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Abstract: 
Energy poverty has been addressed as a global problem. Many studies have been conducted, and several indicators have 
been established to detect energy poverty. However, most analyses have been performed at a yearly level without 
considering the differences throughout the year. This study performed a sensitivity analysis to determine these differences 
using the 2M indicator in 36,230,400 case studies in the south of Spain, which is a warm zone with great energy poverty, as 
well as vulnerable to climate change effects. The results showed that monthly assessment could increase energy poverty 
situations in the months with greater climate severity, compared to yearly assessment. That increase in winter and summer 
months raised energy poverty cases over 20%, with these months being those with greater vulnerability due to cold and 
heat waves, respectively. The results also showed that variations were independent of both the technical characteristics of 
the dwelling and the use of HVAC systems. Energy poverty cases were reduced only in the summer months with the adaptive 
approach, which considers thermal adaptation. The use of the 2M indicator in monthly scales can detect vulnerable family 
units that cannot be detected by yearly studies, so monthly scales are crucial for governments to adopt energy poverty 
policies and strategies. 
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Highlights: 

- Over 20% of energy poverty cases increase with monthly studies. 
- Monthly variation is independent of dwellings’ technical characteristics. 
- Users’ behaviour pattern does not affect monthly tendencies. 
 

1. Introduction 
 
Household energy services are essential to have an acceptable life level [1,2]. This aspect is included in the sustainable 

development goals. However, the current situation is the opposite. Most world population lives in energy poverty (EP) 
situation [3] because of both technical factors [4,5] and social and economic aspects [6,7]. EP should therefore be understood 
as a multidimensional problem, taking place in all countries, although differently [8]: in developing countries the main 
problem is installation availability [9,10] and energy access [11,12], whereas in developed countries the main problem is 
the difficulty to tackle energy expenditure [9,13]. However, combined situations could be placed in the two typologies of 
countries because energy access could also be something of a challenge in developed countries [14]. Moreover, the 
importance of EP should be understood at different scales because of its influence on users’ health [15,16], young people’s 
future expectations [17,18], and the fight against climate change [19]. 

EP has recently become important in developed countries. Constant economic crisis and price inflation are leading to an 
increasingly complicated situation in households to pay energy bills, i.e. EP is a problem related to affordability [20]. Recent 
events such as Covid-19 lockdown [21] and the war in Ukraine [22,23] have led to more EP cases.  

Consequently, Spain’s situation is worsened [24], a crucial aspect considering the delicate EP situation of the country 
before COVID-19. In this sense, EP in Europe was a major and acknowledged problem even before COVID-19 and the energy 
crisis, which is evidenced by the creation of the Energy Poverty Advisory Hub (EPAH). Several studies had already stressed 
that situation. First studies were published in 2012, reflecting that over 30% of unemployed households allocated more than 
twice the median of the energy expenditure to pay energy bills [25]. Likewise, households in EP situation increased over 
140% in less than 5 years. Subsequently, 11% of households in the country had problems to keep thermal comfort [26]. 
These data were complemented by other regional studies performed in several zones of the country. A study by Sánchez-
Guevara Sánchez et al. [27,28] showed the significant gender gap in family units in EP in Madrid, as well as the predominant 
percentage (over 20%) of population in EP situation in the region.  

As a result, the Spanish Government has established a roadmap, i.e., the National Strategy against Energy Poverty 2019-
2024, to reduce EP in the country [29]. The goal is to reduce EP cases up to 50%. For this purpose, 4 indicators are used to 
assess the situation from various perspectives [30]: (i) inability to keep home adequately warm; (ii) high share of energy 
expenditure in income (2M); (iii) hidden energy poverty (HEP); and (iv) arrears on utility bills. Except HEP, all indicators 
are also monitored by the EPAH [31] and allow a traceability with the assessments conducted by the European Union to be 



obtained. Monitoring is useful to adopt measures that reduce energy cost. Likewise, the goal is to reduce building energy 
consumption (building energy renovation [32,33]) and to give economic aids (e.g., aids to pay the electricity bill [34]).  

The national strategy’s action plan is clear, but there are some limitations. The first limitation is the quantification of 
possible Spanish family unit’s EP situations. Most EP analyses are based on yearly scales. Table 1 compiles most studies on 
EP, as well as the analysis scale used. Family units are quickly assessed by a yearly scale, which is significant considering the 
many family units that are estimated to be in EP situation. However, the actual family units’ situation could not be included 
in this analysis. Recently, Bienvenido-Huertas et al. [35,36] showed the changing nature of EP by assessing certain case 
studies. Their results showed that EP could vary throughout the year, so family units could be some months in EP situation. 
However, these studies were limited because only energy saving measures were analysed. Consequently, there is a 
knowledge gap to determine the actual need for assessing family units’ EP situation monthly. This study therefore performed 
a sensitivity analysis among the expected concordances by yearly and monthly assessing the EP situation. The goal was to 
know the differences between assessments at different scales. The results of this study therefore aimed to quantify the 
similarities and limitations of the currently most used scale (annual scale) in comparison with a shorter scale (monthly 
scale). The 2M indicator considered by the National Strategy against Energy Poverty was used. The study sample was a 
parametrized dataset of 36,230,400 cases. 

 
Table 1. Analysis scales used in the studies on EP.  

Indicator Country Analysis scale Year Reference 
2M France Yearly 2015 Legendre and Ricci [13] 
 United Kingdom Yearly 2015 Roberts et al. [37] 
 Greece Yearly 2016 Papada and Kaliampakos [38] 
 Spain Yearly 2018 Sánchez-Guevera Sánchez et al. [39] 
 Spain Yearly and monthly 2021 Bienvenido-Huertas et al. [36] 
LIHC France Yearly 2016 Imbert et al. [40] 
 China Yearly 2020 Lin and Wang [41] 
 Turkey Yearly 2021 Dogan et al. [42] 
 United Kingdom Yearly 2022 Galvin [43] 
HEP Belgium Yearly 2018 Meyer et al. [44] 
 Italy Yearly 2020 Betto et al. [45] 
 Poland Yearly 2020 Karpinska and Smiech [46] 
 Mexico Yearly 2022 Soriano-Hernández et al. [47] 
IVH Spain Yearly 2018 Castaño-Rosa et al. [48] 
 United Kingdom Yearly 2020 Castaño-Rosa et al. [49] 
 Spain Yearly 2021 Alba-Rodríguez et al. [50] 
FFPRI Chile Yearly 2018 Pérez-Fargallo et al. [51] 

LIHC: Low Income High Costs; IVH: Index of Vulnerable Homes; FPPRI: Fuel Poverty Potential Risk Index 

 
2. Methodology 

 

2.1. Case study 
The analysis was limited to the existing characteristics of the built environment, as well as to the socio-economic 

characteristics of the family units in the south of Spain, a region with warm climate characteristics. This region was chosen 
because of two reasons: (i) its high prevalence of EP; and (ii) its climate characteristics, with greater prevalence of cooling 
demand [52], an aspect that will be more important in future climate change scenarios [53]. Moreover, EP significantly 
impacts this region [54], where there are greater percentages of EP cases than the national mean and cooling energy demand 
is the most predominant. A huge dataset was used to include most typologies in that built environment. A social building 
with a geometry that represents most buildings in the region was therefore selected (Figure 1). The building has 51 
dwellings, each with 2 or 3 bedrooms.  The useful surface area of dwellings is up to 90 m². The building was modelled in 
DesignBuilder and validated according to the ASHRAE Guideline 14 [55]. The validation was included in previous studies 
[56,57]. The technical characteristics of the building did not allow most of the built environment of the region to be included, 
so the model was parametrized (Figure 1). The process consisted in using the geometry of the model to combine it with the 
variables included in Figure 1: (i) thermal transmittance of façade, roof and floor, with variations between 0.1 and 2.0 
W/(m²K) and intervals of 0.1 W/(m²K); (ii) thermal transmittance of windows, considering 3 typologies; and (iii) HVAC 
system performance, considering 17 typologies according to the values of both the energy efficiency ratio (EER) and the 
coefficient of performance (COP). The HVAC system was a heat pump because of its prevalence in the buildings of the region. 

As a result of the parametrization, both buildings with great energy efficiency (i.e. low values of U-value and high 
performance in heat pumps) and buildings with poor performance (i.e. high values of U-value and low performance) were 
included. Dwellings on the ground, middle and top floor were simulated. Dwellings on the second floor were used because 
of their small difference in energy consumption in comparison with middle floors. Dwellings were configured for the air-
conditioned mode, so there were no limitations associated with the height of the floor. A total of 37 dwellings of the original 
building was used. 

As for the family units’ operational pattern, the hypothesis of using static operational patterns (i.e. fixed setpoint 
temperatures) and adaptive operational patterns (i.e. variable setpoint temperatures) was considered. In this sense, the 
complexity to predict adaptive behaviour in the social, economic and environmental context [58,59] was assumed in this 
research study through the adaptive thermal comfort approach. For this purpose, the approaches established in EN 16798-

https://www.sciencedirect.com/topics/engineering/energy-efficiency-ratio
https://www.sciencedirect.com/topics/engineering/coefficient-of-performance


1:2019 for both patterns were used [60]. Table 2 summarises the values of each operational pattern by establishing 3 
categories. Adaptive setpoint temperatures varied according to the running mean outdoor temperature, as the standard 
establishes.  

 
 

 
Fig. 1. Variables parametrized in the dataset generation.  

 
 
 

  



Table 2. Setpoint temperatures established for each operational pattern.  

Mode Category 
Cooling setpoint temperature (°C) Heating setpoint temperature (°C) 

𝑇𝑟𝑚: (-∞,10) 𝑇𝑟𝑚: [10,30] 𝑇𝑟𝑚: (30, ∞) 𝑇𝑟𝑚: (-∞,10) 𝑇𝑟𝑚: [10,30] 𝑇𝑟𝑚: (30, ∞) 

Static mode 

1 25.5 21 

2 26 20 

3 27 18 

Adaptive 
model 

1 24.1 𝑇𝑟𝑚 ∙ 0.33 + 20.8 30.7 19.1 𝑇𝑟𝑚 ∙ 0.33 + 15.8 25.7 

2 25.1 𝑇𝑟𝑚 ∙ 0.33 + 21.8 31.7 18.1 𝑇𝑟𝑚 ∙ 0.33 + 14.8 24.7 

3 26.1 𝑇𝑟𝑚 ∙ 0.33 + 22.8 32.7 17.1 𝑇𝑟𝑚 ∙ 0.33 + 13.8 23.7 

𝑇𝑟𝑚: Running mean outdoor temperature 
 

Envelope, systems and operational pattern were combined to perform the energy simulations in EnergyPlus. Seville’s 
climate file was used because of the great impact of EP in the city [61]. Hourly energy consumption results were obtained in 
all the combinations. EP was also assessed in each case by using the 2M indicator, one of the most used indicators to assess 
EP. The EPAH and the National Strategy against Energy Poverty in Spain use it. It is also widely used in the state of the art 
[62,63]. The 2M indicator compares the fraction of both energy expenditure and family units’ income with the national 
average energy expenditure. Family units with an expenditure/income fraction greater than twice the national average will 
be in EP situation [64]. The expenditure/income fraction was therefore obtained in each case, calling it energy poverty ratio 
(EPR):  

 

𝐸𝑃𝑅 =
𝐸𝐶

𝐼
∙ 100      [%] 

𝐶𝑎𝑠𝑒 𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑜𝑣𝑒𝑟𝑡𝑦      if   𝐸𝑃𝑅 ≥ 2𝑀 
(1) 

Where 𝐸𝐶 is the energy cost of the household [€], and 𝐼 is the household income [€]. 
 
The threshold of 10% reported by Sánchez-Guevara Sánchez et al. [30] for Spain was used for the 2M value. Likewise, 

certain conditions were fixed for income thresholds and family units’ energy bill to determine EPR. As for the income 
threshold, 8 types of family units were considered for each combination of dwelling (envelope and systems) according to 
the income level. The combination of dwellings, operational patterns, and family units generated a dataset of 36,230,400 
cases. In this study, the socio-economic factors are based on income data. Specifically, the public income indicator of multiple 
effects (IPREM in Spanish), which was used to establish the income thresholds of each family unit. This indicator is widely 
used in Spain to assess economic aids, such as the electrical social bond, that could be given to needy family units [65]. A 
total of 8 typologies of family units were therefore considered according to the IPREM. For this purpose, factors of 0.5 were 
applied to the IPREM value, in a range from 0.5 to 4.0. The IPREM basis of 2019 was used. Table 3 summarises the yearly 
and monthly income values of IPREM. It is worth stressing that the yearly value refers to 14 salaries, whereas the monthly 
value includes both the monthly net income of the family unit and the sharing of salary bonuses. 

 
Table 3. Income combinations according to the IPREM considered in the study. 

Acronym Factor applied to the IPREM for the 
hypothesis of the family unit’s 
income 

Yearly net income [€] Monthly net income [€] 

IPREM 0.5 0.5      3,759.80  313.32 
IPREM 1.0 1.0      7,519.59  626.63 
IPREM 1.5 1.5    11,279.39  939.95 
IPREM 2.0 2.0    15,039.18  1253.27 
IPREM 2.5 2.5    18,798.98  1566.58 
IPREM 3.0 3.0    22,558.77  1879.90 
IPREM 3.5 3.5    26,318.57  2193.21 
IPREM 4.0 4.0    30,078.36  2506.53 

 
Energy cost (EC) was determined by applying the electricity price of the voluntary price for the small consumer (PVPC 

in Spanish) to the energy consumption obtained in simulations. PVPC is the price available in Spain that is regulated by the 
government [66]. This price is very related to low-income family units as it is essential to obtain social aids, among other 
aspects [24,67]. The EC of each case is obtained by summing several variables that consider dwelling consumption and other 
concepts (Eq. (2)). 

 
𝐸𝐶 = 𝐸𝑇 + 𝑃𝑇 + 𝐸𝑙𝑇 + 𝐸𝑀𝑅 + 𝑉𝐴𝑇 (2) 

Where ET is the energy term, PT is the power term, ElT is the electricity tax, EMR is the rent of measurement equipment, and 
VAT is the added value tax. 
 

ET is the amount of the kWh consumed. It is obtained by applying the price of kWh of the PVPC to the energy 
consumption of the dwelling (Eq. (3)). Its price hourly varies throughout the year, so the prices established in 2019 were 



used. PT corresponds to a fixed price that family units should pay to have the required power in their installation. The 
amount is obtained by applying the number of billing days and the prices of both marketing margin (0.010959 €/(kWday)) 
and grid access (0.104229 €/(kWday)) to the contracted power (in this case, 4.6 kW) (Eq. (4)). ElT is obtained by applying 
a tax of 5.1227% to the amount of ET and PT (Eq. (5)), whereas VAT is obtained by applying a tax of 21% to the sum of the 
remaining concepts of the bill (ET, PT, ElT, and EMR) (Eq. (6)).  
 

𝐸𝑇 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ∙ 𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑖𝑛 𝑘𝑊ℎ (3) 

𝑃𝑇 = 4.6 ∙ 𝑁𝐷 ∙ (0.104229 + 0.010959) (4) 
𝐸𝑙𝑇 = 0.051127 ∙ (𝐸𝑇 + 𝑃𝑇) (5) 
𝑉𝐴𝑇 = 0.21 ∙ (𝐸𝑇 + 𝑃𝑇 + 𝐸𝑙𝑇 + 𝐸𝑀𝑅) (6) 

 
This study aimed to assess yearly and monthly differences, so the EPR was assessed 13 times in each case (1 for yearly, 

and 12 for each month of the year).  
 

2.2. Sensitivity analysis 
Assessments given to family units according to the analysis scale were compared by a sensitivity analysis through the 

kappa coefficient (K), sensitivity, and specificity. Likewise, K is used to assess the concordance of measurement instruments 

whose result is categorical (2 or more categories) and represents the agreement proportion observed beyond chance with 

respect to the maximum agreement (Eq. (7)). If K has a value of 0, it is related to poor concordance force as it is considered 

acceptable from 0.21 and almost perfect from 0.81 [68]. The concordance among the responses given by yearly and monthly 

scales was checked by valuating K. This analysis was performed for each month of the year.  

𝐾 =
𝑃0 − 𝑃𝑒

1 − 𝑃𝑒

 
(7) 

Where 𝑃0 is the proportion of observed agreements (Eq. (8)), and 𝑃𝑒  is the proportion of expected agreements (Eq. (9)).  

 

𝑃0 =
𝑁𝐸𝑃𝑌𝑒𝑎𝑟𝑙𝑦−𝑀𝑜𝑛𝑡ℎ𝑙𝑦 + 𝐸𝑃𝑌𝑒𝑎𝑟𝑙𝑦−𝑀𝑜𝑛𝑡ℎ𝑙𝑦

𝑁
 

 

(8) 

𝑃𝑒 =
𝑁𝐸𝑃𝑌𝑒𝑎𝑟𝑙𝑦  ∙ 𝑁𝐸𝑃𝑀𝑜𝑛𝑡ℎ𝑙𝑦 + 𝐸𝑃𝑌𝑒𝑎𝑟𝑙𝑦 ∙ 𝐸𝑃𝑀𝑜𝑛𝑡ℎ𝑙𝑦

𝑁2
 

(9) 

Where 𝑁𝐸𝑃𝑌𝑒𝑎𝑟𝑙𝑦−𝑀𝑜𝑛𝑡ℎ𝑙𝑦 are the dwellings that are not in EP according to the yearly scale and are classified as dwellings 

that are not under poor energy conditions with the monthly scale;  𝐸𝑃𝑌𝑒𝑎𝑟𝑙𝑦−𝑀𝑜𝑛𝑡ℎ𝑙𝑦  are dwellings in EP according to the 

yearly scale and classified as dwellings in EP with the monthly scale; 𝑁𝐸𝑃𝑌𝑒𝑎𝑟𝑙𝑦  is the total amount of dwellings that are not 

under poor energy conditions according to the yearly scale; 𝐸𝑃𝑌𝑒𝑎𝑟𝑙𝑦  is the total amount of dwellings in EP according to the 

yearly scale; 𝑁𝐸𝑃𝑀𝑜𝑛𝑡ℎ𝑙𝑦  is the total amount of dwelling that are not under poor energy conditions with the monthly scale; 

𝐸𝑃𝑀𝑜𝑛𝑡ℎ𝑙𝑦  is the total amount of dwellings in EP with the monthly scale; and 𝑁 is the total amount of dwellings.  

Likewise, the analysis assessed sensitivity and specificity. Sensitivity is the probability of classifying a dwelling as not 

being under poor energy conditions with the two analysis scales (Eq. (10)). Sensitivity varies from 0 to 1 (from 0 to 100%). 

As greater the numeric value, greater the concordance in dwellings that are not under poor energy conditions according to 

the two analysis scales; and (ii) specificity is the probability of classifying a dwelling in EP with the two analysis scales (Eq. 

(11)). Specificity varies from 0 to 1 (from 0 to 100%). As greater the numeric value, greater the concordance in dwellings in 

EP that were valued by the two analysis scales. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
(𝑁𝐸𝑃𝑌𝑒𝑎𝑟𝑙𝑦  & 𝑁𝐸𝑃𝑀𝑜𝑛𝑡ℎ𝑙𝑦)

(𝑁𝐸𝑃𝑌𝑒𝑎𝑟𝑙𝑦  & 𝑁𝐸𝑃𝑀𝑜𝑛𝑡ℎ𝑙𝑦) + (𝑁𝐸𝑃𝑌𝑒𝑎𝑟𝑙𝑦  & 𝐸𝑃𝑀𝑜𝑛𝑡ℎ𝑙𝑦)
 

(10) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
(𝐸𝑃𝑌𝑒𝑎𝑟𝑙𝑦  & 𝐸𝑃𝑀𝑜𝑛𝑡ℎ𝑙𝑦)

(𝐸𝑃𝑌𝑒𝑎𝑟𝑙𝑦  & 𝐸𝑃𝑀𝑜𝑛𝑡ℎ𝑙𝑦) + (𝐸𝑃𝑌𝑒𝑎𝑟𝑙𝑦  & 𝑁𝐸𝑃𝑀𝑜𝑛𝑡ℎ𝑙𝑦)
 

(11) 

 

 

3. Results and discussion 

3.1. Differences in yearly and monthly EP assessments 
The first step of the analysis was a descriptive study of the differences between yearly and monthly EP assessments. For 

this purpose, the EPR distributions were first analysed. The results of static and adaptive behaviour patterns were separately 
assessed because there were differences in the results. EPR values varied according to the analysis scale. The point clouds 
in Figures 2 and 3 show this aspect. The abscissa axis is the monthly value, and the ordinate axis is the annual value. Values 
close to the abscissa axis  indicated greater values in the monthly results, while values close to the ordinate axis indicated 
high values in the annual results. To simplify assessment, the results of the family units with incomes of 0.5 times the IPREM 
were only represented. Monthly assessments generally varied EPR values. According to the month of the year, EPR values 
increased or decreased in comparison with the yearly results. All months generally obtained cases where EPR values 
increased in comparison with yearly assessment, although they decreased in some spring and autumn months (March, April, 



May, and October); however, February and November obtained results like yearly results. It is therefore expected that the 
results obtained with the 2M varied throughout the year for a same family unit, having lower EP risk in some months. 
Likewise, EPR values significantly increased in the months with greater climate severity (January, July, August, and 
December).  

There were no differences in the behaviour of the EPR values per month between static and adaptive patterns, except 
the lower EPR value range related to adaptive behaviour patterns, resulting from their energy saving. The EPR value range 
of family units with incomes of IPREM 0.5 was 90% with static patterns, and 72% with adaptive patterns. Behaviour 
tendencies were the same, but EPR values were not so high with adaptive patterns in the summer months. Although EPR 
values increased in comparison with yearly assessments, increases were not so significant as in the winter months. The 
reason was the great potential of adaptive patterns to reduce energy consumption in the summer months as their percentage 
of application was greater in summer. The months in which EPR values increased more with adaptive patterns were 
therefore January and December.  

 
Fig. 2. Point clouds of the differences between yearly EPR results and monthly EPR results. EPR results obtained with static 
operational patterns for family units with incomes of 0.5 times the IPREM.  

 



 
Fig. 3. Point clouds of the differences between yearly EPR results and monthly EPR results. EPR results obtained with 
adaptive operational patterns for family units with incomes of 0.5 times the IPREM.  
 

3.2. Different distributions in yearly and monthly EP assessments 
Despite the differences in the EPR results, the analysis was complemented by assessing their difference distributions. 

Figures 4 and 5 represent the distributions of the differences obtained by the two behaviour approaches. The positive 
distribution values showed an increase in the monthly EPR value in comparison with the yearly results. As for the static 
pattern, difference distributions between yearly and monthly scales showed the tendencies in the point clouds. As for 
January and December, quartile distribution values showed an increase in EPR values in comparison with the yearly scale: 
(i) IPREM 0.5 obtained quartile values between 8.1 and 16.7%, with maximum values of 36.7%; (ii) IPREM 1.0 obtained 
quartile values between 4.1 and 8.4%, with maximum values between 13.5 and 18.3%; and (iii) family units with incomes 
equal or greater than 1.5 times the IPREM obtained quartile values between 1 and 5.6%, with maximum values between 3.4 
and 12.2%. Similar results were obtained in the summer months, although increases were greater, as quartiles showed: 
increases between 6.2 and 11.6% in IPREM 0.5, between 3.1 and 5.8% in IPREM 1.0, and between 0.8 and 3.9% in IPREM 
1.5 or greater. This tendency was also observed in the maximum values of the summer months, with increases between 1.6 
and 11.3% in comparison with the winter months. These results were consistent with the climate characteristics used for 
the parametric analysis because the southern zones of Spain are characterized by greater cooling energy demand. The 
greatest EPR values in the distributions were obtained by the increase in the energy bill due to the consumption of building 
cooling systems. Distributions presented negative quartile values in April, May, and October: between -10.1 and 1.2% in 
IPREM 0.5, between -5.0 and 0.6% in IPREM 1.0, and between -3.4 and 0.4 in family units with incomes equal or greater than 
IPREM 1.5.  

Likewise, tendencies in the increase distributions of EPR at a monthly scale were similar with adaptive patterns. In 
January and December, quartile values increased between 10.6 and 18.9% in IPREM 0.5, between 5.3 and 9.5% in IPREM 
1.0, and between 0.1 and 6.3% in incomes equal or greater than IPREM 1.5. Greater EPR values were obtained in the monthly 
analysis in the summer months, but the increase was not significant as with static patterns. The static pattern obtained 
greater EPR values in the summer months, whereas the adaptive pattern obtained greater EPR values in the winter months. 
Winter months therefore obtained a difference between 0.3 and 10.4% in comparison with the results of summer months. 
As previously mentioned, the characteristics of the adaptive approach (which significantly reduced cooling energy 
consumption) could imply that family unit’s vulnerability was lower in the summer months, although this analysis was 
performed with warm climate characteristics. Nevertheless, EPR values increased in the summer months in comparison 



with yearly assessments, so family units could be in EP situation in these months. Finally, there were increase and decrease 
oscillations in the quartiles in the months with lower climate severity (April, May, and October). The variability of climate 
conditions in these months therefore led to 3 possible modifications: an increase, a decrease, and equal results in the EPR 
values. 

 
Fig. 4. Distributions of the EPR variations (yearly vs monthly) for the various combinations of months and incomes analysed 
in family units with static operational patterns. 
 

 

 



Fig. 5. Distributions of the EPR variations (yearly vs monthly) for the various combinations of months and incomes analysed 
in family units with adaptive operational patterns. 

 
These results therefore showed that the monthly analysis of family units’ situation could vary. EPR was characterized 

by significant increases in the months with greater energy demand by using both static and adaptive patterns. This became 
significant in low-income family units because their percentage increase values were greater. Yearly analyses did not show 
the reality of the family units throughout all months. Nonetheless, using only EPR was not useful to know whether family 
units were in EP situation. For this purpose, the 2M indicator was used with the characteristic threshold of each country 
(10% in the case of Spain).  

 

3.2. Sensibility analysis of yearly and monthly EP assessments 
As mentioned in the Methodology section, a sensitivity analysis of monthly and yearly assessments was performed. 

Concordance was assessed through the kappa coefficient, as well as sensitivity (coincidence capacity in cases with no EP) 
and specificity (coincidence capacity in EP cases).  

Figure 6 shows the results obtained by static behaviour patterns for all family units, and Annex A includes the results 
per family units’ income level. A total of 18,115,200 cases were used for static patterns. The sensitivity analysis showed that 
EP assessments presented differences in the two analysis scales. Kappa values oscillated between 0.55 and 0.95. These 
results showed a good concordance in the results (because many cases were coincident with EP assessments in the two 
scales), but they also showed that many family units were not included in the analyses. Moreover, the lowest kappa values 
were the months with greater severity (January, July, August, and December). EP cases increased in these months. This 
aspect could be assessed through specificity. It was 0.74 and 0.69 in January and December, respectively, so that 2 million 
cases were considered in EP with the monthly analysis, whereas they were not considered in EP by yearly assessment. 
Sensitivity in assessments of family units which were not in EP was always 1 (i.e. monthly and yearly assessment coincided 
in these family units). Specificity was lower in July and August (0.57 and 0.55, respectively), resulting in that over 4 million 
cases were in EP in these months. Over 20% cases would therefore not been considered in EP situation in these months by 
yearly assessment. As for the assessment of not EP in the yearly scale, monthly assessment was almost coincident. As for 
April and October, decrease tendencies of EPR values decreased EP cases. Lower sensitivity values were obtained in these 
months (0.87 in April, and 0.90 in October), so the monthly analysis considered many cases of family units that were not in 
EP: 1,708,283 cases in April, and 1,330,400 cases in October. These results were in accordance with the variations in the 
EPR distributions (Figure 4). Nonetheless, the lower number of cases in assessments in April and October was not so 
significant as the increase in the months with greater severity. Yearly assessments obtained similar results in EP cases in 
most months, but the most significant differences were observed in the months with greater severity. This aspect became 
important considering that family units’ health would be exposed to greater risks during these months because of cold and 
heat waves. It is worth stressing that differences depended on the family units’ income level, as Annex A shows. In this 
regard, family units with incomes equal or lower than IPREM 1.0 were always in EP. As for the remaining income levels, 
family units’ EP situation varied according to the analysis (monthly or yearly). Even family units with the greatest income 
threshold (IPREM 4.0) were in EP situation in the summer months: between 3,107 and 6,999 cases. The results obtained 
with a monthly scale therefore showed a clearer vision of the EP situation in family units with high, medium-high, and 
medium-low incomes, with low-income thresholds being always in EP situation.  

 



 
Fig. 6. Dispersion matrices with the classification of family units (in EP and not in EP) with monthly and yearly analyses. 
Results correspond to static operational patterns. 

 
The same analysis was performed by using the adaptive pattern. Fig. 7 summarises the results obtained in the sensitivity 

analysis for population (18,115,200 cases), whereas Annex B includes the results per income thresholds. The results 
followed the same tendency, with an increase in EP cases in the months with greater energy demand. However, the increase 
was not the same because the summer months obtained a lower increase in EP cases: January and December obtained a 
specificity of 0.62 and 0.58, respectively, whereas it was 0.74 for both July and August. The increase in EP cases with the 
static pattern was greater than 4 million in the summer months, but it was less than 2 million cases with the adaptive 
approach. This aspect showed the effectiveness of the latter to reduce energy consumption in these months. Likewise, there 
was a great concordance between yearly and monthly assessments in the months with lower severity (March, April, May, 
September, and October). Kappa values oscillated between 0.93 and 0.97, sensitivity between 0.99 and 1.00, and specificity 
between 0.90 and 0.99. Moreover, the relationship between the differences in yearly and monthly assessments and family 
units’ income level should be again stressed. Similarly to the static pattern, there were variation tendencies according to the 
income level (Annex B). Low-income family units were in EP situation, whereas family units with incomes equal or greater 
than IPREM 3.5 did not obtain EP cases. Family units without presenting EP situations could reach income thresholds of 
twice the IPREM according to the analysis month. Greater deviations obtained with the adaptive approach between yearly 
and monthly assessments were therefore related to family units with medium-high and medium-low income thresholds. 
 

 



 
Fig. 7. Dispersion matrices with the classification of family units (in EP and not in EP) with monthly and yearly analyses. 
Results correspond to adaptive operational patterns. 

 
 
As a result, monthly assessments could significantly vary in comparison with yearly assessments, particularly in the 

months with greater climate severity. The building’s technical characteristics influenced energy demand during these 
months, so several dwellings’ technical conditions were filtered to assess the differences between yearly and monthly 
assessments. The thermal transmittance of façade and roof/floor was considered as variables in the parametric analysis, as 
well as the performance of the HVAC systems, so dwelling typologies were divided into 6 groups: (i) dwellings with a thermal 
transmittance lower or equal to 0.6 W/m²K, and a COP lower than 3.1 (671,328 cases); (ii) dwellings with a thermal 
transmittance lower or equal to 0.6 W/m²K, and a COP equal or greater than 3.1 (863,136 cases); (iii) dwellings with a 
thermal transmittance between 0.6 and 1.4 W/m²K, and a COP lower than 3.1 (1,193,472 cases); (iv) dwellings with a 
thermal transmittance between 0.6 and 1.4 W/m²K, and a COP equal or greater than 3.1 (1,534,464 cases); (v) dwellings 
with a thermal transmittance equal or greater than 1.4 W/m²K, and a COP lower than 3.1 (671,328 cases); and (vi) dwellings 
with a thermal transmittance equal or greater than 0.6 W/m²K, and a COP equal or greater than 3.1 (863,136 cases). To 
simplify the analysis, the months with more EP cases in winter (December) and summer (August) were only assessed. Figure 
8 summarises the results obtained by the static operational pattern, and Figure 9 summarises the results obtained by the 
adaptive operational pattern. As for the static behaviour pattern, the behaviour in the six dwelling configurations was like 
that obtained in the total set of cases. This was observed in both the confusion matrices and the values of the statistical 
parameters. Kappa oscillated between -0.10 and 0.11, specificity oscillated between -0.07 and 0.05, and sensitivity was the 
same in all cases. In the confusion matrices there was a total agreement in the yearly assessment of not EP, whereas the 
monthly assessment obtained more EP cases. This result was also obtained in dwelling typologies with effective energy 
features. The adaptive behaviour pattern obtained similar results. Statistical parameters obtained small variations in 
comparison with the assessment performed with the total dataset (between -0.08 and 0.09 for kappa, between -0.06 and 
0.07 for specificity, and sensitivity with a value of 1 for all cases), thus increasing EP cases in all dwelling typologies. The 
only difference was the lower increase in EP cases in August in comparison with December, following the tendency of lower 
cases in the remaining analyses. The results therefore showed that the characteristics of the dwelling are not crucial to 
determine if the analysis should be yearly or monthly performed. In addition, the differences in the total dataset are 



extrapolated to the analyses performed in specific dwelling typologies. The monthly analysis in all these cases detected many 
family units that could be in EP situation in the months with greater climate severity.  

 

 
Fig. 8. Dispersion matrices by classifying family units for various building typologies. Results correspond to static 
operational patterns. 

 
 



 
Fig. 9. Dispersion matrices by classifying family units for various building typologies. Results correspond to adaptive 
operational patterns. 

 
 

5. Conclusions 
 
Assessing energy poverty could be something of a challenge as many factors could affect family units. Many indicators 

and approaches can therefore be used. Most analysis approaches are based on assessing energy poverty globally, without 
considering its variable character throughout the year. This study assessed the differences expected in yearly and monthly 
assessments by using the 2M indicator, one of the most used indicators. The following conclusions are drawn from a set of 
36,230,400 cases assessed in the predominant climate zone:  

- Monthly assessments usually varied the energy poverty ratio values obtained at a yearly scale. These variations 
could be increased in the months with greater climate severity, whereas energy poverty ratio values decreased in 
the spring and autumn months. Nonetheless, variations were greater in the summer and winter months.  

- Energy poverty ratio variations implied a lack of concordance in energy poverty cases at yearly and monthly scales. 
In winter and summer months, monthly analyses detected more energy poverty cases than yearly assessments, 
sometimes with an increase in energy poverty cases by 20%. This was significant considering that these months 
have greater risk for family units’ health because of heat and cold waves. Likewise, family units’ income threshold 
was crucial because variations were related to family units with high, medium-high, and medium-low incomes, 
whereas family units with low or very low incomes were in energy poverty situation with both analysis scales.  

- Spring and autumn months were generally related to a high concordance with yearly assessments, except when the 
monthly scale classified more family units with no energy poverty risk. This aspect was related to the lower energy 
demand of family units in these months, with a decrease in energy consumption. Nonetheless, the low impact of 
discords in the classifications of the family units (up to 9.4%) were not significant in comparison with the months 
with greater energy demand.  

- The variation detected by monthly scales was independent of dwellings’ technical characteristics. The analysis 
performed with 6 dwelling typologies according to their technical characteristics showed that the discords 
observed with the full dataset were repeated in the grouped analyses. 



- The operational pattern of HVAC systems did not significantly vary the differences between yearly and monthly 
analysis scales. The results obtained by the two operational approaches (static and adaptive) showed that monthly 
analysis scales obtained more energy poverty cases in the months with greater climate severity. The exception was 
the lower number of energy poverty cases obtained by the adaptive approach in the summer months due to the 
reduction of energy consumption related to this operational approach. Consequently, EP cases increased in the 
summer months over 20% by using the static pattern, and, less than 9% by using the adaptive approach. The use of 
adaptive strategies could therefore be effective to reduce energy poverty cases in the summer months. 

The results of this study therefore show that monthly scales should be used to know family units’ energy poverty more 
accurately. Using this type of scale in the months with greater energy demand (winter and summer) allow more family units 
in energy poverty situation to be detected than with yearly analyses (false negatives). These results are therefore crucial for 
energy poverty policies and strategies that governments should adopt. Analyses based on yearly data obtain results quickly, 
but sensitivity in energy poverty assessments is lower. Approaches should therefore be adapted to monthly scales, thus 
limiting the months with greater energy demand due to the high discord found in this study. Nonetheless, some limitations 
should be stressed. These results are based on the 2M indicator. Other indicators that assess energy poverty have a similar 
approach of family units’ expenditure/income, but there could be differences in the discords that should be addressed in 
further studies. Although the results are based on the analysis of the built environment in the south of Spain, the results are 
expected to be extrapolated to other regions and countries. Sensitivity and specificity could vary, but energy poverty is 
expected to be more important in the months with greater demand than in yearly analysis scales. Nevertheless, further 
studies should address the climate variation though yearly and monthly comparisons. Likewise, the types of dwellings used 
in this study did not have photovoltaic systems. Although this aspect is common in the built environment of the region, it is 
to be expected to change in the coming years by increasing energy rehabilitation. Further works should analyse the possible 
effect of photovoltaic systems on monthly assessments of energy poverty in the summer months. 
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Annex A 
 

 
Fig. A1. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
January and the whole year. Results correspond to static operational patterns. 
 

 
Fig. A2. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
February and the whole year. Results correspond to static operational patterns. 



 

 
Fig. A3. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
March and the whole year. Results correspond to static operational patterns. 
 

 
Fig. A4. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
April and the whole year. Results correspond to static operational patterns. 
 



 
Fig. A5. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both May 
and the whole year. Results correspond to static operational patterns. 
 

 
Fig. A6. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both June 
and the whole year. Results correspond to static operational patterns. 
 



 
Fig. A7. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both July 
and the whole year. Results correspond to static operational patterns. 
 

 
Fig. A8. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
August and the whole year. Results correspond to static operational patterns. 
 



 
Fig. A9. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
September and the whole year. Results correspond to static operational patterns. 
 

 
Fig. A10. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
October and the whole year. Results correspond to static operational patterns. 
 



 
Fig. A11. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
November and the whole year. Results correspond to static operational patterns. 
 

 
Fig. A12. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
December and the whole year. Results correspond to static operational patterns. 
 



Annex B 
 

 
Fig. B1. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
January and the whole year. Results correspond to adaptive operational patterns. 
 

 
Fig. B2. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
February and the whole year. Results correspond to adaptive operational patterns. 



 

 
Fig. B3. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
March and the whole year. Results correspond to adaptive operational patterns. 
 

 
Fig. B4. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
April and the whole year. Results correspond to adaptive operational patterns. 
 



 
Fig. B5. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both May 
and the whole year. Results correspond to adaptive operational patterns. 
 

 
Fig. B6. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both June 
and the whole year. Results correspond to adaptive operational patterns. 
 



 
Fig. B7. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both July 
and the whole year. Results correspond to adaptive operational patterns. 
 

 
Fig. B8. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
August and the whole year. Results correspond to adaptive operational patterns. 
 



 
Fig. B9. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
September and the whole year. Results correspond to adaptive operational patterns. 
 

 
Fig. B10. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
October and the whole year. Results correspond to adaptive operational patterns. 
 



 
Fig. B11. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
November and the whole year. Results correspond to adaptive operational patterns. 
 

 
Fig. B12. Dispersion matrices per classification of family units (in EP and not in EP) with the analysis performed for both 
December and the whole year. Results correspond to adaptive operational patterns.  
 


