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Abstract:

One of the essential aspects in building energy analysis is determining correctly the thermal characteristics of 
envelopes. Characterizing envelope elements accurately allows energy consumption to be predicted and energy saving 
measures to be established. Basement walls are among those common envelope elements in buildings. The estimation 
of their thermal resistance is a challenge due to the difficulties and the lack of methodologies to know the wall 
stratigraphy. This study establishes a methodology to characterize the thermal resistance of this kind of walls. Such 
methodology consists in monitoring easily measurable variables (internal air temperature, external air temperature, 
ground temperature, internal surface temperature, and heat flux) which, together with the use of regression models, 
estimate thermal resistance. The methodology is validated in 2 phases: (i) in a calibrated hot-box adapted to elements 
in contact with the ground, and (ii) by analysing actual case studies. With the data obtained, various regression models 
are created based on time windows. The M5 Prime algorithm with a time window of 2 days of observation made accurate 
estimations in the case studies. An efficient methodology is therefore developed for estimating the thermal resistance 
in actual case studies. Also, the calibrated hot-box adapted could be used to analyse samples under controlled 
conditions in laboratory.
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Nomenclature
Symbols

𝑀𝐴𝐸 Mean absolute error
𝑛 Number of instances in the dataset
𝑞𝑗 Heat flux
𝑞 Heat flux average

𝑅2 Coefficient of determination
𝑅𝑀𝑆𝐸 Root mean square error

𝑠𝑖 Thickness of the  layer of the wall𝑖
𝑡𝑖 Actual value
𝑇 Number of tree models

𝑇𝑠,𝑖𝑛,𝑗 Internal surface temperature
𝑇𝑠,𝑜𝑢𝑡,𝑗 External surface temperature

𝑇𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 Average of the external air temperature
𝑇𝑔𝑟𝑜𝑢𝑛𝑑 Average of the ground temperature
𝑇𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 Average of the internal air temperature

𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ‒ 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 Average of the internal surface temperature of the basement wall
𝑇𝑅 Thermal resistance of the wall

𝑇𝑅Estimated Thermal resistance of the wall estimated by regression models
𝑇𝑅Reference Thermal resistance of the wall calculated according to ISO 6946 

𝑣𝑖 Independent variables



𝑤(1)
𝑗𝑖 Weights of the hidden layer

𝑤(2)
𝑘𝑗 Weights of the output layer

𝑤(2)
𝑘0 Weights of the bias neuron of the hidden layer

𝑥𝑖 Values of the input layer
𝑦0 Input value of the bias neuron of the hidden layer

𝑌𝑀𝐿𝑃 Output value of the multilayer perceptron
𝑌𝑅𝐹 Output value of random forest
𝑌𝑡 Output of the -th tree𝑡

Greek letters
𝛽0 Independent term
𝛽𝑖 Regression coefficients
𝜀 Error
𝜆𝑖 Thermal conductivity of the  layer of the wall𝑖
𝜎 Activation function

Abbreviations
CHB Calibrated hot-box
FEM Finite Element Method
M5P M5 Prime
MLP Multilayer perceptron
MLR Multiple linear regression
RF Random forest

1. Introduction
The high energy consumption of residential buildings is nowadays one of the main international problems, 

constituting 40% of the total energy consumption in the European Union member countries [1,2]. Such percentage is 
very similar to that of carbon dioxide emissions (36%) [3,4]. Although the energy is consumed by various elements (e.g., 
electrical household appliances and lighting), the highest energy consumption is attributed to air conditioning systems 
[5]. Other aspects emerging in recent years, such as fuel poverty [6] and the increase of deaths for not having acceptable 
thermal comfort conditions [7], have raised the awareness of the energy problem in buildings. Consequently, national 
and international policies have been developed to resolve that situation. The European Union has established objectives 
to be achieved by 2050 and aimed at significantly decreasing the greenhouse gases emitted to the atmosphere [8]. The 
main pollutant sectors should achieve percentage reductions of their emissions compared with the levels from 1990.  
Regarding the building sector, emissions should be reduced by 90%. For this purpose, the roadmap sets up the need 
of improving the existing building stock. 

Buildings having inhabitable rooms in contact with the ground should be analysed. The advantage of having rooms 
with elements in contact with the ground is to be able to reduce the variations of internal temperatures [9,10]. In this 
sense, Carmody and Steerling [11] indicated that the ground temperature in summer days do not reach the external 
temperature values so that the thermal differential is reduced. Other advantages are that appropriate conditions are met 
to store food [12] and noise immissions are reduced [13]. As a consequence, they have been frequently used as a 
design technique in buildings since the beginning of mankind . Also, their energy performance, such earth shelter 
dwellings [14] and caves [15], have been analysed. Although such constructions allow thermal oscillations to be reduced, 
the heat transfers through elements in contact with the ground can be high, even being responsible for 50% of the total 
energy consumed [9,16]. The establishment of adequate designs or the improvement of these envelopes would 
therefore keep an acceptable thermal comfort in internal rooms [17] and reduce the energy consumption, thus being an 
effective option to obtain zero-energy buildings [18].

Many research works are focused on the influence of thermal properties of envelopes on building energy 
consumption: Aksoy and Inalli [19] studied how heating insulation affected a building located in a cold climate zone, 
resulting in obtaining heating energy saving rates from 34% to 36%; (ii) Invidiata et al. [20] analysed the influence of six 
design strategies on a building in future scenarios of climate change using the morphing process. The results indicated 
that the design of sustainable envelopes could ensure a lower energy consumption in 2050 and 2080; (iii) Bhikhoo et 
al. [21] carried out a sensibility analysis in various design aspects of envelopes of typical dwellings in Thailand. The 
results reflected how placing an insulating material at the ceiling affected the energy consumption; (iv) Ge et al. [22] 
analyzed several measures to reduce the energy consumption in university buildings. The improvement in the thermal 
performance of the envelope influenced the energy consumption in all seasons; (v) Yuan et al. [23] analysed the 
influence of the characteristics of insulation materials on the envelope. The location of the insulation had different results. 
In this sense, rooms with external insulation had an energy consumption lower than rooms with internal insulation (the 
percentage deviation was higher than 18%); (vi) in a study by Ramalho de Freitas and Grala da Cunha [24], the impact 
of thermal bridges of reinforced concrete structures on the energy performance of a building was analysed, proving that 



the energy consumption can vary up to 20%; and (vii) Ge et al. [25] studied the influence of thermal bridges caused 
through the balconies on residential buildings. The results showed an influence of 1% on the cooling energy 
consumption, and between 5 and 13% on the heating energy consumption.

The thermal resistance of envelopes is among those variables defining its thermal properties which most affect the 
energy performance [26,27] because it reduces heat gains or losses with the exterior, thus varying the energy 
consumption of HVAC systems [28–30]. The increase of the thermal resistance of the envelope is therefore one of the 
most possible measures to be used in order to reduce the heat transfer with the exterior and, in turn, the energy 
consumption [31].

Characterizing correctly the thermal resistance of envelopes is fundamental in energy audit works because the 
thermal resistance values of the envelope are generally underestimated, thus overestimating the building energy 
demand [32,33]. By defining correctly the thermophysical properties of the envelope, energy simulations can also be 
performed with various energy conservation measures to determine which is the most adequate [34]. A mistaken 
estimation of thermal resistance can simply not improving the most deficient envelope elements [35] or increase the 
economic amortization periods of the measures to be adopted [36].

Thermal resistance can be determined by various methods, both manual calculations or in-situ measurement 
procedures. The main difference between both typologies is the lower associated error that experimental methods 
generally have [37].

The manual calculation method is included in the ISO 6946 standard [38]. In such standard, the thermal resistance 
is determined by the sum of the thermal resistance of each layer of the wall, which is obtained by its thickness and 
thermal conductivity. It is a procedure limited used in energy audits because the composition and characteristics of the 
layers of the wall are generally unknown. Among the various techniques for determining the composition of walls, the 
endoscopic analysis [39] and the use of reliable technical documentation [40] are the most acceptable techniques. 
However, their use can be limited due to both the damages generated in the wall by using the endoscopic analysis and 
the lack of technical documentation of old buildings [37]. In addition, thermal conductivity values are usually obtained 
from technical documents or catalogues in which ranges of possible values for a same material are indicated. The 
results of thermal resistance can therefore be quite different [37]. So, some studies analyse the uncertainty of values 
obtained with this methodology [39]. Also, another aspect causing a high uncertainty when estimating the thermal 
resistance can be moisture presence [41] or degradation of the thermal properties of layers [42]. Nevertheless, it is a 
method widely used for designing buildings, justifying the regulations of each country, and validating the results obtained 
in in-situ measurement methods [37]. 

Concerning experimental methods, 3 of them widely developed in recent years are considered: the heat flow meter 
method, the quantitative method through infrared thermography, and the thermometric method. The heat flow meter 
method is included in ISO 9869-1 [43], the only experimental method having a test standard. Such method consists in 
obtaining the thermal resistance value by measuring heat flux and surface temperatures. In addition, it greatly influences 
the heat flux measurement in the error of the result obtained. Cesaratto et al. [44], Desogus et al. [45], and Trethowen 
[46] stressed the possible disturbance caused by placing the heat flux plate in the heat flux of the wall. Also, the location 
of the plate in the wall can alter the results, and the maximum error can reach 26% [47]. Ficco et al. [39] developed a 
long list of the various uncertainty contributions, including the bad contact between the probe and the wall and the 
influence of interstitial condensations. Furthermore, such method needs specific location and environmental conditions 
to estimate thermal resistance. High thermal gradients (e.g., greater than 10 ºC) between the interior and exterior obtain 
more representative results than low thermal gradients [45]. Likewise, vertical walls (e.g., façades) facing north should 
be analysed because high deviations are not presented in comparison with the other orientations [48]. 

As a result, two alternatives emerged in recent years: the quantitative method through infrared thermography and 
the thermometric method. The former is characterized by using an infrared camera to determine convective and radiative 
heat fluxes of walls [49]. This approach is different from the others because it determines the possible thermal 
heterogeneities of a wall, thus avoiding the analysis of the areas affected by condensations or damages [37]. Also, there 
is a wide variety of infrared thermography methods, but the main difference depends on both the location of the camera 
and the expression used for the convective coefficient. Methods from the interior [50] and the exterior [51] can therefore 
be distinguished. In addition, stationary and dynamic analysis can be used in this methodology [52]. Regarding the 
thermometric method, the infrared camera is replaced by surface temperature probes [53]. The main advantage of such 
methods is replacing the heat flux measurement with other variables to reduce the error associated and operational 
limitations, although other error sources can appear. Also, deviations in the measurements of temperature and wind 
speed can affect the results by 50% [47,54]. Moreover, the location and environmental requirements for the heat flow 
meter method are the same in both methods [55].

All of them are useful to analyse walls in contact with the external air. However, they are not suitable for analysing 
walls in contact with the ground, so simulation methods by means of finite elements or manual calculations are generally 
used [56]. The ISO 13370 [57] includes the main methods of calculation of heat transfer coefficients and heat flow rates 
for building elements in thermal contact with the ground. It applies to building elements, or parts of them, below a 
horizontal plane in the bounding walls of the building situated at the level of the external ground surface, for heated 
basements. Nevertheless, determining some parameters (e.g., the thermal resistance of basement walls) through ISO 
6946 is required (see Eq. (1)), thus limiting their correct application, as mentioned above. This particularly occurs in the 
energy audits carried out in buildings whose constructive composition is unknown. The energy simulations of this kind 



of buildings could obtain non-representative results and the proposed energy conservation measures could be 
inadequate, thus making the fulfilment of the objective for 2050 something of a challenge.

𝑈𝑤𝑔;𝑏 =
2 ∙ 𝜆𝑔

𝜋 ∙ 𝑧 ∙ (1 +
0.5 ∙ 𝑑𝑓

𝑑𝑓 + 𝑧 ) ∙ ln( 𝑧
𝜆𝑔 ∙ (𝑅𝑠𝑖 + 𝑅𝑤;𝑏 + 𝑅𝑠𝑒)) (1)

Where  is the thermal resistance of the basement wall [(m²K)/W],  is the thermal conductivity of the ground 𝑅𝑤;𝑏 𝜆𝑔
[W/(mK)],  is the total equivalent thickness [m], and z is the depth of the basement floor below fround level [m].𝑑𝑓

This study therefore suggests a methodology to assess the thermal resistance of basement walls. Such 
methodology consists in measuring the ground temperature, the surface temperature and the heat flux of a basement 
wall, and the internal and external air temperatures. Regarding data, various regression algorithms were used to 
determine the most adequate to analyse them. To establish the methodology, the feasibility of the method was analysed 
in a hot-box design for elements in contact with the ground. Afterwards, and based on the results obtained in the 
laboratory test, two actual case studies were analysed. The regression models were previously trained by using a 
sampling of 10,579 tests simulated by means of the Finite Element Method (FEM). After generating such models, the 
accuracy of the estimations of the thermal resistance of both case studies was analysed with the reference values.

The importance of this study lies in the lack of methods analysing the thermal resistance of basement walls through 
in-situ measurements, as most studies focus on walls in contact with the air. Such lack of methods makes the energy 
assessment in buildings with such envelope something of a challenge. The elements of an envelope influence the 
energy consumption of buildings, and methods assessing their thermal behaviour are required. In this sense, some 
studies showed the possible deviations in the determination of the thermal properties of the envelope: (i) Rotilio et al. 
[58] assessed 4 walls in Italian historic buildings with the heat flow meter method. The results reflected deviations of up 
to 15% between the value obtained by the heat flow meter method and the value calculated according to the Italian 
energy regulation for buildings; and (ii) these deviations between tabulated procedures and in situ methods were also 
reflected by Lucchi [59,60], who monitored historical stone and brick walls. The results showed deviations between the 
measured values and the values tabulated and calculated according to the Italian energy regulation for buildings.

Moreover, there is a knowledge gap with respect to methods assessing the thermal resistance in basement walls, 
their influence on the energy performance of buildings, and the most adequate energy conservation measures. This 
study proposes therefore a methodology to assess the thermal resistance in basement walls. More research studies 
could be conducted with such methodology, as well as the energy efficient could be analysed in this kind of buildings. 
The use of regression algorithms, such as multilayer perceptrons or random forests, constitutes a new aspect in the 
analysis of thermal behaviour of building envelopes. There are nowadays few articles analysing the use of advanced 
algorithms in thermal characterization problems. Although neural network algorithms were used [61,62], tree algorithms 
have only been used to estimate the thermal transmittance of ISO 6946 in enclosures in façades [63].  Also, it is the first 
time that a test is previously conducted in laboratory using a hot-box adapted to elements in contact with the ground. 
The main contributions of this study are as follows: 

 Design of a specific hot-box to characterize the thermal behaviour of samples in contact with the ground. 
Hot box has been used as a method for evaluation of thermal properties of building elements, such as: (i) 
Prata et al. [64], studied the thermal behaviour of a thermal bridge in a wooden building corner; (ii) Jeong et al. 
[65] have also used hot box to evaluate the thermal properties of large-scale thermally-enhanced 
concrete specimens; and (iii) Kus et al. [66] evaluated the hygrothermal performance of a pumice aggregate 
concrete hollow blocks wall using a hot box. Nevertheless, hot box has never been used to assess thermal 
properties of samples in contact with the ground.

 Development of a methodology with regression algorithms to assess the thermal resistance of samples in 
contact with the ground by using the data obtained through the hot-box tests.

 Development of a methodology to determine the thermal resistance in actual basement walls through data 
obtained in FEM simulations and using regression algorithm. The methodology was validated in actual case 
studies. 

An adequate methodology could be provided with the main contributions of this paper to analyse buildings with 
inhabitable rooms in contact with the ground, thereby guaranteeing a high energy analysis rate and establishing energy 
conservation measures to reduce energy consumption. In addition, the evaluation of the thermal resistance of basement 
walls would allow a better use of ISO 13370 and it would facilitate the analysis of compliance in those countries that 
establish limitations in the thermal properties of basement walls (e.g., Spain through the Spanish Building Technical 
Code [67]). As a result, the objectives set up by the European Union for a low-carbon economy would be achieved [8], 
thus reducing the environment pollution and the impact of the predicted future scenarios of climate change [6].

This paper starts by describing the methodology in Section 2, which is in turn divided into subsections as follows: (i) 
regression algorithms used and training and validation procedure of the regression models; (ii) test in a hot-box; (iii) test 
in buildings; and (iv) two-dimensional simulations. Section 3 analyses the results obtained in the first phase of the tests 
using the hot-box. Afterwards, the results obtained in the second phase corresponding to the practice application of the 
analysis methodology in actual case studies are discussed. Finally, Section 4 includes the main conclusions. 



2. Methodology
This paper focuses on establishing a methodology to estimate in-situ the thermal resistance of basement walls. 

Firstly, the feasibility of using the methodological approach was analysed under controlled conditions. Then, various 
data analysis models were developed by using simulation data to be applied in actual case studies. Figure 1 sums up 
the flowchart of this research, which is developed in the following subsections.

Figure 1. Flowchart with the steps of this research.

2.1. Theory

As indicated above, the thermal resistance of an element (whose reciprocal is its thermal conductance) can be 
obtained by the sum of the thermal resistances of each layer following the methodology in ISO 6946 (see Eq. (2)).

𝑅 =
𝑛

∑
𝑖 = 1

𝑠𝑖

𝜆𝑖
(2)

Where  is the thermal resistance of the element [(m²K/W)], and  and  are the thickness [m] and thermal conductivity 𝑅 𝑠𝑖 𝜆𝑖
[W/(mK)] of each  layer of the wall. 𝑖

Also, ISO 9869-1 provides an experimental approach to determine the thermal resistance. Such standard 
establishes that the thermal resistance of an element can be obtained by the sum of the differences of internal ( ) 𝑇𝑠,𝑖𝑛,𝑗
and external surface temperatures of the element ( ) and the sum of heat fluxes ( ):𝑇𝑠,𝑜𝑢𝑡,𝑗 𝑞𝑗

𝑅 =

𝑛

∑
𝑗 = 1

(𝑇𝑠,𝑖𝑛,𝑗 ‒ 𝑇𝑠,𝑜𝑢𝑡,𝑗)

𝑛

∑
𝑗 = 1

𝑞𝑗

(3)



Both approaches have difficulties to be implemented in basement walls. Regarding the method from ISO 6946, 
knowing exactly the composition of the wall can be difficult so that the application of the method can be something of a 
challenge, and even little representative results can be obtained. As for the method from ISO 9869-1, the measurement 
of the external surface temperature has operational limitations because it would be necessary to undertake earthmoving 
works in order to place probes. For this reason, its practical application to this kind of walls would also be limited. 

The feasibility of determining the thermal resistance of the wall was therefore analysed by measuring both the ground 
temperature and the external air temperature. Such tasks were performed with advanced regression models (see 
subsection 2.3 for further information). 

2.2. Regression algorithms

Given that this methodological approach aims at determining the  of basement walls, various regression algorithms  𝑅
were used. Three different regression algorithms were used: multilayer perceptron, M5 Prime, and random forests. Such 
algorithms were selected because of their great performance in several research works, as can be seen in the following 
subsections.

2.2.1. Multilayer perceptron

The artificial neural networks are a computational paradigm tackling a huge variety of nonlinear statistical problems 
[68]. This algorithm imitates the hardware structure of the nervous system with the aim of building adaptive and parallel 
processing information systems which can estimate an efficient response. Several research studies are based on the 
potential of using multilayer perceptrons (MLPs) as architecture of artificial neural network [69], mainly due to their 
capacities of universal approximation [70]. The architecture of MLPs is made up of three or more layers (see Figure 2): 
an input layer, one or several intermediate layers, and an output layer. The output value of the neurons of each layer is 
obtained by the sum of the input values of the nodes of the previous layer, thus weighting the values with synaptic 
weights and using an activation function. The values of each neuron are spread to the last neuron of the output layer, 
which gives the estimated value of the MLP: 

𝑌𝑀𝐿𝑃 = 𝜎( 𝑀

∑
𝑗 = 1

𝑤(2)
𝑘𝑗 𝜎( 𝑑

∑
𝑖 = 0

𝑤(1)
𝑗𝑖 𝑥𝑖) + 𝑤(2)

𝑘0 𝑦0) (4)

Where  is the output value of the MLP,  is the activation function,  are the weights of the output layer,  are 𝑌𝑀𝐿𝑃 𝜎 𝑤(2)
𝑘𝑗 𝑤(1)

𝑗𝑖
the weights of the hidden layer,  are the values of the input layer,  and  are the weight and the input value of the 𝑥𝑖 𝑤(2)

𝑘0 𝑦0
bias neuron of the hidden layer, respectively. 

Figure 2. Scheme of an MLP model with one hidden layer. 

Several studies on the characterization of thermal properties of elements are as follows: (i) Bienvenido-Huertas et 
al. [61] developed MLPs to carry out the post-processing to correct heat storage effects in thermal transmittance 
analyses. Adjusted estimations in the thermal transmittance value were obtained with respect to the reference values; 
(ii) Buratti et al. [71] generated an artificial neural network model to estimate the thermal transmittance of wooden 
windows. The results obtained estimations of the thermal transmittance value with an error lower than 1% with respect 
to the reference values; and (iii) Mitra et al. [72] developed MLPs to estimate the thermal resistance of handloom cotton 
fabrics. Adequate estimations were found, with a correlation coefficient between 86 and 90%.

2.2.2. M5 Prime

The M5 Prime (M5P) algorithm is an evolution of the classification and regression tree algorithm [73,74]. The 
classification and regression tree algorithm develops prediction models with a reverse tree structure (i.e., from the root 
to the leaves, with the root being in the upper part of the classification and regression tree model [75]). They are 
characterized by dividing the input space into subregions, thereby simplifying complex problems with simple models 
[76]. The reverse tree models are made up of internal nodes corresponding to the input variables, arches corresponding 



to the values of the source node, and leaves corresponding to the value of the dependent variable. The structure of the 
model finishes in the leaves of the tree, which correspond to an output value of the model. Such scheme allows the 
models to be easily understood by users, a characteristic which other algorithms, such as MLPs, do not have [77].

Regarding the M5P algorithm, its main difference is the combination of the reverse tree structure with multivariant 
regressions (see Figure 3): the leaves of the model replace a unique output value with multiple linear regressions (MLRs) 
(see Eq. (5)). M5P generates therefore an MLR model for each subregion. When generating the model, M5P minimizes 
the internal variation of the subsets for the values of each branch. After developing the model, the overfitting of the 
model is generalized and reduced by applying the pruning (i.e., by removing the inefficient nodes) [78]. Hence, the main 
advantages of the M5P models are their robustness when there is a lack of values in some data, as well as the possibility 
of using many numeric variables efficiently [79,80].

𝑀𝐿𝑅 = 𝛽0 +
𝑣

∑
𝑖 = 1

(𝛽𝑖𝑣𝑖) + 𝜀 (5)

Where  is the independent term,  are the regression coefficients,  are the independent variables, and  is the error. 𝛽0 𝛽𝑖 𝑣𝑖 𝜀

Figure 3. Scheme of an M5P model.

As a result, the M5P algorithm is more and more used in the field of energy analysis, both in market and buildings: 
(i) Azofra et al. [81] analysed the influence of thermal solar energy, biomass, and hydraulic power on the electricity price. 
To estimate the energy price without using such renewable sources, an M5P model was developed. The correlation 
obtained by the model was 85%. In later studies, the authors analysed the influence of other renewable energies 
variables, such as wind power [82] or photovoltaic technology [83], on energy prices by using M5P; (ii) Pallonetto et al. 
[84] evaluated the use of control algorithms to implement response strategies in the energy demand of residential 
buildings. Regression algorithms were used to determine the temperature differential. For this purpose, the use of M5P 
was compared with the use of MLP. More accurate estimations were obtained for M5P, with an increase of the 
correlation coefficient greater than 10% in the different models analysed; and (iii) Afsarian et al. [85] used an M5P model 
to estimate the total energy consumption in a reference building. The results obtained correlation coefficients greater 
than 90% in most data. 

2.2.3. Random forests

The advantage of the classification and regression tree algorithm is that the structures of the model generated are 
easy to understand. However, several studies have discussed the limitations of such model to carry out adequate 
estimations in new instances [86,87]. For this reason, the random forest (RF) algorithm is a modification of the model. 
The characteristic of RF is that, instead of generating a unique tree model (as the classification and regression tree 
algorithm), a forest of tree models is created (see Figure 4), thereby reducing the error and the variance of the model 
[88,89]. Like M5P, RF uses great datasets and is robust when there are atypical values [90]. For the training of the 
model, the algorithm takes  bootstrapped sample sets from the dataset [89] (bootstrap is a method to estimate the 𝑁
sampling distribution of an estimator by sampling with replacement from the original sample [91]). Each bootstrapped 
sample develops a tree model, and each node of the model is divided by using a subset of m predictors randomly 
selected, thus reducing the effect generated by the strongest predictors [78]. The output value of the model is obtained 
through the average value of the estimations carried out by the various tree models of the forest (see Eq. (6)). So, RF 
fits many classification and regression tree models to a dataset and then combines the predictions from all the trees. 
The difference between M5P and RF is that the former obtains the output value through the MLR in the leaf, while the 
latter obtains it through the value of each leaf. 

𝑌𝑅𝐹 =
1
𝑇

𝑇

∑
𝑡 = 1

𝑌𝑡 (6)



Where  is the number of tree models, and  is the output of the -th tree. 𝑇 𝑌𝑡 𝑡

Figure 4. Scheme of an RF model. For the reader’s understanding of how the model works, the response values of 
each tree of the forest are represented in a darker colour.

Such model is widely used in the field of building analysis and evaluation: (i) Cui et al. [92] developed RF models to 
estimate the average internal temperature difference in spaces connecting two areas (e.g., open stairwells between two 
floors). The error in the estimations of the RF models was lower than other regression algorithms, such as artificial 
neural networks or the support vector regression; (ii) Kontokosta and Tull [93] used three different regression models to 
estimate the city-scale energy use in buildings: RF, MLR, and support vector regression. Acceptable estimations were 
obtained with the three algorithms; and (iii) Ghahramani et al. [94] used various algorithms of classification to predict 
the occupants’ interactions from the ambient sensing technologies. Random forests obtained better predictions than 
other algorithms, such as the decision tree or the support vector machine.

2.2.4. Training and validation of the regression models 

To estimate the thermal resistance of the basement walls, input values corresponding to averages of five variables 
easily measurable were used (see Table 1). The average value is obtained by adding the values of each variable and 
dividing it by the number of instances. Variables related to the external surface of the wall (e.g., external surface 
temperature) were not used. As the adequate time window was unknown (i.e., how much time should last the 
monitorings), 4 time windows were established: (i) 0.5 day; (ii) 1 day; (iii) 1.5 days; and (iv) 2 days. Various datasets 
were generated for each time window, and different models were therefore developed according to the training data 
used. The use of various time windows determined the most acceptable duration to monitor the element due to their 
influence on input variables.

Table 1. Input and output variables of the regression models.
Input variables Output variables

 𝑇𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙, 𝑇𝑔𝑟𝑜𝑢𝑛𝑑, 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ‒ 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙, 𝑇𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙, 𝑞  𝑅𝑤;𝑏

: average of the external air temperature [ºC]; : average of the ground temperature [ºC]; : 𝑇𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑇𝑔𝑟𝑜𝑢𝑛𝑑 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ‒ 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
average of the internal surface temperature of the basement wall [ºC]; : average of the internal air temperature 𝑇𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
[ºC], and : average of the heat flux [W/m²].𝑞

The creation of the training and validation datasets is explained below. The dataset containing the data of the hot-
box test was made up of 480 instances, and the dataset of simulated data of basement walls of 10,579 instances. 
Despite using different time windows, the number of observations of the training samples was identical for each test. 
Also, the instances used in each training dataset were the same (i.e., in a measurement, one of the records is used to 
calculate  and the average values in the four time windows).𝑅

The dataset of each test was generated, and then divided into two subsets: (i) the training subset corresponded to 
a random sampling of 75% of instances of the dataset, and (ii) the testing subset corresponded to the remaining 25%. 
The training subsets were used to generate individual models for each time window and regression algorithm, so 12 
various regression models were created in each test (i.e., 4 different model for each regression algorithm). For the 
training of the regression models, a 10-fold cross validation was carried out, thus reducing the variance of the models 
[95]. All training subsets were randomly divided into 10 folds: 9 folds were used for the training, and the remaining fold 
for the testing. This process was performed 10 times. The performance of each model is obtained by the mean value of 
the 10 folds. The testing dataset was used to evaluate the performance in instances which were not used in the training. 
The performance of the regression models was analysed by evaluating three statistical parameters: the mean absolute 



error ( ) (see Eq. (7)), the root mean square error ( ) (see Eq. (8)), and the coefficient of determination ( ) 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 𝑅2

(see Eq. (9)).

𝑀𝐴𝐸 =

𝑛

∑
𝑖 = 1

|𝑡𝑖 ‒ 𝑚𝑖|

𝑛

(7)
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𝑛

∑
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𝑅2 =

𝑛

∑
𝑖 = 1

(𝑚𝑖 ‒ 𝑚) ∙ (𝑡𝑖 ‒ 𝑡)
𝑛 ‒ 1

𝑛

∑
𝑖 = 1
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𝑛

∑
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(𝑡𝑖 ‒ 𝑡)2

𝑛 ‒ 1

(9)

Where  is the estimated value,  is the actual value, and  is the number of instances in the dataset.𝑚𝑖 𝑡𝑖 𝑛
Regarding the configuration of the regression algorithms, some aspects are as follows: (i) for the MLP models, 

architectures of 3 layers were used (i.e., with one hidden layer). A sigmoidal function was used as a transfer function 
(see Eq. (10)). The MLPs were trained by backpropagation [96] and the Broyden-Fletcher-Goldfarb-Shanno algorithm 
[97] was used. A learning rate of 0.3 and a momentum of 0.2 were used as fixed parameters. The number of neurons 
of the hidden layer was varying until determining the most appropriate architecture (the number of neurons in the hidden 
layer analysed oscillated between 3 and 12); (ii) the M5P models were generated by using the pruning to reduce the 
variance of the models; and (iii) the RF models were created by varying the number of trees until determining the most 
acceptable configuration (the number of trees analysed oscillated between 1 and 150). 

𝑓(𝑥) =
1

1 + 𝑒 ‒ 𝑥 (10)

2.3. Hot-box test

As indicated above, the methodology was first analysed under controlled conditions in laboratory. The installation 
was a calibrated hot-box (CHB) designed according to ISO 8990 [98]. The walls of the CHB were made up of three 
layers: a first layer of two polypropylene sheets of 3 mm, which were separated by an internal air gap of 2 cm; a second 
layer of 8 cm of polyurethane (with a thermal conductivity of 0.023 W/(mK)); and a third layer of oriented strand board 
of 1 cm, with a thermal conductivity of 0.13 W/(mK). The CHB was heated by electrical resistance, whereas it was cooled 
by a cooling thermoelectric system equipped with ventilators. The air conditioning systems of the CHB were controlled 
by programmable thermostats and voltage regulators which maintained the programmed setpoint temperatures in the 
interior of both spaces.

The peculiarity of this CHB is that the cold chamber was filled up with soil (see Figure 5 and Figure 6). All the volume 
directly in contact with the sample was filled in and compressed, and the remaining volume was used for the cooling of 
the cold chamber. The sample used was a mass concrete wall of 6 cm of thickness. The height of the sample did not 
reach the whole the internal height of the box, and the remaining space was covered with an insulating panel of extruded 
polystyrene of 10 cm of thickness. The objective was to have all the space of the sample in contact with the ground 
when the box is filled up with soil, but there was a low volume simulating the conditions of the external temperature.

A total of 6 tests were performed, varying both the depth at which the temperature probe of the ground was placed 
(20 and 30 cm) and the thermal gradient between both chambers (30, 40, and 50 ºC). These thermal gradients were 
selected due to the recommendations of some studies to reach high values [99]. Each test lasted 8 days and the interval 
of data acquisition was 10 min. To perform the tests, 3 data loggers with probes were used to measure the ground 
temperature, the surface temperatures, the air temperature, the air relative moisture, and the heat flux of the sample. 
Table 2 indicates the equipment used and their technical characteristics. Also, an infrared camera (FLIR E60bx) was 
used to analyse the temperature distributions throughout the test. 



Figure 5. CHB in the approach in which soil is used: (a) sections of the CHB, and (b) perspective of the CHB.

Figure 6. External photograph of the CHB in the approach in which soil is used.

Table 2. Main technical specifications of the equipment.
Equipment Input Measuring range Accuracy
Data logger ALMEMO 2590-4AS
with temperature sensor Pt100 Temperature -30 to 150 ºC ±0.15 K +0.002%
with thermocouples T 190-2 Temperature -10 to 105 °C ±0.05 K ±0.05% 
with the heat flux plate FQA018C Heat flow -40 to 80 ºC ±5%

Data logger TESTO 435-2
with thermocouples 0614 1635 Temperature -20 to 70 ºC ±0.1 ºC

Data logger CAMPBELL CR1000
with temperature probe Temperature -50 to 100 ºC ±0.1°C
Infrared camera FLIR E60bx FOV 25°x19°

IFOV 1.36 mrad
Sensor FPA, uncooled microbolometer
Spectral range 7.5-13 µm
Thermal sensitivity <0.05-30 °C

The data obtained from the monitoring of the sample were used to develop various regression models. Data were 
grouped in a unique dataset from which average values and results of thermal resistance were used by using the four 
time windows (see Section 2.2.4). Such data were used to generate regression models with the 3 algorithms of this 
study. With this first phase, the possibility of using the methodology under controlled conditions could be previously 
evaluated to analyse later its use in actual tests.



2.4. Tests in buildings

After analysing the possibility of using the methodology under controlled conditions in laboratory, it was implemented 
in two actual case studies. Both case studies had inhabitable rooms in contact with the ground. In addition, they were 
selected because the basement walls were distinctly designed and representative of the building stock. One of the case 
studies constituted a reinforced concrete wall without other layers, whereas the other case study was made up of a 
composition of layers, including insulating material. This aspect could be determined because the layers of the basement 
walls were accurately known (see Figure 7), thereby characterizing the thermal resistance of the walls according to the 
methodology of ISO 6946 (see Eq. (2)). Both case studies had an inhabitable room, where the internal probes were 
placed, at a depth of less than 3 m because of two reasons: (i) it is one of the most common dwelling typologies in 
contact with the ground, and (ii) it simplifies the research. Future research studies could be focused on the feasibility of 
analysing case studies more deeply.

Figure 7. Thickness and thermophysical properties of the actual basement walls analysed.

Tests lasted 2 days, and the interval of data acquisition was 10 min. Monitorings were performed by using the same 
equipment as in the test of the CHB (see Table 2). The criteria of placing were as follows (see Figure 8): (i) the 
temperature probe of the ground was placed at 50 cm from the limit of the wall, and at a depth of 50 cm. A greater depth 
was not used because of the possible limitations for placing the probe when performing tests (e.g., resistance of the 
ground or damages in the external areas of the building). Also, the use of such distance guarantees that the variation 
of the humidity content in the ground is negligible because variations are not presented until reaching 2 m [100]; (ii) the 
probe of the external air temperature was placed 30 cm from the façade and at a height of 1 m; (iii) the heat flux plates 
and the surface temperature probes were placed at a height of 1 m above the level of the ground and separated from 
corners and wall joints; and (iv) the probes of internal air temperature were placed at a height of 1.5 m above the floor 
of the room.



Figure 8. Methodology of placing the equipment in the actual case studies monitored. 

2.5. Two-dimensional simulations of the thermal resistance for the dataset of actual case studies

Despite the monitorings in the 2 actual case studies, the regression models for actual case studies could not be 
generated by using the data obtained due to the need for creating models able to be adapted to any test performed in 
basement walls. Two-dimensional simulations were therefore performed by means of FEM to generate robust datasets 
to train the regression models and estimate the thermal resistance of actual case studies. Each simulation was included 
in the dataset of actual cases as an observation. So, simulations were first used to train and assess the regression 
models developed for actual cases, and then to estimate in both walls (see section 2.4). Simulations were made 𝑅𝑤;𝑏 
with the HTflux software, and a total of 149 time series of monitorings carried out in previous research works were 
introduced [37,101]. The simulation models were designed following the criteria set up in the ISO 10211 [102]. A total 
of 71 various typologies of basement walls were configured, and 10,579 simulations were obtained by combining time 
series. Basement walls representing building typologies in Spain were modelled. Several sources from various studies 
were used [103,104], as well as the technical standard in Spain [105]. The aim was to use the methodology in various 
typologies of basement walls. For each simulation, the thermal resistance, the average temperature and heat flux values 
were obtained by using the time windows indicated above. The temperature and heat flux were measured by following 
the same scheme in Figure 8. Due to the variability of the heat flux through the wall because of the two-dimensionality 
acquired by the effect of the ground, the simulations were also performed considering the one-dimensionality of the wall 
(see Figure 9). Thus, the thermal resistance values were calculated without the two-dimensional effect of the ground for 
three reasons: (i) to be able to identify precisely whether the knowledge of the wall is real (i.e., whether both layers and 
their characteristics are real); (ii) to be used in the analysis of the thermal performance of the basement wall, as included 
in ISO 13370 [57]; and (iii) to carry out energy analysis of the building by using simulation softwares, such as 
DesignBuilder. The proposed methodology could also be used to obtain two-dimensional thermal resistances, although 
its potential of use is reduced due to the aspects mentioned above. In addition, representative comparisons of the value 
obtained with the reference value of ISO 6946 cannot be made. In this way, the criterion of ISO 9869-1 was used to 
consider whether the estimations carried out by the regression models ( ) were representative: those 𝑅Estimated 



estimations with a deviation lower than 20% with respect to the reference value ( ) can be considered 𝑅Reference
representative (see Eq. (11)).

Deviation =
𝑅Estimated ‒ 𝑅Reference 

𝑅Reference 
(11)

Figure 9. Scheme of the relation between the two-dimensional and one-dimensional analysis used to generate the 
simulations. 

3. Results and discussion 

3.1. Calibrated hot-box test

As mentioned in Section 2, an analysis was first carried out in a CHB which was adapted to assess the possibility 
of using the proposed methodology under controlled conditions in laboratory before analysing it in actual case studies. 
Given such analysis using the CHB aims at simulating the performance of the sample similarly as under actual 
conditions, two aspects should be stressed concerning the ground: (i) an isotherm profile along the section of ground, 
and (ii) the temperature value of the ground should be constant due to the temperature values of the cold and hot 
chambers.

The fulfilment of such conditions was therefore one of the first aspects analysed. Firstly, thermographies taken in 
sections of the ground and located in the cold chamber allowed different isotherms to be visualized (see Figure 10 (a)). 
The temperature values in the lower part of the ground were greater than in the upper part (in contact with the air of the 
cold chamber), thereby simulating the real behaviour of a basement wall in cold seasons, when the ground temperature 
was higher in levels of greater depth (see Figure 10 (b)). Secondly, the analysis of the temperatures recorded in tests 
allowed the stability of the ground temperature value to be verified. As can be seen in Figure 11, the time required to 
stabilize the temperature value of the ground was 60 hours. The test with a depth of 30 cm was performed after the test 
with a depth of 20 cm, thus implying that the ground temperature was steady since the beginning of the test. Such 
analysis was also useful to corroborate the existing isotherms in the ground because the ground temperature had an 
average value of 22.4 ºC for the depth of 20 cm, whereas the average value of the ground temperature was greater for 
the depth of 30 cm.



Figure 10. Analysis of the distribution of isotherms in the CHB: (a) thermographies of the ground temperature profile 
of the CHB, and (b) example of the distributions of isotherms in an actual case study.

Figure 11. Variation of the ground temperature in the tests performed in the box. Example of tests with a temperature 
differential of 40 ºC.

After analysing how the CHB represents the behaviour of a basement wall in a controlled environment, the 
performance of the regression models was analysed. As indicated in Section 2, monitoring data were used to generate 
the training and testing subsets, as well as the four time windows considered in this study (0.5 day, 1 day, 1.5 days, and 
2 days). Table 3 represents the performance results from the training and testing. Figure 12 shows the point clouds 
between the actual and the values estimated by the regression models. It is worth stressed that the difference in the 
values shown by the point clouds is due to the variation presented by  because it was obtained through different 𝑅𝑤;𝑏
time windows. The performance obtained by the models were quite adjusted. Both in training and testing, the 
determination coefficient had values greater than 99% in all models. Likewise,  and  were almost in all models 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸
lower than 0.0005 and 0.00010, respectively, and only in some models the error parameters were higher than such 
values, although the increase of the error parameters was very low (0.0003 or lower). The regression algorithms had 
also very similar performances. The estimations carried out by M5P, MLP, and RF were very similar, thereby presenting 
point clouds with estimated values close to the actual values. On the other hand, the time window with the best 
performance in the estimations of the models could not be determined. For all time windows, the performance in the 
testing obtained  greater than 99.90% with error parameters. It was only found that the use of time windows higher 𝑅2

than 0.5 day allowed a slight decrease in the error of the estimations to be achieved. The analysis using the CHB could 
therefore determine the effectiveness of using regression algorithms to make accurate estimations of . Then, the 𝑅𝑤;𝑏
use of the methodology in actual case studies was analysed. Also, the design of CHB for samples in contact with the 



ground is appropriate to simulate the two-dimensional behaviour under controlled conditions in laboratory. Such design 
is an opportunity to reproduce and analyse various building solutions and their thermal performance. 

Table 3. Behaviour in training and testing phases of regression models in the CHB test.
Model Training Testing

 [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Time window of 0.5 day
M5P 99.91 0.0005 0.0009 99.92 0.0005 0.0009
MLP 99.96 0.0005 0.0006 99.98 0.0004 0.0005
RF 99.97 0.0003 0.0005 99.98 0.0003 0.0005

Time window of 1 day
M5P 99.84 0.0007 0.0013 99.92 0.0005 0.0009
MLP 99.98 0.0004 0.0005 99.99 0.0002 0.0003
RF 99.98 0.0003 0.0004 99.99 0.0003 0.0004

Time window of 1.5 days
M5P 99.89 0.0007 0.0010 99.89 0.0007 0.0010
MLP 99.98 0.0003 0.0005 99.99 0.0002 0.0003
RF 99.95 0.0003 0.0007 99.97 0.0003 0.0005

Time window of 2 days
M5P 99.91 0.0006 0.0010 99.92 0.0005 0.0009
MLP 99.97 0.0004 0.0005 99.98 0.0003 0.0004
RF 99.98 0.0003 0.0004 99.99 0.0003 0.0003



Figure 12. Point clouds between the actual and predicted thermal resistance values. Results of the data obtained in 
the CHB test.

3.2. Test in actual case studies

Firstly, the dataset used to train the models was created in this second phase. As mentioned in Section 2, two-
dimensional simulations were carried out by using FEM of 71 various typologies of basement walls, thereby obtaining a 
total of 10,579 simulations. Unlike in the test with the CHB (in which there was only one kind of case study), in this case 
the performance obtained by the models was supposed to be different from that obtained in the previous phase because 
of high number of various walls. Table 4 indicates the values of the statistical parameters obtained in the training and 
testing of the models. Figure 13 shows the adjustment degree of the estimated values for each instance of the testing 
subset. Unlike in the regression models with data of the CHB, the performance of the models in this case had two 
tendencies. On the one hand, the tree models (M5P and RF) had very adjusted performances in the time windows, 
whereas MLP had the worst performance. Also, R2 had values between 98.81 and 99.86% in the tree models, whereas 
it oscillated between 90.09 and 97.03% in MLP. The best correlation coefficient obtained by MLP (in the testing of the 
time window of 2 days) was therefore 1.78% lower that the worst R2 obtained by the tree models (the value obtained in 
the training of M5P of the time window of 0.5 days). However, the worst performance of MLP was found in the error 
parameters. Both in the training and testing, MAE and RMSE had increases with respect to the parameters of the tree 
models greater than 254.55% and 155.56%, respectively. The adjustment degree of the MLPs was therefore very low 
with respect to the simulated data. Regarding the comparison between M5P and RF models, the performance of such 
models were similar, although RF obtained a better degree of adjustment. RF had R2 with increases greater than 0.22% 



with respect to M5P, and values of MAE and RMSE with decreases greater than 0.017 and 0.018, respectively. 
Therefore, the use of a greater number of walls in the dataset generated a lower adjustment in the MLP estimations 
compared to the results of the CHB test.

Concerning the time windows used, it was found that as the time assigned to the window increased, the performance 
of the tree models improved, particularly in the statistical parameters of the testing. By increasing the window in 0.5 
days, R2 improved more than 0.16 and 0.06% in M5P and in RF, respectively. Also, the values of the error parameters 
decreased as the time window increased: (i) for M5P, MAE and RMSE presented decreases greater than 0.008 and 
0.004, respectively; and (ii) for RF, MAE and RMSE had decreases greater than 0.003 and 0.007, respectively. Error 
parameters slightly worsened only in the time window of 1.5 days, although the increase of a window of 2 days achieved 
the best estimations. 

Table 4. Behaviour in training and testing phases of regression models in FEM simulated data.
Model Training Testing

 [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Time window of 0.5 day
M5P 98.81 0.045 0.078 98.88 0.044 0.076
MLP 90.09 0.185 0.229 93.07 0.156 0.205
RF 99.51 0.020 0.050 99.50 0.021 0.050

Time window of 1 day
M5P 99.26 0.035 0.064 99.04 0.036 0.072
MLP 91.42 0.174 0.219 95.43 0.150 0.184
RF 99.71 0.015 0.040 99.66 0.016 0.043

Time window of 1.5 days
M5P 99.24 0.038 0.068 99.20 0.038 0.070
MLP 94.17 0.154 0.193 95.59 0.190 0.233
RF 99.73 0.016 0.041 99.72 0.016 0.042

Time window of 2 days
M5P 99.59 0.031 0.054 99.63 0.030 0.051
MLP 96.10 0.137 0.171 97.03 0.243 0.281
RF 99.86 0.013 0.031 99.85 0.013 0.033



Figure 13. Point clouds between the actual and predicted thermal resistance values. Results of the data obtained in 
simulations of actual case studies.

Thus, the use of time windows of 2 days ensured an acceptable performance of the models, so it is the most 
appropriate time window for the method. Furthermore, the duration of the monitorings would be similar with other existing 
methods characterizing the envelope elements, such façades with ISO 9869-1. The performance of the estimations 
carried out by the method for both actual case studies was therefore made with the models of 2 days. 

In relation to this aspect, actual basement walls were monitored in periods of 2 days (see Figure 14). By using the 
monitoring data, two input vectors (one by each wall analysed) could be generated for the regression models (i.e., the 
values of  in a time windows of 2 days for each wall were introduced in the 𝑇𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙, 𝑇𝑔𝑟𝑜𝑢𝑛𝑑, 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ‒ 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙, 𝑇𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙, 𝑞
regression models). Figure 15 represents the values of estimated thermal resistance by the regression models. For Wall 
A, M5P was the only model which achieved an estimation of thermal resistance with a deviation lower than 20% with 
respect to the reference value (2.90%), whereas MLP and RF had deviations of 65.94 and 51.45%, respectively. For 
Wall B, M5P was again the model estimating the most adjusted value of thermal resistance with respect to the reference 
value (with a percentage deviation of 12.50%), although RF made an estimation of thermal resistance which can be 
considered valid (although the percentage deviation was 20.83%, the absolute difference between both values was 
0.135 m²K/W). Also, MLP was again the model which made the worst estimation. In this sense, estimations for MLP for 
both walls were quite similar: 0.47 m²K/W for Wall A, and 0.487 m²K/W for Wall B. This reflects the small capacity of 
generalization of MLP in new instances as well as its low performance with the configuration of the input variables 
considered. Consequently, the tree models have a capacity of generalization in new cases greater than MLP, with M5P 
being the best regression model to estimate more adjusted values. M5P constitutes therefore the most efficient option 
to process the data obtained in the monitorings of actual basement walls. 



Figure 14. Time series of the variables measured in the actual case studies.

Figure 15. Comparison between the reference and estimated values of obtained by the regression models in both 𝑅𝑤;𝑏 
actual basement walls.

3.3. Potential and limitations of the methodology in actual walls

This methodology aims at characterizing the thermal resistance of basement walls (see Figure 16) and uses 5 
average values as input variables  which are obtained by monitoring each [𝑇𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙, 𝑇𝑔𝑟𝑜𝑢𝑛𝑑, 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ‒ 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙, 𝑇𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙, 𝑞]
wall for 2 days. Such variables are easily measurable by using temperature probes and heat flux plates, and the 
requirements for placing the probes which measure it have been previously explained in the subsection 2.4. The input 
vector is generated and introduced in the M5P model, thus obtaining the thermal resistance value of the model. The 
M5P model is developed with a dataset obtained through simulations as section 2.5 indicates. Simulations generate 
dataset without a huge temporary effort, thus implying a greater use of this methodology in actual problems. 

The analyses methodology precisely determined the thermal resistance of the actual basement walls without 
presenting any decreases in the estimations made by the constructive composition of the walls. Also, both walls had 
characteristics clearly different, one of them having insulation and air gap, and the other being only a reinforced concrete 
layer. So, the M5P model was that with greater capacity of generalization. Given that the typologies of basement walls 
from various countries usually have similar characteristics, the possibilities of using the methodology are not only limited 
to the area where these case studies are located, thereby making evident its international importance. However, the 
analysis of the influence of various ground typologies should be evaluated, thereby implying the generation of different 



models according to the existing ground. In addition, there may be limitations in measuring the ground temperature in 
those buildings where measurement is not possible (e.g., hidden ground by sidewalks). Likewise, variations in the heat 
flux of the wall or the temperature of the ground due to variations in the two-dimensional or three-dimensional effect 
during the measurements could be a limitation for the use of the methodology.

Finally, the approach of this work is limited in walls of depth of less than 3 m. Therefore, there are limitations of using 
this methodology in those basement walls that do not meet these deep conditions. Future research studies could be 
focused on the feasibility of analysing case studies more deeply.

Figure 16. Steps to estimate the thermal resistance of a basement wall.

4. Conclusions
This paper presents a methodology to estimate the thermal resistance of basement walls. Such methodology 

consists in measuring easily measurable variables (internal air temperature, external air temperature, ground 
temperature, internal surface temperature, and heat flux) which, together with the use of regression models, allow the 
thermal resistance to be estimated. Based on the results obtained, the authors of this paper conclude the following:

 The use of the methodology was analysed under controlled conditions. For this purpose, a test model of a 
calibrated hot-box was designed to simulate the behaviour of the samples in contact with the ground. Such 
calibrated hot-box could be therefore applied to greater scales to monitor different typologies of basement 
walls under controlled conditions. Also, the monitoring of basement walls under warm environmental 
conditions could be analysed. In this way, the ground was in the cold chamber, but it could be in the hot 
chamber as well. The analysis of the variables of temperature recorded in tests showed that the time 
required to stabilize the temperature value of the ground was 60 hours. Moreover, this analysis allowed to 
check that there were isotherms in the ground temperature (i.e., similar to real buildings). Regarding the 
analysis of the regression models of this phase, the performance obtained by the algorithms was quite 
adjusted in the time windows considered. In this way, a slight better performance was found for time 
windows greater than 0.5 days. 

 The use of the methodology in actual case studies was analysed. The regression models were generated 
by using a dataset of 10,579 simulated tests, and they were applied to two actual case studies. In this case, 
the regression models had different performances. The tree models had a better adjustment than the 
observations of the training and testing subsets (determination coefficient between 98.81 and 99.86%), 
whereas multilayer perceptron models had a lower degree of adjustment (a determination coefficient 
between 90.09 and 97.03%). Also, the error parameters of the estimations of the multilayer perceptrons had 
increases greater than 155.56% with respect to the tree models. This difference of the performances 
obtained in the test with the hot-box was due to the great variety of case studies included in the simulations. 
There was a total of 71 typologies of basement walls, whereas it was only one sample in the hot-box. In 
addition, the use of time windows of 2 days obtained the best results. The use of the regression models 
developed with the monitored data in two actual case studies was also analysed. The estimations of the 
models were accurate with M5 Prime (with differences lower than 0.04 m²K/W), whereas random forests 
and multilayer perceptrons did not made adequate estimations.

To conclude, the results of this research could be useful for engineers and architects to characterize the performance 
of buildings with basement walls. On the one hand, the application of the calculation procedures of ISO 13370 would 
be easier. On the other hand, the energy simulations of the buildings could be optimized by knowing accurately the 
performance of the envelope, thereby ensuring the proposal of measures to reduce the energy consumption of buildings 
as well as to achieve the objectives proposed for 2050 (a low-carbon economy). The international aspect of this study 



is worth noting because building typologies with inhabitable rooms in contact with the ground are common in various 
countries, as the case studies of this paper (typologies of basement walls). 
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