
terpret it.

The objective of this study goes towards knowing65

what strategies can we use in the oncological field
to interpret the results produced by DL techniques.
Other reviews already covered specific medical ar-
eas such as radiology [6] or more broadly at the
medical field and machine learning models in gen-70

eral [7], but this is the first study to review in detail
work of interpretability of DL techniques in the on-
cological field.

Results from this study were compiled by search-
ing the PubMed database for articles published be-75

tween January 2014 and March 2020, searching in-
dividually and in combination search terms such
as “interpretability”, “deep learning”, “oncology”,
“cancer” and “decision support systems”.

In this study we have found that the majority80

of works focus on medical imaging (e.g. mammo-
gram, histological images and dermoscopic images)
related to breast and skin cancer. Possible explana-
tions are related to the highest prevalence of such
diseases and also the dissemination of well curated85

datasets and challenges target at those diseases.
Overall, the most frequent strategy to interpret DL
decisions is to highlight the most relevant regions
of the image.

Future work includes the evaluation of inter-90

pretability methods so that they can be compared
and validated. Also, the development of workflows
where the clinician can interact with the model and
the interpretation to make decisions.

Throughout the next two overview sections, we95

will talk about various ANN techniques illustrating
their internal architectures and learning processes

using a self-explanatory oncological example, that
consists of the classification of a breast tumor based
on handcrafted features such as mass density (fat-100

containing - 0, low - 1, equal - 2, high - 3), shape
(round - 0, oval - 1, irregular - 2) and the breast
side that it was found (left - 0 or right - 1) as well
as the raw mammogram. Using such features as an
input, the goal of the different types of ANN’s will105

be predict an output related to the malignancy of
the tumor (0 means benign and 1 malignant).

2. ANN Techniques Overview

The Perceptron [8] is the the precursor to the
ANN techniques.110

Training process - As seen in Figure 1a, af-
ter receiving a set of variables as input (x1, x2, ...,
xn), the perceptron will attribute weights for each
variable (w1, w2, ..., wn) and afterwards will use
a mathematical function also known as activation115

function (green) that will use the input variables
combination (yellow) to produce a desired output
(y). For each set of input variables, the output (y)
is compared to the label corresponding to expected
output, also known as target. During training, the120

weights are continuously changed to move the out-
put of the perceptron and the target closer together.

In the example provided in Figure 1b, the percep-
tron is given the breast cancer tumor variables den-
sity, shape, and side (blue) and given the weights125

obtained during training (0.8, 0.7 and 0 respec-
tively), predicts the tumor to be malignant.

The Multilayer perceptron (MLP) [8] is the nat-
ural extension of the perceptron to solve more com-
plex problems. Rather than having a single unit, or130

neuron, the MLP has multiple layers with multiple
neurons each, as can be seen in yellow in Figure 2
a). Due to its multiple layered structure, the MLP
can be seen as a deep neural network.

Training process - After receiving a set of vari-135

ables as input (x0, x1 ..., xn), each intermediate
neurons (yellow) acts like a perceptron, performing
the weighted combination of its inputs and apply
a nonlinear activation function which help to solve
nonlinear problems. The output of activation func-140

tion of each neuron, also known as activation, acts
as input for the neurons of the next layer. The com-
bination of activation of the last intermediate layer
produces a desired output (y).

In the example (Figure 2b), given the breast can-145

cer tumor variables density, shape, and side (blue),
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Figure 1: An illustration of the Perceptron. a) Theoretical scheme - input variables (blue), weighted sum which combines the
inputs (yellow), activation function (green) which turns the output into a binary prediction y. b) Practical example - breast
cancer tumor variables (blue) are combined using the weights (3, 2 and 0) into making the prediction of malignant.

the MLP with its weights obtained during training,
predicts the tumor to be malignant.

Due to its nature, MLPs do not scale well to im-
ages. As an example, for an image with a width150

and height of 100 pixels, the MLP would require
10,000 neurons just in the first layer and this num-
ber would grow exponentially with each layer. To
address this issue, Convolutional Neural Networks
(CNN) [9, 10] techniques emerged as a possible so-155

lution.

Training process - CNNs treat the image as a
matrix (Figure 3), extracting features using a math-
ematical operation called convolution which helps
preserve the spatial relationship between neighbor-160

ing pixels. The convolution slides a small matrix,
called filter, over the original image, and for ev-
ery position, it computes the element-wise multi-
plication between the two matrices, and the result-
ing value forms a single element of the output ma-165

trix, called feature map. The filter is composed of
weights (w) that are learned during training.

During feature extraction, each convolutional
layer is composed by n filters resulting in n feature
maps (Figure 4a purple). The values of the feature170

maps of the last convolutional layer are concate-
nated into a single vector (blue) and used as an in-
put for a MLP (yellow) which makes the prediction
y. During training, the values of the filter matrices
and of the MLP are continuously changed to move175

the output closer to the expected targets.

In the example provided in Figure 4b), given
a mammogram, the CNN has already learn the
weights of the filters, and during the feature ex-
traction (purple) is able to extract features (blue)180

which may include the density and the shape of the
tumor. The features are used to make the classifi-
cation, which predicts the tumor to be malignant.

Although CNNs are able to take advantage of the
spatial relationships between pixels, they struggle185

with large sequence data such as text. Recurrent
Neural Networks (RNN) techniques solve this issue
by having a small network looped for each element
of the sequence, allowing information to persist.

Training process - RNNs are usually composed190

by only a layer of neurons (yellow), which taking
an input (blue) predicts the output (green) in a
recurrent way (Figure 5a). This refers to the fact
that its processing unit (yellow) is looped n times,
where n represents the number of elements of the195

sequence. During training, the weights of the RNN
are continuously changed to minimize the difference
between the target sequenced, and the predicted
one.

In the example provided in Figure 5b, the RNN200

has already learned to generate text based on the
a set of features extracted from a mammogram.
At each set, and based on the information that is
passed from the previous step, it generates the word
that is most likely. So for the first word, it predicts205

‘Found’ as it learned that the sentences given dur-
ing training usually start this way. Next, based on
the word ‘Found’ it decides that word ‘mass’ is the
most likely word to follow. This process repeats
until the RNN generates the end of sequence. For210

example the sequence “Found mass in right breast
with irregular shape and high density.”.

Unlike the other revised techniques, the autoen-
coder [11] is a unsupervised algorithm - in the train-
ing process, this technique does not require labelled215

data. The goal of autoencoders is to learn a com-
pressed representation (code) of the input data by
reconstructing it as the output of the network. By
restricting the size of the code, the technique can
discover the interesting structures of the data, and220

in the case of denoising autoencoder, even recon-
struct noisy images.

Training process - The autoencoder (Fig-
ure 6a) contains an encoder (purple) which re-
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Figure 2: An illustration of the Multilayer Perceptron (MLP). a) Theoretical scheme - input variables (blue), intermediate layer
with neurons similar to perceptrons (yellow), activation function (green) which transforms the output into a binary classification
y. b) Practical example - breast cancer tumor variables (blue) are combined during multiple layers into making the prediction
of malignant.

Figure 3: An illustration of the convolution operation. Each element of the feature map is the result of the element-wise
multiplication between the region of the image and the filter.

Figure 4: An illustration of the Convolutional Neural Network (CNN). a) Theoretical scheme - image is represented as matrix.
Feature extraction extracts the feature maps (purple) using the convolution operator (red). The output of the last convolution
layer is concatenated into a feature vector (blue) which serves as input for the classification MLP (yellow). The activation
function (green) transforms the output into a binary prediction y. b) Practical example - A mammogram showing a tumor is
provided, the feature extraction (purple) extracts features (blue) which may include the density and shape of the tumor. The
features are used to classify the tumor as malignant.

ceives the noisy input (blue), compresses into a225

small representation, called code (yellow), and is
reconstructed by a decoder (green) into the orig-
inal noiseless input. During training, the weights
of the neurons present in the encoder and decoder
are continuously changed to reduce the difference230

between the original input and the output, called
reconstruction error, to find useful patterns in the
data.

In the example provided in Figure 6 b), the au-
toencoder is given a noisy mammogram and its task235

is to denoise it. First the encoder (purple) com-
presses the mammogram into the code maintaining
useful information for the reconstruction, then the
decoder (green) reconstructs code into the mammo-
gram without noise.240
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Figure 5: An illustration of the Recurrent Neural Network (RNN). a) Theoretical scheme - an initial information is provided
to the RNN (red), and for each element of the input sequence (blue), the layer of neurons (yellow) predicts the next element
of the sequence (green). Practical example - report of a mammogram is generated by extracting visual features and providing
them to the RNN. The RNN then generates at each step the word most likely to come next, given the previous generated word.

Figure 6: An illustration of the Denoising Autoencoder. a) Theoretical scheme - noise is added to the original input (blue),
the encoder (purple) learn a compressed representation from the input (blue), the decoder (green) then reconstructs the code
into the original input (blue). b) Practical example - a noisy mammogram is encoded into a compressed representation (code)
and then the code is decoded into the denoised version of original mammogram.

3. Interpretability Concepts Overview

There is no consensus upon the definition of in-
terpretability [12]. However one of the most used
was presented by Doshi-Velez and Kim [13] which
defined interpretability as the “ability to explain or245

to present in understandable terms to a human”,
and will be used in this work. Since deep learning
techniques reach human performance in melanoma
diagnosis from dermoscopic images [4], or the de-
tection of lymph node metastases in breast cancers250

from pathology images [5], the need of interpret
them emerge specially in healthcare contexts.

3.1. Dimensions of Interpretability

Interpretability methods can be characterized
by a set of dimensions [14]: global and local in-255

terpretability, intrinsic and post-hoc interpretabil-
ity and model-specific and model-agnostic inter-
pretability.

Global and Local Interpretability. to perform a clas-
sification task a machine learning algorithm first260

creates a data-driven model based on a set of in-
put features (e.g. age and sex) during the train-
ing phase. The objective of this phase is allowing
neurons to select important features and learn rela-
tionships between them and the target output. In265

global interpretability we are interested in analyz-
ing this model, to understand the common patterns
in the overall data that help make decisions, by
studying the model’s parameters (i.e. weights), and
the learned relationships. In local interpretability270

we are interested in understanding the relationship
between a specific set on input features and the
model decision.

In our example, based on the examples provided,
the network learned relationships that help pre-275

dict the tumor maligancy, based on its density,
shape and breast side. As the breast side (left or
right) where the tumor appears is not indicative of
the level of malignancy, the network should have
learned to discard this input feature. Global in-280

terpretability could be help understand which rela-
tionships did the network learn, and for the example
of breast side confirm that it was not used. Local
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interpretability could help understand the impor-
tance of the input features, when given a specific285

set of values.

Intrinsic and Post-hoc Interpretability. While the
increase of complexity of ANNs (i.e. number of
neurons), help solve complex problems, it increase
the difficulty to interpret them. Restricting the290

network’s complexity and adding self-explanatory
components during the training phase helps the
model to obtain intrinsic interpretability, while
post-hoc interpretability is obtained using inter-
pretability methods after training.295

In our mammogram example, we could add a self-
explanatory component which learns to segment the
most important region (e.g. breast quadrant with
the tumor) and use it to make the prediction. The
same can type of explanation can also be achieved300

after training by using a interpretability method
without the need for self-explanatory components.

Model-specific and Model-agnostic. Another way to
classify interpretability methods is based on the de-
pendence the method has on the type of model305

which it tries to explain. Model-agnostic methods
can be applied to different types of models, while
model-specific methods are only applicable to a spe-
cific type of model [14].

In our example, while a model-agnostic method310

could extract the importance of the density and
shape from a model trained from any ML algorithm,
a model-specific method would only be able to do
the same for similar models.

3.2. Interpretability Strategies315

During the training phase, DL algorithms create
data-driven models that can be interpreted using
different strategies producing different types of ex-
planations.

3.2.1. Feature Importance320

One of the more explored explanations is feature
importance, which gives the importance or contri-
bution of an input feature on the prediction of an
example. Two main approaches are used for com-
puting feature importance: sensitivity analysis [15]325

and decomposition [16, 17].
Sensitivity analysis computes the effects of the

variation in the input variables in the model’s out-
put and help us answer the question “What change
would make the instance more or less like a specific330

category?”.

Decomposition approaches successively decom-
poses the importance of the output of a layer into
previous layers, until the contribution that the in-
put features have on the output is found. It help335

us answer the question “What was the feature’s in-
fluence on the model’s output?”.

If we extract the feature importance of a deci-
sion of our example, it can have different meanings
depending on the type of method used (Figure 7).340

High sensitivity values for density and shape means
that their growth would also increase the predic-
tion of malignancy. While high contribution values
of density and shape means that the prediction of
malignancy was highly influenced by the value of345

these features.

Figure 7: Illustration of feature importance of density,
shape and side on the classification of breast tumor malig-
nancy. Green - positive importance in the classification, red
-negative importance in the classification.

3.2.2. Saliency Map

When dealing with images, feature importance
can be visualized using an heatmap or a saliency
map [13]. Using an image as output, this will indi-350

cate the region that serves as the base for a partic-
ular decision.

An example of a saliency map, extracted from a
CNN trained to predict the malignancy based on
mammogram patches is seen in Figure 8. The red355

and yellow regions correspond to the most impor-
tant regions of the image. The method correctly
focus on the mass, supporting our confidence in the
model’s decisions.

3.2.3. Model Visualization360

The ML algorithm receives an example with a set
of input features, and in their internal process cre-
ates a combination of its features also called inter-
nal features. Some strategies help visualize patterns
detected in an image [19], while others help visual-365

ize the feature distribution in the dataset [20, 21].
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Figure 8: Example of a saliency map depicting the important
pixels for the malignancy prediction based on mammogram
patches [18]. Left: mammogram patch used during classifi-
cation. Right: saliency map, where the pixel color indicates
the importance of the pixel in the classification (red - high
importance, blue - low importance).

Also, while some strategies help to find the im-
age which contain a pattern detected by the net-
work [22], others artificially create images which
accentuate the same patterns [23, 24].370

In Figure 9 we can see regions of mammograms
which contain patterns detected by individual fil-
ters of the CNN trained to diagnose the tumor ma-
lignancy.

Figure 9: Illustration of the internal behaviour of a network
unit by visualizing regions of mammograms with patterns
detected by individual units of the network [22].

3.2.4. Surrogate model375

A surrogate model is an interpretable model
which was trained with the objective of extracting a
list of rules allowing the clinician to understand the
knowledge produced by the algorithm. One way of
doing this is by creating a new dataset where each380

example of the dataset used to train the DL model

is combined with its prediction and the task of the
surrogate model is to predict this values.

To better understand what is a surrogate model,
let’s consider the example in Figure 10. On the left385

we can see a MLP trained to classify the malignancy
of a tumor based on its density and shape. On the
right we can see a list of rules extracted from the
MLP that demonstrate its decisions.

3.2.5. Domain Knowledge390

Although DL algortihms extract internal features
(combination of input features) automatically dur-
ing the training phase, the domain knowledge of the
medical field which physicians have can be used to
validate the decision of the network.395

In the case of tumor malignancy prediction,
physicians take into account the density and shape
of the tumor to make their decision. In order for
physicians to trust the prediction of malignancy of
a network trained on mammograms, intermediate400

predictions of density and shape can be provided
(Figure 11).

3.2.6. Example-based explanation

Example-based explanation methods select ex-
amples of the dataset that explain the behavior405

of the network [14]. This behavior is usually ex-
plained using the internal features (combination of
input features) extracted from the examples by the
network.

Similar examples are examples of the dataset that410

have similar values on the internal features and pro-
duce the same prediction as the example whose pre-
diction we are explaining [25].

Counterfactual explanations can be used to ex-
plain predictions of examples by finding small415

changes in the example that cause the network to
change its prediction. Some of these changes, al-
though imperceptible to the human eye can fool
the network into misclassifying instances with high
confidence [26], these are called adversarial exam-420

ples.
Usually examples of a dataset can be grouped

together based on existing patterns. A prototype is
a particular example of the dataset representative
of its group.425

Figure 12 shows examples of similar and coun-
terfactual examples based on our example of breast
cancer diagnosis. The color represents the predicted
class, green is benign and red is malignant. The
similar example are two instances close together430

with same predicted class, while the counterfactual
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Figure 10: Illustration of a surrogate model extracting a rule list (right) from a MLP (left) trained to predict the malignancy
of a breast tumor.

Figure 11: Illustration of how domain knowledge can be incorporated into the network to make more trustworthy predictions.

example are two instances close together but with
different predicted class.

Figure 12: Illustration of similar example and counterfac-
tual example. Color represents the predicted class (green -
benign, red - malignant).

4. Interpreting Deep Learning in Oncology

The use of DL techniques has become widespread435

in the oncology area, covering different patholo-

gies, but their interpretation remains an unexplored
field [27, 28]. In this section, an overview about
interpretably strategies applied to oncological dis-
esase will be performed.440

As previously mentioned, we conducted a search
of papers combining deep learning and the oncolog-
ical field, and compiled the results in Table 1. In to-
tal, 44 works were found, where the majority target
in breast cancer (30%), skin cancer (23%), lung can-445

cer (9%) and brain cancer (11%). The most com-
mons interpretability strategies were saliency maps
(43%) and feature importance (27%) and among
the prediction tasks, most works focused on diagno-
sis of malignancy (45%) and of different pathologies450

(27%),.

4.1. Breast Cancer

Prediction of breast cancer malignancy has
been one the most successful applications of deep
learning in oncology, achieving 86.7% sensitivity455

and 96.1% specificity when diagnosing mammo-
grams [71]. It also is the main task on interpretabil-
ity work (69%). Due to the availability of well-
curated public datasets on breast cancer, mainly
mammograms and hematoxylin and eosin (H&E)460
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Table 1: Summary of papers reviewed.
Ref Disease Task Modality Explanation Dataset
[29] Breast Cancer Metastases Detection WSI H&E Model Visualization, Saliency Map Public
[22] Breast Cancer Malignancy Diagnosis Mammogram Model Visualization Public

[30, 31] Breast Cancer Malignancy Diagnosis WSI H&E Feature Importance, Domain Knowledge Public
[32] Breast Cancer Malignancy Diagnosis Mammogram Domain Knowledge, Saliency Map Public
[33] Breast Cancer Malignancy Diagnosis Mammogram, Ultrasound, DCE-MRI, Hand-crafted Domain Knowledge Public
[18] Breast Cancer Malignancy Diagnosis Mammogram Saliency Map, Text Public
[34] Breast Cancer Malignancy Diagnosis Hand-crafted Feature Importance Public
[35] Breast Cancer Malignancy Diagnosis Hand-crafted from H&E Surrogate Model Private
[36] Breast Cancer Malignancy Diagnosis Hand-crafted from H&E Surrogate Model Public
[37] Breast Cancer Survival Prediction Gene expression, Cancer biomarkers Feature Importance Public
[38] Breast Cancer Predict Estrogen Receptor Status Metabolomics Data Feature Importance Public
[39] Breast Cancer Clustering Gene expression, CNA data Model Visualization Public
[40] Skin Cancer Malignancy Diagnosis Dermoscopic images Model Visualization Public
[41] Skin Cancer Malignancy Diagnosis WSI H&E Saliency Map Private
[42] Skin Cancer Malignancy Diagnosis Dermoscopic images Saliency Map Public
[43] Skin Cancer Diagnosis of skin lesion WSI H&E Saliency Map Public
[44] Skin Cancer Diagnosis of skin lesion Dermoscopic images Saliency Map Public
[45] Skin Cancer Malignancy Diagnosis WSI H&E Saliency Map Public
[46] Skin Cancer Diagnosis of skin lesion Dermoscopic images Example Public

[47, 48] Skin Cancer Malignancy Diagnosis Dermoscopic images Feature importance, Example, Surrogate Model Public
[49] Skin Cancer Diagnosis of skin lesion Dermoscopic images Example, Saliency Map Public
[50] Lung Cancer Disease Diagnosis Chest Radiograph Saliency Map Public
[51] Lung Cancer Malignancy Diagnosis CT Domain knowledge Public
[52] Lung Cancer Malignancy Diagnosis CT Domain knowledge Public
[53] Lung Cancer Prediction radiation reaction Biomarker, clinical data Domain knowledge Private
[54] Brain Cancer Tumor Grading MRI Saliency Map Public
[55] Brain Cancer Tumor Grading MRI Feature Importance, Saliency Map Public
[56] Brain Cancer Predict Methylation State MRI Model Visualization Public
[57] Brain Cancer Survival Prediction MRI Feature Importance Public
[58] Brain Cancer Survival Prediction WSI H&E and Genomic Biomarkers Saliency Map Public
[59] Other Malignancy Diagnosis Gene expression Feature Importance Public
[60] Other Survival Prediction Gene and protein expression Feature Importance Public
[61] Other Disease Diagnosis RNA-seq expression, SVN data Surrogate Model, Feature Importance Private
[62] Other Disease Diagnosis Volumetric Laser Endomicroscopy Saliency Map Private
[63] Other Disease Diagnosis Endoscopic images Saliency Map Public
[64] Other Disease Diagnosis WSI H&E Saliency Map Private
[65] Other Disease Diagnosis DESI Cluster Private
[66] Other Disease Diagnosis Ophtalmic images Domain Knowledge Private
[67] Other Malignancy Diagnosis Ultrasound Domain knowledge Private
[68] Other Malignancy Diagnosis WSI H&E Text, Saliency Map Public
[69] Other Disease Diagnosis Chest Radiograph Text, Saliency Map, Text Public
[70] Other Tumor Grading WSI H&E Text, Saliency Map Private

stained histological images, research in this area has
as taken a step forward.

When dealing with imaging data, researchers
found it important to visualize the patterns de-
tected by the networks either through model visu-465

alization techniques or with saliency maps. These
patterns were then either validated by experts or
correlated with medical concepts. For other types
of data (e.g. gene expression, hand-crafted fea-
tures), researchers mainly focused on computing470

feature importance or extracting surrogate models
(i.e. rule lists).

Graziani et al. [29] visualized the patterns of
a metastases detection CNN for WSI H&E im-
ages by synthesizing images that increase the net-475

work’s confidence on the prediction (Activation
Maximization [23, 24]) and by extracting saliency
maps [72]. They found that the network de-
tected nuclei-resembling shapes and regions of nu-
clei with marked variations in size and irregular480

shapes. Hsieh et al. [22] used Network Dissection
method [73] to visualize the patterns of individual

filters of a malignancy classifier based on mammo-
grams and developed a web-based tool which let
experts label the patterns. Figure 13 shows an ex-485

ample of a pattern which was labeled as ‘Calcified
Vessels’. Also, other BI-RADS [74] medical con-
cepts (e.g. mass margin) were found to overlap with
patterns detected by the network.

Rather than being validated by experts, Graziani490

et al. [30, 31] introduced Regression Concept Vec-
tors (an extension of Concept Activation Vec-
tors [75]) which let them detected the importance of
medical concepts (i.e. area, perimeter and contrast)
on the decisions of a breast cancer malignancy clas-495

sifier based on WSI H&E network, even though they
were not present in the training dataset. Constrast
was found to be positively correlated with malig-
nancy, while correlation was negatively correlated.
Kim et al. [32] used medical concepts during train-500

ing, computing their importance alongside saliency
maps to help explain the malignancy diagnosis of
mammograms.

Antropova et al. [33] visualized the values of both
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Figure 13: Example of pattern detected by the network and
labeled by an expert as ‘Calcified Vessels’ in the web-based
labeling tool [22].

deep features and hand-crafted features from dif-505

ferent image modalities (i.e. Mammogram, Ul-
trasound, DCE-MRI) and found that their fusion
improved malignancy diagnosis performance, most
likely due to the low agreement between deep and
handcrafted features.510

Lee et al. [18] trained a malignancy diagnosis net-
work able to justify its decisions both visually and
textually. It trained a a language model that com-
poses text description [32, 70, 69, 76] from mammo-
grams. Although the descriptions are still not suf-515

ficiently good (i.e. “There are sharp lines on some
part of complexly formed mass.”), they show that
this interpretability strategy has great potential.

When dealing with hand-crafted features relat-
ing with tumor size and shape, researchers found520

it important to simplify the network to behave lin-
early [34] making it easier to compute the feature
importance, or extract simpler classifiers that could
present physicians with simple rules (i.e. decision
rules [35] and symbolic rules [36]) increasing inter-525

pretability.

Feature importance was the focus of most works
dealing with gene expression data. For exam-
ple, SALMON [37] predicted survival risk of pa-
tients with breast cancer, and feature importance530

of eigengene’s modules and other clinical informa-
tion, they confirmed that age, progesterone recep-
tor status and other five mRNA sequence data co-
expression modules play pivotal roles in patient
prognosis. Similar methods, using the H2O [77]535

library, were used to detect the important fea-
tures in the classification of the Estrogen Recep-

tor Status of patients with breast cancer based
on metabolomics data [38]. They found eight
commonly enriched significant metabolomics path-540

ways: isoleucine, putrescine, glycerol, 5’-deoxy-5’-
methylthioadenosine, ornithine, tocopherol beta,
phenylalanine, and arachidonic acid. Finally, Liu
et al. [39] used an autoencoder to find clusters of
breast cancer patients based on their gene expres-545

sion and copy number alteration data, and visual-
ized them using heatmaps. They found that the
cluster of patients with ER-negative breast cancer
patients usually have a poor prognosis.

4.2. Skin Cancer550

Works in skin cancer almost evenly divided on
the malignancy diagnosis and diagnosis of multiple
skin diseases. The modality used was also divided
between two types, dermoscopic images (70%) and555

hematoxylin and eosin (H&E) stained histopatho-
logical images (30%). Similarly to breast cancer de-
tection, DL has also achieved great results in skin
cancer detection based on medical imaging [78]. In-
terpretability methods for these pathologies ranged560

from saliency maps, model visualization, rule ex-
traction, text explanations and example-based ex-
planations.

A simple visualization method was used to visu-
alize the activation of neurons of a CNN trained to565

predict the malignancy of dermoscopic images [40].
Inspection of activations let to finding neurons re-
lated to medical concepts such as borders, lesions,
and skin type, as well as different image artifacts
such as hairs.570

Cruz-Roa et al. [41] proposed a DL technique for
the malignancy diagnosis using histological images
and visualized the most salient patterns in that task
which when validated by pathologists were found to
be related large-dark nuclei. Researchers also tried575

to improve the quality of saliency maps by making
changes on the architecture of the network when di-
agnosis malignancy based dermoscopic images [42]
and diagnosis of skin diseases based on WSI H&E
images [43]. PatchNet [42] found a trade-off be-580

tween interpretability and performance, as smaller
patch sizes provided saliency maps with better vi-
sual interpretability at the expense of worse gener-
alization capabilities. Paschali et al. [43] also found
that smaller convolutional filters resulted in more585

fine-grained saliency maps. González-Dı́az [44] in-
corporated segmentation of lesion areas based on
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high-level dermoscopic features, and used these seg-
mentations to diagnose of skin lesions and show rel-
evant regions.590

Example-based explanation are also useful in-
terpretability strategies in skin cancer, as shown
by Sadeghi et al. [46] which conducted a study
which revealed that similar examples provided by
DL techniques help users in classifying skin le-595

sions from dermoscopic images. In the study, ac-
curacy increased from 51.56% to 60.94% when the
15 most similar cases were provided to the users.
Silva et al. [47, 48] unified complementary expla-
nations to explain skin lesion predictions from der-600

moscopic images. The method extracted rules and
presented them as text sentences alongside positive
and a counter-factual examples for every decision.
Also on the same task, Codella et al. [49] explained
the decision with similar examples using k-nearest605

neighbors on the deep features and highlighted the
most salient regions of the image.

4.3. Lung Cancer

Interpretability research on the diagnosis of lung
cancer focused mainly on two modalities, Chest610

Radiography (X-Ray) or Computed Tomography
(CT). Similarly, to breast and skin cancer, DT tech-
niques have been shown to be able to reach human-
level performance. In the diagnosis of 14 differ-
ent pathologies from chest radiographs, a CNN615

achieved radiologist-level performance [50]. Radiol-
ogists confirmed, by inspecting saliency maps [79],
that the network localizes accurately the lung
masses.

Other works focused on the integration between620

hand-crafted features related to medical concepts
and deep features. Paul et al. [51] developed a
model for the malignancy diagnosis of lung cancer
using CT images, and interpreted their correlation
with medical features used by physicians by iter-625

atively replacing deep features and evaluating the
drop in confidence. Although deep features were
not found to be perfectly correlated with medical
features, they could represent 9 of the medical fea-
tures with the deep features without losing per-630

formance. In the same task, Shen et al. [52] pro-
posed to model that made high-level predictions for
the tumor malignancy, and low-level predictions of
medical features - calcification, subtlety, lobulation,
sphericity, internal structure, margin, texture and635

spiculation. The approach achieved comparable or
better results with state-of-the-art methods in the
public Lung Image Database Consortium (LIDC).

Finally, Cui et al. [53] used a combination of
hand-crafted features composed of clinical features640

and cancer biomarkers in a nonsmall cell lung can-
cer who received radiotherapy to predict the dam-
age caused by the treatment. The results found
that better performance was achieved by integrat-
ing the hand-crafted features with the deep features645

extracted from a autoencoder [80].

4.4. Brain Cancer

Unlike previous pathologies, brain cancer re-
search deviates from diagnosis of diseases and fo-
cus on survival prediction (40%) and tumor grad-650

ing (40%), almost entirely based on Magnetic Res-
onance Imaging (MRI) (83%).

When performing tumor grading - distinguishing
from lower grade gliomas from high grade gliomas
from MRI - researched have focused on producing655

saliency maps from the 3D MRI scans or Region
of Interest (ROI) annotated by experts. Pereira et
al. [54] extended existing saliency map methods for
three dimensional inputs [81, 72]. The ROI classi-
fier achieved better performance than the 3D scan660

(92.98% and 89.50% accuracy), but they were both
able to locate the tumor. Pereira et al. [55] also used
a feature importance method [82] to identified MRI
sequences which were relevant for features extracted
from the network, and then produce saliency maps.665

The sequences chosen were consistent with domain
knowledge.

Han and Kamdar [56] train a model to predict the
methylation state of the MGMT regulatory regions
using MRI of Glioblastoma Multiforme (GBM) pa-670

tients, resulting in 62% accuracy. The MRI scans
were extracted from the Cancer Imaging Archive
(TCIA) [83] and the methylation data from the
Cancer Genome Atlas (TCGA) [84]. The authors
developed a online visualization tool which allows675

the user to load an MRI scan and visualize the ac-
tivation of different filters. Through this the model
was found to classify lesions with ring enhancement
with negative methylation status and tumors with
less clearly defined borders and heterogeneous tex-680

ture with positive methylation status.
Lao et al. [57] constructed a model for survival

prediction of patients with GBM based on deep
features and hand-crafted features extracted from
MRI. to reduce the number of features used, feature685

selection was done using feature importance meth-
ods to find features that were robust to tumor seg-
mentation uncertainty, highly predictive and non-
redundant. Survival prediction was also performed
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using histological samples and genomic data [58]690

with validation of produced saliency maps by ex-
pert pathologists.

4.5. Other Pathologies

Other oncological pathologies have been showed
interested in interpretability using different modal-695

ities of data (not exclusively image). Researchers
that applied DL techniques on data of multiple
pathologies have seeked to interpret them using
feature importance. For example, Ahn et al. [59]
trained a network for malignancy diagnosis based700

on gene-expression data from multiple tissues and
by computing the feature importance of individual
genes on the diagnosis found a sub-group suspected
to be oncogene-addicted as an individual gene con-
tribute extensively in the classification. Similarly,705

Yousefi et al. [60] proposed a model for the sur-
vival prediction based on clinical, gene-expression
and protein-expression data of multiple tissues and
computed the sensitivity of each feature on the sur-
vival risk, identifying that TGF-Beta 1 signaling710

and epithelialmesenchymal transition (EMT) gene
sets are associated with poor prognosis. Oni et
al. [61] diagnosed eight different cancer types from
RNA-seq expression and single nucleotide variation
(SNV) data. To explain its decisions, a linear surro-715

gate model [82] was extracted, where its coefficient’s
magnitude corresponded to importance of the genes
in the prediction. The location and variability of
explanations were visualized using 2D embeddings
of the RNA-seq input data. They found genes re-720

lated to cell proliferation and tumor growth were
important for the diagnosis.

In the diagnosis of early Barrett’s Neoplasia us-
ing Volumetric Laser Endomicroscopy [62], saliency
maps [79] focused on the glands located around725

the first layers of the esophagus in high-grade dys-
plasia cases, and on homogeneous esophagus lay-
ers in non-dysplastic Barrett’s esophagus cases.
Garcia-Peraza-Herrera et al. [63] extended the same
saliency map method to interpret the diagnose730

esophageal cancer based on endoscopic images. By
computing saliency maps of different resolutions
they were able to detect unhealthy patterns and
diseased tissue.

Korbar et al. [64] interpreted the diagnosis of col-735

orectal polyps based on histological images using
saliency maps[79, 72] and found that by adding a
boundary box around them increased their similar-
ity with pathologists’ segmentations.

Inglese et al.[65] used DL techniques to find740

a high-level representation of mass spectrometry
imaging data from colorectal adenocarcinoma biop-
sies. The features extracted from the network was
visualized in two dimensions using t-SNE [85] un-
veiling clusters with different chemical and biologi-745

cal interactions occurring.

Zhang et al. [66] developed a diagnostic system of
ophtalmic images that explained the diagnosis with
sub-tasks. In addition to the diagnosis disease, the
network segmented important anatomical regions,750

and detected other illnesses. The results show an
accuracy of 93% on the diagnosis, localization ac-
curacy of the foci of 82% in normal lighted images
and 90% in fluorescein sodium eye drops.

Zhang et al. [67] proposed a system for diagnos-755

ing the malignancy of thyroid nodules on ultra-
sound with performance comparable with radiolo-
gists. The network provides prediction on medical
concepts based on the TI-RADS lexicon.

The automatic generation of text reports based760

on medical imaging system is also an active research
area. Zhang et al. [68] presented network trained
on H&E patches for the malignancy diagnosis of
bladder cancer, and conditioned a RNN-based lan-
guage model to generate text descriptions and vi-765

sual attention (i.e. saliency maps) highlighting re-
gions of the image relevant for specific parts of the
text (Figure 14). Similarly, TieNet [69] provided
the same explanation for the network which diag-
noses diseases based on chest radiographs and gen-770

erates text descriptions with similar visual atten-
tion. MDNet [70] establishes a relationship between
histological images of bladder cancer and diagnos-
tic reports to generate text descriptions and provide
visual attention for specific parts of the text.775

5. Open Issues and Promising Research Di-
rections

As deep learning grow in popularity, so will the
need for interpretability in the dichotomy between
machine learning and medical practice. From this780

survey, it becomes clear that are three premising
directions to be explored in future research: lack of
evaluation metrics and unreliability of some inter-
pretability methods, focusing almost exclusively on
cancer diagnosis and confining studies to frequent785

diagnosed cancer diseases.
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Figure 14: At the left a representative H&E stained whole-
slide tissue image and the right the saliency map generated
by the method. At the bottom is the generated description
for the image and feature-aware attention maps. Adapted
from [68].

5.1. Lack of evaluation metrics and unreliability of
some interpretability methods

One point of concern is the unreliability of many
techniques used to generate saliency maps [86, 87],790

which might not be representative of the behavior of
the model they are trying to explain [88]. Another
concern is the susceptibility of neural networks to
adversarial attacks, where imperceptible changes to
an image can make the network make radical dif-795

ferent predictions [89]. More recently, explanations
have also been found to be susceptible to adversar-
ial attacks [90], by making imperceptible changes
that have no affect on the prediction but alter their
explanations.800

To quantitatively evaluate an interpretability
method without the validation of an expert requires
a formal definition of interpretability and the use
of a proxy metric describing the quality of the ex-
planation [13]. The lack of ground-truth explana-805

tions, such as expert annotated tumor segmenta-
tions which indicated what the expected value of a
saliency map should be, makes it difficult to make
quantitative analysis of the results, hence most
studies conduct evaluation by letting experts (e.g.810

pathologist) compare the explanations of few num-
ber of selected examples and their domain knowl-
edge.

Future research should help find interpretability
metrics able to assess methods in a number of fac-815

tors. First, evaluate how faithful are explanations
to the actual model’s behavior, avoiding adversar-
ial attacks. Also, help understand their uses cases,

advantages and weaknesses so to help to choose the
appropriate method given a situation, Only by sat-820

isfying this requirements can interpretability meth-
ods be trusted.

5.2. Focusing almost exclusively on cancer diagno-
sis

72% of the reviewed studies focus on the diag-825

nosis of cancer diseases, leaving many important
tasks which deep learning models have shown to do
well still unexplored. The prognosis of a patient
with cancer is an estimate of the likely outcome of
the disease, whether it will be treated successfully830

and the patient will recover. Regarding this topic,
many DL techniques have been applied for survival
prediction and readmission prediction [91] as well
as predicting the response to the treatment [92].
Tumor segmentation is a time-consuming and dif-835

ficult task even for radiotherapy experts, and even
though automatic segmentation by DL techniques
is possible [93, 94], they interpretability is still low.
Recently, DL approaches also has seen success in
restoring medical images corrupted with noise or840

artifacts. The fact that DL hides the reasoning be-
hind this process as also been pointed out as a chal-
lenge [95].

Future research should focus on the above tasks
as there is many uses cances for interpretability845

methods, such helping to audit the AI system, find-
ing bias in the data and assisting clinicians reducing
their burden when performing the tasks. Further-
more, though studies on interpretability methods
have focused mostly on imaging, researchers have850

begin to combine different modalities of patient
data (e.g, imaging, gene information), which result
in better performance than single modality data in
some cases [96]. Future research should study in-
terpretability methods capable of interpreting DL855

models training with such heterogeneous data and
find relations in it.

5.3. Confining studies to frequent diagnosed cancer
diseases

Most studies cover (72%) the application of in-860

terpretability methods for DL systems target at
the most common cancer diseases, namely breast,
skin, lung and brain cancer. In addition to the high
number of cases of these diseases, the high number
of studies is also due to the proliferation of well-865

curated public cancer datasets such as TCIA [83],
TCGA [84], CBIS-DDSM [97] among others. Also,
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due to the creation of special issues, workshops and
challenges which focus on interpretability of ML in
healthcare, such as the iMIMIC workshop [98] and870

the ISIC Melanoma Challenge [99] and the BraTS
Challenge [100].

In our opinion, there exists a great opportunity to
grow research on less common diseases by curating
larger datasets and creating challenges directed at875

increasing the interest.

6. Conclusions

Interpretability of deep learning is a growing field
with mostly open problems and many opportunities
for the field of medicine and oncology.880

The lack of interpretability in deep learning has
been pointed out as a major problem by many re-
searchers that have studied the application of deep
learning in various areas of medicine and bioinfor-
matics [27, 101, 28].885

In this work, we introduced important concepts
in this topic and review the related research on the
application of interpretability methods for cancer
diseases, summarizing their main conclusions.

To the extend of the author’s knowledge, such890

comprehensive review on the interpretability of DL
models for cancer diseases has not been previously
performed. As discussed in the previous section,
as only a small number of interpretability methods
have been extended for cancer diseases, future re-895

search should extend this methods. Furthermore,
we identified a focus on medical imaging and com-
mon cancer diseases, namely breast, skin, lung and
brain cancer. In the future, research should expand
to other modalities and cancer diseases. Also, as900

AI systems are beginning to take advantage of data
from multiple sources (e.g. imaging, gene informa-
tion, etc.), new interpretability methods must be
developed to interpret them. Lastly, future research
in the design of evaluation metrics and frameworks905

is mandatory to assess the reliability of AI systems
and for increasing the trust to be used on clinical
practice.
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[62] R. Fonollà, et al., Ensemble of Deep Convolutional

Neural Networks for Classification of Early Barrett’s
Neoplasia Using Volumetric Laser Endomicroscopy,
Applied Sciences 9 (11) (2019) 2183. doi:10.3390/1230

app9112183.
[63] L. C. Garcia-Peraza-Herrera, M. Everson, W. Li, I. Lu-

engo, L. Berger, O. Ahmad, L. Lovat, H.-P. Wang,
W.-L. Wang, R. Haidry, D. Stoyanov, T. Vercauteren,
S. Ourselin, Interpretable Fully Convolutional Clas-1235

sification of Intrapapillary Capillary Loops for Real-
Time Detection of Early Squamous Neoplasia, ArXiv
e-prints (2018) 1–8arXiv:1805.00632.

16

http://dx.doi.org/10.1117/12.2043872
http://dx.doi.org/10.1117/12.2043872
http://dx.doi.org/10.1117/12.2043872
http://arxiv.org/abs/1705.08078
http://arxiv.org/abs/1705.08078
http://arxiv.org/abs/1705.08078
http://arxiv.org/abs/1904.03127
http://arxiv.org/abs/1904.03127
http://arxiv.org/abs/1904.03127
http://arxiv.org/abs/1904.03127
http://arxiv.org/abs/1904.03127
http://arxiv.org/abs/1904.03127
http://arxiv.org/abs/1904.03127
http://dx.doi.org/10.1109/JBHI.2018.2806962
http://dx.doi.org/10.1371/journal.pmed.1002686
http://dx.doi.org/10.1371/journal.pmed.1002686
http://dx.doi.org/10.1371/journal.pmed.1002686
http://dx.doi.org/10.1109/IJCNN.2018.8489440
http://arxiv.org/abs/1806.00712
http://arxiv.org/abs/1806.00712
http://arxiv.org/abs/1806.00712
http://dx.doi.org/10.1002/mp.13497
http://dx.doi.org/10.1002/mp.13497
http://dx.doi.org/10.1002/mp.13497
http://dx.doi.org/10.1016/j.media.2017.12.009
http://dx.doi.org/10.1016/j.cogdev.2010.08.003.Personal
http://dx.doi.org/10.1016/j.cogdev.2010.08.003.Personal
http://dx.doi.org/10.1016/j.cogdev.2010.08.003.Personal
http://dx.doi.org/10.1038/s41598-017-10649-8
http://dx.doi.org/10.1038/s41598-017-10649-8
http://dx.doi.org/10.1038/s41598-017-10649-8
http://dx.doi.org/10.1073/pnas.1717139115
http://dx.doi.org/10.1073/pnas.1717139115
http://dx.doi.org/10.1073/pnas.1717139115
http://dx.doi.org/10.1109/BIBM.2018.8621108
http://dx.doi.org/10.1038/s41598-017-11817-6
http://dx.doi.org/10.1038/s41598-017-11817-6
http://dx.doi.org/10.1038/s41598-017-11817-6
http://dx.doi.org/10.1145/3307339.3342189
http://dx.doi.org/10.1145/3307339.3342189
http://dx.doi.org/10.1145/3307339.3342189
http://dx.doi.org/10.3390/app9112183
http://dx.doi.org/10.3390/app9112183
http://dx.doi.org/10.3390/app9112183
http://arxiv.org/abs/1805.00632


[64] B. Korbar, A. M. Olofson, A. P. Miraflor, C. M. Nicka,
M. A. Suriawinata, L. Torresani, A. A. Suriawinata,1240

S. Hassanpour, Looking Under the Hood: Deep Neural
Network Visualization to Interpret Whole-Slide Image
Analysis Outcomes for Colorectal Polyps, in: Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2017, pp.1245

821–827. doi:10.1109/CVPRW.2017.114.
[65] P. Inglese, et al., Deep learning and 3D-DESI imag-

ing reveal the hidden metabolic heterogeneity of can-
cer, Chemical Science (2017) 3500–3511doi:10.1039/
c6sc03738k.1250

[66] K. Zhang, X. Liu, F. Liu, L. He, L. Zhang, Y. Yang,
W. Li, S. Wang, L. Liu, Z. Liu, X. Wu, H. Lin, An
interpretable and expandable deep learning diagnostic
system for multiple ocular diseases: Qualitative study,
Journal of Medical Internet Research 20 (11) (2018)1255

1–13. doi:10.2196/11144.
URL http://www.ncbi.nlm.nih.gov/pubmed/

30429111http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=PMC6301833

[67] S. Zhang, Y. Luo, H. Du, Z. Jin, Y. Zhu, Y. Zhang,1260

F. Xie, M. Zhang, X. Tian, J. Zhang, A Novel
Interpretable Computer-Aided Diagnosis Sys-
tem of Thyroid Nodules on Ultrasound based
on Clinical Experience, IEEE Access (2020) 1–
1doi:10.1109/ACCESS.2020.2976495.1265

URL https://ieeexplore.ieee.org/document/

9016204/

[68] Z. Zhang, P. Chen, M. Mcgough, F. Xing, C. Wang,
M. Bui, Y. Xie, M. Sapkota, L. Cui, J. Dhillon, N. Ah-
mad, F. K. Khalil, S. I. Dickinson, X. Shi, F. Liu,1270

H. Su, J. Cai, L. Yang, Diagnosis With Deep Learn-
ing, Nature Machine Intelligence 1 (May). doi:10.

1038/s42256-019-0052-1.
[69] X. Wang, Y. Peng, L. Lu, Z. Lu, R. M. Summers,

TieNet: Text-Image Embedding Network for Com-1275

mon Thorax Disease Classification and Reporting in
Chest X-Rays, Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (2018) 9049–9058arXiv:1801.04334, doi:
10.1109/CVPR.2018.00943.1280

[70] Z. Zhang, Y. Xie, F. Xing, M. McGough, L. Yang,
MDNet: A Semantically and Visually Interpretable
Medical Image Diagnosis Network, 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR) (2017) 3549–3557.1285

[71] L. Shen, L. R. Margolies, J. H. Rothstein, E. Fluder,
R. McBride, W. Sieh, Deep learning to improve
breast cancer detection on screening mammog-
raphy, Scientific Reports 9 (1) (2019) 12495.
doi:10.1038/s41598-019-48995-4.1290

URL https://doi.org/10.1038/

s41598-019-48995-4

[72] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,
D. Parikh, D. Batra, Grad-CAM: Visual Explanations
from Deep Networks via Gradient-Based Localization,1295

in: Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2017, pp. 618–626.

[73] D. Bau, B. Zhou, A. Khosla, A. Oliva, A. Torralba,
Network dissection: Quantifying interpretability of
deep visual representations, Proceedings - 30th IEEE1300

Conference on Computer Vision and Pattern Recog-
nition, CVPR 2017 2017-Janua (2017) 3319–3327.
arXiv:1704.05796, doi:10.1109/CVPR.2017.354.

[74] A. A. Kabbani, Y. Weerakkody, et. al., Breast
imaging-reporting and data system (BI-RADS), Re-1305

ston VA: American College of Radiology.
[75] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler,

F. Viegas, R. Sayres, Interpretability Beyond Feature
Attribution: Quantitative Testing with Concept Ac-
tivation Vectors (TCAV), ArXiv e-printsarXiv:1711.1310

11279v5.
[76] S. T. Kim, J.-H. Lee, Y. Ro, Visual evidence for

interpreting diagnostic decision of deep neural net-
work in computer-aided diagnosis, in: Proceedings of
Computer-Aided Diagnosis, 2019, p. 19. doi:10.1117/1315

12.2512621.
[77] H2O.ai, https://www.h2o.ai/, accessed: 2019-07-01.
[78] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swet-

ter, H. M. Blau, S. Thrun, Dermatologist-level clas-
sification of skin cancer with deep neural networks,1320

Nature 542 (7639) (2017) 115–118. doi:10.1038/

nature21056.
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